
Reply to RC1 
General comments:  

This paper demonstrates the impact of using both finer-scale and categorically refined 
representations of land surface heterogeneity on modeled carbon stocks and fluxes. The authors 
present a case study over a region with four dominant land use types to demonstrate that 
modeling the ecosystem response of each land use type separately, and aggregating the results, 
does not always yield the same result as modeling the aggregate ecosystem response of the 
region. The authors document differences in simulated carbon stocks and fluxes, and derived 
parameters characterizing the ecosystem function, among the different approaches and 
resolutions tested.   

The hypotheses are interesting and well-explored by the experiments chosen, and the results are 
important. By documenting the sensitivity of the data assimilation framework to the spatial scale 
and categorization of the data inputs, this work highlights ecological assumptions embedded in 
standard usage of this and similar models that may undermine their ability to investigate 
questions of ecological function and future response. Raising this issue is a useful contribution.  

We thank the reviewer for their detailed review and positive assessment of value of our 
study. 

However, some of the framing and concluding statements in this paper assert improvements in 
ecological fidelity or simulated carbon fluxes due to stratification without validating this with any 
outside data. It would be great if possible to include some validation, such as comparison with 
outside data to validate derived parameters (e.g., residence times) or carbon/water flux data 
from flux towers. If this isn’t possible, I recommend adopting new language in your framing and 
conclusions to focus on the sensitivity you demonstrate and make less claim to ecological fidelity 
or improved representations of carbon fluxes. Section 4.3 is informative and some of the context 
outlined there could be brought out in the framing and goals at the outset. 

Validation is challenging at the scale of our model domain; even at the finest spatial 
resolutions employed here (~5km), there are significant scale differences compared to the 
scales of site-level observations, such as eddy covariance towers. 

The key scientific goals for these experiments were to explore the sensitivity of calibrated 
model parameters and the simulated C fluxes to spatial resolution, to assess directly the 
scale-dependence of the model-data fusion framework, and to assess the extent to which 
stratification resolved the emergent scale-dependence while maintaining the spatial 
resolution of the domain. 

If spatial resolution systematically biases the model, with weak-to-absent convergence at 
fine spatial resolutions, then there is an unconstrained, systematic error, and we argue 
that this indicates a reduction in the ecological fidelity. A qualitative view on whether 
ecological fidelity has been improved is to assess the retrieved turnover rates between the 
baseline and stratified cases. We know that forest systems turn over structural carbon at 
much lower rates than grassland and arable systems. This is reflected in the stratified 
analysis, but poorly represented in the baseline case. Therefore, we maintain our view that 
the stratification approach should lead to improved ecological fidelity compared to the 



baseline, as stratification greatly reduced the scale-dependence in our analysis. That is not 
to say that there has been no information loss in calibrating the models at a given scale. 
Other factors affecting the ecological fidelity of the model are model structure, and the 
quality of the input data. We do not test these aspects here, as this would complicate the 
interpretation of scale-dependence. 

While not addressed in the analysis presented here, stratification provides a potential 
starting point from which to improve the ecological fidelity of both the model structure 
(i.e. through the inclusion of ecosystem- and management-specific models that better 
represent ecological processes), model parameters (i.e. using appropriate trait-based 
constraints, such as leaf lifespan, LMA etc for specific ecosystems), and the observations 
(i.e. identifying systematic issues and biases, such as the apparently “deciduous conifers”, 
which reflect the seasonal LAI signal in the observations). 

We accept the reviewer’s suggestion that the lack of independent validation limits our 
ability to claim our models are accurately simulating the terrestrial ecosystem. 
Throughout the revised manuscript, we have therefore provided a more qualified 
discussion and conclusions, ensuring we emphasise that model fidelity also relies on 
additional aspects (i.e. model structure, observation accuracy). However, we do point to a 
wide range of existing literature using the CARDAMOM approach at both site level and at 
scale which have been validated using independent observations. 

 

Specific comments are below:  

Comment 1: Section 2.3-2.4: It would be helpful to see a paragraph at the end of the methods 
discussing the various spatial scales at play, and how these are integrated into the model pixel in 
each case. When working with a 0.05 degree (~5km) model resolution but imposing constraints 
on biomass at 100m, on a soil type at 250m, an LAI at 300m, and a timber harvest at 30m, how 
are these aggregated across the pixel?  

The stratified approach is as follows: 

- We aggregate the full classification scheme for the landcover map to match our 
simplified strata scheme. 

- For each data product, we regrid the aggregated landcover map to match the product 
domain, based on the modal class. 

