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 20 

Abstract 21 

Quantifying the role of soils in nature-based solutions requirerequires accurate estimates of 22 

soil greenhouse gas (GHG) fluxes. Technological advances allow us to simultaneously 23 

measure multiple GHGs simultaneously, and now it is possible to provide complete GHG 24 

budgets from soils (i.e., CO2, CH4, and N2O fluxes). We propose that there is a conflict 25 

between the convenience of simultaneously measuring multiple soil GHG fluxes at fixed time 26 

intervals (e.g., once, or twice per month) and the intrinsic temporal variability and patterns of 27 

different GHG fluxes. Information derived from fixed time intervals -as is commonly done 28 

during manual field campaigns- had limitations to reproducereproducing statistical 29 

properties, temporal dependence, annual budgets, and associated uncertainty, when compared 30 

with information derived from continuous measurements (i.e., automated hourly 31 

measurements) for all soil GHG fluxes. We present a novel approach (i.e., temporal 32 

univariate Latin Hypercube sampling) that can be applied to provide insights and optimize 33 

monitoring efforts of GHG fluxes across time. We suggest that multiple GHG fluxes should 34 

not be simultaneously measured at a few fixed time intervals (especiallymainly when 35 

measurements are limited to once aper month), but an optimized sampling approach can be 36 

used to reduce bias and uncertainty. These results have implications for assessing GHG 37 

fluxes from soils and consequently reduce uncertainty on the role of soils in nature-based 38 

solutions. 39 

 40 
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1. Introduction 43 

Soils are importantessential for nature-based solutions for their role in climate mitigation 44 

potential through the implementation ofimplementing different natural pathways (Griscom et 45 

al., 2017; Bossio et al., 2020). The climate mitigation potential of soils is dependent on 46 

multiple factors such as weather variability (Kim et al., 2012), ecosystem type (Oertel et al., 47 

2016), soil structure (Ball, 2013), management practices (Shakoor et al., 2021), or 48 

disturbances (Vargas, 2012), where soils can ultimately act as net sources or sinks of 49 

greenhouse gases (GHGs). Therefore, accurate quantification of the magnitudes and patterns 50 

of soil GHGs fluxes is needed to understand the potential of soils to mitigate or contribute to 51 

global warming across ecosystems and different scenarios. 52 

 Most of our understanding of soil GHGs has come from manual measurements 53 

performed throughout labor -intensive field campaigns and experiments (Oertel et al., 2016). 54 

While most studies around the world have focused on soil CO2 fluxes (Jian et al., 2020), 55 

there are early examples reportinghave reported coupled measurements of soil CO2, CH4, and 56 

N2O fluxes across tropical forests (Keller et al., 1986) and savannas (Hao et al., 1988), 57 

temperate forests (Bowden et al., 1993), and peatlands (Freeman et al., 1993). These pioneer 58 

studies provided an early view of the importance of integrated measurements of multiple soil 59 

GHG fluxes to understand the net global warming potential of soils, but also 60 

demonstratedemonstrated the technical limitations and challenges associated with these 61 

efforts. For example, it is known that manual measurements have the strength of providing 62 

good spatial coverage during field surveys but provide limited information about the 63 

temporal variability (Yao et al., 2009; Barba et al., 2021).   64 

 Technological advances have opened the opportunity to simultaneously measure 65 

multiple soil GHG fluxes (i.e., CO2, CH4, and N2O) at unprecedented temporal resolution 66 

(e.g., hourly). These efforts have demonstrated differences in diel patterns and pulse events 67 
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(e.g., rewetting) due to wetting and drying cycles across tropical (Butterbach-Bahl et al., 68 

2004; Werner et al., 2007), subtropical (Rowlings et al., 2012)(Rowlings et al., 2012), and 69 

temperate (Savage et al., 2014; Petrakis et al., 2017)(Savage et al., 2014; Petrakis et al., 70 

2017) ecosystems. These approaches provide more accurate information to calculate net 71 

GHG budgets and the global warming potential of soils (Capooci et al., 2019). That said, 72 

performing automated measurements of multiple GHGs is expensive, and this approach 73 

usually has a lower representation of the spatial heterogeneity within ecosystems (Yao et al., 74 

2009; Barba et al., 2021). 75 

 Ideally, we would like to measure everything, everywhere, and all the time, but this is 76 

not possibleimpossible due to logistical, technological, physical, and economic constraints. 77 

Light weightLightweight and low -powered laser-based spectrometers have reduced technical 78 

barriers forto simultaneously measuring multiple GHGs fluxes from soils, and it. It is now 79 

easier and faster to perform discrete manual surveys across time. This opportunity creates a 80 

paradox concerning when to measure different GHG fluxes from soils when performing 81 

manual measurements. In general, researchersResearchers generally tend to perform 82 

simultaneous measurements of multiple GHGs during manual surveys, but this convenience 83 

could result in biased information. We propose that there is a conflict between the 84 

convenience of measuring multiple GHGs at a few fixed time intervals and the intrinsic 85 

temporal variability of magnitudes and patterns of different GHG fluxes.  86 

Here, we present a proof-of-concept and test how a subset of measurements derived 87 

from a fixed temporal stratification (FTS) for simultaneous measurements (i.e., stratified 88 

sampling schedule) or using an optimized sampling (i.e., temporal univariate Latin 89 

Hypercube sampling (tuLHs)), compared with automated measurements of soil CO2 (FACO2), 90 

CH4 (FACH4), and N2O (FAN2O) fluxes from a temperate forest (Petrakis et al., 2018; Barba 91 

et al., 2021, 2019). Here, weThe underlying assumption supporting any FTS approach is that 92 
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a few measurements in time can reproduce the statistical properties and temporal 93 

dependencies of soil CO2, CH4, and N2O fluxes because these GHGs respond similarly to 94 

biological and physical drivers. The tuLHs is a new statistical method for generating 95 

subsamples of parameter values (i.e., soil GHG gas fluxes in this case study) to reproduce the 96 

probability distribution and the temporal dependence of each original time series of GHG 97 

fluxes. We reveal that reporting GHG fluxes using an FTS for simultaneous measurements 98 

may result in biased information on temporal patterns and magnitudes. This study shows how 99 

a biased sampling schedule could influence our understanding of GHG fluxes and, ultimately, 100 

the climate mitigation potential of soils. 101 

 test how a subset of measurements derived from a fixed temporal stratification (FTS) 102 

for simultaneous measurements (i.e., stratified sampling schedule) or using an optimized 103 

sampling (i.e., temporal univariate Latin Hypercube sampling (tuLHs)), compared with 104 

automated measurements of soil CO2 (FACO2), CH4 (FACH4), and N2O (FAN2O) fluxes in a 105 

temperate forest. We reveal that reporting measurements of GHG fluxes using a FTS for 106 

simultaneous measurements, results in biased information of temporal patterns and 107 

magnitudes. This study shows how a biased sampling schedule could influence our 108 

understanding of GHG fluxes and ultimately the climate mitigation potential of soils. 109 

 110 

2. Materials and Methods 111 

2.1 Study site 112 

The experiment was performed in a temperate forest located at the St Jones Estuarine 113 

Reserve (a component of the Delaware National Estuarine Research Reserve [DNERR] in 114 

