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Abstract 20 

Quantifying the role of soils in nature-based solutions requires accurate estimates of soil 21 

greenhouse gas (GHG) fluxes. Technological advances allow us to measure multiple GHGs 22 

simultaneously, and now it is possible to provide complete GHG budgets from soils (i.e., 23 

CO2, CH4, and N2O fluxes). We propose that there is a conflict between the convenience of 24 

simultaneously measuring multiple soil GHG fluxes at fixed time intervals (e.g., once or 25 

twice per month) and the intrinsic temporal variability and patterns of different GHG fluxes. 26 

Information derived from fixed time intervals -commonly done during manual field 27 

campaigns- had limitations to reproducing statistical properties, temporal dependence, annual 28 

budgets, and associated uncertainty when compared with information derived from 29 

continuous measurements (i.e., automated hourly measurements) for all soil GHG fluxes. We 30 

present a novel approach (i.e., temporal univariate Latin Hypercube sampling) that can be 31 

applied to provide insights and optimize monitoring efforts of GHG fluxes across time. We 32 

suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time 33 

intervals (mainly when measurements are limited to once per month), but an optimized 34 

sampling approach can be used to reduce bias and uncertainty. These results have 35 

implications for assessing GHG fluxes from soils and consequently reduce uncertainty on the 36 

role of soils in nature-based solutions. 37 

 38 

Keywords: Carbon dioxide, methane, nitrous oxide, representativeness, uncertainty  39 
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1. Introduction 40 

Soils are essential for nature-based solutions for their role in climate mitigation potential 41 

through implementing different natural pathways (Griscom et al., 2017; Bossio et al., 2020). 42 

The climate mitigation potential of soils is dependent on multiple factors such as weather 43 

variability (Kim et al., 2012), ecosystem type (Oertel et al., 2016), soil structure (Ball, 2013), 44 

management practices (Shakoor et al., 2021), or disturbances (Vargas, 2012), where soils can 45 

ultimately act as net sources or sinks of greenhouse gases (GHGs). Therefore, accurate 46 

quantification of the magnitudes and patterns of soil GHGs fluxes is needed to understand the 47 

potential of soils to mitigate or contribute to global warming across ecosystems and different 48 

scenarios. 49 

 Most of our understanding of soil GHGs has come from manual measurements 50 

performed throughout labor-intensive field campaigns and experiments (Oertel et al., 2016). 51 

While most studies around the world have focused on soil CO2 fluxes (Jian et al., 2020), 52 

early examples have reported coupled measurements of soil CO2, CH4, and N2O fluxes across 53 

tropical forests (Keller et al., 1986) and savannas (Hao et al., 1988), temperate forests 54 

(Bowden et al., 1993), and peatlands (Freeman et al., 1993). These pioneer studies provided 55 

an early view of the importance of integrated measurements of multiple soil GHG fluxes to 56 

understand the net global warming potential of soils but also demonstrated the technical 57 

limitations and challenges associated with these efforts. For example, it is known that manual 58 

measurements have the strength of providing good spatial coverage during field surveys but 59 

provide limited information about the temporal variability (Yao et al., 2009; Barba et al., 60 

2021).   61 

 Technological advances have opened the opportunity to simultaneously measure 62 

multiple soil GHG fluxes (i.e., CO2, CH4, and N2O) at unprecedented temporal resolution 63 

(e.g., hourly). These efforts have demonstrated differences in diel patterns and pulse events 64 
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(e.g., rewetting) due to wetting and drying cycles across tropical (Butterbach-Bahl et al., 65 

2004; Werner et al., 2007), subtropical (Rowlings et al., 2012), and temperate (Savage et al., 66 

2014; Petrakis et al., 2017) ecosystems. These approaches provide more accurate information 67 

to calculate net GHG budgets and the global warming potential of soils (Capooci et al., 68 

2019). That said, performing automated measurements of multiple GHGs is expensive, and 69 

this approach usually has a lower representation of the spatial heterogeneity within 70 

ecosystems (Yao et al., 2009; Barba et al., 2021). 71 

 Ideally, we would like to measure everything, everywhere, and all the time, but this is 72 

impossible due to logistical, technological, physical, and economic constraints. Lightweight 73 

and low-powered laser-based spectrometers have reduced technical barriers to 74 

simultaneously measuring multiple GHGs fluxes from soils. It is now easier and faster to 75 

perform discrete manual surveys across time. This opportunity creates a paradox concerning 76 

when to measure different GHG fluxes from soils when performing manual measurements. 77 

Researchers generally tend to perform simultaneous measurements of multiple GHGs during 78 

manual surveys, but this convenience could result in biased information. We propose that 79 

there is a conflict between the convenience of measuring multiple GHGs at a few fixed time 80 

intervals and the intrinsic temporal variability of magnitudes and patterns of different GHG 81 

fluxes.  82 

Here, we present a proof-of-concept and test how a subset of measurements derived 83 

from a fixed temporal stratification (FTS) for simultaneous measurements (i.e., stratified 84 

sampling schedule) or using an optimized sampling (i.e., temporal univariate Latin 85 