- For each stratum, for each pixel in our model domain, we then extract all the pixels 
from the data product that correspond to the stratum in our aggregated (and 
regridded) land-cover map, and calculate either the mean (AGB, Soil C, LAI) or fraction 
(tree cover loss, burned area) from this subset. 

We rewrite these sections to make the methodology clearer: 

“In the baseline experiments, the observation streams were aggregated to the domain 
resolutions, and these “community-average” environmental signals were assimilated 
into a single ensemble. In the stratified experiments, the individual observation 
streams were stratified at their native resolutions based on the dominant category 



from the high-resolution land cover map, and then these strata-specific subsets of 
observations were aggregated to the resolution of the model domains before 
assimilation.” 

Comment 2: As a follow on from comment 1, the description of study area emphasizes gradients 
in temperature and precipitation over topographic features within the 3x3 grid (Lines 128-131), 
which justifies testing surface resolutions down to 0.05 degree, but then the model runs use 
0.5x0.5 forcing data in each case. How do the authors expect this to relate to the amount of 
scale-dependent variation seen across the model runs?  

The reviewer is correct to identify that the resolution of the meteorological forcing data is 
0.5x0.5 deg, so our analysis of scale variance does not account for the changing 
representation of meteorological conditions across the model domain at differing spatial 
resolutions. This simplification may underlie the lack of scale-sensitivity exhibited by our 
simulated biogenic fluxes. A previous study that assessed the impact of meteorological 
driver error on simulated NEE at a well-studied forest site (Spadavecchia et al., 2011) 
simulated errors in meteorology by interpolating between different combinations of met 
stations, and found that if the nearest met stations were located <25km away, the 
contribution to uncertainty on NEE was ~9%, if <100 km away the contribution was 11% 
and if >100km, then the contribution increased to 17%. In contrast, in their experiments 
Spadavecchia et al. (2011) found parameter uncertainty accounted for ~50% of the 
uncertainty in NEE. Therefore, while fine-scale meteorology will likely lead to fine-scale 
variations in biogenic C fluxes, we anticipate that the impacts are likely to be secondary to 
the differences between land cover types within a heterogeneous landscape. We will add 
this discussion to the revised manuscript: 

“While we expected the biogenic fluxes to be less sensitive than exogenous fluxes, the 
relative invariance in biogenic fluxes with respect to both resolution and method was 
surprising. Within the version of DALEC used, GPP is estimated for each pixel as a function 
of leaf area and meteorology drivers, modulated by the retrieved canopy photosynthetic 
efficiency parameter. Ra is estimated as a parameterised fixed fraction of GPP, while Rh is 
proportional to the C stocks in the litter and soil, and exponentially related to 
temperature. The resolution of the meteorological driving data was 0.5$\circ$ resolution, 
so did not resolve differences in the local meteorological conditions across the range of 
grid resolutions. Additionally, the time series of assimilated LAI did not exhibit strong 
variations between strata (Figure \ref{fig:lai}). Together these might explain the relative 
insensitivity of biogenic fluxes to resolution observed in our experiments. A previous 
attempt to estimate the impact of meteorological drivers failing to account for local 
conditions suggested a corresponding error on NEE estimates of $\sim$10\% within 100 
km of a met station, compared to an estimated parameter uncertainty of $\sim$50\% 
(Spadavecchia et al., 2011). Therefore, while fine-scale meteorology may drive fine-scale 
variability in biogenic C fluxes, we anticipate that the impacts are likely to be secondary to 
the differences between land cover types within a heterogeneous landscape. However, the 
influence of fine-scale meteorological variation is an aspect worthy of future research. Our 
model also ignored changes to litter pools associated with harvest; a more complex 
treatment incorporating coarse and fine residues might lead to greater sensitivity in 
R$_h$.” 



Comment 3: Section 3.1 The calibration metric, RMSE/sigma, could be further explained. It 
sounds as though smaller values are desirable here, but if this is a comparison to inherent 
observational uncertainty, I don’t immediately see why <1 is a good thing. Please make this a bit 
clearer.  

The calibration metric (RMSE/sigma) is intended to highlight the scale of the model-data 
mismatch relative to the uncertainty in the observations. Our reason for doing so is that 
the observations themselves often carry large uncertainties, and we feel this metric helps 
to capture that context when interpreting the quality of the model fit. In terms of whether 
values <1 are “good”, we would argue that values >1 would certainly be undesirable, as 
this would indicate situations where the model was not able to fit the observations to 
within their associated uncertainty. We note that where different data streams inform 
different interpretations of ecosystem functioning (i.e. are the data consistent with each 
other) there is potential for data streams to provide inconsistent and/or incompatible 
information (e.g. due to data biases, incorrect specification of uncertainty etc.). This could 
lead to larger RMSE / sigma ratios as CARDAMOM attempts to balance inconsistent 
information. Similarly, larger model-data mismatch could also indicate structural error in 
the ecological representations found in our models. Values <1 may indicate improved 
constraints based on the assimilation of the complementary data streams (i.e. constraint 
potentially increases the number and type of observations increase) and the ecological 
knowledge embedded in the model and EDCs. 