Delaware, USA. The site has a mean annual temperature of 13.3 °C and a mean annual 115 

precipitation of 1119 mm. Soils are classified as Othello silt loam with a texture of 40% sand, 116 

48% silt, and 12% clay within the first 10 cm (Petrakis et al., 2018). The dominant plant 117 
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species are bitternut hickory (Carya cordiformis), eastern red cedar (Juniperus virginiana L.), 118 

American holly (Ilex opaca), sweet gum (Liquidambar styraciflua L.), and black gum (Nyssa 119 

sylvatica (Marshall)). The site has a mean tree density of 678 stems ha-1 and a diameter at 120 

breast height (DBH) of 25.7±13.9 cm (mean±SD) (Barba et al., 2021). 121 

 122 

2.2 Automated measurements of soil GHG fluxes 123 

We performedanalyzed data from automated measurements (45 minutes1hr time intervals) of 124 

soil emissions of three GHGs (i.e., CO2, CH4, and N2O) between September 2014–125 

SeptemberJanuary and December 2015. This was a typical year with a mean annual 126 

temperature of 13.4 °C and an annual precipitation of 1232 mm. Continuous measurements 127 

of soil GHGs were taken by coupling a closed-path infrared gas analyzer (Li-COR LI-8100 128 

A, Lincoln, Nebraska) and nine dynamic soil chambers (Li-COR 8100–104) controlled by a 129 

multiplexer (Li-COR 8100-104) with a cavity ring-down spectrometer (Picarro G2508, Santa 130 

Clara, California). Detailed description of experimental design, measurements protocol are 131 

described in previous studiesA detailed description of the experimental design and 132 

measurements protocol is described in previous studies (Petrakis et al., 2018; Barba et al., 133 

2021, 2019). Briefly, for each flux observation, we measured CO2, CH4, (Petrakis et al., 134 

2018; Barba et al., 2021, 2019). Briefly, for each flux observation, we measured CO2, CH4 135 

and N2O concentrations every second with the Picarro G2508 for 300 seconds and calculated 136 

fluxes (at 45 minutes1 hr time intervals) from the mole dry fraction of each gas (i.e., 137 

corrected for water vapor dilution) using the SoilFluxPro software (v4.0; Li-COR, Lincoln, 138 

Nebraska, USA). Fluxes were estimated using both linear and exponential fits, and we kept 139 

the flux calculation with the highest R2. We applied quality assurance and quality control 140 

protocols using information from all three GHGs as established in previous studies (Petrakis 141 

et al., 2018; Barba et al., 2021, 2019; Capooci et al., 2019; Petrakis et al., 2017). Using these 142 
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time series, we extracted values to represent discrete temporal measurements based on FTS 143 

and using anused the optimization approach as described below.  144 

 145 

2.3 Temporal subsampling of time series 146 

Subsampling of time series was performed using FTS and a temporal optimization following 147 

a univariate Latin Hypercube (tuLHs) approach. The difference between FTS and temporal 148 

optimization is that the first approach is focused on a fixed schedule (e.g., sampling once per 149 

month), and the second is focused on reproducing the statistical properties and temporal 150 

dependence relationship of the original GHG time series with a subset of measurements. This 151 

means that optimized subsamples may not be spaced systematically (e.g., every 15 days)), 152 

and selected dates may vary for each GHG flux due to their specific statistical properties and 153 

temporal variabilitydependence.  154 

FTS represents a traditional schedule for performing manual measurements of GHG 155 

fluxes from soils. The FTS is usually performed with manual measurements because they 156 

require extensive logistical coordination due to travel time and costs, availability of 157 

instrumentation (e.g., gas analyzers) and), personnel to perform the measurements, and 158 

weather conditions. During these scheduled visits, researchers usually collect fluxes from all 159 

three GHGs and analyze them in a systematic mannersystematically to calculate magnitudes 160 

and patterns throughout the length of the experiment. Usually, researchers perform manual 161 

samples during the early hours of the day (between 9 am and 12 pm) to avoid confounding 162 

effects due to large changes in temperature and moisture, as demonstrated by information 163 

summarized by the soil respiration global database (Cueva et al., 2017; Jian et al., 2020). 164 

Consequently, we selected subsamples from each original GHG time series (derived from 165 

automated measurements) using flux measurements from 10 am at fixed intervals of once per 166 
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month (n=12), twice per month (n=24), or four times per month (n=48) starting on the first 167 

week of available data from automated measurements. 168 

We applied tuLHs as an alternative subsampling approach to obtain an optimized 169 

subsample with the same univariate statistical properties and temporal dependence 170 

relationship of the original GHG time series. Optimization was performed to select 171 

subsamples for each GHG flux using the same number of samples as for fix temporal 172 

stratificationFTS: twelve (k=12), twenty-four (k=24)), or forty-eight (k=48) measurements 173 

throughout the year of available data from automated measurements.  174 

  175 

2.4 Temporal Univariate Latin Hypercube Sampling (tuLHs) 176 

Let S = {(x1, y1, z1), (x2, y2, z2), ... , (xn, yn, zn)} be observations of the variables X, Y, and Z in a 177 

time series, where X, Y, and Z are soil GHGs (i.e., CO2, CH4, and N2O). Each measured 178 

variable of the time series is characterized by two functions: the univariate probability 179 

distribution function and the temporal dependency function. Once these two functions are 180 

known, then the behaviors of the variable can be reproduced (Le et al., 2020; Chilès and 181 

Delfiner, 2009; Trangmar et al., 1986; Pyrcz and Deutsch, 2014)(Le et al., 2020; Chilès and 182 

Delfiner, 2009; Trangmar et al., 1986; Pyrcz and Deutsch, 2014). The tuLHs consists of three 183 

steps: (1) modeling the univariate behavior of the variable using the empirical cumulative 184 

univariate probability distribution function; (2) modeling the temporal dependence using the 185 

empirical variogram function; and (3) optimizing a subsample applying a global optimization 186 

method, differential evolution, using the previously obtained variogram function as an 187 

objective function.  188 

First, to model the univariate behavior of the variables from the observations of S, the 189 

empirical univariate cumulative distribution function F*n (x) of X is estimated by: 190 
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𝐹!∗(𝑥) 	=
1
𝑛)𝐼	{𝑥# ≤ 	𝑥}

!