Hypercube sampling (tuLHs)), compared with automated measurements of soil CO2 (FACO2), 86 

CH4 (FACH4), and N2O (FAN2O) fluxes from a temperate forest (Petrakis et al., 2018; Barba 87 

et al., 2021, 2019). The underlying assumption supporting any FTS approach is that a few 88 

measurements in time can reproduce the statistical properties and temporal dependencies of 89 
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soil CO2, CH4, and N2O fluxes because these GHGs respond similarly to biological and 90 

physical drivers. The tuLHs is a new optimization approach to reproduce the probability 91 

distribution and the temporal dependence of each original time series of GHG fluxes. We 92 

reveal that reporting GHG fluxes using an FTS for simultaneous measurements may result in 93 

biased information on temporal patterns and magnitudes. This study shows how a biased 94 

sampling schedule could influence our understanding of GHG fluxes and, ultimately, the 95 

climate mitigation potential of soils. 96 

 97 

2. Materials and Methods 98 

2.1 Study site 99 

The experiment was performed in a temperate forest located at the St Jones Estuarine 100 

Reserve (a component of the Delaware National Estuarine Research Reserve [DNERR] in 101 

Delaware, USA. The site has a mean annual temperature of 13.3 °C and a mean annual 102 

precipitation of 1119 mm. Soils are classified as Othello silt loam with a texture of 40% sand, 103 

48% silt, and 12% clay within the first 10 cm (Petrakis et al., 2018). The dominant plant 104 

species are bitternut hickory (Carya cordiformis), eastern red cedar (Juniperus virginiana L.), 105 

American holly (Ilex opaca), sweet gum (Liquidambar styraciflua L.), and black gum (Nyssa 106 

sylvatica (Marshall)). The site has a mean tree density of 678 stems ha-1 and a diameter at 107 

breast height (DBH) of 25.7±13.9 cm (mean±SD) (Barba et al., 2021). 108 

 109 

2.2 Automated measurements of soil GHG fluxes 110 

We analyzed data from automated measurements (1hr time intervals) of soil emissions of 111 

three GHGs (i.e., CO2, CH4, and N2O) between January and December 2015. This was a 112 

typical year with a mean annual temperature of 13.4 °C and an annual precipitation of 1232 113 

mm. Continuous measurements of soil GHGs were taken by coupling a closed-path infrared 114 
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gas analyzer (Li-COR LI-8100 A, Lincoln, Nebraska) and nine dynamic soil chambers (Li-115 

COR 8100–104) controlled by a multiplexer (Li-COR 8100-104) with a cavity ring-down 116 

spectrometer (Picarro G2508, Santa Clara, California). A detailed description of the 117 

experimental design and measurements protocol is described in previous studies (Petrakis et 118 

al., 2018; Barba et al., 2021, 2019). Briefly, for each flux observation, we measured CO2, 119 

CH4, and N2O concentrations every second with the Picarro G2508 for 300 seconds and 120 

calculated fluxes (at 1 hr time intervals) from the mole dry fraction of each gas (i.e., 121 

corrected for water vapor dilution) using the SoilFluxPro software (v4.0; Li-COR, Lincoln, 122 

Nebraska, USA). Fluxes were estimated using linear and exponential fits, and we kept the 123 

flux calculation with the highest R2. We applied quality assurance and quality control 124 

protocols using information from all three GHGs as established in previous studies (Petrakis 125 

et al., 2018; Barba et al., 2021, 2019; Capooci et al., 2019; Petrakis et al., 2017). Using these 126 

time series, we extracted values to represent discrete temporal measurements based on FTS 127 

and used the optimization approach described below.  128 

 129 

2.3 Temporal subsampling of time series 130 

Subsampling of time series was performed using FTS and a temporal optimization following 131 

a univariate Latin Hypercube (tuLHs) approach. The difference between FTS and temporal 132 

optimization is that the first approach is focused on a fixed schedule (e.g., sampling once per 133 

month), and the second is focused on reproducing the statistical properties and temporal 134 

dependence relationship of the original GHG time series with a subset of measurements. This 135 

means optimized subsamples may not be spaced systematically (e.g., every 15 days), and 136 

selected dates may vary for each GHG flux due to their specific statistical properties and 137 

temporal dependence.  138 



 7 

FTS represents a traditional schedule for performing manual measurements of GHG 139 

fluxes from soils. The FTS is usually performed with manual measurements because they 140 

require extensive logistical coordination due to travel time and costs, availability of 141 

instrumentation (e.g., gas analyzers), personnel to perform the measurements, and weather 142 

conditions. During these scheduled visits, researchers usually collect fluxes from all three 143 

GHGs and analyze them systematically to calculate magnitudes and patterns throughout the 144 

experiment. Usually, researchers perform manual samples during the early hours of the day 145 