We add the following into the manuscript for clarification:  

“Values $>$1 would indicate situations where the model was not able to fit the 
observations to within their associated uncertainty. Different data streams may provide 
inconsistent and/or incompatible information, for example due to data biases or incorrect 
specification of uncertainty citep{zhao2020}. This could lead to larger RMSE/$\sigma$ 
ratios as CARDAMOM attempts to balance inconsistent information. Larger model-data 
mismatch could also indicate model structural error. Values $<$1 may indicate improved 
constraints based on the combination of assimilating complementary data streams and 
the ecological knowledge embedded in the model and EDCs.” 

Comment 4: Table 1, Table A2: Additionally, the values of the calibration metric do not proceed 
monotonically with the shift in resolution. It would be helpful if the authors could explain (or 
speculate) why this is, especially in the context of the stated goal of improving ecosystem 
representation by going to smaller scales. A response to this could connect to a response to 
comments 1 & 2— how does the scale of the input data impact how well things are lining up in 
the model (applying the right processes to the right initial conditions) at different resolutions? 

The calibration metrics in the table represent the average of the individual pixel level 
calibration metrics, weighted by the fraction of the pixel covered by the relevant stratum.  

For the assimilated LAI data, the RMSE increases at finer resolutions consistently at finer 
resolutions. This result is evident for all land cover strata. The LAI signal carries 
information relating to phenology, but also to other factors that influence the turnover of 
leaves, such as disturbances and management processes. The treatment of the canopy 
dynamics is relatively simple; the same model structure is applied for all strata, and we do 
not consider ecosystem-specific and/or management-specific variants that would be 



better adapted to simulating e.g. arable systems. Therefore the canopy dynamics encoded 
in the model have limited ability to fit related high temporal frequency variations in the 
canopy dynamics related to disturbance and management that may emerge at finer 
spatial resolutions. When aggregating over larger areas, complexities in the dynamics of 
canopy turnover are averaged out. Averaging over larger areas also reduces the noise in 
the LAI signal. We expect that these factors together underly the increase in RMSE for LAI 
at finer resolutions. For the assimilated C$_{Wood}$ stocks, there are only two data 
points. While there is a general trend towards higher RMSEs for the finer resolution 
domains, this is not consistent for all land cover classes (e.g. conifer woodland). The 
reason for this is not clear. We note that for each pixel, there are only two data points, 
spaced a year apart, compared to (potentially) monthly assimilated data for LAI. There are 
therefore fewer dynamic constraints on wood in the calibration. 

In terms of the scale differences between data sources, in the ideal circumstance, the 
input data would match the resolution of the land cover data on which we base the 
stratification, assuming that the signal-noise ratio is not adversely impacted. For example, 
the 300m resolution LAI data will not resolve edges as precisely as the 100m AGB data, 
which itself will not precisely resolve the edges present in the 25m resolution input data. 
This scale mismatch presents a potentially source of observation error that will be more 
significant in smaller landscape fragments. 

One apparent advantage for stratification is that we can sample the data at fine 
resolutions, but aggregate the sampled data over larger areas to increase the signal:noise 
ratio without averaging across functionally distinct ecosystems. In our experiments this did 
not lead to additional biases associated with running analysis on coarser grids, unlike the 
baseline case. In practise, the selection of resolution would need to trade off the beneficial 
effects of aggregation on enhancing signal:noise and computational expense, with 
retaining sufficient spatial resolution to address the research questions that are of 
interest. Alternative approaches to aggregating the strata into potentially irregular 
clusters of landscape “patches”, rather than our grid-based approach, could be one way to 
limit the effect of very small area coverage on the analysis, but this would have been 
challenging to add into our experimental setup while still providing comparison against 
the baseline experiments across grid resolutions. We note that this “patch” based 
approach has been used with CARDAMOM for field-scale analysis of pasture (e.g. 
Myrgiotis et al., 2022) and arable systems (e.g. Revill et al., 2021). 