#$%

						(1)	 191 

where I represents an indicator function equal to 1 when its argument is true, and 0 otherwise. 192 

Similarly, the empirical univariate distribution function of the variables Y and Z can be derived. 193 

Second, to model the temporal dependence of the variables from the observations of S, the 194 

empirical temporal correlation function (i.e., temporal variogram function) 𝛾∗(𝑡) of X is 195 

estimated by: 196 

𝛾∗(𝑡) 	=
1

2𝑁(𝑡))[𝑋(𝑡# + 𝑡) − 𝑋(𝑡#)]&
'())

#$%

								(2) 197 

where N(t) is the number of pairs 𝑋(𝑡# + 𝑡)	𝑎𝑛𝑑	𝑋(𝑡#) are separated by a time t. The variogram 198 

functions of the variables Y and Z are analogous. Third, Toto optimize the subsample, it is 199 

required to choose the “optimal” data points with the selected sample size (i.e., k=12, 24, or 200 

48; where k  << n) that will have the same behavior ofas the original observations of S (i.e., 201 

GHG fluxes derived from automated measurements). To achieve this objective, we use the 202 

differential evolution, a global optimization method (Storn and Price, 1997)(Storn and Price, 203 

1997), using the variogram function as an objective function. The procedure consists of 204 

dividing the univariate empirical probability distribution in Eq. (1) into k equiprobable strata, 205 

which is equivalent to k ordered data subsets. From each subset, only one value must be chosen 206 

to satisfy the condition of a univariate Latin hypercube. The differential evolution method is 207 

applied to find the optimal points that minimize the difference between the subsample 208 

variogram γ (t) and the data variogram γ * (t) in Eq. (3). 209 

𝑂𝐹% 	= )[𝛾(𝑡) − 𝛾∗(𝑡)]&		
'())

#$%

								(3) 210 

where OF is the objective function, and the variograms γ (t) and γ * (t) are calculated using Eq. 211 

(2). 212 
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 213 

2.5 Statistical analyses 214 

The t-test was used to compare the means, and the Kolmogorov-Smirnov test was used to 215 

compare the probability distribution of measurements derived from each different sampling 216 

protocol. All tests were done with thea 95% confidence level. In addition, their statistical 217 

properties, such as mean, median, standard deviation, and first and third quartile are, were 218 

compared. The differences ofin the experimental semivariograms were calculated as a 219 

comparison measure for the temporal dependence of the samples and the original time series 220 

of GHG fluxes. For cumulative sums of GHG flux, their mean is calculated as the most likely 221 

value and their quantile difference between 97.5 and 2.5 is used to quantify the range of 222 

uncertainty., and their quantile difference between 97.5 and 2.5 is used to quantify the range 223 

of uncertainty. All analyzes were performed using the R program (Team and Others, 2013).  224 

 225 

3. Results 226 

3.1 Relationships among GHG fluxes from soils 227 

Justification in support of FTS for simultaneous measurements of GHG fluxes would require 228 

evidence of strong linear correlations between magnitudes and temporal dependence among 229 

soil GHG fluxes. First, we did not find strong linear relationships between any combination 230 

of GHG fluxes from soils derived from automated measurements (Fig. A1S1). Therefore, our 231 

data did not support the assumption that the magnitude of one GHG flux was associated with 232 

a linear increase or decrease of another GHG flux. Second, semivariogram models 233 

demonstrated differences in the temporal dependence for each GHG flux. Automated 234 

measurements of soil CO2 fluxes (FACO2) showed a temporal dependence following a 235 

Gaussian variogram model, with a nugget of 4, a sill plus nugget of 28, and a correlation 236 

range of 80 days (Fig. A2aS2a). Automated measurements of soil CH4 fluxes (FACH4) also 237 
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showed a temporal dependence but followed a spherical variogram model, with a nugget of 238 

7x10-8, a sill plus nugget of 1.5x10-7, and a correlation range of 110 days (Fig. A2bS2b). In 239 

contrast, automated measurements of soil N2O fluxes (FAN2O) did not show a temporal 240 

dependence, where a pure nugget effect was present, and with a correlation range of 0 days 241 

(Fig. A2cS2c). Consequently, thethese GHG fluxes' magnitudes and temporal patterns of 242 

these GHG fluxes were different and did not provide support in favor of FTS for 243 

simultaneous measurements of GHG from soils. 244 

 245 

3.2 Optimization of GHG sampling protocols 246 

We applied a tuLHs approach to identify subsamples that hadwith the same statistical 247 

properties and temporal dependence for each one of the original GHG time series from 248 

automated measurements. Subsamples were identified for twelve (k=12), twenty-four 249 

(k=24)), or forty-eight (k=48) measurements throughout the year for each GHG time series. 250 

All subsamples represent measurements collected at 10 am. Our results show that the 251 

optimized measurement dates were different for each GHG flux (Fig. 1), and we provide 252 

explicit examples for k=24 (Fig. 1) and k=12, 48 (Fig. A3, A4S3, S4).  253 

The optimized CO2 subsamples were well distributed throughout the year for all 254 

sampling scenarios (i.e., k from 12 to 48),) because FACO2 had a strong temporal dependence 255 

and a small nugget effect with respect to the sill (Fig. A2aS2a). The optimized CH4 256 

subsamples were also relatively well distributed throughout the year, especially for scenarios 257 

of k=24 and k=48, as FACH4 also had a temporal dependence but with a higher nugget effect 258 

with respect to the sill (Fig. A2bS2b). Finally, the optimized N2O subsamples were more 259 

difficultchallenging to define, especially with a small sample size (i.e., k=12; Fig. A3cS3c) 260 

because FAN2O did not have a temporal dependence (Fig. A2cS2c). 261 

 262 
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3.3 Differences in statistical properties and temporal dependency of subsamples 263 

Overall, there were no statistically significant differences amongbetween the mean values 264 

derived from automated measurements and those from FTS or the tuLHs approach (Fig. 2 for 265 

k=24; Fig. A5S5 for k=12; Fig. A6S6 for k=48; Tables A1S1 and A2S2). Although this appears 266 

to be a promising result, the, more than a simple comparison of the means is not enoughneeded 267 

to fully evaluate the information derived from different sampling scenarios.approaches. In 268 

other words, it is possible to have a similar mean value without reproducing the probability 269 

distribution nor the temporal dependence of the original time series (i.e., correct answer but for 270 

the wrong reasons). Here, we present results based on comparing the means, standard 271 

deviation, probability distributions, and semivariograms derived from automated 272 

measurements and the different sampling scenarios for all GHG fluxes.  273 

The mean of FACO2 was 5.9, μmol CO2 m-2 s-1, while the mean for FTS 5.5 μmol CO2 274 

m-2 s-1, and 5.9 μmol CO2 m-2 s-1 for the tuLHs approach with k=24 (Fig. 3a-c). These results 275 

were comparable with the means derived from FTS (5.4 and 5.4 μmol CO2 m-2 s-1),) and from 276 

the tuLHs approach (6.2 and 5.9 μmol CO2 m-2 s-1) using k=12 and k=48, respectively (Figs. 277 

A5, A6S5, S6; Table A1S1). The standard deviation of FACO2 was 3.9 and 3.2 μmol CO2 m-2 278 

s-1 for FTS, and 3.9 μmol CO2 m-2 s-1 for the tuLHs approach with k=24 (Figs. 3a-c). These 279 

results were comparable with the standard deviations derived from FTS (3.1 and 3.3 μmol CO2 280 

m-2 s-1),) and from the tuLHs approach (4.1 and 3.9 μmol CO2 m-2 s-1) using k=12 and k=48, 281 

respectively (Fig. A5, A6S5, S6; Table A1S1). Our results show that the semivariograms of 282 

optimized samples using the tuLHs approach closely approximate the semivariograms of 283 

automated measurements for k=24 (Fig. 4a) and k=12 and 48 (Figs. A7a, A8aS7a, S8a). These 284 

results are consistent with the sums of absolute differences between the semivariograms of the 285 

samples and the semivariogram of FACO2 with differences of 69.31, 54.39, 49.42 for FTS, and 286 

