1 The response of diazotrophs to nutrient amendment in the

2 South China Sea and western North Pacific

3

4	Zuozhu Wen ^{1,2} , Thomas J. Browning ² , Rongbo Dai ¹ , Wenwei Wu ¹ , Weiying Li ^{1,a} ,	

- 5 Xiaohua Hu¹, Wenfang Lin¹, Lifang Wang¹, Xin Liu¹, Zhimian Cao¹, Haizheng Hong¹,
- 6 and Dalin Shi¹

7

- 8 ¹State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen,
- 9 Fujian, PR China
- 10 ²Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research
- 11 Kiel, Germany
- 12
- 13 Correspondence to: Dalin Shi (dshi@xmu.edu.cn) and Haizheng Hong
- 14 (honghz@xmu.edu.cn)
- 15
- 16 a. Present address: Key Laboratory of Marine Ecosystem Dynamics, Second Institute of

1

17 Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, PR China

18	Abstract. The availability of iron (Fe) and phosphorus (P) have been shown to be key	
19	factors regulating rates of nitrogen fixation in the western Subtropical Pacific. However,	
20	their relative importance at finer spatial scales between the northern South China Sea	
21	(NSCS) and the western boundary of the North Pacific is poorly constrained.	
22	Furthermore, nutrient limitation of specific diazotroph types has not yet been assessed.	
23	Here we investigated these unknowns by carrying out measurements of (i) finer scale	
24	spatial variabilities in N ₂ fixation rates and diazotroph <u><i>nifH</i> gene</u> abundances throughout	
25	these regions, and (ii) conducting eight additional Fe and phosphate addition bioassay	
26	experiments where both changes in N_2 fixation rates and the <u>nifH gene</u> abundances of	
27	specific diazotrophs were measured. Overall, nitrogen fixation rates and nifH gene	
28	abundances were lower in the NSCS than around the Luzon Strait and the western North	
29	Pacific, The nutrient addition bioassay experiments demonstrated that N_2 fixation rates in	
30	the central NSCS were co-limited by Fe and P, whereas in the western boundary of the	
31	North Pacific they were P-limited. Changes in the abundances of <i>nifH</i> in response to	
32	nutrient addition varied in how well they correlated with changes in N_2 fixation rates, and	
33	in 6 out of 8 experiments the largest responses in <i>nifH</i> gene abundances were dominated	
34	by either Trichodesmium or UCYN-B. In general, nutrient addition had a relatively	
35	restricted impact on the composition of the six phylotypes that we surveyed apart from on	
36	UCYN-B, This unicellular cyanobacterium group showed increased contribution to the	
37	total nifH gene abundance following P addition at sites where N ₂ fixation rates were P-	
I	2	

Deleted: , which we hypothesize was due to lower Fe-tofixed nitrogen supply ratios that decrease their competitive ability with non-diazotrophic phytoplankton. Deleted: nitrogen

Deleted: northern South China Sea (

Deleted:)

Deleted: nitrogen

Deleted: always

Deleted:	diazotroph community	structure

Deleted: , which

Deleted: diazotroph community

49	limited.	<u>Our study</u>	provides	comprehensive	evidence of	of nutrient	controls of	on N ₂ 1	fixation

50 biogeography in the margin of the western North Pacific. Future research that more

51 <u>accurately constrains nutrient</u> supply rates to this region would be beneficial for resolving

52 what controls diazotroph community structure

Formatted: Font: 14 pt, Bold

Deleted: We further hypothesize the importance of absolute Fe...

Deleted: in regulating spatial variability in

Deleted: across the study area.

57 1 Introduction

- 58 Nitrogen fixation by diazotrophic bacteria converts abundant dinitrogen (N2) gas into
- 59 ammonia, providing nearly half of the ocean's bioavailable nitrogen (N) (Gruber and
- 60 Galloway, 2008), which goes on to support >30% of carbon export from surface to deep
- 61 waters in the N-limited ocean (Böttjer et al., 2016; Wang et al., 2019). A diverse
- 62 community of diazotrophs has been described across the oligotrophic ocean that includes
- 63 Trichodesmium, unicellular cyanobacteria (UCYN-A and Crocosphaera, also referred to
- 64 as UCYN-B), the heterocystous symbiont Richelia associated with diatoms (DDAs,
- 65 diatom-diazotroph associations), and noncyanobacterial diazotrophs (NCDs,
- 66 heterotrophic or photoheterotrophic bacteria) (Zehr and Capone, 2020). However, there is
- 67 still a lack of knowledge on what controls diazotrophic distribution, activity and
- 68 community structure in the current ocean.
- 69

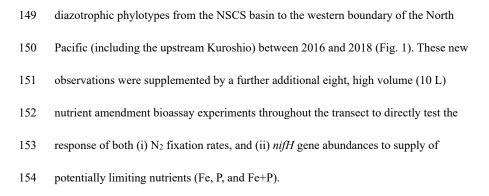
70	Iron (Fe) and phosphorus	(P) are believed to	be key factors	controlling the bioged	graphic
----	--------------------------	---------------------	----------------	------------------------	---------

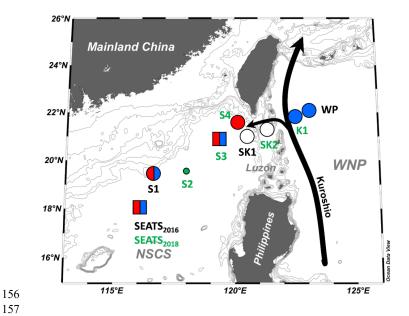
- 71 distribution of marine N₂ fixation (Sohm et al., 2011; Zehr and Capone, 2020; Wen et al.,
- 72 2022). Fe is particularly important for N₂ fixers as a cofactor for the FeS-rich
- 73 nitrogenanse enzyme (Berman-Frank et al., 2001), whereas P is also required for genetic
- 74 information storage, cellular structure and energy generation. A number of nutrient-
- 75 addition bioassay experiments conducted in the field have shown that N₂ fixation in the
- 76 oligotrophic oceans can be limited by Fe or P, or co-limited by both nutrients at the same

77	time (Mills et al., 2004; Needoba et al., 2007; Grabowski et al., 2008; Watkins-Brandt et	
78	al., 2011; Langlois et al., 2012; <u>Turk-Kubo et al., 2012;</u> Dekaezemacker et al., 2013;	
79	Krupke et al., 2015; Tanita et al., 2021; Wen et al., 2022). However, few studies have	Deleted: ; Turk-Kubo et al., 2012
80	quantified how the supply of Fe and/or P impacts the abundance of individual	
81	diazotrophic phylotypes and their community structure (Langlois et al., 2012; Moisander	
82	et al., 2012; Turk-Kubo et al., 2012). Experiments conducted so far that investigated this	
83	were located in the South Pacific and North Atlantic, and found diverse responses among	
84	diazotrophic phylotypes to the addition of Fe and/or P. Furthermore, the responses of total	
85	diazotroph abundances assessed from <i>nifH</i> gene quantifications <u>did</u> not qualitatively	Deleted: were
86	match the responses of bulk N2 fixation rates (Langlois et al., 2012; Moisander et al.,	
87	2012; Turk-Kubo et al., 2012). Resolution of the specific types of diazotrophs responding	
88	to nutrient supply, in addition to overall N ₂ fixation rates, is potentially crucial for	Deleted: are
89	understanding their biogeography, which in turn could be important for biogeochemical	
90	function. For example, the presence of large Trichodesmium filaments is expected to have	
91	a different fate in the microbial food web and contribute differently to the sinking flux of	
92	carbon than that of small unicellular species (Bonnet et al., 2016).	
93		
94	The northern South China Sea (NSCS) and the neighboring western boundary of the	
95	North Pacific are interacting water bodies, with the major western boundary Kuroshio	
96	Current intruding into the NSCS across the Luzon Strait, generating frontal zones with	
	5	

100	unique physical and biogeochemical characteristics (Du et al., 2013; Guo et al., 2017; \underline{Xu}	
101	et al., 2018; Huang et al., 2019; Lu et al., 2019; Li et al., 2021). Common to the full	
102	regime, however, is surface waters that are warm, stratified and N-depleted, but subject to	
103	elevated dust input from the Gobi Desert (Duce et al., 1991; Jickells et al., 2005). These	
104	conditions potentially provide an ideal habitat for diazotrophs (Chen et al., 2003; Wu et	
105	al., 2003). Investigations in these regions have shown high variability in diazotroph	
106	abundances and N ₂ fixation rates (Chen et al., 2003; Chen et al., <u>2008</u> ; Chen et al., <u>2014</u> ;	
107	Wu et al., 2018; Lu et al., 2019), which overall increased from the NSCS basin to the	
108	western boundary of the North Pacific (Wen et al., 2022). Along this gradient in N_2	
109	fixation, the dominant diazotroph types switched from Trichodesmium in the NSCS to	
110	UCYN-B in the western boundary of the North Pacific (Wen et al., 2022). Several studies	
111	have hypothesized that these gradients of diazotroph abundances and N2 fixation rates	
112	were regulated by nutrient availability (specifically, Fe, P and N; Wu et al., 2003; Chen et	
113	al., 2003; Chen et al., 2008; Shiozaki et al., 2014a; Shiozaki et al., 2015a). More recent	
114	observational and experimental evidence supported the hypothesis that Fe:N supply ratios	
115	are the main drivers of the abundance of diazotrophs and N ₂ fixation rates across the	
116	western North Pacific (Wen et al., 2022). With an increasing supply ratio of Fe:N from	
117	the North Equatorial Current (NEC) to the Philippines Sea, Wen et al. (2022) found that	
118	diazotroph abundances and N2 fixation rates increased, and bioassay experiments	
119	demonstrated evidence for N_2 fixation rates switching from Fe to P limitation or to	