We have added the following into the results section (3.1) where the calibration results 
are presented: 

“For both LAI and C$_{Wood}$, the RMSE tended to increase at finer spatial resolutions in 
both the baseline experiments and the aggregated stratified experiment (Table 
\ref{table:calibration}), although the resolution-dependent trend was not consistent 
between individual strata, Table \ref{table:strata_cal}).  An increase in RMSE at finer 
spatial resolutions can be rationalised by the smoothing effect of aggregating the remote 
sensing products over larger spatial scales. This not only removes the impact of high 
frequency random noise in the assimilated signal, but also removes variability generated 
by local processes (e.g. management) that are not accounted for in the relatively simple 
treatment of canopy dynamics encoded in the model.” 



Comment 5: Line 275 and Figure A2: Please explain why the coniferous woodland has a strong 
seasonal cycle of LAI which reaches zero in the winter. The black dots in Figure A2 top left panel 
suggest that this oscillation is present in the earth observation data, but Scotland is not known for 
its deciduous conifers. Does snow blanketing the tree canopies, masking out the greenness or 
making the canopies indistinguishable from the ground, cause this seasonality in the Copernicus 
LAI product, or is this considered ecologically realistic for your region? If it is unrealistic, does this 
matter to the resulting biomass trends— for instance, did the authors test a different 
(presumably more realistic) oscillation bottoming out at ~3?  

The reviewer raises the issue of the incongruity of strongly seasonal LAI over the conifer 
forests in our domain. Excessive seasonality has been shown to be a significant issue for 
satellite-based estimates of LAI in conifer forests (e.g. for boreal forests, Heiskanen et al., 
(2012) highlight the issue for MODIS). We do not specify the phenology of the target 
ecosystem, but allow it to emerge through the calibration, and thus the seasonal 
observational LAI gives rise to seasonal simulated LAI dynamics. 

We did consider the option of applying alternative strategies for assimilating LAI for 
conifer systems, but doing so would require treating one stratum differently and therefore 
potentially confound the scale-variance impacts that are the target of the paper. Of 
course, stratum-specific adaptions of the model-data fusion framework, including 
modifications relating to the assimilated data, relies on prior stratification based on the 
ecosystem, and therefore is a potential advantage to our stratified approach. We 
acknowledge the reviewer’s comment and will make it clear in the manuscript that 
systematic issues associated with the input data will propagate through the analysis. But 
that addressing data quality challenges in our inputs is beyond the scope of the stated 
objectives and hypotheses of this paper. 

Comment 6: Section 3.3: Regarding the differential response to disturbance flux, it would be 
helpful if the authors emphasize earlier on that this arises from a mismatch in applying the 
disturbance to the correct land cover type when using the aggregated pixels. I see the authors do 
come to this in lines 358-361 but would appreciate it earlier. Section 2.3.5 could be a good place 
to explain how the authors imposed the disturbance flux in each case, so it is ultra-clear why this 
difference in how the disturbance is allocated to each land use type arises between the two 
cases.  

We appreciate the suggestion and will ensure that this is clear in the updated manuscript 
during the methods description: 

“To convert area estimates of tree cover loss into changes in C stocks, we use a simple 
clearance model in which a fraction of the C stored in C$_{wood}$, C$_{foliage}$ and 
C$_{labile}$ is removed based on the pixel fraction (or stratum-specific subpixel fraction) 
identified within the GFW dataset as experiencing tree cover loss. In practise, most tree 
cover loss occurs in the conifer woodlands, and is therefore concentrated in these 
woodlands in the stratified analysis, compared to the baseline experiments, in which we 
do not consider the sub-pixel distribution of land cover.” 

Comment 7: Section 3.3: Line 319: “it is evident that stratification leads to preservation of 
ecological information across resolutions” and similar statements throughout; suggest to qualify 
these statements, e.g., “as encoded in the observations available to the model”. Getting back to 



the conifers acting like deciduous trees— it is important to tread carefully with caveats that the 
observations themselves come with many assumptions, and may not always represent ecological 
fidelity. The authors make this caveat in section 4.3 line 395-400, but it would be helpful to keep 
it at the forefront throughout. 

We thank the reviewer for this helpful suggestion, and will qualify statements regarding 
ecological fidelity to reflect that limitations to fidelity will be imposed by both issues with 
model structure (e.g. missing processes, such as harvest in arable landscapes) and 
observations (e.g. our “deciduous” conifer woodlands). For example, this section of the 
results now reads: 
 
“The stratified data assimilation scheme reveals emergent differences between 
ecosystems, while traits retrieved for the baseline experiments characterised intermediate 
values (Figures …). In the baseline experiments, comparing across domain resolutions, it is 
apparent that aggregation to coarser spatial resolutions reduces the range of retrieved 
traits. The reduction in the widths of the retrieved parameter distributions highlights the 
loss of information relating to variations of fundamental aspects of ecosystem function in 
the baseline experiments as the resolution of ecological gradients is lost. In contrast, it is 
evident that stratification leads to a reduction in the extent of ecological information loss 
when aggregating to coarser resolutions, as the widths of the aggregated parameter 
distributions maintained.” 