5.69, 1.99, 1.39 for the tuLHs approach for k=12, 24, 48, respectively (Table A2S2). 287 
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The mean of FACH4 was -0.93 nmol CH4 m-2 s-1, while -0.86 nmol CH4 m-2 s-1 for FTS 288 

and -0.94 nmol CH4 m-2 s-1 for the tuLHs approach with k=24 (Fig. 3d-f). These results were 289 

also comparable with the means derived from FTS (-0.83 and -0.88 nmol CH4 m-2 s-1),) and 290 

from the tuLHs approach (-0.87 and -0.92 nmol CH4 m-2 s-1) using k=12 and 48, respectively 291 

(Figs. A5, A6S5, S6; Table A1S1). The standard deviation of FACH4 was 0.36 and 0.26 nmol 292 

CH4 m-2 s-1 for FTS, and 0.34 nmol CH4 m-2 s-1 for the tuLHs approach with k=24. These results 293 

were comparable with the standard deviations derived from FTS (0.27 and 0.29 nmol CH4 m-2 294 

s-1),) and from the tuLHs approach (0.33 and 0.35 nmol CH4 m-2 s-1) using k=12 and k=48, 295 

respectively (Figs. A5, A6S5, S6; Table A1S1). The semivariograms of optimized samples 296 

using the tuLHs approach closely approximate the semivariogram of automated measurements 297 

for k=24 (Fig. 4b) and k=12 and 48 (Figs. A7b, A8bS7b, S8b). Consequently, the sums of 298 

absolute differences between the semivariograms of the samples and the semivariogram of 299 

FACH4 were 0.63, 0.48 ,0.49 for FTS, and 0.06, 0.04, 0.02 for the tuLHs approach with k=12, 300 

24, 48, respectively (Table A2S2). 301 

Finally, the mean of FAN2O was 0.45 and 0.61 nmol N2O m-2 s-1 for FTS, and 0.51 nmol 302 

N2O m-2 s-1 for the tuLHs approach with k=24 (Fig. 3g-i). These results were also comparable 303 

with the means derived from FTS (0.59 and 0.25 nmol N2O m-2 s-1),) and from the tuLHs 304 

approach (0.58 and 0.49 nmol N2O m-2 s-1) using k=12 and 48, respectively (Figs. A5, A6S5, 305 

S6; Table A1S1). The standard deviation of FAN2O was 1.62 and 1.97 nmol N2O m-2 s-1 for 306 

FTS, and 1.54 nmol N2O m-2 s-1 for the tuLHs approach with k=24. These results were 307 

comparable with the standard deviations derived from FTS (1.38 and 0.91 nmol N2O m-2 s-1),) 308 

and from the tuLHs approach (1.58 and 1.54 nmol N2O m-2 s-1) using k=12 and k=48, 309 

respectively (Figs. A5, A6S5, S6; Table A1S1). Our results show that there is no temporal 310 

dependence for N2O fluxes, but the semivariograms of optimized samples using the tuLHs 311 

approach closely approximate the semivariogram of automated measurements for k=24 (Fig. 312 
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4c) and k=12 and 48 (Figs. A7c, A8cS7c, S8c).  Consistently, the sum of absolute differences 313 

between the semivariograms of the samples and the semivariogram of FAN2O were 10.01, 314 

12.25, 16.75 for FTS, and 0.82, 1.13, 3.57 for the tuLHs approach with k=12, 24, 48, 315 

respectively (Table A2S2). 316 

These results show that the tuLHs approach reproduced with greater precision the 317 

probability distribution and the temporal dependence of the time series derived from automated 318 

measurements with more precision than FTS for all GHGs. In the next section, we explore the 319 

implications of these differences for calculation ofcalculating cumulative GHG fluxes.  320 

 321 

3.4 Calculation of cumulative GHG fluxes 322 

We calculated the cumulative flux for all GHGs using available information from automated 323 

measurements (Fig. 2; Table A3S3). The cumulative sum for available measurements of 324 

FACO2 was 5758.5 g CO2 m-2 [893.9, 13860.8; 95% CI]; for FACH4 was -0.47 g CH4 m-2 [-325 

0.81, -0.19; 95% CI]; and 0.63 g N2O m-2 [-0.75, 5.19; 95% CI] for FAN2O.  326 

 We used the mean for each GHG flux derived from the tuLHs approach or the FTS to 327 

calculate the cumulative sum (Table A3S3). We found that the FTS underestimated the 328 

cumulative flux (-8.4, -6.2, -7.1%) and the uncertainty (-32.6, -21.6, -19.3%) of FACO2 for 329 

k=12, 24, 48, respectively (Fig. 5a). In contrast, the tuLHs approach slightly overestimated 330 

the cumulative flux (6.5, 1.1, 0.1%) and slightly underestimated the uncertainty (-9.1, -4.4, -331 

3.7%) for k=12, 24, 48, respectively (Fig. 5a).  332 

The FTS underestimated the cumulative flux (-9.1, -6.1, -3.1%) and the uncertainty (-333 

31.8, -27.3, -15.9%) of FACH4 for k=12, 24, 48, respectively (Fig. 5b). In contrast, the tuLHs 334 

approach underestimated the cumulative flux (-6.1%) only for k=12, but slightly 335 

underestimated the uncertainty (-15.9, -6.8, -4.5%) for k=12, 24, 48, respectively (Fig. 5b).  336 
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The FTS substantially underestimated the cumulative flux (-168, -170, -173%) of 337 

FAN2O for k=12, 24, 48, respectively. Uncertainty was overestimated for k=12 and 24 (3.6 338 

and 26%) and underestimated for k=48 (-31%; Fig. 5c). In contrast, the tuLHs approach 339 

overestimated less the cumulative flux (29.5, 13.4, 9.1%) for k=12, 24, 48, respectively (Fig. 340 

5c). This approach underestimated the uncertainty for k=12 (-11.2%) and k=24 by -11.2 and -341 

(-13.8%,%) but overestimated the uncertainty by 2.9% for k=48 (Fig. 5c). These results show 342 

that the tuLHs approach consistently provided closer estimates for cumulative sums and 343 

uncertainty ranges than aan FTS for all GHG fluxes. 344 

 345 

4. Discussion  346 

Applied challenges, such as quantifying the role of soils in nature-based solutions, require 347 

accurate estimates of GHG fluxes. To do this, two fundamental questionsproblems exist for 348 

designing environmental monitoring protocols: where to measure and when to measure? 349 

Ultimately a monitoring protocol aims to quantify the attributes of an ecosystem, so that it 350 

can be compared in time within that ecosystem or with other ecosystems. Because we cannot 351 

measure everything, everywhere, and all the time, we can argue that any monitoring protocol 352 

has assumptions that are based on physical, economic, social, and practical reasons to address 353 

a specific scientific question. These assumptions for designing monitoring protocols could 354 

result in misleading, biased, or wrong conclusions, and therefore is critical to assess the 355 

consequences of different monitoring efforts. As Hutchinson described in “The Concept of 356 

Pattern in Ecology”,,” we do not always know if a given pattern is extraordinary or a simple 357 

expression of something which we may learn to expect all the time (Hutchinson, 358 