(between 9 am and 12 pm) to avoid confounding effects due to large changes in temperature 146 

and moisture, as demonstrated by information summarized by the soil respiration global 147 

database (Cueva et al., 2017; Jian et al., 2020). Consequently, we selected subsamples from 148 

each original GHG time series (derived from automated measurements) using flux 149 

measurements from 10 am at fixed intervals of once per month (n=12), twice per month 150 

(n=24), or four times per month (n=48) starting on the first week of available data from 151 

automated measurements. 152 

We applied tuLHs as an alternative subsampling approach to obtain an optimized 153 

subsample with the same univariate statistical properties and temporal dependence 154 

relationship of the original GHG time series. Optimization was performed to select 155 

subsamples for each GHG flux using the same number of samples as for FTS: twelve (k=12), 156 

twenty-four (k=24), or forty-eight (k=48) measurements throughout the year of available data 157 

from automated measurements.  158 

  159 

2.4 Temporal Univariate Latin Hypercube Sampling (tuLHs) 160 

Let S = {(x1, y1, z1), (x2, y2, z2), ... , (xn, yn, zn)} be observations of the variables X, Y, and Z in a 161 

time series, where X, Y, and Z are soil GHGs (i.e., CO2, CH4, and N2O). Each measured 162 

variable is characterized by the univariate probability distribution function and the temporal 163 
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dependency function. Once these two functions are known, then the behaviors of the variable 164 

can be reproduced (Le et al., 2020; Chilès and Delfiner, 2009; Trangmar et al., 1986; Pyrcz 165 

and Deutsch, 2014). The tuLHs consists of three steps: (1) modeling the univariate behavior of 166 

the variable using the empirical cumulative univariate probability distribution function; (2) 167 

modeling the temporal dependence using the empirical variogram function; and (3) optimizing 168 

a subsample applying a global optimization method, differential evolution, using the previously 169 

obtained variogram function as an objective function.  170 

First, to model the univariate behavior of the variables from the observations of S, the 171 

empirical univariate cumulative distribution function F*n (x) of X is estimated by: 172 

𝐹!∗(𝑥) 	=
1
𝑛)𝐼	{𝑥# ≤ 	𝑥}

!

#$%

						(1)	 173 

where I represents an indicator function equal to 1 when its argument is true, and 0 otherwise. 174 

Similarly, the empirical univariate distribution function of the variables Y and Z can be derived. 175 

Second, to model the temporal dependence of the variables from the observations of S, the 176 

empirical temporal correlation function (i.e., temporal variogram function) 𝛾∗(𝑡) of X is 177 

estimated by: 178 

𝛾∗(𝑡) 	=
1

2𝑁(𝑡))[𝑋(𝑡# + 𝑡) − 𝑋(𝑡#)]&
'())

#$%

								(2) 179 

where N(t) is the number of pairs 𝑋(𝑡# + 𝑡)	𝑎𝑛𝑑	𝑋(𝑡#) are separated by a time t. The variogram 180 

functions of the variables Y and Z are analogous. Third, to optimize the subsample, it is 181 

required to choose the “optimal” data points with the selected sample size (i.e., k=12, 24, or 182 

48; where k  << n) that will have the same behavior as the original observations of S (i.e., GHG 183 

fluxes derived from automated measurements). To achieve this objective, we use differential 184 

evolution, a global optimization method (Storn and Price, 1997), using the variogram function 185 

as an objective function. The procedure consists of dividing the univariate empirical probability 186 
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distribution in Eq. (1) into k equiprobable strata, which is equivalent to k ordered data subsets. 187 

From each subset, only one value must be chosen to satisfy the condition of a univariate Latin 188 

hypercube. The differential evolution method is applied to find the optimal points that 189 

minimize the difference between the subsample variogram γ (t) and the data variogram γ * (t) 190 

in Eq. (3). 191 

𝑂𝐹% 	= )[𝛾(𝑡) − 𝛾∗(𝑡)]&		
'())

#$%

								(3) 192 

where OF is the objective function, and the variograms γ (t) and γ * (t) are calculated using Eq. 193 

(2). 194 

 195 

2.5 Statistical analyses 196 

The t-test was used to compare the means, and the Kolmogorov-Smirnov test was used to 197 

compare the probability distribution of measurements derived from each sampling protocol. 198 

All tests were done with a 95% confidence level. In addition, their statistical properties, such 199 

as mean, median, standard deviation, and first and third quartile, were compared. The 200 

differences in the experimental semivariograms were calculated as a comparison measure for 201 

the temporal dependence of the samples and the original time series of GHG fluxes. For 202 

cumulative sums of GHG flux, their mean is calculated as the most likely value, and their 203 

quantile difference between 97.5 and 2.5 is used to quantify the range of uncertainty. All 204 

analyzes were performed using the R program (Team and Others, 2013).  205 

 206 

3. Results 207 

3.1 Relationships among GHG fluxes from soils 208 

Justification in support of FTS for simultaneous measurements of GHG fluxes would require 209 

evidence of strong linear correlations between magnitudes and temporal dependence among 210 
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soil GHG fluxes. First, we did not find strong linear relationships between any combination 211 

of GHG fluxes from soils derived from automated measurements (Fig. S1). Therefore, our 212 

data did not support the assumption that the magnitude of one GHG flux was associated with 213 

a linear increase or decrease of another GHG flux. Second, semivariogram models 214 

demonstrated differences in the temporal dependence for each GHG flux. Automated 215 

measurements of soil CO2 fluxes (FACO2) showed a temporal dependence following a 216 