Additionally, in the conclusions, the specific reference to ecological fidelity has been 
modified from  

“(iii) by separately analysing distinct ecosystems within fragmented landscapes, the 
ecological fidelity of the calibrated model parameters is enhanced, enabling more robust 
ecological forecasting and raising the prospect of mapping spatial variations of ecosystem 
functional traits based on a diverse range of EO data.” 

to: 

“(iii) by separately analysing distinct ecosystems within fragmented landscapes, the loss of 
ecological information associated with aggregation to coarse resolutions is limited. Where 
the observations are accurate and model structure appropriate, this this should improve 
the ecological fidelity of the calibrated models, enable more robust ecological forecasting, 
and raises the prospect of mapping spatial variations of ecosystem functional traits based 
on a diverse range of EO data” 

Comment 8: Section 4.3 line 395-320: Great points. It would help satisfy reader curiosity if the 
authors could delve a bit into these deficiencies (Zhao et al., 2020; Heiskanen et al., 2012) as 
relevant to the datasets they are using, and discuss how the deficiencies might impact their 
results. This comment has substantial overlap with comment 5.  

Zhao et al. (2020) compared LAI estimates from a number of global satellite LAI products 
against temporal field observations across a suite of contrasting forest sites in China. They 
found that significant discrepancies between the two, and importantly found that the 
uncertainty estimates associated with the satellite-derived LAI products were not sufficient 
to capture the difference between the satellite estimate and field-based estimates. 



Perhaps most directly relevant to the case of overly-seasonal LAI is the study by Heiskanen 
et al. (2012), who compared the satellite-based LAI phenology from MODIS against field 
estimates and found that the satellite estimates the seasonality in the MODIS product was 
too great, with underestimation of LAI in the winter. We find the same situation for 
satellite LAI estimates across the conifer woodlands in our region. The reason underlying 
this issue remains uncertain. The impact of assimilating systematically erroneous data will 
be to train calibrated parameters that attempt to fit the systematic errors. For our 
coniferous woodlands, this means calibrating an effectively deciduous canopy, with 
impacts across the relevant parameters (leaf lifespan, LMA, etc.). Of course, if we know a 
priori that the land cover is coniferous woodland, we can modify the assimilation scheme, 
for example assimilating only the summer LAI and facilitating the inversion through priors 
on canopy traits, such as the expected leaf lifespan. In our current CARDAMOM 
framework, we do not make any attempt to correct for systematic data issues. Our reason 
for doing this is it would complicate the comparison of the stratified analysis against the 
baseline. However, this is very much an avenue we believe will be productive for future 
research. We will develop this aspect in the revised manuscript. 

“Excessive seasonality in satellite-derived estimates of LAI have been documented 
previously in coniferous forests. For example, Heiskanen et al. (2012) found that for a 
conifer forest in southern Finland, the seasonal course of satellite LAI estimates 
systematically underestimated LAI in the winter months, resulting in exaggerated 
seasonality compared to local site observations. Likewise, in our stratified experiments, it 
was notable that the satellite-derived LAI for coniferous woodlands stratum exhibited 
strong seasonality. As a consequence of the propagation of this systematic error in the 
assimilate observations, the calibrated leaf lifespans were indistinguishable from 
deciduous systems (Figure \ref{fig:residence_times_live}).” 

Comment 9: Line 406-415: This is a very strong point. It would be great to go further and see the 
authors chart out a bit what is needed to actually do these improvements in process 
representation— what is the to-do list? How will improvements be verified?   

We are currently adapting our framework to include versions of the specific arable and 
pasture models cited in this section. This will improve the process representation of 
management in these ecosystems. 

In terms of the “to-do” list, the arable and pasture version of DALEC have already been 
developed (Sus et al., 2010; Revill et al., 2021), and for pastures, a UK-wide analysis has 
recently been published (Myrgiotis et al., 2022). 

To validate the integrated framework, we aim to do a comparison against independent 
top-down (i.e. atmospheric inversion) estimates of the biogenic flux from atmospheric 
inversions, following the approach published by White et al. (2019). In this study, the 
atmospheric inversion of atmospheric CO2 observations from the UK surface tall-tower 
network indicated that the UK terrestrial biospheric C balance exhibits an increase in the 
net-flux of C to the atmosphere in the late summer/early autumn, and that this signal was 
not captured by the version of DALEC used (comparable to our baseline model). We expect 
that improving arable and pasture representation will help reconcile this major temporal 
discrepancy between top-down and bottom-up approaches. 