Deleted: Li et al., 2021;	
Deleted: Xu	
Deleted: 2018	


Deleted: 2014	
Deleted: 2008;	
Deleted: : Wu et al., 2018	


126	nutrient-replete conditions. In the NSCS, Wen et al. (2022) found N_2 fixation rates fell in	
127	between NEC and Kuroshio values and bioassay experiments demonstrated rates were	
128	co-limited by Fe and P, which they hypothesized was due to intermediate Fe:N supply	
129	ratios (Wen et al., 2022).	
130		
131	Although this previous study has outlined the broad spatial pattern of nutrient regulation	
132	of marine N2 fixation throughout the western subtropical Pacific (Wen et al., 2022),	
133	important questions remain. Two specific examples are: (i) the Kuroshio intrusion	
134	generates a frontal zone with a unique diazotrophy regime in the NSCS (Lu et al., 2019),	
135	and thus the relatively lower spatial resolution of the experiments in Wen et al. (2022)	
136	and other studies (Shiozaki et al., 2014b; Chen et al., 2019) remains insufficient to	Dele
137	delineate Fe and P controls at finer spatial scales between the neighboring NSCS and the	Dele
138	western boundary of the North Pacific; and (ii) in addition to controls on N2 fixation	
139	rates, broad-scale differences in the types of diazotrophs dominating the N_2 fixer	
140	community were not concretely associated with environmental drivers in experimental	
141	tests for nutrient limitation, because changes in type-specific diazotroph abundances	
142	following nutrient addition were not measured (Shiozaki et al., 2014b; Chen et al., 2019;	Dele
143	Wen et al., 2022). Therefore, in the present study we extend the findings of Wen et al.	
144	(2022) and others by carrying out additional, higher-spatial resolution observations of	
145	volumetric N_2 fixation rates and measurements of the <u><i>nifH</i> gene</u> abundances of key	

Deleted: Chen et al., 2019;

Deleted:) remain

Deleted: Chen et al., 2019;

¹⁵⁷

158 Figure 1. Sampling and nutrient amendment experiment locations in the northern South 159 China Sea and the western boundary of the North Pacific. One station (SEATS₂₀₁₆) was sampled in 2016, three (S1, SK1, WP) were in 2017, and six (stations with green labels) 160 161 were in 2018. Nutrient amendment experiments were conducted at 8 of 10 stations.

162 Symbols summarize the nutrient limitation of N2 fixation rates found at each site: red, Fe

163 limitation; blue, P limitation; split red/blue, Fe-P co-limitation; white, nutrient replete.

165 simultaneous co-limitation). WNP, the western North Pacific. Black arrows indicate 166 Kuroshio Current and its branch. 167 2 Method 168 169 2.1 Sample collection 170 Investigations and bioassay experiments were conducted on three cruises to the NSCS 171 (stations SETAS and S1 to S4), the Luzon Strait (stations SK1 and SK2), the upstream 172 Kuroshio (station K1), and the western boundary of the North Pacific (station WP) (Fig. 173 1), between May 2016 and June 2018 onboard the R/V Dongfanghong 2 and R/V Tan 174 Kah Kee. At each station (except station SK2 where no hydrological data are available), 175 temperature and salinity were recorded by a Seabird 911 CTD. Water samples were 176 collected using Niskin-X bottles at five or six depths (except SK2, only surface waters 177 were sampled) throughout the upper 150 m for the determination of N₂ fixation and 178 primary production rates. Seawaters from each depth were also sampled for the analysis 179 of nifH gene abundance. Samples for nutrient analysis were also collected. Seawater for 180 the bioassay experiments (at 8 of 10 stations) was collected using a trace-metal-clean 181 towed sampling device located around 2-5 m depth with suction provided by a Teflon 182 bellows pump. Seawaters were sampled in a dedicated trace-metal-clean laminar flow 183 hood maintained over-pressurized by HEPA-filtered air. During the cruise in 2018 184 (stations with green labels in Fig. 1), surface waters were sampled under trace-metal-

Co-limitation type is indicated by symbol type (square, independent co-limitation; circle,

164

Deleted: Gray lines indicate 50, 100, 300, 500, 1000, 1500 and 2000 m bathymetric depth contours.

187 clean conditions for the determination of total particulate Fe concentration.

188

189	2.2 N ₂ fixation and primary production rate measurements
190	N_2 fixation rates were determined by the $^{15}N_2$ gas dissolution method (Mohr et al., 2010),
191	combined with a primary production assay using NaH13CO3 (99 atom% 13C, Cambridge
192	Isotope Laboratories). Briefly, 0.22 μ m-filtered surface seawater was degassed using a
193	Sterapore membrane unit (20M1500A: Mitsubishi Rayon Co., Ltd., Tokyo, Japan) as
194	described in Shiozaki et al. (2015b). After that, 20 mL 98.9 atom% pure $^{15}\mathrm{N}_2$ gas
195	(Cambridge Isotope Laboratories) was injected into a gas-tight plastic bag (Tedlar®PVF,
196	Dalian Delin Gas Packing Co., Ltd) containing 2 L of the degassed seawater and allowed
197	to fully equilibrate before use. The N_2 fixation and primary production incubations were
198	conducted in duplicate 4.3 L Nalgene polycarbonate bottles. Samples were spiked with
199	100 mL $^{15}\mathrm{N}_2$ enriched filtered seawater from the same site and incubated on-deck for 24
200	h. The final ${}^{15}N_2$ enriched seawater concentration in the incubation bottles was not
201	measured directly during this study. We thus employed a $^{15}N_2$ atom% of 1.40 ± 0.08
202	atom% (ranges from 1.28 to 1.56 atom%, $n = 17$) measured in a following cruise in 2020
203	(Wen et al., 2022), during which the N_2 fixation incubations were conducted using the
204	same approach, reagents, and equipment as for the study described here. For primary
205	production measurements, NaH ¹³ CO ₃ solution was added to a final amended
206	concentration of 100 μ M. After that, the bottles were covered with a neutral-density

Deleted: at

208	screen to adjust the light to the levels at sampling depths, and then were incubated for 24
209	h in an on-deck incubator continuously flushed with surface seawater. Incubated samples
210	were filtered onto pre-combusted (450 $^{\circ}$ C, 4 h) GF/F filters, and the particulate organic
211	matter from each depth were also collected to determine background POC/PON
212	concentrations and their natural ¹³ C/ ¹⁵ N abundances.
213	
214	All filter samples were acid fumed to remove the inorganic carbon and then analyzed
215	using an elemental analyzer coupled to a mass spectrometer (EA-IRMS, Thermo Fisher
216	Flash HT 2000-Delta V plus). The N_2 fixation and primary production rates were then
217	calculated according to Montoya et al. (1996) and Hama et al. (1983), respectively. The
218	detection limits of N ₂ fixation rates were then calculated according to Montoya et al.
219	(1996), taking 4‰ as the minimum acceptable change in the δ^{15} N of particulate nitrogen.
220	All parameters involved in N2 fixation rate calculation are shown in Supplementary
221	Materials. To represent the inventories, the upper 150 m depth-integrated N ₂ fixation rate
222	and primary production were calculated by the trapezoidal integration method.
223	
224	2.3 <i>nifH</i> gene abundance
225	At each depth, 4.3 L seawater samples for DNA extraction were filtered onto 0.22 μm
226	pore-sized membrane filters (Supor200, Pall Gelman, NY, USA) and then frozen in liquid

227 N2. To extract the DNA, membranes were cut into pieces under sterile conditions, and

228	then extracted using the QIAamp® DNA Mini Kit (Qiagen) following the manufacturer's
229	protocol. The quantitative polymerase chain reaction (qPCR) analysis was targeted on the
230	nifH phylotypes of Trichodesmium spp., unicellular cyanobacterial UCYN-A1, UCYN-
231	A2, and UCYN-B, <i>Richelia</i> spp. (het-1), and a gamma-proteobacterium (γ-24774A11),
232	using previously designed primers and probe sets (Supplementary Table S1; Church et al.,
233	2005a; Church et al., 2005b; Moisander et al., 2008; Thompson et al., 2014). A recent
234	study suggested that the primers for UCYN-A2 also target UCYN-A3 and thus cannot be
235	used to differentiate between these two phylotypes (Farnelid et al., 2016). Therefore, we
236	used the convention UCYN-A2/A3 when referring to these two groups. The $nifH$
237	standards were obtained by cloning the environmental sequences from previous samples
238	collected from the SCS. qPCR analysis was carried out as described previously (Church
239	et al., 2005a) with slight modifications. Triplicate qPCR reactions were run for each
240	environmental DNA sample and for each standard on a CFX96 Real-Time System (Bio-
241	Rad Laboratories). Standards corresponding to between 10 ¹ and 10 ⁷ copies per well were
242	amplified in the same 96-well plate. The amplification efficiencies of PCR were always
243	between 90-105%, with R^2 values > 0.99. The quantification limit of the qPCR reactions
244	was 10 <i>nifH</i> gene copies per reaction, and 1 μ L from 100 or 150 μ L template DNA was
245	applied to qPCR assay, which was equivalent to approximately \sim 230-350 gene copies per
246	L of seawater sample filtered (4.3 L).

248	A previous study has reported that <i>nifH</i> gene polyploidy exists in <i>Trichodesmium</i>		
249	(Sargent et al., 2016), which may impact the estimates of diazotroph compositions.		
250	However, given that the degree of polyploidy can vary significantly (ranging from 1 to		
251	1405; Sargent et al., 2016; White et al., 2018), with a potential dependence on the growth		
252	conditions, nutrient status, developmental stage, and cell cycle (see references in		
253	Karlusich et al., 2021), we did not attempt to account/correct for this in calculations of		
254	proportions of the different diazotrophs.		
255			
256	2.4 Bioassay experiments		
257	Acid-cleaned Nalgene polycarbonate carboys (10 L) were filled with near surface		
258	seawater from the towed fish system. Trace metal clean techniques were strictly applied		
259	in experimental setup and manipulations. All materials including the degas unit and	(Deleted: coming
260	Tedlar [®] PVF bags that came in contact with the incubation water were acid-washed in a		
261	Class-100 cleanroom before use. Nutrient amendments at all sites were Fe, P, and Fe+P.		
262	Surface dissolved Fe and P concentrations previously reported in the NSCS were 0.17-	(Deleted: The amended
263	1.01 nM and 5-20 nM respectively (Wu et al., 2003; Zhang et al., 2019). In order to		
264	obtain a measurable response within the relatively short 72-hour experimental period, 2		
265	<u>nM Fe and 100 nM P</u> (chelexed and filter-sterilized) were added to each of the treatment	(Deleted: concentrations were 2 nM and 100 nM, respectively
266	bottles. Control bottles incubated with no nutrient treatment were included in all		Deleted: All treatments
267	experiments. Treatments for 7 out of 8 experiments were conducted with 3 replicates,	4	Deleted: 2 or Deleted: and