Gaussian variogram model, with a nugget of 4, a sill plus nugget of 28, and a correlation 217 

range of 80 days (Fig. S2a). Automated measurements of soil CH4 fluxes (FACH4) also 218 

showed a temporal dependence but followed a spherical variogram model, with a nugget of 219 

7x10-8, a sill plus nugget of 1.5x10-7, and a correlation range of 110 days (Fig. S2b). In 220 

contrast, automated measurements of soil N2O fluxes (FAN2O) did not show a temporal 221 

dependence, where a pure nugget effect was present, and with a correlation range of 0 days 222 

(Fig. S2c). Consequently, these GHG fluxes' magnitudes and temporal patterns were different 223 

and did not support FTS for simultaneous measurements of GHG from soils. 224 

 225 

3.2 Optimization of GHG sampling protocols 226 

We applied a tuLHs approach to identify subsamples with the same statistical properties and 227 

temporal dependence for each of the original GHG time series from automated 228 

measurements. Subsamples were identified for twelve (k=12), twenty-four (k=24), or forty-229 

eight (k=48) measurements throughout the year for each GHG time series. Our results show 230 

that the optimized measurement dates were different for each GHG flux (Fig. 1), and we 231 

provide explicit examples for k=24 (Fig. 1) and k=12, 48 (Fig. S3, S4).  232 

The optimized CO2 subsamples were well distributed throughout the year for all 233 

sampling scenarios (i.e., k from 12 to 48) because FACO2 had a strong temporal dependence 234 

and a small nugget effect with respect to the sill (Fig. S2a). The optimized CH4 subsamples 235 
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were also relatively well distributed throughout the year, especially for scenarios of k=24 and 236 

k=48, as FACH4 also had a temporal dependence but with a higher nugget effect with respect 237 

to the sill (Fig. S2b). Finally, the optimized N2O subsamples were more challenging to 238 

define, especially with a small sample size (i.e., k=12; Fig. S3c) because FAN2O did not have 239 

a temporal dependence (Fig. S2c). 240 

 241 

3.3 Differences in statistical properties and temporal dependency of subsamples 242 

Overall, there were no statistically significant differences between the mean values derived 243 

from automated measurements and those from FTS or the tuLHs approach (Fig. 2 for k=24; 244 

Fig. S5 for k=12; Fig. S6 for k=48; Tables S1 and S2). Although this appears promising, more 245 

than a simple comparison of the means is needed to evaluate the information derived from 246 

different sampling approaches. In other words, it is possible to have a similar mean value 247 

without reproducing the probability distribution nor the temporal dependence of the original 248 

time series (i.e., correct answer but for the wrong reasons). Here, we present results based on 249 

comparing the means, standard deviation, probability distributions, and semivariograms 250 

derived from automated measurements and the different sampling scenarios for all GHG 251 

fluxes.  252 

The mean of FACO2 was 5.9 μmol CO2 m-2 s-1, while the mean for FTS 5.5 μmol CO2 253 

m-2 s-1 and 5.9 μmol CO2 m-2 s-1 for the tuLHs approach with k=24 (Fig. 3a-c). These results 254 

were comparable with the means derived from FTS (5.4 and 5.4 μmol CO2 m-2 s-1) and the 255 

tuLHs approach (6.2 and 5.9 μmol CO2 m-2 s-1) using k=12 and k=48, respectively (Figs. S5, 256 

S6; Table S1). The standard deviation of FACO2 was 3.9 and 3.2 μmol CO2 m-2 s-1 for FTS, 257 

and 3.9 μmol CO2 m-2 s-1 for the tuLHs approach with k=24 (Figs. 3a-c). These results were 258 

comparable with the standard deviations derived from FTS (3.1 and 3.3 μmol CO2 m-2 s-1) and 259 

the tuLHs approach (4.1 and 3.9 μmol CO2 m-2 s-1) using k=12 and k=48, respectively (Fig. S5, 260 
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S6; Table S1). Our results show that the semivariograms of optimized samples using the tuLHs 261 

approach closely approximate the semivariograms of automated measurements for k=24 (Fig. 262 