The revised paragraph is as follows: 

“Stratification provides flexibility to improve the process representation for specific 
ecosystems when applying model-data fusion in heterogeneous landscapes. In the context 
of the UK, top-down estimates of the terrestrial C balance suggest a pulse of emissions 
late in the summer, coincident with the main harvest season that is not observed in 
bottom-up CARDAMOM simulations based on a similarly simple DALEC model structure 
employed here (White et al., 2019). Stratification by itself does not resolve this 
discrepancy. In contrast, we find that the temporal patterns of simulated R$_{eco}$ were 
indistinguishable between the baseline and stratified experiments across all resolutions 
(Figure \ref{fig:time_series_medians}). However, stratification provides the basic 
framework within which to add ecosystem sub-models that explicitly model land-use in 
agricultural settings, for which there are already candidate variants of DALEC. For arable 
systems, DALEC-Crop simulates the C dynamics associated with the growth, development 
and harvest of crops (Sus et al., 2010); DALEC-Grass models the impact of grazing and 
mowing in managed pasture (Myrgiotis et al., 2022, 2020). A next step is to integrate 
these two sub-models into the stratified CARDAMOM framework. While both these 
DALEC-Crop and DALEC-Grass have been validated at the field scale (Revill et al., 2021; 
Myrgiotis et al., 2020), validation of the national-scale C balance is challenging. One 
approach would be to return to the atmospheric inversion estimates (White et al., 2019) 
and test the extent to which adding this additional process representation resolves the 
temporal discrepancies during the harvest period.” 

And a few minor technical comments below: 

Comment 10: Table 1 last CWood stratified row, shifted numbers    

Thank you for pointing this out. We will fix this in the next version. 

Comment 11: Figure 6: What does the color of dots (blue vs green) in the right panels mean? A 
legend would help 

We have updated the figures. 

Comment 12: Figure A2-A3: A legend would help here also.  

We have updated the figures 

Reply to RC2 
This paper demonstrates the importance of accounting for fine-scale structure in heterogeneous 
landscapes to ensure ecological fidelity in modeling carbon dynamics. The authors designed two 
different approaches with model-data fusion to constrain estimates of model parameters and 
their uncertainty, and compared the difference in simulated carbon dynamics by these 
approaches with varying spatial scales over a mixed land-use region of the UK. The paper is 
overall well-written, and the experiment is well-designed. However, I have serval concerns 
regarding the methods and conclusions. Please see my comments below. 

Thank you for your detailed review and positive comments regarding the manuscript. We 
address your comments below.  



Major concerns: 

The model-data fusion framework (CARDAMOM) assimilated remotely sensed LAI and 
aboveground biomass (line 158), but soil organic carbon (SOC) extracted from SoilGrid2 was 
“used to set a prior constraint on the initial SOC stock. Is SOC a constraint in CARDAMOM? To set 
the initial SOC stock, how did the initial SOC be set for the baseline and stratified cases and for 
each spatial scale? Did the authors separately set the initial SOC for each sub-pixel type and 
constrain the sum/average of sub-pixel types to the SOC value derived from SoilGrid2? Please 
provide more information about this. 

Soil organic C is one of the C pools represented in DALEC. CARDAMOM provides the option 
to give prior estimates, with an associated uncertainty, for the initial C stocks in each of 
the pools. If no constraint is given, a uniform prior is used.  

The specific method for generating the prior SOC stock for each stratum in the analysis 
followed the same method applied to extracting data from the other assimilated data 
streams. The difference is that because there is no date associated with the SoilGrids2 
dataset we use these estimates, with their uncertainty, to provide a prior constraint on the 
initial Soil C stocks. 

We will ensure that this is communicated more clearly in the revised manuscript: 

“As there is no date associated with the SoilGrids2 dataset we use these estimates, with 
their uncertainty, to provide a prior constraint on the initial SOC stocks. This contrasts with 
our treatment of the LAI and AGB data, which are associated with specific time periods 
and therefore used as observational constraints on the simulated time series. However, 
the aggregation of the original SoilGrids2 data layers for the baseline and stratified 
experiments follows the same procedure.” 

Is Cwood in the Results section the aboveground biomass or total woody carbon that includes 
both aboveground and belowground? Line 190, “Cwood pool is also a reservoir for non-woody 
structural tissues, for example in areas covered by crop and pasture.” Does DALEC also have a 
woody carbon pool for pasture? Did the authors also infer belowground woody carbon for crop 
and pasture based on the allometric relationship in Eq. 3? 