274	However, there were three cases when one of the triplicate samples was lost due to
275	filtration errors (one +Fe+P carboy at station S1, one NFR/PP sample of +Fe+P at station
276	WP, and one NFR/PP sample of +P sample at station S3). In addition, for the bioassay
277	experiment at station SEATS ₂₀₁₆ , sufficient water was only available to conduct the
278	experiment with 2 replicates for control and +Fe+P treatments, while +Fe and +P retained
279	3 replicates. All carboys were then incubated for 3 days in a screened on-deck incubator
280	(a ~400-L clear on-deck incubator with inflow and outflow) continuously flushed with
281	surface seawater. After 72 hours pre-incubation, subsamples were collected for the
282	determination of <u>Chl <i>a</i> concentration</u> , N ₂ fixation rate and <i>nifH</i> gene abundance. $^{15}N_2$
283	enriched seawater was prepared as described above, except that all the materials coming
284	in contact with the seawater were acid-cleaned before use.
285	
286	2.5 Macronutrient and chlorophyll <i>a</i> analyses
287	Samples for macronutrient analyses were collected in 125-mL acid-washed high-density
288	polyethylene (HDPE) bottles (Nalgene), and analyzed onboard using a Four-channel
289	Continuous Flow Technicon AA3 Auto-Analyzer (Bran-Lube GmbH). The detection
290	limits for NO ₃ ⁻⁺ NO ₂ ⁻ and PO ₄ ³⁻ were 0.1 μ mol L ⁻¹ and 0.08 μ mol L ⁻¹ , respectively. The
291	nitracline was defined as the depth at which NO_X concentration equaled 0.1 $\mu mol \ L^{\text{-1}}$ (Le
292	Borgne et al., 2002). Surface seawaters were additionally sampled for the measurement of

293 <u>low-level nutrient concentrations in the 2018 cruise and $NO_3^-+NO_2^-$ was determined</u>

294	following Zhang (2000) whilst PO4 ³⁻ was analyzed following Ma et al., (2008). Samples
295	for chlorophyll a analysis were collected on nominal 0.7 μ m pore-size GF/F filters
296	(Whatman), extracted in 90% acetone, and analyzed fluorometrically on a Turner Designs
297	fluorometer (Welschmeyer 1994).
298	
299	2.6 Particulate Fe concentration
300	Total particulate Fe (PFetotal) and intracellular Fe (PFeintra) were sampled under laminar
301	flow hood. Briefly, 4-9 L of surface waters were filtered onto acid-cleaned 0.22- μm
302	polycarbonate membrane filters. For PFeintra samples, in order to remove metal bound to
303	the cell surface, cells were exposed twice to an oxalate-EDTA solution for 5 minutes and
304	rinsed nine times with Chelex-cleaned 0.56 mol L ⁻¹ NaCl solution (Li et al., 2020).
305	PFetotal and PFeintra concentrations were then determined by ICP-MS (ICP-MS 7700X,
306	Agilent).
307	
308	2.7 Statistical analysis
309	Significance of differences among nutrient treatments of bioassay experiments (for N2
310	fixation rate) were tested by ANOVA followed by Fisher PSLD test, using R-4.1.2.
311	Pairwise correlation between N ₂ fixation rates, diazotroph groups and environmental
312	factors was analyzed using Pearson correlation. A significance level of $p < 0.05$ was
313	applied, except as noted where significance was even greater. It should be noted that

Deleted:) and chlorophyll Formatted: Font: Not Italic Deleted: concentration was determined using a Trilogy Deleted: Turner-Designs, USA).

Deleted: -

- those statistical results that were produced from only two replicates are not strictly
- statistically valid, but for completeness the posthoc test results are nevertheless still
- included here.

Results

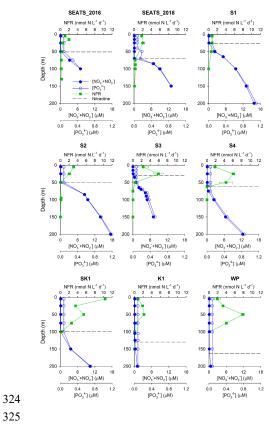
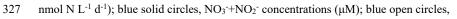



Figure 2. Vertical profiles of N2 fixation rates. Green squares, N2 fixation rate (NFR,

Formatted: Left

- 328 PO_4^{3-} concentrations (μ M). The dashed line indicates the nitracline depth. Note that no
- 329 profile data were available at station SK2.

331 <u>Our survey revealed substantial spatial variability in N₂ fixation rates and *nifH* gene</u>

332 abundances across the study area (Figs. 2 and 3). Vertically, high N₂ fixation rates were

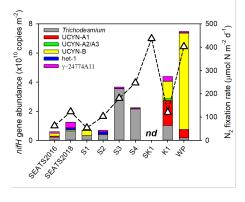
found in the upper 50 m (ranged from <u>below</u> detection limit to 10.4 ± 0.01 nmol N L⁻¹ d⁻¹

³³⁴), rates dropped rapidly at greater depths (Fig. 2), and surface rates were positively

335 correlated with depth-integrated rates (Pearson r = 0.68, p = 0.043, Supplementary Table

336 S2). Horizontally, depth-integrated N₂ fixation rates were generally low at the central

337 NSCS basin stations (SEATS, S1 and S2, on average $86 \pm 33 \mu mol N m^{-2} d^{-1}$), elevated at


338 stations close to the western edge of the Luzon Strait (S3 and S4, on average 214 ± 47

339 µmol N m⁻² d⁻¹), and were highest at the Luzon Strait station (SK1, 437 µmol N m⁻² d⁻¹)

340 and the western North Pacific boundary station (WP, 403 µmol N m⁻² d⁻¹) (Figs. 1, 3 and

342

Formatted: Left

Deleted: bellow

345 Figure 3. Depth-integrated (upper 150 m) nifH gene abundances (bars) and N₂ fixation

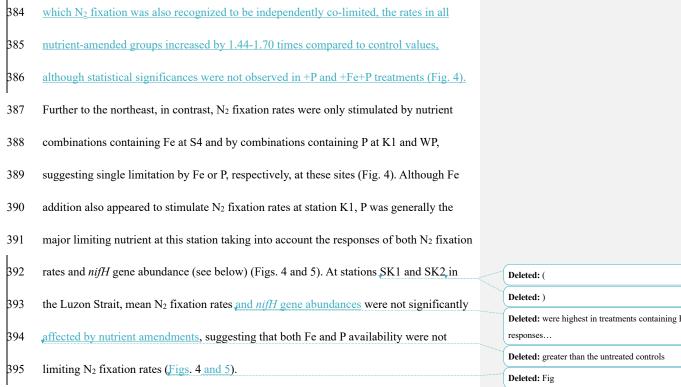
- 346 rates (triangles). Note that depth-integrated N₂ fixation rates and *nifH* gene abundances
- 347 were not available at station SK2. nd, not determined.
- 348

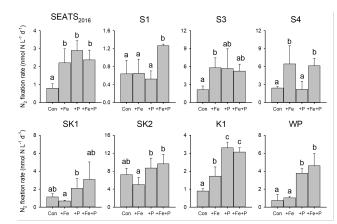
349 Table 1. Environmental conditions, N2 fixation, and primary production rates. Sea

- surface temperature (SST) and salinity (SSS), <u>chlorophyll a concentration, surface</u>
- dissolved inorganic nitrogen (SDIN) and phosphorus (SDIP), nitracline depth (D_{Nitr}),
- 352 surface N₂ fixation rate (SNF), upper 150 m depth-integrated N₂ fixation rate (INF) and
- 353 primary production (IPP) at each station. nd, not determined.

							SNF	INF	IPP	
Station	SST	SSS	Chl a	<u>SDIN</u>	<u>SDIP</u>	D _{Nitr}	(nmol N	(µmol N	(mmol C	Deleted:
	(°C)		(µg/L)	<u>(nM)</u>	<u>(nM)</u>	(m)	L ⁻¹ d ⁻¹)	m ⁻² d ⁻¹)	m ⁻² d ⁻¹)	Dereted:
SEATS ₂₀₁₆	30.3	33.46	0.26	<u>nd</u>	<u>nd</u>	51	1.1	63	44	
SEATS ₂₀₁₈	30.3	33.46	0.11	<u>9.5</u>	<u>16.8</u>	71	1.8	123	24	
S1	29.5	33.73	0.24	<u>nd</u>	<u>nd</u>	27	0.8	54	43	
S2	29.4	33.75	0.10	<u>9.6</u>	<u>13.0</u>	50	3.0	103	24	
S3	28.7	33.53	0.15	<u>11.1</u>	<u>16.2</u>	30	2.4	181	98	
S 4	29.5	33.74	0.17	<u>5.1</u>	<u>11.7</u>	62	1.8	247	59	
SK1	30.5	33.62	0.22	<u>nd</u>	<u>nd</u>	100	10.4	437	11	
SK2	nd	nd	0.11	nd	<u>nd</u>	nd	2.0	nd	nd	Inserted Cells
K1	29.1	34.45	0.11	<u>5.9</u>	<u>16.8</u>	130	0.8	120	19	Inserted Cells
WP	30.9	34.47	0.11	<u>nd</u>	<u>nd</u>	163	1.9	403	9	

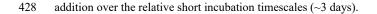
³⁵⁴

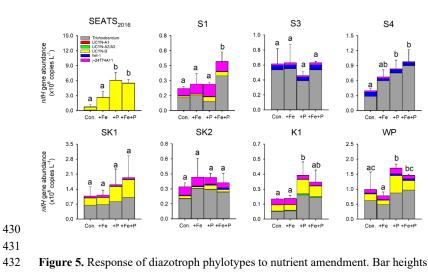

- 355 A significant positive correlation was found between the depth-integrated *nifH* gene
- abundance and N₂ fixation rate (Pearson r = 0.72, p = 0.046, Supplementary Table S2),


demonstrating that the <u>nifH gene</u> abundances of these major diazotroph phylotypes that

358 <u>we surveyed</u> well explained the major variability in measured rates. However,