4a) and k=12 and 48 (Figs. S7a, S8a). These results are consistent with the sums of absolute 263 

differences between the semivariograms of the samples and the semivariogram of FACO2 with 264 

differences of 69.31, 54.39, 49.42 for FTS, and 5.69, 1.99, 1.39 for the tuLHs approach for 265 

k=12, 24, 48, respectively (Table S2). 266 

The mean of FACH4 was -0.93 nmol CH4 m-2 s-1, while -0.86 nmol CH4 m-2 s-1 for FTS 267 

and -0.94 nmol CH4 m-2 s-1 for the tuLHs approach with k=24 (Fig. 3d-f). These results were 268 

also comparable with the means derived from FTS (-0.83 and -0.88 nmol CH4 m-2 s-1) and the 269 

tuLHs approach (-0.87 and -0.92 nmol CH4 m-2 s-1) using k=12 and 48, respectively (Figs. S5, 270 

S6; Table S1). The standard deviation of FACH4 was 0.36 and 0.26 nmol CH4 m-2 s-1 for FTS 271 

and 0.34 nmol CH4 m-2 s-1 for the tuLHs approach with k=24. These results were comparable 272 

with the standard deviations derived from FTS (0.27 and 0.29 nmol CH4 m-2 s-1) and the tuLHs 273 

approach (0.33 and 0.35 nmol CH4 m-2 s-1) using k=12 and k=48, respectively (Figs. S5, S6; 274 

Table S1). The semivariograms of optimized samples using the tuLHs approach closely 275 

approximate the semivariogram of automated measurements for k=24 (Fig. 4b) and k=12 and 276 

48 (Figs. S7b, S8b). Consequently, the sums of absolute differences between the 277 

semivariograms of the samples and the semivariogram of FACH4 were 0.63, 0.48,0.49 for FTS, 278 

and 0.06, 0.04, 0.02 for the tuLHs approach with k=12, 24, 48, respectively (Table S2). 279 

Finally, the mean of FAN2O was 0.45 and 0.61 nmol N2O m-2 s-1 for FTS, and 0.51 nmol 280 

N2O m-2 s-1 for the tuLHs approach with k=24 (Fig. 3g-i). These results were also comparable 281 

with the means derived from FTS (0.59 and 0.25 nmol N2O m-2 s-1) and the tuLHs approach 282 

(0.58 and 0.49 nmol N2O m-2 s-1) using k=12 and 48, respectively (Figs. S5, S6; Table S1). The 283 

standard deviation of FAN2O was 1.62 and 1.97 nmol N2O m-2 s-1 for FTS, and 1.54 nmol N2O 284 

m-2 s-1 for the tuLHs approach with k=24. These results were comparable with the standard 285 
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deviations derived from FTS (1.38 and 0.91 nmol N2O m-2 s-1) and the tuLHs approach (1.58 286 

and 1.54 nmol N2O m-2 s-1) using k=12 and k=48, respectively (Figs. S5, S6; Table S1). Our 287 

results show no temporal dependence for N2O fluxes, but the semivariograms of optimized 288 

samples using the tuLHs approach closely approximate the semivariogram of automated 289 

measurements for k=24 (Fig. 4c) and k=12 and 48 (Figs. S7c, S8c).  Consistently, the sum of 290 

absolute differences between the semivariograms of the samples and the semivariogram of 291 

FAN2O were 10.01, 12.25, 16.75 for FTS, and 0.82, 1.13, 3.57 for the tuLHs approach with 292 

k=12, 24, 48, respectively (Table S2). 293 

These results show that the tuLHs approach reproduced the probability distribution and 294 

the temporal dependence of the time series derived from automated measurements with more 295 

precision than FTS for all GHGs. In the next section, we explore the implications of these 296 

differences for calculating cumulative GHG fluxes.  297 

 298 

3.4 Calculation of cumulative GHG fluxes 299 

We calculated the cumulative flux for all GHGs using available information from automated 300 

measurements (Fig. 2; Table S3). The cumulative sum for available measurements of FACO2 301 

was 5758.5 g CO2 m-2 [893.9, 13860.8; 95% CI]; for FACH4 was -0.47 g CH4 m-2 [-0.81, -302 

0.19; 95% CI]; and 0.63 g N2O m-2 [-0.75, 5.19; 95% CI] for FAN2O.  303 

 We used the mean for each GHG flux derived from the tuLHs approach or the FTS to 304 

calculate the cumulative sum (Table S3). We found that the FTS underestimated the 305 

cumulative flux (-8.4, -6.2, -7.1%) and the uncertainty (-32.6, -21.6, -19.3%) of FACO2 for 306 

k=12, 24, 48, respectively (Fig. 5a). In contrast, the tuLHs approach slightly overestimated 307 

the cumulative flux (6.5, 1.1, 0.1%) and slightly underestimated the uncertainty (-9.1, -4.4, -308 

3.7%) for k=12, 24, 48, respectively (Fig. 5a).  309 
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The FTS underestimated the cumulative flux (-9.1, -6.1, -3.1%) and the uncertainty (-310 

31.8, -27.3, -15.9%) of FACH4 for k=12, 24, 48, respectively (Fig. 5b). In contrast, the tuLHs 311 

approach underestimated the cumulative flux (-6.1%) only for k=12, but slightly 312 

underestimated the uncertainty (-15.9, -6.8, -4.5%) for k=12, 24, 48, respectively (Fig. 5b).  313 

