1 Supplement

23 Supplement S1

4 Table S1: Sea-ice stations >80°N where vertical profiles were obtained

Station	Date/Time (UTC)	Latitude	Longitude	Sampling depths (m)
PS92/19_05	28/05/2015 06:28	81° 10.43' N	19° 08.07' E	0.5-10-20-30-40-50
PS92/27_03	31/05/2015 06:52	81° 23.13' N	17° 35.13' E	0.5-10-20-30-40-50
PS92/31_03	03/06/2015 11:44	81° 37.20' N	19° 25.64' E	0.5-10-25-30-40-50
PS92/32_05	06/06/2015 20:04	81° 13.76' N	19° 26.63' E	0.5-10-25-30-40-50
PS92/39_08	11/06/2015 15:05	81° 55.04' N	13° 27.55' E	0.5-10-30-35-40-50
PS92/43_05	15/06/2015 04:45	82° 12.67' N	07° 35.30′ E	0.5-10-20-30-40-50
PS92/46_02	15/06/2015 04:45	82° 12.67' N	07° 35.30′ E	0.5-10-20-30-40-50
PS92/47_04	19/06/2015 12:03	81° 20.80' N	13° 36.56′ E	0.5-10-20-30-40-50

67 Supplement S2

5

8 Biological measurements

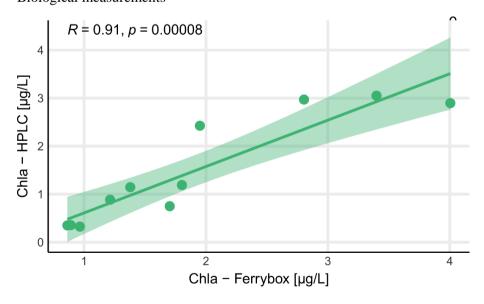


Figure S1: Relationship between chlorophyll a concentrations obtained from HPLC and Ferrybox.

Bacterial community analyses

16S rRNA gene amplicon libraries were prepared according to the standard instructions of the 16S Metagenomic Sequencing Library Preparation protocol (Illumina, San Diego, CA). The hypervariable V4–V5 region was amplified using primers 515F (GTGYCAGCMGCCGCGGTAA) and 926R (CCGYCAATTYMTTTRAGTTT). Sequences were obtained on an Illumina MiSeq platform in 2x300 bp paired-end runs at CeBiTec (Bielefeld, Germany). Primer were clipped using cutadapt, and reads processed into amplicon sequence variants (ASVs) following the standard DADA2 workflow at https://benjjneb.github.io/dada2/tutorial.html. Filtering settings were truncLen=c(230,195), maxN=0, minQ=2, maxEE=c(3,3) and truncQ=0, followed by merging using minOverlap=10, chimera removal and taxonomic classification using the Silva v138 database. Data was processed in RStudio using R v4.1.1 and packages phyloseq, vegan, iNEXT, tidyverse, psych and scico, with aesthetic modifications of figures using Inkscape (https://inkscape.org). We obtained on average 85,000 quality-controlled, chimera-filtered reads per sample (Table S2) sufficiently covering community composition (Fig. S2). The complete amplicon workflow is available under https://github.com/matthiaswietz/transsiz.

Table S2: Amplicon-sequenced samples, showing read counts at each step of the DADA2 pipeline.

sample_title	Date	Lat	Lon	input	filtered	denoised	merged	nochim	tabled
	2015-								
PS92 Auto2	05-21	60.35920	3.29927	118097	98967	98357	82764	82764	80333
	2015-								
PS92 Auto3	05-21	62.38333	3.35833	92223	78393	78082	70022	70022	67872
	2015-								
PS92 Auto4	05-22	64.52022	3.55040	131377	110858	110483	93018	93018	90123
	2015-								
PS92 Auto5	05-22	64.94027	3.58943	129259	109748	109459	104074	104074	98374
	2015-								
PS92 Auto6	05-22	65.90325	3.64348	159876	139180	138735	126581	126581	122124
DG02 4 . 7	2015-	66.250.45	2 52502	0.4020	70.620	70450	c c 1 0 7	66105	64204
PS92 Auto7	05-22	66.35847	3.72702	94039	79638	79452	66107	66107	64204
DG02 A + 0	2015-	66.760.40	2.760.42	1.47.60.6	122000	100,000	00720	00700	0.4205
PS92 Auto8	05-22	66.76948	3.76842	147626	123900	123608	98729	98729	94205
DCO2 Assta0	2015- 05-23	67.21610	2 92471	00604	75701	75541	64070	64070	61402
PS92 Auto9	2015-	67.31610	3.82471	88694	75721	75541	64079	64079	61492
PS92 Auto10	05-23	67.89882	3.88550	103359	83813	83655	69791	69791	66430
1392 Aut010	2015-	07.89882	3.00330	103339	03013	83033	09791	09791	00430
PS92 Auto11	05-23	68.33135	3.91565	85213	72459	72343	59608	59608	57793
1572 / (1011	2015-	00.33133	3.71303	03213	12437	72343	37000	37000	31173
PS92 Auto12	05-23	68.68500	3.97063	130307	108826	108595	95159	95159	91516
15)2714(012	2015-	00.00200	3.27003	130307	100020	100373	75157	75157	31310
PS92 Auto13	05-23	69.28850	4.01345	80729	67543	67404	55925	55925	54072
	2015-								
PS92 Auto14	05-23	69.49642	4.01595	121385	104120	103898	93522	93522	89969
	2015-								
PS92 Auto15	05-24	70.00000	10.00000	102120	86176	85987	77672	77672	74763
	2015-								
PS92 Auto16	05-24	70.22695	13.14900	114758	98526	98230	87839	87839	83624
	2015-								
PS92 Auto17	05-25	73.25000	12.25000	128590	108477	108250	91623	91623	88079
	2015-								
PS92 Auto18	05-25	74.13037	11.69167	138591	116132	115847	104990	104990	100890