359 considerable spatial variation was found in the specific diazotrophs supporting N2


361	fixation (Fig. 3). Trichodesmium dominated the total nifH gene abundance throughout the	Deleted: diazotroph assemblage
362	water column of the NSCS (52-96% of the total $nifH$ gene abundance, excluding station	
363	SEATE ₂₀₁₆). In contrast, at the Kuroshio station K1, unicellular diazotrophic	
364	cyanobacteria (UCYN-A and UCYN-B) were the most abundant <u>nifH gene phylotypes</u> ,	
365	and at station WP, UCYN-B alone was dominant (Fig. 3 and Supplementary Table S3). It	
366	should be noted that <i>nifH</i> gene polyploidy exists in <i>Trichodesmium</i> (Sargent et al., 2016),	
367	which may have an important impact on the estimates of both in situ and nutrient-treated	
368	diazotroph compositions (see Method).	
369		
370	3.2 Diazotroph response to Fe and P supply	
371	To directly test which nutrients were limiting overall N ₂ fixation rates and the <u><i>nifH</i> gene</u>	Deleted: abundance
372	abundances of individual diazotrophs, we conducted eight, ~3-day nutrient addition	
373	bioassay experiments (Figs. 4 and 5). The responses of N_2 fixation rate to different	
374	combinations of Fe and P supply demonstrated a coherent geographic switch across the	
375	study area (Figs. 1, 4 and 5). At stations towards to the NSCS basin (SEATS $_{2016}$, S1 and	
376		
	S3), N_2 fixation rates were co-limited by Fe and P. Two forms of this co-limitation were	
377	S3), N ₂ fixation rates were co-limited by Fe and P. Two forms of this co-limitation were identified: (i) only simultaneous Fe and P addition stimulated N ₂ fixation rates	
377 378		
	identified: (i) only simultaneous Fe and P addition stimulated N ₂ fixation rates	



Deleted: were highest in treatments containing P, but

404 405 406 407 408 409 410 411	Figure 4. Response of N ₂ fixation to nutrient amendment. Error bars represent the standard deviation of biological replicates ($n = 2$ or 3). Different letters above error bars indicate statistically significant differences ($p < 0.05$) between treatments (ANOVA followed by Fisher PLSD test). Note that statistical results were produced from only two replicates for control and +Fe+P at station SEATS ₂₀₁₆ , +Fe+P at stations S1 and WP, and +P at station S3, and should thus be treated with caution.	Formatted: Left
412	Further detail as to the drivers of the N_2 fixation responses to Fe and P additions was	
413	provided by the species-level analysis of diazotroph $nifH$ from the treatment bottles. In	
414	general, responses of total <i>nifH</i> gene abundance to Fe and P amendments were	
415	qualitatively consistent with N ₂ fixation rates at most sites, that is, the nutrient(s) limiting	
416	N_2 fixation rates also limited the diazotroph <u><i>nifH</i></u> abundance (Figs. 4 and 5). The	
417	exceptions were at stations S3 and S4, where variability in <i>nifH</i> abundances was observed	
418	in response to nutrient treatment (station S3) or overall trends differed between $nifH$	
419	abundances and N ₂ fixation rates (station S4; enhanced <i>nifH</i> abundance in response to +P,	
420	whereas rates only responded to +Fe). Quantitatively, the responses of N_2 fixation rates	
421	and nifH biomass to nutrient addition were not well correlated (total nifH abundance	
422	increase rate, calculated as Ln(nifH_treatment/nifH_control)/incubation time, versus the	Deleted: versus
423	N ₂ fixation increase rate following nutrient supply, $R^2 = 0.07$, $p = 0.21$; Supplementary	
424	Fig. S1), despite initial background <i>nifH</i> abundances and N ₂ fixation rates being well	
425	correlated (Pearson $r = 0.72$, $p = 0.046$, Supplementary Table S1). This suggested a	
426	decoupling of the rates of change in biomass and N2 fixation rates following nutrient	

429

432

433 represent the mean total nifH concentration and error bars the standard deviation of

434 biological replicates (n = 2 or 3). Different letters above error bars indicate a statistically

- 435 significant difference (p < 0.05) between treatments (ANOVA followed by Fisher PLSD
- 436 test). Note that statistical results were produced from only two replicates for control and
- +Fe+P at station SEATS₂₀₁₆, control and +Fe+P at station S1, and +P and +Fe+P at station 437
- 438 SK2, and should thus be treated with caution.

439

- 440 Overall, the composition of the six diazotroph phylotypes that we surveyed were not
- 441 greatly changed after nutrient amendments (Fig. 5). Trichodesmium and UCYN-B were

442 the two most dominant *nifH* phylotypes in all experimental waters that contributed to the

- 443 enhanced total nifH gene abundance after nutrient additions (Figs. 3, 5 and
- 444 Supplementary Fig. S1). Despite showing independent co-limitation in response to Fe and
- 445 P supply at station SEATS₂₀₁₆ (Fig. 4), as reflected by equally responding N₂ fixation

Deleted: community structure was

Deleted: species

448	rates, UCYN-B, the dominant <u><i>nifH</i> phylotype</u> in non-amended control waters, increased	Deleted: diazotroph
449	2-fold more following P addition in comparison to Fe addition (Fig. 5 and Supplementary	
450	Fig. S2). Furthermore, no significant changes in <i>nifH</i> were observed at station S3, where	
451	N2 fixation rates were also independently Fe-P co-limited. More consistent between the	
452	N ₂ fixation rates and <i>nifH</i> biomass changes were the <i>nifH</i> responses at station S1, with	
453	overall nifH concentrations only responding to Fe+P additions, matching the N2 fixation	
454	response. This was mostly driven by co-limitation of Trichodesmium, whereas UCYN-B	
455	responded only to P supply (Fig. 5 and Supplementary Fig. S2).	
456		
457	In contrast to the Fe limitation of N ₂ fixation rates found at station S4, <i>nifH</i> abundances	
458	showed the most significant responses to the combined supply of Fe and P. However, at	
459	sites where N ₂ fixation rates were P-limited (K1 and WP) overall <i>nifH</i> concentrations also	
460	responded most to P addition, with contributions from both Trichodesmium and UCYN-B	
461	(Fig. 5). In addition, het-1 also increased significantly with +P combinations at stations	
462	K1 and WP (Supplementary Fig. S2). By contrast, γ -24774A11, which also accounted for	
463	a substantial fraction of the total <i>nifH</i> gene abundance (up to 31%), did not show clear	Deleted: diazotroph community
464	enhancement to nutrient additions (Supplementary Fig. S2), suggesting that it was not Fe-	
465	and/or P-limited. Interestingly, UCYN-A disappeared in the nutrient amendment	
466	experiments, although they were abundant in the initial water at stations K1 and WP	
467	(Figs. 3 and 5), possibly due to an unconstrained bottle effect (Göran et al., 2003).	
	23	

Λ	7	n
+	1	υ

471	4 Discussion	
472	In the present study, surface dissolved inorganic nitrogen (DIN) and phosphorus (DIP)	Deleted: In the present study,
473	concentrations in our study area were depleted (5.1-11.1 nM DIN, 11.7-16.8 nM DIP,	
474	Table 1). Furthermore, bioassay incubations shown no significant responses of Chl a	
475	concentration to the amendments of Fe and/or P (Supplementary Fig. S3), together	
476	implying the overall phytoplankton community across entire area was N-limited and the	
477	upper waters were favorable for N2 fixation. However, the rates and nifH gene	
478	abundances were much higher in the northeast region of our study area than in the NSCS	
479	basin (Fig. 3). Rates at stations SK1 and WP were comparable to those recently reported	
480	in this region (~450 $\mu mol~N~m^{-2}~d^{-1})$ measured using the same $^{15}N_2$ gas dissolution	
481	method (Lu et al., 2019; Wen et al., 2022). Although relatively low rates were measured	
482	at the Kuroshio Current station (K1) compared with previous observations (e.g., Wen et	
483	al., 2022), high nifH gene abundance was nevertheless observed at this site (Fig. 3 and	
484	Supplementary Table S3). Therefore, our observations provide increasing evidence for	
485	this western (sub)tropical North Pacific boundary region containing important "hot spots"	
486	of N2 fixation (Shiozaki et al., 2010; Shiozaki et al., 2015a; Wen et al., 2022). However,	
487	the elevated total <i>nifH</i> concentration in the western boundary of the North Pacific during	
488	our study was largely attributed to an increased <u><i>nifH</i></u> abundance of unicellular diazotrophs	
489	(UCYN-A and B, Fig. 3), but not Trichodesmium as previously reported (Chen et al.,	

491	2003; Chen et al., 2008; Chen et al., 2014; Shiozaki et al., 2014a). Instead, we found that	
492	Trichodesmium <u>nifH</u> gene was most abundant at stations (S3 and S4) close to the western	
493	edge of the Luzon Strait (Fig. 3 and Supplementary Table S3), where Kuroshio intrusion	
494	water has been hypothesized to introduce Trichodesmium into a favorable biogeographic	
495	regime (Lu et al., 2019). Either this region is spatially and/or temporally heterogeneous	
496	with respect to the presence of unicellular versus Trichodesmium diazotrophs, or the	
497	environmental changes have led to a shift in diazotroph community structure (Gruber,	
498	2011; Hutchins and Fu, 2017).	
499		
500	Depth-integrated N ₂ fixation rate and <i>nifH</i> gene abundance were not correlated with sea	
501	surface temperature (SST), but a significant positive correlation was found between	
502	nitracline depth and total <i>nifH</i> gene abundance (Pearson $r = 0.74$, $p = 0.037$,	
503	Supplementary Table S2). This was suggestive of subsurface N supply into the euphotic	
504	zone, which is inversely related to nitracline depth, potentially being important in	
505	regulating diazotroph abundance in our study area, with lower N supply leading to	
506	enhanced diazotroph abundances (Chen et al., 2003; Shiozaki et al., 2014b). The presence	
507	of diazotrophs in the ocean will be a function of how well they can compete with non-	
508	diazotrophic phytoplankton for limiting resources (e.g., Fe and P) under grazing pressure	
509	(Ward et al., 2013; Dutkiewicz et al., 2014; Landolfi et al., 2021). Accordingly, because	
510	of the growth characteristics of diazotrophs in comparison to non-diazotrophs, in	