The FTS substantially underestimated the cumulative flux (-168, -170, -173%) of 314 

FAN2O for k=12, 24, 48, respectively. Uncertainty was overestimated for k=12 and 24 (3.6 315 

and 26%) and underestimated for k=48 (-31%; Fig. 5c). In contrast, the tuLHs approach 316 

overestimated less the cumulative flux (29.5, 13.4, 9.1%) for k=12, 24, 48, respectively (Fig. 317 

5c). This approach underestimated the uncertainty for k=12 (-11.2%) and k=24 (-13.8%) but 318 

overestimated the uncertainty by 2.9% for k=48 (Fig. 5c). These results show that the tuLHs 319 

approach consistently provided closer estimates for cumulative sums and uncertainty ranges 320 

than an FTS for all GHG fluxes. 321 

 322 

4. Discussion  323 

Applied challenges, such as quantifying the role of soils in nature-based solutions, require 324 

accurate estimates of GHG fluxes. To do this, two fundamental problems exist for designing 325 

environmental monitoring protocols: where and when to measure? Ultimately a monitoring 326 

protocol aims to quantify the attributes of an ecosystem so that it can be compared in time 327 

within that ecosystem or with other ecosystems. Because we cannot measure everything, 328 

everywhere, and all the time, we can argue that any monitoring protocol has assumptions 329 

based on physical, economic, social, and practical reasons to address a specific scientific 330 

question. These assumptions for designing monitoring protocols could result in misleading, 331 

biased, or wrong conclusions, and therefore is critical to assess the consequences of different 332 

monitoring efforts. As Hutchinson described in “The Concept of Pattern in Ecology,” we do 333 
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not always know if a given pattern is extraordinary or a simple expression of something 334 

which we may learn to expect all the time (Hutchinson, 1953).  335 

Automated measurements have revolutionized our understanding of the temporal 336 

patterns and magnitudes of soil GHG fluxes (Savage et al., 2014; Bond‐Lamberty et al., 337 

2020; Tang et al., 2006; Capooci and Vargas, 2022b). These measurements have limitations 338 

in representing spatial variability and have higher equipment costs that limit their broad 339 

applicability across study sites (Vargas et al., 2011). Consequently, discrete manual 340 

measurements are a common approach to simultaneously measure multiple GHG fluxes and 341 

report patterns, budgets, and information to parameterize empirical and process-based models 342 

(Phillips et al., 2017; Wang and Chen, 2012). In this study, we argue that the convenience of 343 

simultaneously measuring multiple GHGs using FTS may result in biased estimates. 344 

Therefore, optimization of sampling protocols is needed to provide insights to improve 345 

measurement protocols when there is a limited number of measurements in time (i.e., k=12, 346 

24, 48).  347 

We show that the magnitude of one GHG flux is not associated with a linear increase 348 

or decrease of another GHG flux, and the temporal dependencies of each GHG flux are 349 

different (Fig. S1). Therefore, it is not possible to infer the dynamics of one GHG flux based 350 

solely on information from another under the assumption that they share similar (or 351 

autocorrelated) biophysical drivers. These results imply that the magnitudes and temporal 352 

patterns of GHGs are different and therefore do not support an FTS approach for 353 

simultaneous measurements of GHG fluxes from soils. 354 

Multiple studies have shown that the relevance of different biophysical drivers (e.g., 355 

temperature, moisture, light) is different for soil CO2, CH4, or N2O fluxes (Luo et al., 2013; 356 

Tang et al., 2006; Ojanen et al., 2010). Our results show that soil CO2 fluxes have a strong 357 

temporal dependence (Fig. S2a), likely due to the strong relationship between these fluxes 358 
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and soil temperature in this and other temperate mesic ecosystems (Hill et al., 2021; Bahn et 359 

al., 2010; Barba et al., 2019). The temporal dependence decreased for soil CH4 fluxes (Fig. 360 

S2b), where there is less evidence for such a strong correlation with soil temperature in this 361 

and other temperate mesic ecosystems (Bowden et al., 1998; Castro et al., 1995; Warner et 362 

al., 2019; Barba et al., 2019). It has been reported that multiple variables and complex 363 

relationships are usually needed to explain the variability of soil CH4 fluxes in forest soils, as 364 

there is a delicate balance between methanogenesis and methanotrophy (Luo et al., 2013; 365 

Castro et al., 1994; Murguia-Flores et al., 2018). In contrast, soil N2O fluxes had no temporal 366 

dependence (Fig. S2c), showing decoupling from the observed patterns of soil CO2 and CH4 367 

fluxes (Wu et al., 2010), likely as a result of independent biophysical drivers regulating soil 368 