PS92 Auto19	2015- 05-25	74.84322	11.20822	108687	91919	91697	87735	87735	82825
1572 1141017	2015-	7 1.0 1322	11.20022	100007	71717	71077	07733	01133	02023
PS92 Auto20	05-26	75.51768	10.72912	179367	152923	152479	146291	146291	137753
	2015-								
PS92 Auto21	05-26	76.76033	9.78639	137058	115973	115657	109506	109506	104299
	2015-								
PS92 Auto22	05-26	77.27977	9.35135	164814	141216	140814	129011	129011	124403
	2015-								
PS92 Auto23	05-27	80.87068	18.44780	123060	102837	102585	96182	96182	91236
	2015-								
PS92 Auto24	05-27	81.01718	19.84131	111661	93595	93043	84908	84908	79382
	2015-								
PS92 Auto25	05-28	81.17000	19.13450	133543	112984	112116	103696	103696	97757
	2015-								
PS92 Auto26	05-28	81.19041	19.09177	143276	122930	122362	107995	107995	102390
	2015-								
PS92 Auto27	05-29	81.20624	18.69745	87506	74860	74472	61118	61118	58023
	2015-								
PS92 Auto28	05-29	81.22513	18.58100	158441	138134	137782	129089	129089	121849
	2015-						0.1=.=		
PS92 Auto31	05-30	81.23292	18.76116	107153	91266	91018	81765	81765	77238
Dagg 4 . 22	2015-	01 221 60	15 20020	1.4.61.40	10.45.60	104004	111010	111010	105051
PS92 Auto33	06-01	81.32160	17.30839	146149	124768	124324	111819	111819	107371
DG02 A + 24	2015-	01.50571	10 44756	100000	107001	105550	05244	05244	00.600
PS92 Auto34	06-02	81.52571	19.44756	122832	105891	105552	95344	95344	89608
DC02 A4-25	2015-	01 55 410	10.51502	90076	72560	72221	57402	57402	55247
PS92 Auto35	06-03	81.55412	19.51593	89976	73560	73331	57493	57493	55347
DC02 A4-26	2015-	01 50757	10 65566	01157	60021	60620	62260	62260	50510
PS92 Auto36	06-04 2015-	81.52757	18.65566	81157	68831	68620	62260	62260	58519
PS92 Auto38	2015- 06-11	81.90915	13.40468	72012	59645	59380	49796	49796	48994
1374 Aut038	2015-	01.90913	13.40408	12012	37043	J936U	47/70	47/90	40774
PS92 Auto39	06-15	82.20975	7.38825	97048	82690	82426	70980	70980	69627
1 372 Aut039	00-13	04.40913	1.30023	J/U40	02090	02420	10700	10700	07047

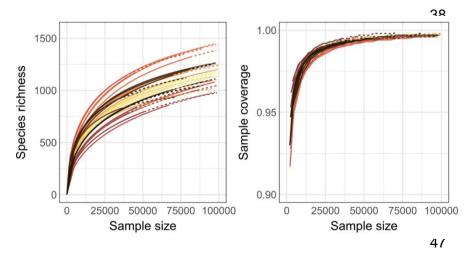


Figure S2: Rarefaction and coverage analyses of amplicon sequence variants, showing that community composition was sufficiently covered. Each coloured line corresponds to an individual sample.