Deleted: 2014

Deleted: 2008

Deleted: ; Ward et al., 2013

514	particular their lack of requirement for pre-fixed N, but higher requirement for Fe and P,	
515	the relative supply rates of N, Fe and P are highly important in dictating where	
516	diazotrophs can succeed (Ward et al., 2013). Aligning with earlier global model	
517	predictions (Ward et al., 2013), and investigations in the (sub)tropical Atlantic (Schlosser	
518	et al., 2014), Wen et al. (2022) recently found that the Fe:N supply ratio (including	
519	subsurface and aerosol N and Fe supplies) was a robust predictor of diazotroph standing	
520	stock across the broader western North Pacific, including our study region.	
521		
522	By carrying out bioassay incubations, we observed that N ₂ fixation rates in the NSCS	
523	basin were either (i) 'simultaneously co-limited' by Fe and P (identified at station S1),	
524	which represents a state where two, non-substitutable nutrients (in this case, Fe and P)	
525	have been drawn down to equally limiting levels (Sperfeld et al., 2016), or (ii)	
526	'independently co-limited' (stations SEATS ₂₀₁₆ and S3), which represents a state where	
527	the resources are substitutable at biochemical (Saito et al., 2008), or community levels	
528	(Arrigo, 2005). Previous studies reported relatively low surface Fe concentrations in the	
529	NSCS basin (0.2-0.3 nM; Wu et al., 2003; Wen et al., 2022), although Fe supply rates to	
530	this region are likely elevated via riverine, sedimental and aerosol inputs (Duce et al.,	
531	1991; Jickells et al., 2005; Zhang et al., 2019). Wu et al (2003) hypothesized that the low	
532	Fe concentrations were due to a lack of Fe-binding organic ligands, which was	
533	subsequently restricting the growth of diazotrophs. We suggest that this may also be	

Deleted: Although the current study lacked the data to calculate nutrient supply rates into the euphotic zone (matching Fe concentration profiles, euphotic depths), the correlation found between *nifH* and nitracline depth suggested the potential for the same driver (i.e., Fe:N supply rates) to be operating over this smaller spatial scale. In line with Wen et al. (2022), we further hypothesize that the expected significant N supply rate to surface waters of the NSCS (due to a shallower nitracline, alongside riverine and aerosol inputs) reduces, but does not eliminate the competitive ability of diazotrophs, as Fe supply rates to this region are likely also high

Moved down [1]: (Duce et al., 1991; Jickells et al., 2005;

Moved down [2]: 2005; Zhang et al.,

Deleted: 2019), thereby maintaining Fe:N supply ratios at levels supporting diazotrophs (Ward et al., 2013; Wen et al., 2022). At these Fe:N supply levels, we observed that N₂ fixation rates

Moved (insertion) [1]

Moved (insertion) [2]

Deleted: biogeochemical

553	attributed to the rapid consumption of Fe (as well as P) by the faster-growing non-	
554	diazotrophs under elevated N supply (due to shallower nitraclines, alongside riverine and	
555	aerosol inputs). Thus we hypothesize that with the lower Fe:N supply ratio, diazotrophs	
556	in this region were outcompeted by non-diazotrophic phytoplankton and co-limited by	
557	both Fe and P (Fig. 4). These results add to increasing evidence for the potentially	
558	widespread Fe-P colimitation of N ₂ fixation under elevated Fe supply (Mills et al., 2004;	
559	Snow et al., 2015; Cerdan-Garcia et al., 2022).	
560		
561	The measured contributions of individual diazotrophs to total <i>nifH</i> concentration in	
562	response to nutrient supply suggested that simultaneous Fe-P co-limitation of N2 fixation	
563	rates at station S1 was via regulation of Trichodesmium, which only responded to Fe+P	
564	addition (Fig. 5). The <i>nifH</i> responses also suggested that independent Fe-P co-limitation	
565	of N_2 fixation rates at sites SEATS ₂₀₁₆ and S3 was not operating at the community level	
566	(i.e., one diazotroph type limited by Fe and the other by P. Arrigo, 2005), as different	Deleted:) (
567	<u>qPCR-based</u> diazotroph community structure responses to either Fe or P addition were	
568	not observed (Fig. 5). We suggest three possible causes for this observation: (i) co-	
569	limitation was at the biochemical rather than community level (i.e., either Fe or P could	
570	enhance the rates of processes ultimately driving elevated N2 fixation. Saito et al., 2008).	Deleted:) (Saito et al., 2008); (ii) a more subtle communit
571	For instance, in addition to serving as a cofactor in nitrogenase, Fe is also a cofactor in	co-limitation was occurring at the level of ecotypes not resolved by the <i>nifH</i> qPCR analyses
572	alkaline phosphatases (Rodriguez et al., 2014; Yong et al., 2014). Thus, the addition of Fe	
	27	

577	may allow for enhanced utilization of dissolved organic P (DOP) under depleted DIP		
578	(Browning et al., 2017); (ii) other diazotrophs, which were not analyzed by the qPCR		
579	assay, may be responsible for the enhanced N_2 fixation rates after nutrient additions; or		
580	(iii) community co-limitation of N2 fixation rates for the measured groups was occurring,		
581	but, unlike the simultaneous co-limitation scenario at station S1, experimental durations		
582	were too short for this to be reflected in diazotroph biomass changes. Surprisingly,		
583	stations with independent co-limitation of N_2 fixation rates by Fe and P (SEATS ₂₀₁₆ and		
584	S3) were not additive (i.e., increases in N2 fixation rates in Fe+P treatments were not		
585	larger than Fe and P alone; Sperfeld et al., 2016). Although the available data do not	(Deleted:) (
586	allow us to provide a concrete reason for this, the absence of this additive response may	(Deleted: it could reflect serial limitation of N_2 fixation by
587	reflect one or a combination of (i) addition of Fe or P leading to the depletion of another	l	another resource (e.g., a different nutrient or light).
588	secondary limitation nutrient (e.g., Ni), (ii) overall light levels setting an upper limit of N ₂		
589	fixation rates, which prevented further enhancements after nutrient additions, or (iii)		
590	grazer regulation of diazotroph biomass accumulation.		
591			
592	In contrast to the more central NSCS, the deeper nitraclines in the western boundary of		
593	the North Pacific, appeared more favorable for N ₂ fixation (Fig. 3 and Table 1). P		Deleted: , elevated Fe:N supply ratios are expected as a result
594	limitation of N ₂ fixation at these sites implied that Fe supply (e.g., via aerosols)		of deepening nitraclines Deleted: 2
595	stimulated diazotroph growth (Fig. 3; Wen et al., 2022) and subsequently drawdown P to		Deleted:) and continued aerosol Fe inputs (
596	limiting levels (Table 1, Figs 4 and 5, Hashihama et al., 2009; Ward et al., 2013; Wen et	(Moved (insertion) [3]
·	28		

604	al., 2022), Additional Fe inputs other than aerosol deposition are also potentially	\leq
605	important in supporting the elevated N ₂ fixation in the Luzon Strait. At station SK2, much	
606	higher surface particulate Fe concentrations (both intracellular and total forms) were	
607	observed (Supplementary Table S4), implying <u>supplementary</u> Fe inputs potentially	\leq
608	sourced from the adjacent islands and the surrounding shallow sub-surface bathymetry	
609	(Shiozaki et al., 2014a; Shiozaki et al., 2015a).	
610		
611	In addition to the Fe:N supply ratio regulating the total <i>nifH</i> gene abundance and activity	
612	(Wen et al., 2022), we also further hypothesize that overall Fe supply rates might be an	
613	important factor in determining the diazotroph community structure in our study area	
614	(Church et al., 2008; Langlois et al., 2008; Shiozaki et al., 2017). Specifically, the depth-	
615	integrated diazotroph compositions of the six phylotypes switched from being co-	
616	dominated by Trichodesmium and other diazotrophs in the central NSCS (SEATS, S1 and	
617	S2), Trichodesmium-dominated in the more northern NSCS (S3 and S4), and finally	
618	dominated by UCYN-B in the western boundary of the North Pacific (Fig. 3 and	
619	Supplementary Table S3). Elevated Fe supply in the NSCS, particularly around the	
620	islands and shallow bathymetry of the Luzon Strait, might create a more favorable	
621	condition for Trichodesmium (Fig. 3 and Supplementary Table S3), consistent with	
622	elevated Fe demands of this species (Kustka et al., 2003; Kupper et al., 2008; Sohm et al.,	
623	2011), as well as its ability to use particulate Fe forms (Rubin et al., 2011), and in line	

Deleted:).

Deleted: may have

Deleted: contributed to further enhanced Fe:N supply

Deleted: additional

Deleted: ,

 $\label{eq:Deleted: In turn we hypothesize that elevated Fe:N supply rates enhance N_2 fixation rates at these sites (Fig. 3), which leads to P drawdown and subsequent P limitation of the enhanced diazotroph stock (Figs. 4 and 5;$

Moved up [3]: Hashihama et al., 2009; Ward et al., 2013; Wen et al., 2022).

635	with the elevated contribution of this species found in other regions with enhanced Fe	
636	supply (e.g., the tropical North Atlantic and western South Pacific; Sañudo-Wilhelmy et	
637	al., 2001; Sohm et al., 2011; Bonnet et al. 2018; Stenegren et al., 2018). In fact, Fe	
638	stimulation of Trichodesmium nifH abundance was observed in the experiment conducted	
639	at station S4 (Supplementary Fig. S2). At station S3, however, this was only observed for	
640	N2 fixation rates but not Trichodesmium nifH abundance (Supplementary Fig. S2). We	
641	suggest this could reflect a variable decoupling of N2 fixation rates and diazotroph	
642	abundance, depending on other environmental and/or ecological conditions. Conversely,	
643	unicellular species may be more competitive than Trichodesmium in regions with lower	
644	Fe supply rates (Fig. 3). In addition to having a higher surface to volume ratio that favors	
645	Fe uptake (Hudson and Morel 1990; Jacq et al., 2014), UCYN-B species such as	
646	Crocosphaera have been reported to employ a repertoire of Fe-conservation strategies,	
647	e.g., daily synthesis and breakdown of metalloproteins to recycle Fe between the	
648	photosynthetic and N ₂ fixation metalloenzymes and increased expression of flavodoxin at	
649	night even under Fe-replete conditions (Saito et al., 2011). These potentially explain why	
650	UCYN-B was less Fe-limited in the NSCS basin (stations $SEATS_{2016}$ and S1; Fig. 5 and	
651	Supplementary Fig. S2) and dominates the diazotroph community on the western Pacific	
652	side of the Luzon Strait (Fig. 3; Chen et al., 2019; Wen et al., 2022). Future work with	
653	paired measurements of Fe supply rates to surface waters and diazotroph community	
654	structure throughout the region would allow for more robust testing of this hypothesis.	