N2O fluxes  (Luo et al., 2013; Bowden et al., 1993; Ullah and Moore, 2011).  369 

 To address the limitations of an FTS protocol, we propose a novel optimization 370 

approach (i.e., tuLHs) to reproduce the probability distribution and the temporal dependence 371 

of each original time series of GHG fluxes. Traditional methods usually optimize subsamples 372 

by either individually focusing on reproducing the probability distribution of the original 373 

information (Huntington and Lyrintzis, 1998) or reproducing the temporal dependence of the 374 

original information (Gunawardana et al., 2011). The tuLHs is a simple approach that uses 375 

the univariate probability distribution function and the temporal correlation function (i.e., 376 

variogram) as objective functions for each GHG flux. Our results show that optimized 377 

subsamples do not coincide in time for the three GHGs, suggesting that information should 378 

be collected based on each GHG flux's specific statistical and temporal characteristics (Fig. 379 

1). This study provides proof-of-concept for the application of the tuLHs. It demonstrates 380 

how an optimization approach provides insights to design monitoring protocols and improve 381 

soil GHG flux estimates. 382 
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 The more temporal data we can collect, the better, but in many cases, measurement 383 

protocols are limited to a few measurements per year (i.e., k=12 to 48). Our results 384 

demonstrate that for a small sample size (i.e., k=12), the optimized measurements for soil 385 

CO2 fluxes are consistently spread across the year, and for soil CH4 fluxes are centered 386 

within the growing season because of their strong temporal dependence. For the case of soil 387 

N2O fluxes, the variogram shows a constant temporal variability, meaning there is no 388 

temporal dependence. Therefore, the optimized measurements are concentrated within the 389 

fall season due to their distribution probability (Fig. 1a). Our optimization approach shows 390 

how measurements can be distributed across time as more samples are available (i.e., k=24 to 391 

48; Fig. 1b-c) and demonstrates that optimization is critical when a limited number of 392 

measurements are available. In other words, a few measurements properly distributed across 393 

time provide better agreement with information derived from automated measurements. A 394 

similar conclusion was proposed for the spatial distribution of environmental observatory 395 

networks, where a network of few sites properly distributed (e.g., across a country) improves 396 

our understanding of the target variable more than a spatially biased network (Villarreal et 397 

al., 2019). Thus, the representativeness assessment of information collected across time and 398 

space is needed to evaluate environmental measurements and quantify nature-based solutions 399 

accurately. 400 

 We highlight that this optimization approach should be implemented across different 401 

ecosystems as it will result in site-specific recommendations. The tuLHs can be applied to 402 

any time series length and with any time step (e.g., hours, days), but specific results will be 403 

representative of the probability distribution and the temporal dependence of the selected 404 

time series. In this case study, the year chosen had typical climatological conditions and 405 

demonstrates that the statistical properties of the GHG fluxes are different and do not support 406 

an FTS approach. Therefore, longer time series (e.g., multi-year) may provide more robust 407 
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optimizations that can be applied to monitoring efforts in future years. Alternatively, forecast 408 

scenarios can be predicted, and tuLHs can be used to suggest an optimized sampling design 409 

under those assumptions. Testing the implications of potentially biased GHG flux estimates 410 

should be a priority. Ideally, automated measurements should be co-located with manual 411 

efforts to adequately capture the temporal and spatial variability of soil GHG fluxes at a 412 

specific site.  413 

There are several implications of biased monitoring protocols for understanding soil 414 

GHG fluxes and nature-based solutions. First, temporal patterns and temporal dependency 415 

may need to be revisited for studies using an FTS approach. Soil GHG fluxes have complex 416 

temporal dynamics that vary from diurnal to seasonal and annual scales that a few 417 

measurements following an FTS approach cannot reproduce (Barba et al., 2019; Bréchet et 418 

al., 2021). Second, soil GHG fluxes could present hot-moments, which are transient events 419 

with disproportionately high values that are often missed with an FTS approach (Vargas et 420 

al., 2018; Butterbach-Bahl et al., 2004). Third, cumulative sums and uncertainty ranges are 421 

biased or misleading when derived using an FTS approach (Tallec et al., 2019; Lucas-Moffat 422 

et al., 2018; Capooci and Vargas, 2022b). Our study demonstrates that an optimized approach 423 

consistently provided closer estimates for cumulative sums and uncertainty ranges when 424 

compared with automated measurements (Fig. 5). We postulate that representing the 425 

variability of soil N2O fluxes is more sensitive to the FTS approach (>170% and >30% for 426 

cumulative sums and uncertainty ranges, respectively) than for soil CH4 and CO2 fluxes. 427 

Fourth, it is possible that if the information derived from an FTS approach is biased, then 428 

functional relationships could also be different from those derived from automated 429 

measurements (Capooci and Vargas, 2022a). It has been argued that hypothesis testing and 430 

our capability of forecasting responses of soil GHG fluxes to changing climate conditions is 431 

also biased with information from the FTS approach (Vicca et al., 2014). Finally, because 432 
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soils have a central role in nature-based solutions within countries and across the world 433 

(Griscom et al., 2017; Bossio et al., 2020), accurate measurements are required to assess 434 

management practices, environmental variability, and the contribution of GHGs from soils.  435 

 436 

Conclusion 437 

We highlight that we only sometimes know if a given pattern is extraordinary or a simple 438 

expression of something which we may learn to expect all the time (Hutchinson, 1953). 439 