Supplement S3: Extraction system

Dissolved gases in seawater were quantified in the headspace of a glass cell, where gases were extracted by stripping with zero air at a flow rate of 100 mL/min. Three mini-water liquid diaphragm pumps KNF (type FEM 1.02.KT.18S. KNF (KNF Neuberger, IncTrenton, New Jersey USA), were used for the injection and circulation of seawater in the cell at 20 mL/min. Before entering the extraction cell, the water went through a mixing cell which was used for injection of a calibrated solution. For calibration, secondary standard liquid solutions were injected at a flow rate of 250 μ L/min by mean of a fine metering pump (World Precision Instruments; Hitchin, Hertfordshire, UK), and diluted in an identical flow of 20 mL/min of pure distilled water. Figure S3 shows a schematic view of the extraction device.

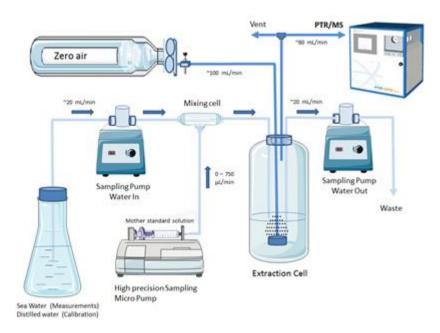


Figure S3: Schematic view of the extraction system

Supplement S4: Calibration procedure

For the calibration, stock solutions were prepared from pure substances (Sigma Aldrich) diluted in distilled water: isoprene $(1.0 \times 10^{-4} \text{ M})$, dimethylsulphide $(2.7 \times 10^{-3} \text{ M})$, acetaldehyde $(8.95 \times 10^{-3} \text{ M})$, acetone $(2.73 \times 10^{-2} \text{ M})$, acetonitrile $(7.67 \times 10^{-3} \text{ M})$, and methanol $(1.24 \times 10^{-1} \text{ M})$, all stored at 4°C. Secondary standard liquid solutions were prepared immediately before the calibrations from a dilution of $2 \times 10^{-4} (0.2 \text{ mL/L})$ in distilled water. The injection of liquid standard was achieved by dilution of stock solution in distilled water by a high precision micro pump. The calibration factor was expressed as the ratio of the concentration of a given VOC in the water (nmol/L or pmol/L) to the concentration in the head space (ppbv) measured by PTR/MS. An example is given for the calibration for acetone (Fig. S4), with excellent linearity between the PPB measured in the headspace by PTRMS and the concentration in water. Experimentally this calibration factor is very close to the Henry's law constant (expressed in mol/L per atmosphere) whatever the solubility of the compound over 4 to 5 orders of magnitude (Fig. S5). Therefore, knowing the Henry's law constant, measurements can be reasonably extrapolated to new compounds detected in water which have not been previously calibrated (such as methanethiol).

Concerning the gas-phase calibration, a complete calibration had been done one month before the campaign in the laboratory using a calibration unit (Ionicon Analytik) and by injecting different amounts of a calibration gas mixture from Ionicon, allowing to derive sensitivity ncps/ppb for all compounds contained in the standard (methanol, acetaldehyde, acetonitrile, acetone and isoprene for the compounds of interest for this study). On the same day, a gas cylinder has been measured and brought on-board in order to check the stability of the detection (at the beginning and in the middle of the campaign). As lab- and ship-based results (in ncps) were congruent, the lab-determined calibration coefficients were used for the campaign. As DMS was not included in the standard, the calibration was done directly on water measurements by using the relation between ncps and concentration in the water of the injected standard.