1953)(Hutchinson, 1953).  359 

Automated measurements of soil GHG fluxes have revolutionized our understanding 360 

of the temporal patterns and magnitudes of these fluxes in soils (Vargas et al., 2011; Savage 361 
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et al., 2014; Bond‐Lamberty et al., 2020; Tang et al., 2006). That said, these types of 362 

measurements have limitations to represent spatial variability and have higher equipment 363 

costs that limits their broad applicability across study sites Automated measurements have 364 

revolutionized our understanding of the temporal patterns and magnitudes of soil GHG fluxes 365 

(Savage et al., 2014; Bond‐Lamberty et al., 2020; Tang et al., 2006; Capooci and Vargas, 366 

2022b). These measurements have limitations in representing spatial variability and have 367 

higher equipment costs that limit their broad applicability across study sites (Vargas et al., 368 

2011). Consequently, discrete manual measurements are a common approach to 369 

simultaneously measure multiple GHG fluxes and report patterns, budgets, and information 370 

to parameterize empirical and process based models (Phillips et al., 2017; Wang and Chen, 371 

2012). In this study, we argue that the convenience of simultaneously measuring multiple 372 

GHGs using FTS may result in bias estimates; therefore, optimization of sampling protocols 373 

is needed when there is a limited number of measurements in time (i.e., k=12, 24, 48).  374 

We show that the magnitude of one GHG flux is not associated with a linear increase 375 

or decrease of another GHG flux, and the temporal dependencies of each GHG flux are 376 

different from each other (Fig. A1). Therefore, it is not possible to infer the dynamics of one 377 

GHG flux based solely on information from another under the assumption that they share 378 

similar (or autocorrelated) biophysical drivers. Multiple studies have shown that the 379 

importance of different biophysical drivers (e.g., temperature, moisture, light) is different for 380 

soil CO2, CH4 or N2O fluxes (Luo et al., 2013; Tang et al., 2006; Ojanen et al., 2010). Our 381 

results show that soil CO2 fluxes have a strong temporal dependence (Fig. A2a), likely as a 382 

result of the strong relationship between these fluxes and soil temperature in temperate mesic 383 

ecosystems (Hill et al., 2021; Bahn et al., 2010). The temporal dependence decreased for soil 384 

CH4 fluxes (Fig. A2b),where there is less evidence for such strong correlation with soil 385 

temperature (Bowden et al., 1998; Castro et al., 1995), and where multiple variables are 386 
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usually needed to explain the variability of these fluxes (Luo et al., 2013; Castro et al., 1994). 387 

Soil N2O fluxes had no temporal dependence (Fig. A2c), showing a strong decoupling from 388 

soil CO2 and CH4 fluxes (Wu et al., 2010), likely as a result of independent biophysical 389 

drivers regulating soil N2O fluxes  (Luo et al., 2013; Bowden et al., 1993; Ullah and Moore, 390 

2011).  391 

 To address the limitations of a. Consequently, discrete manual measurements 392 

are a common approach to simultaneously measure multiple GHG fluxes and report patterns, 393 

budgets, and information to parameterize empirical and process-based models (Phillips et al., 394 

2017; Wang and Chen, 2012). In this study, we argue that the convenience of simultaneously 395 

measuring multiple GHGs using FTS may result in biased estimates. Therefore, optimization 396 

of sampling protocols is needed to provide insights to improve measurement protocols when 397 

there is a limited number of measurements in time (i.e., k=12, 24, 48).  398 

We show that the magnitude of one GHG flux is not associated with a linear increase 399 

or decrease of another GHG flux, and the temporal dependencies of each GHG flux are 400 

different (Fig. S1). Therefore, it is not possible to infer the dynamics of one GHG flux based 401 

solely on information from another under the assumption that they share similar (or 402 

autocorrelated) biophysical drivers. These results imply that the magnitudes and temporal 403 

patterns of GHGs are different and therefore do not support an FTS approach for 404 

simultaneous measurements of GHG fluxes from soils. 405 

Multiple studies have shown that the relevance of different biophysical drivers (e.g., 406 

temperature, moisture, light) is different for soil CO2, CH4, or N2O fluxes (Luo et al., 2013; 407 

Tang et al., 2006; Ojanen et al., 2010). Our results show that soil CO2 fluxes have a strong 408 

temporal dependence (Fig. S2a), likely due to the strong relationship between these fluxes 409 

and soil temperature in this and other temperate mesic ecosystems (Hill et al., 2021; Bahn et 410 

al., 2010; Barba et al., 2019). The temporal dependence decreased for soil CH4 fluxes (Fig. 411 
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S2b), where there is less evidence for such a strong correlation with soil temperature in this 412 

and other temperate mesic ecosystems (Bowden et al., 1998; Castro et al., 1995; Warner et 413 

al., 2019; Barba et al., 2019). It has been reported that multiple variables and complex 414 

relationships are usually needed to explain the variability of soil CH4 fluxes in forest soils, as 415 

there is a delicate balance between methanogenesis and methanotrophy (Luo et al., 2013; 416 

Castro et al., 1994; Murguia-Flores et al., 2018). In contrast, soil N2O fluxes had no temporal 417 

dependence (Fig. S2c), showing decoupling from the observed patterns of soil CO2 and CH4 418 

fluxes (Wu et al., 2010), likely as a result of independent biophysical drivers regulating soil 419 

N2O fluxes  (Luo et al., 2013; Bowden et al., 1993; Ullah and Moore, 2011).  420 

 To address the limitations of an FTS protocol, we propose a novel optimization 421 

approach (i.e., tuLHs) to reproduce the probability distribution and the temporal dependence 422 

of each original time series of GHG fluxes. Traditional approachesmethods usually optimize 423 

subsamples by either individually focusing on reproducing the probability distribution of the 424 

original information (Huntington and Lyrintzis, 1998), or by focusing on(Huntington and 425 

Lyrintzis, 1998) or reproducing the temporal dependence of the original information 426 

(Gunawardana et al., 2011).(Gunawardana et al., 2011). The tuLHs is a simple approach that 427 

consists of usinguses the univariate probability distribution function and the temporal 428 

correlation function (i.e., variogram) as objective functions for each GHG flux. Our results 429 

show that optimized subsamples do not coincide in time for the three GHGs, suggesting that 430 

information should be collected based on theeach GHG flux's specific statistical and temporal 431 

characteristics of each GHG flux (Fig. 1). This study provides a proof -of -concept for the 432 

application of the tuLHs and. It demonstrates how an optimization can be performedapproach 433 

provides insights to design monitoring protocols and improve soil GHG flux estimates of soil 434 

GHG fluxes. 435 
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 The more temporal data we can collect, the better, but in many cases, measurement 436 

protocols are limited to a few measurements per year (i.e., k=12 to 48). Our results 437 

demonstrate that for a small sample size (i.e., k=12)), the optimized measurements for soil 438 

CO2 fluxes are consistently spread across the year, and for soil CH4 fluxes are centered 439 

within the growing season, and for soil  because of their strong temporal dependence. For the 440 

case of soil N2O fluxes, the variogram shows a constant temporal variability, meaning there 441 

is no temporal dependence. Therefore, the optimized measurements are concentrated within 442 

the fall season due to their distribution probability (Fig. 1a). Our optimization approach 443 

shows how measurements can be distributed across time as more samples are available (i.e., 444 

k=24 to 48; Fig. 1b-c) and demonstrates that optimization is critical when a limited number 445 

of measurements are available. In other words, a few measurements properly distributed 446 

across time provide better agreement with information derived from automated 447 

measurements. We highlight that this optimization approach should be tested across different 448 

ecosystems as it will result in site-specific recommendations. That said, aA similar 449 

conclusion was proposed for the spatial distribution of environmental observatory networks, 450 

where a network of few sites properly distributed (e.g., across a country) improves our 451 

understanding of the target variable more than a spatially biased network (Villarreal et al., 452 