Furthermore, the “Knowledge Paradox” has been recognized in soil science, where 440 

innovative knowledge has often not been accepted by or implemented in society (Bouma, 441 

2010). Here, we postulate that with emergent technologies, there is a convenience of 442 

measuring multiple GHGs from soils; however, few measurements collected at fixed time 443 

intervals result in biased estimates.  444 

We recognize that potential measurement bias depends on each GHG flux's 445 

magnitudes and temporal patterns and could be site-specific. Nevertheless, evaluations are 446 

needed to quantify potential bias in estimates of GHG budgets and information used for 447 

model parameterization and environmental assessments. Furthermore, the underlying 448 

assumption that each GHG flux responds similarly to biophysical drivers may need to be 449 

tested across multiple ecosystems to quantify how few measurements influence our 450 

understanding of magnitudes and temporal patterns of soil GHG fluxes.  451 

In this study, we present a proof-of-concept and propose a novel optimization 452 

approach (i.e., temporal univariate Latin Hypercube sampling) that can be applied with site-453 

specific information of different ecosystems to improve monitoring efforts and reduce the 454 

bias of GHG flux measurements across time. We highlight that constant biased 455 

environmental monitoring may provide confirmatory information, which we have learned to 456 
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expect, but modifications of monitoring protocols could shed light on new or unexpected 457 

patterns. These new patterns are the ones that will test paradigms and push science frontiers. 458 

 459 
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FIGURES 478 
 479 
 480 

 481 
 482 
 483 
 484 
Figure 1. Temporal distribution of fixed temporal stratification (i.e., stratified manual 485 
sampling approach) and optimized sampling using a temporal univariate Latin Hypercube 486 
(tuLHs) approach for: k=12 (a), k=24 (b), and k=48 (c). Fixed temporal stratification is in 487 
black, soil CO2 fluxes in red, soil CH4 fluxes in blue, and soil N2O fluxes in green. Time (x-488 
axis) represents days from January 1 to December 31 of, 2015.  489 
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 490 

 491 
 492 
Figure 2. Time series of automated measurements (FA) of soil greenhouse gas fluxes (black 493 
circles) and optimized samples (k=24) using a temporal univariate Latin Hypercube sampling 494 
(tuLHs) approach for soil CO2 (a), soil CH4 (b) and soil N2O (c) fluxes. The horizontal red 495 
line represents the mean, and the horizontal blue line is the median of each greenhouse gas 496 
flux derived from automated measurements. The selection of data points for k=12 and 48 are 497 
presented for each soil greenhouse gas time series in Figs. S3 and S4, respectively. Time (x-498 
axis) represents days from January 1 to December 31 of, 2015. 499 
 500 
  501 
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 502 

 503 
 504 
 505 
Figure 3. Histograms for automated measurements of soil CO2 (FA CO2; a), soil CH4 (FA 506 
CH4; d), and soil N2O (FA N2O; g). Histograms for optimized samples (k=24) using a 507 
temporal univariate Latin Hypercube sampling (tuLHs) approach for soil CO2 (b), soil CH4 508 
(e), and soil N2O (h) fluxes. Histograms for fixed temporal stratification (i.e., stratified 509 
manual sampling schedule) (k=24) for soil CO2 (c), soil CH4 (f), and soil N2O (i) fluxes. 510 
Supplementary material includes results for measurements with k=12 (Fig. S5) and k=48 511 
(Fig. S6).  512 
 513 
  514 
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 515 

 516 
 517 
 518 
Figure 4. Comparison of semivariograms between automated measurements (FA) of soil 519 
greenhouse gas fluxes (solid black line) and for optimized samples using a temporal 520 
univariate Latin Hypercube sampling (tuLHs) approach (red circles) or fixed temporal 521 
stratification (green circles) with k=24. Semivarograms are presented for soil CO2 (a), CH4 522 
(d), and N2O (c) fluxes. Semivariograms for measurements with k=12 and k=48 are shown in 523 
Supplementary Figs. S7 and S8, respectively. Semivariogram fits were gaussian (Gau) or 524 
spherical (sph). 525 
 526 
  527 
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 528 

 529 
 530 
 531 
 532 
Figure 5. Comparison of percent differences from cumulative sums and associated 533 
uncertainty (95% CI) between greenhouse gas fluxes derived from automated measurements 534 
(FA) and using an optimized sampling approach (tuLHs) or a fixed temporal stratification. 535 
Differences are represented for soil CO2 (a), soil CH4 (b), and soil N2O (c) fluxes. The black 536 
circle in the center (0,0) of a plot represents the values derived from automated 537 
measurements (FA). Blue circles represent estimates from fixed temporal stratification, and 538 
red circles represent estimates from an optimized sampling approach (tuLHs). Estimates were 539 
calculated based on the 258 available automated measurements (Fig. 2), and numeric 540 
estimates are in Table S3. 541 
 542 
 543 
  544 
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