656 5 Conclusions

657	Observations and experiments conducted in the NSCS and the western boundary of the
658	North Pacific demonstrated that in the more central NSCS, Fe and P were co-limiting the
659	lower overall observed N2 fixation rates, whereas P was limiting the higher rates on the
660	western Pacific side of the Luzon Strait. This matched the expectation of higher Fe:N
661	supply ratios in the western Pacific generating a more favorable niche for diazotrophs,
662	leading to a drawdown of P. Trichodesmium and UCYN-B were the most dominant <u>nifH</u>
663	phylotypes in the incubation waters and both dominated the responses of the total nifH
664	gene after nutrient amendments. In general, nutrient addition had a relatively restricted
665	impact on <u>qPCR-based</u> diazotroph community structure apart from on UCYN-B, which
666	showed increased contribution in the diazotroph community following P addition at sites
667	where N_2 fixation rates were P-limited. We hypothesize that overall switches in
668	diazotroph community structure from Trichodesmium-dominated in the NSCS to single-
669	celled UCYNA/B was related to declines in overall Fe supply rates and the different
670	physiological strategies of these diazotrophs to obtain and use Fe. Future research that
671	more accurately constrains nutrient supply rates to these different regions would be

672 beneficial for further resolving this hypothesis.

Deleted: diazotroph types

674	Data availability. Al	l data needeo	d to evaluate t	the conclusions	in the n	aner are present in
0/1	Data availability. 11	i uutu neeuee			m une p	aper are present in

- 675 the paper and/or the Supplementary Materials. Additional data associated with the paper
- 676 are available from the corresponding authors upon request.
- 677
- 678 Author contributions. D.S., H.H., and Z.W. designed the research. Z.W., R.D., W.W.,
- 679 W.L., X.H., W.L., and L.W. performed the experiments. Z.W., D.S., H.H., T.J.B., X.L.,
- 680 and Z.C. analyzed the data. Z.W., T.J.B., H.H., and D.S. wrote the manuscript. All authors
- 681 discussed the results and commented and edited the manuscript.
- 682
- 683 Competing interests. The authors declare that they have no conflict of interest.
- 684
- 685 Acknowledgements. The authors acknowledge the captains and crew of the R/V
- 686 Dongfanghong 2 and R/V Tan Kah Kee for the help during the cruises. This work was
- 687 supported by the National Science Foundation of China (41890802, 42076149,
- 688 41925026, 42106041, and 41721005), the "111" Project (BP0719030), and the
- 689 XPLORER Prize from the Tencent Foundation to D. Shi.

690 References

- 691 Arrigo, K. R.: Marine microorganisms and global nutrient cycles, Nature, 437, 349-355,
- 692 10.1038/nature04158, 2005.
- 693 Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M., and Falkowski, P.: Iron
- 694 availability, cellular iron quotas, and nitrogen fixation in *Trichodesmium*, Limnol.
- 695 Oceanogr., 46, 1249-1260, 10.4319/lo.2001.46.6.1249, 2001.
- 696 Bonnet, S., Baklouti, M., Gimenez, A., Berthelot, H., and Berman-Frank, I.:
- 697 Biogeochemical and biological impacts of diazotroph blooms in a low-nutrient,
- 698 low-chlorophyll ecosystem: synthesis from the VAHINE mesocosm experiment
- 699 (New Caledonia), Biogeosciences, 13, 4461-4479, 10.5194/bg-13-4461-2016, 2016.
- 700 Bonnet, S., Caffin, M., Berthelot, H., Grosso, O., Benavides, M., Helias-Nunige, S.,
- 701 Guieu, C., Stenegren, M., and Foster, R. A.: In-depth characterization of diazotroph
- 702 activity across the Western Tropical South Pacific hot spot of N₂ fixation
- 703 (OUTPACE cruise), Biogeosciences, 15, 4215-4232, 10.5194/bg-15-4215-2018
- 704 2018.
- 705 Boström, K. H., Simu, K., Hagström, Å., and Riemann, L.: Optimization of DNA
- 706 extraction for quantitative marine bacterioplankton community analysis, Limnol.
- 707 Oceanogr.-Methods, 2, 365-373, 10.4319/lom.2004.2.365, 2004.
- 708 Böttjer, D., Dore, J. E., Karl, D. M., Letelier, R. M., Mahaffey, C., Wilson, S. T., Zehr, J.
- 709 P., and Church, M. J.: Temporal variability of nitrogen fixation and particulate

- 710 nitrogen export at Station ALOHA, Limnol. Oceanogr., 62, 200-216,
- 711 10.1002/lno.10386, 2016.
- 712 Browning, T. J., Achterberg, E. P., Yong, J. C., Rapp, I., Utermann, C., Engel, A., and
- 713 Moore, C. M.: Iron limitation of microbial phosphorus acquisition in the tropical
- 714 North Atlantic, Limnol. Oceanogr. Lett., 8, 15465, 10.1038/ncomms15465, 2017.
- 715 Cerdan-Garcia, E., Baylay, A., Polyviou, D., Woodward, E. M. S., Wrightson, L.,
- 716 Mahaffey, C., Lohan, M. C., Moore, C. M., Bibby, T. S., and Robidart, J. C.:
- 717 <u>Transcriptional responses of *Trichodesmium* to natural inverse gradients of Fe and P</u>
- 718 availability, Isme J, 16, 1055-1064, 10.1038/s41396-021-01151-1, 2022.
- 719 Chen, M., Lu, Y., Jiao, N., Tian, J., Kao, S. J., and Zhang, Y.: Biogeographic drivers of
- diazotrophs in the western Pacific Ocean, Limnol. Oceanogr., 64, 1403-1421,
- 721 10.1002/lno.11123, 2019.
- 722 Chen, Y. L. L., Chen, H. Y., and Lin, Y. H.: Distribution and downward flux of
- 723 Trichodesmium in the South China Sea as influenced by the transport from the
- 724 Kuroshio Current, Mar. Ecol. Prog. Ser., 259, 47-57, 10.3354/meps259047, 2003.
- 725 Chen, Y. L. L., Chen, H. Y., Tuo, S. H., and Ohki, K.: Seasonal dynamics of new
- 726 production from *Trichodesmium* N₂ fixation and nitrate uptake in the upstream
- 727 Kuroshio and South China Sea basin, Limnol. Oceanogr., 53, 1705-1721,
- 728 10.4319/lo.2008.53.5.1705, 2008.
- 729 Chen, Y. L. L., Chen, H. Y., Lin, Y. H., Yong, T. C., Taniuchi, Y., and Tuo, S. H.: The

720		· ·
730	relative contributions of unicellular and filamentous diazotrophs to N_2 fixa	Tion in

- the South China Sea and the upstream Kuroshio, Deep Sea Research Part I, 85, 56-
- 732 71, 10.1016/j.dsr.2013.11.006, 2014.
- 733 Church, M. J., Björkman, K., and Karl, D.: Regional distributions of nitrogen-fixing
- bacteria in the Pacific Ocean, Limnol. Oceanogr., 53, 63-77, 2008.
- 735 Church, M. J., Jenkins, B. D., Karl, D. M., and Zehr, J. P.: Vertical distributions of
- 736 nitrogen fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean,
- 737 Aquat. Microb. Ecol., 38, 3-14, 10.3354/ame038003 2005a.
- 738 Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M., and Zehr, J. P.: Temporal
- 739 patterns of nitrogenase gene (*nifH*) expression in the oligotrophic North Pacific
- 740 Ocean, Appl. Environ. Microbiol., 71, 5362-5370, 10.1128/AEM.71.9.5362-
- 741 5370.2005, 2005b.
- 742 Dekaezemacker, J., Bonnet, S., Grosso, O., Moutin, T., Bressac, M., and Capone, D. G.:

743 Evidence of active dinitrogen fixation in surface waters of the eastern tropical

- 744 South Pacific during El Niño and La Niña events and evaluation of its potential
- nutrient controls, Global Biogeochem. Cycles, 27, 768-779, 10.1002/gbc.20063,
- 746 2013.
- 747 Du, C., Liu, Z., Dai, M., Kao, S. J., Cao, Z., Zhang, Y., Huang, T., Wang, L., and Li, Y.:
- 748 Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern
- 749 South China Sea: Insights from an isopycnal mixing model, Biogeosciences, 10,

- 750 6419-6432, 10.5194/bg-10-6419-2013, 2013.
- 751 Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller,
- 752 J. M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N.,
- 753 Hansen, L., Jickells, T. D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine,
- 754 A., Tokos, J. J., Tsunogai, S., Wollast, R., and Zhou, M.: The atmospheric input of
- trace species to the world ocean, Global Biogeochem. Cycles, 5, 193-259,
- 756 10.1029/91gb01778, 1991.
- 757 Dutkiewicz, S., Ward, B. A., Scott, J., and Follows, M. J.: Understanding predicted shifts
- in diazotroph biogeography using resource competition theory, Biogeosciences, 11,
- 759 5445-5461, 10.5194/bg-11-5445-2014, 2014.
- 760 Farnelid, H., Turk-Kubo, K., Muñoz-Marín, M. C., and Zehr, J. P.: New insights into the
- 761 ecology of the globally significant uncultured nitrogen-fixing symbiont UCYN-A,
- 762 Aquat. Microb. Ecol., 77, 125-138, 10.3354/ame01794, 2016.
- 763 <u>Göran, E. and Cooper, S. D.: Scale effects and extrapolation in ecological experiments</u>,
- 764 Adv. Ecol. Res., 33, 161-213, 10.1016/S0065-2504(03)33011-9, 2003.
- 765 Grabowski, M. N. W., Church, M. J., and Karl, D. M.: Nitrogen fixation rates and
- 766 controls at Stn ALOHA, Aquat. Microb. Ecol., 52, 175-183, 10.3354/ame01209,
- 767 2008.
- 768 Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry under global
- 769 change, Philos T R Soc A, 369, 1980-1996, 10.1098/rsta.2011.0003, 2011.