2019). Thus, the need for representativeness assessment of information collected across time 453 

and space is needed for accurate evaluation ofto evaluate environmental measurements and 454 

quantification ofquantify nature-based solutions accurately. 455 

An initial approach suggested no statistical differences among the mean flux values 456 

derived from different sampling protocols. Arguably, this simplistic approach is a false-457 

negative due to biased information from the FTS that does not accurately represent the 458 

probability distribution and the temporal variability of soil GHG fluxes (e.g., Figs. 3-4). In 459 
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contrast, the optimization approach resulted in closer probability distributions and temporal 460 

variabilities for all GHGs, providing additional evidence against the FTS approach. 461 

 We highlight that this optimization approach should be implemented across different 462 

ecosystems as it will result in site-specific recommendations. The tuLHs can be applied to 463 

any time series length and with any time step (e.g., hours, days), but specific results will be 464 

representative of the probability distribution and the temporal dependence of the selected 465 

time series. What is essential is to question if a few measurements from an experiment 466 

represent the reality of the physical world because if limited information is available, then the 467 

actual probability distribution and temporal dependence of the phenomena could be an 468 

unknown-unknown. In other words, with few measurements, we may not be aware, and we 469 

will not be able to know which is the actual probability distribution and temporal dependence 470 

of the studied phenomena. To address this challenge, we tested the tuLHs approach with 471 

high-temporal frequency information representing the probability distribution of multiple soil 472 

GHG fluxes at the daily time-step across a calendar year. 473 

In this case study, the year chosen had typical climatological conditions and 474 

demonstrates that the statistical properties of the GHG fluxes are different and do not support 475 

an FTS approach. Therefore, longer time series (e.g., multi-year) may provide more robust 476 

optimizations that can be applied to monitoring efforts in future years. Alternatively, forecast 477 

scenarios can be predicted, or in some cases (e.g., soil CO2 efflux in temperate mesic 478 

ecosystems), a proxy variable could be used (e.g., soil temperature) to inform the tuLHs and 479 

provide insights for a sampling design. In those cases, the tuLHs can be used to suggest an 480 

optimized sampling design under those specific assumptions. Ideally, automated 481 

measurements should be co-located with manual efforts to adequately capture the temporal 482 

and spatial variability of soil GHG fluxes at a specific site.  483 
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There are several implications of biased monitoring protocols for the understanding of 484 

soil GHG fluxes and nature-based solutions. First, temporal patterns and temporal 485 

dependency may not be properly represented with the need to be revisited for studies using 486 

an FTS approach. Soil GHG fluxes have complex temporal dynamics that vary from diurnal 487 

to seasonal and annual scales that FTS is not able to(Vargas et al., 2010) that a few 488 

measurements following an FTS approach cannot reproduce (Barba et al., 2019; Bréchet et 489 

al., 2021).(Barba et al., 2019; Bréchet et al., 2021). Second, soil GHG fluxes could present 490 

hot-moments, which are transient events with disproportionately high values that are often 491 

missed with aan FTS approach (Vargas et al., 2018; Butterbach-Bahl et al., 2004). Third, 492 

cumulative sums and uncertainty ranges are biased or misleading when derived using aan 493 

FTS approach (Capooci and Vargas, 2022; Tallec et al., 2019; Lucas-Moffat et al., 2018). For 494 

this third point, our(Tallec et al., 2019; Lucas-Moffat et al., 2018; Capooci and Vargas, 495 

2022b). Our study demonstrates that an optimized approach consistently provided closer 496 

estimates for cumulative sums and uncertainty ranges when compared with automated 497 

measurements (Fig. 5). We postulate that representing the variability of soil N2O fluxes is 498 

more sensitive to the FTS approach (>170% and >30% for cumulative sums and uncertainty 499 

ranges, respectively) than for soil CH4 and CO2 fluxes. Fourth, it is possible that if the 500 

information derived from thean FTS approach is biased, then functional relationships could 501 

also be different from those derived from automated measurements (Capooci and Vargas, 502 

2022). It has been discussed that hypothesis testing and our capability for(Capooci and 503 

Vargas, 2022a). It has been argued that hypothesis testing and our capability of forecasting 504 

responses of soil GHG fluxes to changing climate conditions is also biased with information 505 

from the FTS approach (Vicca et al., 2014). Finally, because soils have a central role 506 

for(Vicca et al., 2014). Finally, because soils have a central role in nature-based solutions 507 

within countries and across the world (Griscom et al., 2017; Bossio et al., 2020), accurate 508 
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measurements are required to properly assess management practices, environmental 509 

variability and the contribution of GHGs from soils (Anderegg, 2021).assess management 510 

practices, environmental variability, and the contribution of GHGs from soils.  511 

 512 

Conclusion 513 

We highlight that we do not always know if a given pattern is extraordinary or a simple 514 

expression of something which we may learn to expect all the time (Hutchinson, 1953). 515 

Furthermore, the “Knowledge Paradox” has been recognized for soil science, where 516 

innovative knowledge has often not been accepted by or implemented in society (Bouma, 517 

2010). Here, we postulate that with emergent technologies there is a convenience of 518 

measuring multiple GHGs from soils; however, few measurements collected at fixed time 519 

intervals results in biased estimates.  520 

We We highlight that we only sometimes know if a given pattern is extraordinary or a simple 521 

expression of something which we may learn to expect all the time (Hutchinson, 1953). 522 

Arguably, there is bias in our understanding of the probability distribution and temporal 523 

dependency of soil GHG fluxes across the world because most results are based on a few 524 

manual measurements (e.g., once a month) following an FTS approach. Currently, it is 525 

unknown how large such bias could be across studies and ecosystems, but because most 526 

studies lack high-temporal frequency information, the real probability distribution and 527 

temporal dependency of soil GHG fluxes may remain unknown in most study sites. What is 528 

essential is to question if the observed patterns, derived from an FTS approach, are enough 529 

for improving our understanding of soil processes or are results that we have learned to 530 

expect.  531 

We postulate that with emergent technologies, there is a convenience of measuring 532 

multiple GHGs from soils; however, few measurements collected at fixed time intervals 533 
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result in biased estimates. We recognize that potential measurement bias in measurements is 534 

dependentdepends on theeach GHG flux's magnitudes and temporal patterns of each GHG 535 

flux and could be site-specific. Nevertheless, evaluations are needed to quantify potential bias 536 

in estimates of GHG budgets and information used for model parameterization and 537 

environmental assessments. Furthermore, the underlying assumption that each GHG flux 538 

responds similarly to biophysical drivers may need to be tested across multiple ecosystems to 539 

quantify how few measurements influence our understanding of magnitudes and temporal 540 

patterns of soil GHG fluxes.  541 

In this study, we present a proof-of-concept and propose a novel optimization 542 

approach (i.e., temporal univariate Latin Hypercube sampling) that can be applied with site-543 

specific information of different ecosystems to improve monitoring efforts and reduce the 544 

bias of GHG flux measurements across time. We highlight that constant biased 545 

environmental monitoring may provide confirmatory information, which we have learned to 546 

expect, but modifications of monitoring protocols could shed light into extraordinary 547 

patterns. These on new or unexpected patterns. These new patterns are the ones that will test 548 

paradigms and push science frontiers. 549 

 550 
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univariate-Latin-Hypercube.git 555 