The version of DALEC employed for all strata is the same, with four live pools representing 
the labile, foliar, fine roots and wood pools. The belowground woody carbon is estimated 
using the same equation for all strata. We avoided using different approaches for specific 
stratum as this would have confounded the investigation of scale-dependence in the two 
approaches, which was the primary target of the experiments. We will make this 
reasoning clear in the revised manuscript.  

We note here that while not employed in these experiments, a stratified approach does 
provide the potential to improve the ecological fidelity of the model structure for specific 
land-use classes in the future, such as the use of ecosystem-specific models for arable and 
pasture systems, as discussed in Section 4.3. This is a target for our current work. To 
improve the clarity of the manuscript, we have amended this section, which now reads: 



“For simplicity of comparison across the experiments in this study against the baseline 
experiments (i.e. no stratification), we use only one model structure across all strata, and 
pre-process the assimilated data streams in the same way. For strata where woody tissues 
are not part of the dominant vegetation types, for example in areas covered by crop and 
pasture, the C$_{Wood}$ pool also provides a reservoir for non-woody structural tissue, 
with the differential allocation patterns and turnover rates reflected in the retrieved 
parameters. Importantly, different ecosystems could in the future be modelled with 
distinct, ecosystem-specific models that better capture their functional process dynamics. 
Relevant ecosystem-specific model variants have previously been integrated within the 
CARDAMOM framework, for example woodlands (Smallman et al., 2017), pasture 
(Myrgiotis et al., 2022) and arable agriculture (Revill et al., 2021). Given the 
computational limitations on the resolution of the model domain, stratification would be 
prerequisite to the inclusion of ecosystem-specific models within regional CARDAMOM 
applications.” 

In table 1, it seems that Cwood and LAI are underestimated (i.e., negative bias) in both baseline 
and stratified cases across spatial scales. What are the possible reasons for it? Maybe the 
parameters were not fully constrained? 

The uncertainties associated with Cwood are large. We ran an experiment whereby we 
artificially reduced the uncertainties by 10%. In this scenario, CARDAMOM retrieved 
unbiased estimates of Cwood. Thus we conclude that the negative bias between the 
median retrieved Cwood in the CARDAMOM ensemble, and the observation estimate 
arises largely because of the large uncertainties providing a weaker constraint on the 
calibration. Nevertheless, the median simulated C stocks are within the uncertainty 
bounds of the observations. 

Several arguments in the conclusion section sound a bit misleading to me, e.g., “failure to 
account for sub-pixel ecosystem heterogeneity within MDF inversions leads to bias in the flux 
estimates”, “stratification improves flux estimates”, and “ecological fidelity of the calibrated 
model parameters is enhanced”. The differences in RMSE and bias between baseline and 
stratified cases are not very significant, and sometimes the biases (absolute values) are even 
greater in stratified cases (e.g., -584 gCm-2 in baseline Cwood and -627 gCm-2 in stratified Cwood 
at 0.05deg scale). More validations of model estimates and constrained parameters should be 
included to draw such conclusions. Regarding “stratification improves flux estimates”, the 
authors might want to say that “stratification reduces flux uncertainties”. If yes, however, lines 
287-289 already demonstrate that the reduced uncertainty is a result of assuming independence 
between strata, and uncertainty with full correlation across strata is comparable to the baseline 
uncertainty. Please clarify these arguments. 

These arguments relate directly to the contrast between emergent scale-variance in the 
baseline experiments, which do not account for sub-pixel heterogeneity, and the apparent 
scale-invariance in the stratified experiments.  

From this we can conclude that in the baseline case, the C balance analysis was 
systematically biased, and that this bias increased at coarser resolutions, and did not 
converge at the finer grid resolutions, which are at the limit of what is currently feasible 
for large-scale MDF applications with full-parameter retrieval. This scale-dependency in 
the analysis output should not be conflated with CARDAMOM’s calibration to its 



observational constraints, which will emerge as a balance between observation 
uncertainty and between observation types. 

Our experiments also show that the emergent differences in ecological function embedded 
in the model parameters is lost through aggregation to coarser model domains, and that 
this information loss is exacerbated at coarse resolution, and in model pixels with more 
heterogeneous land use. The stratification approach largely resolved the scale-
dependence issue. 