770	Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle,	
771	Nature, 451, 293-296, 10.1038/nature06592, 2008.	
772	Guo, L., Xiu, P., Chai, F., Xue, H. J., Wang, D. X., and Sun, J.: Enhanced chlorophyll	
773	concentrations induced by Kuroshio intrusion fronts in the northern South China	
774	Sea, Geophys. Res. Lett., 44, 11565-11572, 10.1002/2017GL075336, 2017.	
775	Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A., and	
776	Ichimura, S.: Measurement of photosynthetic production of a marine phytoplankton	
777	population using a stable ¹³ C isotope., Mar. Biol., 73, 31-36, 10.1007/BF00396282 _a	
778	1983.	
779	Hashihama, F., Furuya, K., Kitajima, S., Takeda, S., Takemura, T., and Kanda, J.: Macro-	
780	scale exhaustion of surface phosphate by dinitrogen fixation in the western North	
781	Pacific, Geophys. Res. Lett., 36, L03610, 10.1029/2008gl036866, 2009.	
782	Huang, Y., Laws, E. A., Chen, B., and Huang, B.: Stimulation of heterotrophic and	
783	autotrophic metabolism in the mixing zone of the Kuroshio Current and northern	
784	South China Sea: Implications for export production, J Geophys Res-	Deleted: Journal of Geophysical Research:
785	Biogeosciences, 124, 2645-2661, 10.1029/2018jg004833, 2019.	
786	Hudson, R. J. M. and Morel, F. M. M.: Iron transport in marine-phytoplankton - kinetics	
787	of cellular and medium coordination reactions, Limnol. Oceanogr., 35, 1002-1020,	
788	10.4319/lo.1990.35.5.1002, 1990.	
789	Hutchins, D. A. and Fu, F.: Microorganisms and ocean global change, Nat. Microbiol., 2,	Deleted: Nature microbiology,
	37	

- 792 17058, 10.1038/nmicrobiol.2017.58, 2017.
- 793 Jacq, V., Ridame, C., L'Helguen, S., Kaczmar, F., and Saliot, A.: Response of the
- 794 unicellular diazotrophic cyanobacterium Crocosphaera watsonii to iron limitation,
- 795 PLoS One, 9, e86749, 10.1371/journal.pone.0086749, 2014.
- 796 Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao,
- 797 J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche,
- 798 J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres,
- 799 R.: Global iron connections between desert dust, ocean biogeochemistry, and
- 800 climate, Science, 308, 67-71, 10.1126/science.1105959, 2005.
- 801 Karlusich, J. J. P., Pelletier, E., Lombard, F., Carsique, M., Dvorak, E., Colin, S., Picheral,
- 802 M., Cornejo-Castillo, F. M., Acinas, S. G., Pepperkok, R., Karsenti, E., de Vargas,
- 803 C., Wincker, P., Bowler, C., Foster, R. A.: Global distribution patterns of marine
- 804 <u>nitrogen-fixers by imaging and molecular methods</u>, Nat. Commun., 12,
- 805 <u>10.1038/s41467-021-24299-y, 2021.</u>
- 806 Krupke, A., Mohr, W., LaRoche, J., Fuchs, B. M., Amann, R. I., and Kuypers, M. M.: The
- 807 effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte
- 808 symbiosis, Isme J, 9, 1635-1647, 10.1038/ismej.2014.253, 2015.
- 809 Kustka, A., Sañudo-Wilhelmy, S., Carpenter, E. J., Capone, D. G., and Raven, J. A.: A
- 810 revised estimate of the iron use efficiency of nitrogen fixation, with special
- 811 reference to the marine cyanobacterium *Trichodesmium* spp. (cyanophyta), J.

812 Phycol., 39, 12-25, 10.1046/j.1529-8817.2003.01156.x, 2003.

- 813 Kupper, H., Setlik, I., Seibert, S., Prasil, O., Setlikova, E., Strittmatter, M., Levitan, O.,
- 814 Lohscheider, J., Adamska, I., and Berman-Frank, I.: Iron limitation in the marine
- 815 cyanobacterium *Trichodesmium* reveals new insights into regulation of
- 816 photosynthesis and nitrogen fixation, New Phytol., 179, 784-798, 10.1111/j.1469-
- 817 8137.2008.02497.x, 2008.
- 818 Landolfi, A., Prowe, A. E. F., Pahlow, M., Somes, C. J., Chien, C. T., Schartau, M.,
- 819 Koeve, W., and Oschlies, A.: Can top-down controls expand the ecological niche of
- 820 marine N₂ fixers?, Front Microbiol, 12, 690200, 10.3389/fmicb.2021.690200, 2021.
- 821 Langlois, R. J., Hummer, D., and LaRoche, J.: Abundances and distributions of the
- 822 dominant *nifH* phylotypes in the Northern Atlantic Ocean, Appl. Environ.
- 823 Microbiol., 74, 1922-1931, 10.1128/AEM.01720-07, 2008.
- 824 Langlois, R. J., Mills, M. M., Ridame, C., Croot, P., and LaRoche, J.: Diazotrophic
- 825 bacteria respond to Saharan dust additions, Mar. Ecol. Prog. Ser., 470, 1-14,
- 826 10.3354/meps10109, 2012.
- 827 Le Borgne, R., Barber, R. T., Delcroix, T., Inoue, H. Y., Mackey, D. J., and Rodier, M.:
- 828 Pacific warm pool and divergence: Temporal and zonal variations on the equator
- and their effects on the biological pump, Deep Sea Research Part II, 49, 2471-2512,
- 830 10.1016/S0967-0645(02)00045-0, 2002.
- 831 Li, W., Sunda, W. G., Lin, W., Hong, H., and Shi, D.: The effect of cell size on cellular Zn

- 832 and Cd and Zn-Cd-CO₂ colimitation of growth rate in marine diatoms, Limnol.
- 833 Oceanogr., 65, 2896-2911, 10.1002/lno.11561, 2020.
- 834 Li, X., Wu, K., Gu, S., Jiang, P., Li, H., Liu, Z., and Dai, M.: Enhanced biodegradation of
- 835 dissolved organic carbon in the western boundary Kuroshio Current when intruded
- to the marginal South China Sea, J Geophys Res-Oceans, 126, e2021JC017585,
- 837 10.1029/2021jc017585, 2021.
- 838 Lu, Y., Wen, Z., Shi, D., Lin, W., Bonnet, S., Dai, M., and Kao, S. J.: Biogeography of N2
- 839 fixation influenced by the western boundary current intrusion in the South China
- 840 Sea, J Geophys Res-Oceans, 124, 6983-6996, 10.1029/2018jc014781, 2019.
- 841 Ma, J., Yuan, D. X., Liang, Y., and Dai, M. H.: A modified analytical method for the
- 842 <u>shipboard determination of nanomolar concentrations of orthophosphate in</u>
- 843 <u>seawater, J Oceanogr, 64, 443-449, 2008.</u>
- 844 Mohr, W., Großkopf, T., Wallace, D. W., and LaRoche, J.: Methodological
- 845 underestimation of oceanic nitrogen fixation rates, PLoS One, 5, e12583,
- 846 10.1371/journal.pone.0012583.g001, 2010.
- 847 Moisander, P. H., Beinart, R. A., Voss, M., and Zehr, J. P.: Diversity and abundance of
- 848 diazotrophic microorganisms in the South China Sea during intermonsoon, Isme J,
- 849 2, 954-967, 10.1038/ismej.2008.51, 2008.
- 850 Moisander, P. H., Zhang, R., Boyle, E. A., Hewson, I., Montoya, J. P., and Zehr, J. P.:
- 851 Analogous nutrient limitations in unicellular diazotrophs and *Prochlorococcus* in

- the South Pacific Ocean, Isme J, 6, 733-744, 10.1038/ismej.2011.152, 2012.
- 853 Montoya, J. P., Voss, M., Kähler, P., and Capone, D. G.: A simple, high-precision, high-
- sensitivity tracer assay for N₂ fixation, Appl. Environ. Microbiol., 62, 986-993,
- 855 10.1128/AEM.62.3.986-993.1996, 1996.
- 856 Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P., and Johnson, K. S.: Nitrogen
- 857 fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic
- 858 North Pacific Ocean, Limnol. Oceanogr., 54, 1317–1327,
- 859 10.4319/lo.2007.52.4.1317, 2007.
- 860 Rodriguez, F., Lillington, J., Johnson, S., Timmel, C. R., Lea, S. M., and Berks, B. C.:
- 861 <u>Crystal structure of the bacillus subtilis phosphodiesterase PhoD reveals an iron and</u>
- 862 <u>calcium-containing active site</u>, J. Biol. Chem., 289, 30889-30899,
- 863 <u>10.1074/jbc.M114.604892, 2014.</u>
- 864 Rubin, M., Berman-Frank, I., and Shaked, Y.: Dust- and mineral-iron utilization by the
- 865 marine dinitrogen-fixer Trichodesmium, Nat Geosci, 4, 529-534,
- 866 10.1038/ngeo1181, 2011.
- 867 Saito, M. A., Goepfert, T. J., and Ritt, J. T.: Some thoughts on the concept of colimitation:
- 868 Three definitions and the importance of bioavailability, Limnol. Oceanogr., 53, 276-
- 869 290, 10.4319/lo.2008.53.1.0276, 2008.
- 870 Saito, M. A., Bertrand, E. M., Dutkiewicz, S., Bulygin, V. V., Moran, D. M., Monteiro, F.
- 871 M., Follows, M. J., Valois, F. W., and Waterbury, J. B.: Iron conservation by

- 872 reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera
- 873 watsonii, Proc. Natl. Acad. Sci. U.S.A., 108, 2184-2189,
- 874 10.1073/pnas.1006943108, 2011.
- 875 Sañudo-Wilhelmy, S. A., Kustka, A. B., Gobler, C. J., Hutchins, D. A., Yang, M., Lwiza,
- 876 K., Burns, J. A., Capone, D. G., Ravenk, J. A., and Carpenter, E. J.: Phosphorus
- 877 limitation of nitrogen fixation by *Trichodesmiun* in the central Atlantic Ocean,
- 878 Nature, 411, 66-69, 10.1038/35075041, 2001.
- 879 Sargent, E. C., Hitchcock, A., Johansson, S. A., Langlois, R., Moore, C. M., LaRoche, J.,

880 Poulton, A. J., and Bibby, T. S.: Evidence for polyploidy in the globally important

881 diazotroph Trichodesmium, FEMS Microbiol. Lett., 363, 10.1093/femsle/fnw244,

882 <u>2016.</u>

- 883 Schlosser, C., Klar, J. K., Wake, B. D., Snow, J. T., Honey, D. J., Woodward, E. M. S.,
- 884 Lohan, M. C., Achterberg, E. P., and Moore, C. M.: Seasonal ITCZ migration
- 885 dynamically controls the location of the (sub)tropical Atlantic biogeochemical
- 886 divide, Proc. Natl. Acad. Sci. U.S.A., 111, 1438-1442, 10.1073/pnas.1318670111,

887 2014.