 556 

 557 



 

 

25 

Author Contributions. R.V. conceived this study, and V.H.L. designed and performed the 558 

primary analysis with input from R.V in all phases. R.V. wrote the manuscript with 559 

inputcontributions from V.H.L. 560 

 561 

Competing Interest Statement. None  562 

 563 

Acknowledgments. The authors thank the Delaware National Estuarine Research Reserve 564 

(DNERR), the personnel from) and the St Jones Reserve personnel for their support 565 

throughout this study. AuthorsThe authors acknowledge the land on which they realized this 566 

study as the traditional home of the Lenni-Lenape tribal nation (Delaware nation). This study 567 

was funded by a grant from the National Science Foundation (#1652594). 568 

 569 
 570 
 571 
) and NASA Carbon Monitoring System (80NSSC21K0964).  572 



 

 

26 

FIGURES 573 
 574 
 575 

 576 
 577 
 578 
 579 
Figure 1. Temporal distribution of fixed temporal stratification (i.e., stratified manual 580 
sampling approach) and optimized sampling using a temporal univariate Latin Hypercube 581 
(tuLHs) approach for: k=12 (a), k=24 (b), and k=48 (c). Fixed temporal stratification is in 582 
black, soil CO2 fluxes in red, soil CH4 fluxes in blue, and soil N2O fluxes in green.583 
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 Time (x-axis) represents days from January 1 to December 31 of, 2015.  584 
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 585 

 586 
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 587 
 588 
Figure 2. Time series of automated measurements (FA) of soil greenhouse gas fluxes (black 589 
circles) and optimized samples (k=24) using a temporal univariate Latin Hypercube sampling 590 
(tuLHs) approach for soil CO2 (a), soil CH4 (b) and soil N2O (c) fluxes. Horizontal The 591 
horizontal red line represents the mean, and the horizontal blue line is the median of each 592 
greenhouse gas flux derived from automated measurements. SelectionThe selection of 593 
datapointsdata points for k=12 and 48 are presented for each soil greenhouse gas time series 594 
in Figs. A3S3 and A4S4, respectively. Time (x-axis) represents days from January 1 to 595 
December 31 of, 2015. 596 
 597 
  598 
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 599 

 600 
 601 
 602 
Figure 3. Histograms for automated measurements of soil CO2 (FA CO2; a), soil CH4 (FA 603 
CH4; d)), and soil N2O (FA N2O; g). Histograms for optimized samples (k=24) using a 604 
temporal univariate Latin Hypercube sampling (tuLHs) approach for soil CO2 (b), soil CH4 605 
(e)), and soil N2O (h) fluxes. Histograms for fixed temporal stratification (i.e., stratified 606 
manual sampling schedule) (k=24) for soil CO2 (c), soil CH4 (f)), and soil N2O (i) fluxes. 607 
Appendix ASupplementary material includes results for measurements with k=12 (Fig. 608 
A5S5) and k=48 (Fig. A6S6).  609 
 610 
  611 
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 612 
 613 
 614 

 615 
 616 
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 617 
Figure 4. Comparison of semivariograms between automated measurements (FA) of soil 618 
greenhouse gas fluxes (solid black line) and for optimized samples using a temporal 619 
univariate Latin Hypercube sampling (tuLHs) approach (red circles) or fixed temporal 620 
stratification (green circles) with k=24. Semivarograms are presented for soil CO2 (a), CH4 621 
(d)), and N2O (c) fluxes. Semivariograms for measurements with k=12 and k=48 are 622 
presentedshown in supplementarySupplementary Figs. A7S7 and A8S8, respectively. 623 
Semivariogram fits were gaussian (Gau) or spherical (sph). 624 
 625 
  626 
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 627 

 628 

 629 
 630 
 631 
 632 
Figure 5. Comparison of percent differences from cumulative sums and associated 633 
uncertainty (95% CI) between greenhouse gas fluxes derived from automated measurements 634 
(FA) and using an optimized sampling approach (tuLHs) or a fixed temporal stratification. 635 
Differences are represented for of soil CO2 (a), soil CH4 (b)), and soil N2O (c) fluxes. 636 
BlackThe black circle in the center (0,0) of a plot represents the values derived from 637 
automated measurements (FA). Blue circles represent estimates from fixed temporal 638 
stratification, and red circles represent estimates from an optimized sampling approach 639 
(tuLHs). Estimates were calculated based on the 258 available automated measurements (Fig. 640 
2)), and numeric estimates are in Table A3S3. 641 
 642 
 643 
 644 
  645 
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Appendix A – Supplementary Tables and Figures 646 

 647 

Table A1. Statistical properties for automated measurements of soil CO2 (FA CO2), soil CH4 648 
(FA CH4) and soil N2O (FA N2O) fluxes, optimized samples (k=12, 28, 48) using a temporal 649 
univariate Latin Hypercube sampling (tuLHs), and fixed temporal stratification (k=12, 28, 650 
48). Units for soil CO2 fluxes are in µmol m-2 s-1, and for soil CH4 and N2O fluxes in nmol m-651 
2 s-1.  652 
 653 

 
Number of 

measurements 
(k) 

1st. 
Quartile Median Mean 3rd. 

Quartile 
Standard 
Deviation 

FACO2 8259 2.81 5.03 5.87 8.65 3.85 

tuLHs approach 
(CO2) 

12 3.19 5.30 6.25 8.88 4.06 

24 3.00 5.13 5.93 8.44 3.90 

48 2.84 4.97 5.88 8.54 3.87 

Fixed temporal 
stratification 

(CO2) 

12 2.68 5.82 5.37 7.10 3.15 

24 2.69 5.66 5.50 7.07 3.24 

48 2.69 5.53 5.45 8.05 3.29 

FACH4 8259 -1.14  -0.92  -0.93  -0.67  0.36  

tuLHs approach 
(CH4) 

12 -1.11 -0.89 -0.87 -0.66 0.33 

24 -1.14  -0.92  -0.94  -0.66  0.34  

48 -1.13 -0.91 -0.92 -0.66 0.35 

 
Fixed temporal 

stratification 
(CH4) 

12 -1.01 -0.83 -0.83 -0.67 0.27 

24 -1.01  -0.89  -0.86  -0.68  0.26  

48 -1.10 -0.86 -0.88 -0.66 0.29 

FAN2O 8259 -0.18  0.01  0.45  0.49 1.62 

tuLHs approach 
(N2O) 

12 -0.18 -0.01 0.58 0.50 1.58 

24 -0.18  0.03  0.51  0.45 1.54  

48 -0.17 0.02 0.49 0.45 1.54 

 
Fixed temporal 

stratification 
(N2O) 