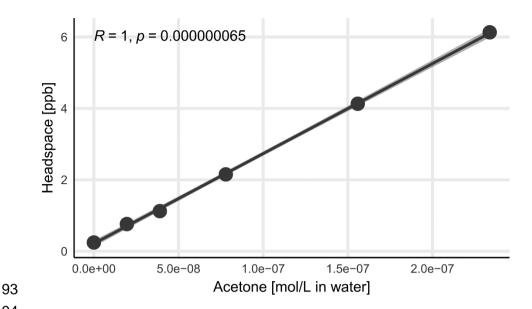


Figure S4: Calibration of acetone performed on-board

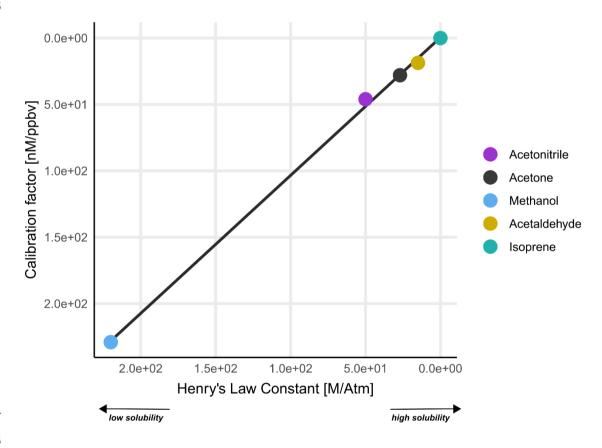


Figure S5: Calibration factor against Henry's law constant

Supplement S5: Water masses during the transect

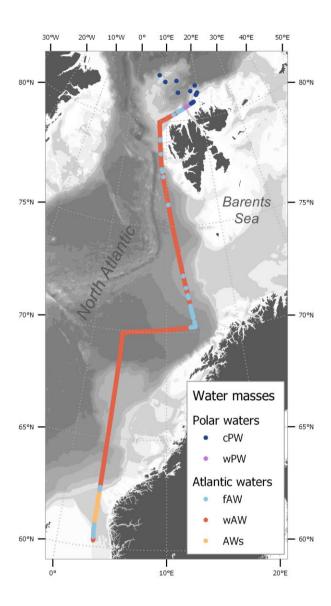


Figure S6: The sampled transect and sea-ice stations colour-coded by water mass: coastal influenced Atlantic water with low salinity (AWs), 'regular' warm Atlantic Water (wAW), fresh Atlantic Water (fAW), cold Polar Water (cPW) and warm Polar Water (wPW), see temperature and salinity criteria in Table 1.

Supplement S6: Vertical profiles of selected phytoplankton groups

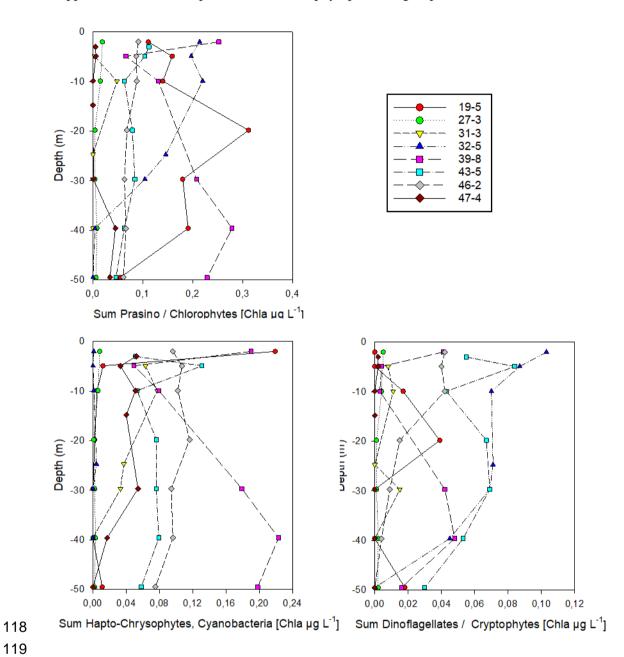


Figure S7: Depth profiles of selected phytoplankton groups, summarizing various types. Colors indicate stations.

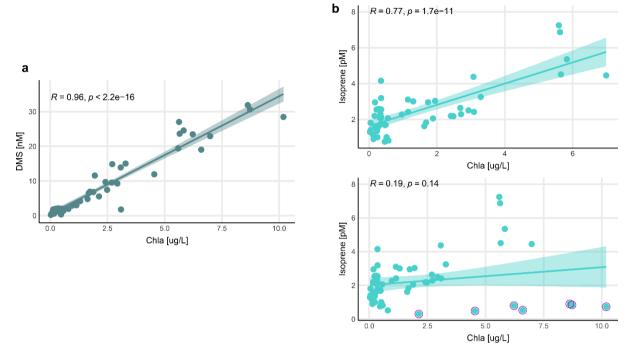


Figure S8: Correlations of DMS (a) and isoprene (b) with Chl a at sea-ice stations >80°N. Correlations with isoprene were only significant when excluding station 19 (upper panel; see explanation in the main text). The lower panel includes all data points >80°N. Data from station 19

are indicated by a purple circle.

Supplementary references

131132

133

134

125

126

127

128

129

- Callahan et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13:581-583.
- Hsieh et al. (2019). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7:1451-1456.
- Crameri (2018). Scientific colour maps (Version 3.0.1). doi: 10.5281/zenodo.1243909
- Crameri (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geosci. Model
 Dev. Discuss. doi: 10.5194/gmd-2017-328
- McMurdie and Holmes (2013). phyloseq: An R Package for Reproducible Interactive Analysis and
 Graphics of Microbiome Census Data. PLoS ONE 8:e61217.
- Oksanen et al. (2020). vegan: community ecology package; R package version 2.5-7;
 https://CRAN.R-project.org/package=vegan
- Revelle et al. (2021). psych: Procedures for Psychological, Psychometric, and Personality Research.
 R package version 2.1.9; https://CRAN.R-project.org/package=psych
- Wickham et al., (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4:1686.