- 888 Shiozaki, T., Kodama, T., and Furuya, K.: Large-scale impact of the island mass effect
- through nitrogen fixation in the western South Pacific Ocean, Geophys. Res. Lett.,
- 890 41, 2907-2913, 10.1002/2014GL059835 2014a.
- 891 Shiozaki, T., Nagata, T., Ijichi, M., and Furuya, K.: Nitrogen fixation and the diazotroph

- 892 community in the temperate coastal region of the northwestern North Pacific,
- 893 Biogeosciences, 12, 4751-4764, 10.5194/bg-12-4751-2015, 2015a.
- 894 Shiozaki, T., Chen, Y. L. L., Lin, Y. H., Taniuchi, Y., Sheu, D. S., Furuya, K., and Chen,
- 895 H. Y.: Seasonal variations of unicellular diazotroph groups A and B, and
- 896 Trichodesmium in the northern South China Sea and neighboring upstream
- 897 Kuroshio Current, Cont. Shelf Res., 80, 20-31, 10.1016/j.csr.2014.02.015, 2014b.
- 898 Shiozaki, T., Furuya, K., Kodama, T., Kitajima, S., Takeda, S., Takemura, T., and Kanda,
- 899 J.: New estimation of N₂ fixation in the western and central Pacific Ocean and its
- 900 marginal seas, Global Biogeochem. Cycles, 24, GB1015, 10.1029/2009gb003620,
- 901 2010.
- 902 Shiozaki, T., Takeda, S., Itoh, S., Kodama, T., Liu, X., Hashihama, F., and Furuya, K.:
- 903 Why is *Trichodesmium* abundant in the Kuroshio?, Biogeosciences, 12, 6931-6943,
- 904 10.5194/bg-12-6931-2015, 2015b.
- 905 Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi, T.,
- 906 Ehama, M., Hamasaki, K., and Furuya, K.: Basin scale variability of active
- 907 diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the
- 908 subarctic Bering Sea, Global Biogeochem. Cycles, 31, 996-1009
- 909 10.1002/2017gb005681, 2017.
- 910 Snow, J. T., Schlosser, C., Woodward, E. M., Mills, M., Achterberg, E. P., Mahaffey, C.,
- 911 Bibby, T. S., and Moore, C. M.: Environmental controls on the biogeography of

912	diazotrophy and Trichodesmium in the Atlantic Ocean, Global Biogeochem. Cycles,
913	<u>29, 865-884, 10.1002/2015GB005090, 2015.</u>
914	Sohm, J. A., Webb, E. A., and Capone, D. G.: Emerging patterns of marine nitrogen
915	fixation, Nature reviews. Microbiology, 9, 499-508, 10.1038/nrmicro2594, 2011.
916	Sperfeld, E., Raubenheimer, D., and Wacker, A.: Bridging factorial and gradient concepts
917	of resource co-limitation: Towards a general framework applied to consumers, Ecol.
918	Lett., 19, 201-215, 10.1111/ele.12554, 2016.
919	Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R. A.: Distribution and
920	drivers of symbiotic and free-living diazotrophic cyanobacteria in the western
921	tropical South Pacific, Biogeosciences, 15, 1559-1578, 10.5194/bg-15-1559-2018,
922	2018.
923	Tanita, I., Shiozaki, T., Kodama, T., Hashihama, F., Sato, M., Takahashi, K., and Furuya,
924	K.: Regionally variable responses of nitrogen fixation to iron and phosphorus
925	enrichment in the Pacific Ocean, Journal of Geophysical Research: Biogeosciences,
926	126, e2021JG006542, 10.1029/2021jg006542, 2021.
927	Thompson, A. W., Carter, B. J., Turk-Kubo, K. A., Malfatti, F., Azam, F., and Zehr, J. P.:
928	Genetic diversity of the unicellular nitrogen-fixing cyanobacteria UCYN-A and its
929	prymnesiophyte host, Environ. Microbiol., 16, 3238-3249, 10.1111/1462-

- 930 2920.12490, 2014.
- 931 Turk-Kubo, K. A., Achilles, K. M., Serros, T. R., Ochiai, M., Montoya, J. P., and Zehr, J.

000	D 11'	(· (TT)	•	• • •	1 .	1		m · 1
932	P.: Nitrogenase	(nitH) gene	evnreccion	in diazotro	mhic cue	mohacteria	in the	I ronical
154	I INHUUZUHASU	VIIIIII ECHC	CADICSSION	III ulazoul		inobacienta	in une	riopical

- 933 North Atlantic in response to nutrient amendments, Front Microbiol, 3, 386,
- 934 10.3389/fmicb.2012.00386, 2012.
- 935 Wang, W. L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent estimates of
- 936 marine nitrogen fixation, Nature, 566, 205-211, 10.1038/s41586-019-0911-2, 2019.
- 937 Ward, B. A., Dutkiewicz, S., Moore, C. M., and Follows, M. J.: Iron, phosphorus, and
- 938 nitrogen supply ratios define the biogeography of nitrogen fixation, Limnol.
- 939 Oceanogr., 58, 2059-2075, 10.4319/lo.2013.58.6.2059, 2013.
- 940 Watkins-Brandt, K. S., Letelier, R. M., Spitz, Y. H., Church, M. J., Böttjer, D., and White,
- 941 A. E.: Addition of inorganic or organic phosphorus enhances nitrogen and carbon
- 942 fixation in the oligotrophic North Pacific, Mar. Ecol. Prog. Ser., 432, 17-29,
- 943 10.3354/meps09147, 2011.
- 944 Welschmeyer, N. A.: Fluorometric analysis of chlorophyll-a in the presence of
- 945 <u>chlorophyll-B and pheopigments, Limnol. Oceanogr., 39, 1985-1992, 1994.</u>
- 946 Wen, Z., Browning, T. J., Cai, Y., Dai, R., Zhang, R., Du, C., Jiang, R., Lin, W., Liu, X.,
- 947 Cao, Z., Hong, H., Dai, M., and Shi, D.: Nutrient regulation of biological nitrogen
- 948 fixation across the tropical western North Pacific, <u>Sci. Adv.</u>, 8, eabl7564,
- 949 10.1126/sciadv.abl7564, 2022.
- 950 White, A. E., Watkins-Brandt, K.S., and Church, M. J.: Temporal variability of
- 951 <u>Trichodesmium spp. and diatom-diazotroph assemblages in the North Pacific</u>

Deleted: Science Advances,

953 <u>Subtropical Gyre, Front. Mar. Sci., 5, 10.3389/fmars.2018.00027, 2018.</u>

- 954 Wu, C., Fu, F. X., Sun, J., Thangaraj, S., and Pujari, L.: Nitrogen fixation by
- 955 Trichodesmium and unicellular diazotrophs in the northern South China Sea and the
- 956 Kuroshio in summer, Sci Rep-Uk, 8, 2415, 10.1038/s41598-018-20743-0, 2018.
- 957 Wu, J., Chung, S. W., Wen, L. S., Liu, K. K., Chen, Y. L. L., Chen, H. Y., and Karl, D.
- 958 M.: Dissolved inorganic phosphorus, dissolved iron, and *Trichodesmium* in the
- 959 oligotrophic South China Sea, Global Biogeochem. Cycles, 17, 1008,
- 960 10.1029/2002gb001924, 2003.
- 961 Xu, M. N., Zhang, W., Zhu, Y., Liu, L., Zheng, Z., Wan, X. H. S., Qian, W., Dai, M., Gan,
- 962 J., Hutchins, D. A., and Kao, S. J.: Enhanced ammonia oxidation caused by lateral
- 963 Kuroshio intrusion in the boundary zone of the northern South China Sea, Geophys.
- 964 Res. Lett., 45, 6585-6593, 10.1029/2018gl077896, 2018.
- 965 Yong, S. C., Roversi, P., Lillington, J., Rodriguez, F., Krehenbrink, M., Zeldin, O. B.,
- 966 Garman, E. F., Lea, S. M., and Berks, B. C.: A complex iron-calcium cofactor
- 967 catalyzing phosphotransfer chemistry, Science, 345, 1170-1173,
- 968 <u>10.1126/science.1254237, 2014.</u>
- 969 Zehr, J. P. and Capone, D. G.: Changing perspectives in marine nitrogen fixation,
- 970 Science, 368, eaay9514, 10.1126/science.aay9514, 2020.
- 971 Zhang, J. Z.: Shipboard automated determination of trace concentrations of nitrite and
- 972 nitrate in oligotrophic water by gas-segmented continuous flow analysis with a

- 973 liquid waveguide capillary flow cell, Deep Sea Research Part I, 47, 1157-1171,
- 974 <u>10.1016/S0967-0637(99)00085-0, 2000.</u>
- 975 Zhang, R., Zhu, X., Yang, C., Ye, L., Zhang, G., Ren, J. L., Wu, Y., Liu, S. M., Zhang, J.,
- 976 and Zhou, M.: Distribution of dissolved iron in the Pearl River (Zhujiang) Estuary
- 977 and the northern continental slope of the South China Sea, Deep Sea Research Part
- 978 II, 167, 14-24, 10.1016/j.dsr2.2018.12.006, 2019.