12 -0.35 0.51 0.59 0.83 1.38 

24 -0.21  -0.08  0.61  0.36  1.97  

48 -0.31 0.00 0.25 0.53 0.91 

654 
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Table A2. Comparison of errors between experimental variogram for automated 655 
measurements of soil greenhouse gases (FA; k=8259) and experimental variograms for data 656 
using temporal univariate Latin Hypercube sampling (tuLHs) and fixed temporal 657 
stratification. 658 
 659 

 Approach 
Number of 

measurements 
(k) 

Error 
(Sum of absolute differences) 

Soil CO2 

fluxes 

 

Fixed 

12 
24 
48 

69.31 
54.39 
49.42 

 

tuLHs 

12 
24 
48 

5.69 
1.99 
1.39 

Soil CH4 

fluxes 

 

Fixed 

12 
24 
48 

0.63  
0.68 
0.49 

 

tuLHs 

12 
24 
48 

0.06 
0.04 

0.02 

Soil N2O 

fluxes 

 

Fixed 

12 
24 
48 

10.01  
12.25 

16.75 

 

tuLHs 

12 
24 
48 

 0.82 
1.13 

3.57 

 660 
 661 
 662 
  663 
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Table A3. Cumulative sum and associated uncertainty of greenhouse gas (GHG) fluxes 664 
derived from automated measurements (FA) and using an optimized sampling approach 665 
(tuLHs) or a fixed temporal stratification. Cumulative sum represents the total flux from 666 
available measurements derived from automated measurements for all GHG fluxes. 667 
 668 
 669 

 
Number of 

measurements 
(k) 

Cumulative 
Sum 

Uncertainty 
95% CI 

Uncertainty 
Range 

FACO2 

(g CO2 m2) 8259 5758 893 13860 
 12966 

tuLHs 
approach 

(g CO2 m2) 

12 6130 1423 13218 
 

11794 

24 5818 1046 13438 
 

12391 

48 5766 946 13429 
 

12482 

Fixed 
temporal 

stratification 
(g CO2 m2) 

12 5273 1376 10117 
 

8740 

24 5402 1196 11356 
 

10160 

48 5351 1162 11621 
 

10458 

FACH4 

(g CH4 m2) 8259 -0.33 -0.58 -0.14 
 0.44 

tuLHs 
approach 

(g CH4 m2) 

12 -0.31 -0.49 -0.12 
 

0.37 

24 -0.33 -0.57 -0.16 
 

0.41 

48 -0.33 -0.56 -0.14 
 

0.42 

 
Fixed 

temporal 
stratification 
(g CH4 m2) 

12 -0.3 -0.45 -0.15 
 

0.3 

24 -0.31 -0.46 -0.14 
 

0.32 

48 -0.32 -0.51 -0.14 
 

0.37 

FAN2O 
(g N2O m2) 8259 0.44 -0.53 3.67 

 4.2 

tuLHs 
approach 

(g N2O m2) 

12 0.57 -0.48 4.19 
 

4.67 

24 0.5 -0.43 4.35 
 

4.78 

48 0.48 -0.5 3.58 
 

4.08 

 
12 -0.3 -0.83 3.52 

 

4.35 

24 -0.31 -0.43 4.86 
 

5.29 
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Fixed 
temporal 

stratification 
(g N2O m2) 

48 

-0.32 
-0.7 2.21 

 

2.91 

 670 
 671 

  672 
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 673 
 674 
 675 

 676 
 677 
Figure A1. Relationships between soil CO2 (FA CO2) with soil CH4 (FA CH4) fluxes (a), soil 678 
CH4 (FA CH4) with soil N2O (FA N2O) fluxes (b), and soil CO2 (FA CO2) with soil N2O (FA 679 
N2O) fluxes. None of these relationships were significant at a=0.05. These relationships were 680 
derived using all available data from automated measurements (FA) of soil greenhouse gas 681 
fluxes.    682 
  683 
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 684 

 685 
 686 
Figure A2. Semivariograms of soil CO2 (FA CO2; a), soil CH4 (FA CH4; b) and soil N2O (FA 687 
N2O; c) fluxes. These semivariograms were derived using all available data from automated 688 
measurements (FA) of soil greenhouse gas fluxes. Semivariogram fits were gaussian (Gau) or 689 
spherical (sph). 690 
 691 
  692 
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 693 

 694 
 695 
Figure A3. Time series of automated measurements (FA) of soil greenhouse gas fluxes 696 
(black circles) and optimized samples (k=12) using a temporal univariate Latin Hypercube 697 
sampling (tuLHs) approach for soil CO2 (a), soil CH4 (b) and soil N2O (c) fluxes. Horizontal 698 
red line represents the mean and horizontal blue line the median of each greenhouse gas flux 699 
derived from automated measurements. 700 
 701 
 702 
  703 
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 704 
 705 
 706 
 707 
 708 

 709 
 710 
 711 
Figure A4. Time series of automated measurements (FA) of soil greenhouse gas fluxes 712 
(black circles) and optimized samples (k=48) using a temporal univariate Latin Hypercube 713 
sampling (tuLHs) approach for soil CO2 (a), soil CH4 (b) and soil N2O (c) fluxes. Horizontal 714 
red line represents the mean and horizontal blue line the median of each greenhouse gas flux 715 
derived from automated measurements. 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 
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 725 
 726 
Figure A5. Histograms for automated measurements of soil CO2 (FA CO2; a), soil CH4 (FA 727 
CH4; d) and soil N2O (FA N2O; g) fluxes. Histograms for optimized samples (k=12) using a 728 
temporal univariate Latin Hypercube sampling (tuLHs) approach for soil CO2 (b), soil CH4 729 
(e) and soil N2O (h) fluxes. Histograms for fixed temporal stratification (i.e., stratified 730 
manual sampling schedule; k=12) for soil CO2 (c), soil CH4 (f) and soil N2O (i) fluxes. 731 
 732 
 733 
  734 
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 735 

 736 
 737 
 738 
Figure A6. Histograms for automated measurements of soil CO2 (FA CO2; a), soil CH4 (FA 739 
CH4; d) and soil N2O (FA N2O; g) fluxes. Histograms for optimized samples (k=48) using a 740 
temporal univariate Latin Hypercube sampling (tuLHs) approach for soil CO2 (b), soil CH4 741 
(e) and soil N2O (h) fluxes. Histograms for fixed temporal stratification (i.e., stratified 742 
manual sampling schedule; k=48) for soil CO2 (c), soil CH4 (f) and soil N2O (i) fluxes. 743 
  744 
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 745 

 746 
 747 
Figure A7. Comparison of semivariograms between automated measurements (FA) of soil 748 
greenhouse gas fluxes (solid black line) and for optimized (red circles) or fixed temporal 749 
stratification (green circles) with k=12. Semivarograms are presented for soil CO2 (a), CH4 750 
(d) and N2O (c) fluxes. Semivariogram fits were gaussian (Gau) or spherical (sph). 751 
 752 
 753 
 754 
 755 
 756 
  757 
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 759 
 760 
Figure A8. Comparison of semivariograms between automated measurements (FA) of soil 761 
greenhouse gas fluxes (solid black line) and for optimized (red circles) or fixed temporal 762 
stratification (green circles) with k=48. Semivarograms are presented for soil CO2 (a), CH4 763 
(d) and N2O (c) fluxes. Semivariogram fits were gaussian (Gau) or spherical (sph). 764 
 765 
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