 However, we note that ecological fidelity of estimated traits, stocks and fluxes is not 
solely determined by the degree of scale-variance, but also depends on the salient 
ecological processes being captured by the model structure, and on the quality of the 
assimilated data, and will ensure that this is emphasised in the revised manuscript: 

For example, in the conclusions, the specific reference to ecological fidelity has been 
modified from  

“(iii) by separately analysing distinct ecosystems within fragmented landscapes, the 
ecological fidelity of the calibrated model parameters is enhanced, enabling more robust 
ecological forecasting and raising the prospect of mapping spatial variations of ecosystem 
functional traits based on a diverse range of EO data.” 

to: 

“(iii) by separately analysing distinct ecosystems within fragmented landscapes, the loss of 
ecological information associated with aggregation to coarse resolutions is limited. Where 
the observations are accurate and model structure appropriate, this this should improve 
the ecological fidelity of the calibrated models, enable more robust ecological forecasting, 
and raises the prospect of mapping spatial variations of ecosystem functional traits based 
on a diverse range of EO data” 

We do not state that “stratification reduces flux uncertainties” beyond the extent to which 
the strata are considered independent, and explicitly state that the degree to which the 
simulated uncertainties are reduced is dependent on this assumption. However, we 
acknowledge that the statement in the conclusions that “stratification improves flux 
estimates” would be better-supported with independent validation, as suggested by the 
reviewer. As a result, we have changed the wording here to reflect the aspect that we feel 
is well demonstrated by our experiments, notably that after stratification, flux estimates 
were relatively insensitive to resolution: 

“stratification reduces the scale-dependence of flux estimates, facilitating scaling of 
CARDAMOM applications across larger spatial domains” 

This result facilitates scaling of CARDAMOM applications across larger spatial domains, 
and where the model structure and available observations provide a reasonable reflection 
of the ecosystems present, should therefore lead to improved flux estimates in 
heterogeneous landscapes. 



I was confused about the reason for invariance in biogenic fluxes with respect to both resolution 
and method. Does this indicate the biogenic processes in DALEC are (almost) linear ecological 
processes? The linearity in GPP estimation could be possible, but I am not sure if Reco should 
have a similar pattern. 

The insensitivity to resolution and method of the biogenic fluxes was an unexpected result. 
At first order, GPP is a function of leaf area and environmental factors. Autotrophic 
respiration is estimated based on a fixed fraction of GPP, and heterotrophic respiration 
estimated based on a first order turnover rate with an exponential temperature sensitivity. 
We note that mean LAI is preserved across the domain, and that the data underpinning 
the meteorological forcing is relatively coarse resolution (0.5deg). As a result there are no 
significant changes in temperature, VPD, radiation etc. across scales which would impact 
on both rates of photosynthesis and heterotrophic respiration, which combined with 
meteorological forcing that has limited spatial variation, would lead to biogenic fluxes 
(GPP, Ra and Rh) that are to scale, or stratification.   

Minor: 

Line 123, should be 30,000 km2? 

Thank you for spotting this. We will correct this in the revised manuscript. 

Line 293, how does DELAC simulate fire effects? Why fire was negligible? 

Fire was negligible because the MODIS burned area data indicated very little fire activity 
across the region. Across the entire domain and time period, only X ha of fire activity was 
detected. In the finest resolution domain, this fire activity was limited to affecting only 16 
pixels. Emissions from fire are estimated by assuming that a fraction of simulated biomass 
in each of the pools either undergoes combustion, or is transferred to the litter pool. The 
fraction of each pool affected is determined by calibrated parameters relating to 
combustion completeness and resilience. Given that fire plays such a limited role in this 
study area, we did not provide a more detailed description of the implementation of fire 
disturbance within the model, referring instead to an earlier publication (Exbrayat et al., 
2018), where the fire model is described in more detail. 

We have added the following clause to the sentence to clarify the limited impact of fire in 
the study area: 

“affecting only sixteen pixels across the finest resolution domain across the entire period 
of analysis” 

Reply to RC3 
Dear authors, 

     I feel like this study and methodology of cardamom represents a major advancement in model 
calibration. It is particularly exciting to see a framework that could run autonomously using earth 
observation data. The reproducible nature of this data fusion and calibration process, when 
coupled with the Bayesian methodology for error estimation (and propagation) could provide 
more iterable forecasts of carbon or other ecological processes. The question of how spatial 



heterogeneity plays out in cellular automaton models with single calibrations is crucial to future 
forecasting and I appreciate the focus on both natural and anthropogenic disturbances. Further, I 
appreciate the authors’ efforts to address the problem of Jenkin’s inequity and the role scale 
selection plays in informing the forecasting and responding. I think the authors' use of 
stratification by land cover represents a relatively straightforward, logical, and widely available 
method by which to create more representative models. 

    However, I feel that some of the conclusions may overreach their results (particularly without 
independent evaluation). While this methodology has the possibility to improve the estimation of 
fluxes (etc.), it is not validated to have done so against measurement. The paper presents a gap in 
understanding to what degree model performance was improved while making some strong 
claims of the level of ecological fidelity it is able to preserve. I feel this study is both novel and 
relevant. I would like to see the authors either change the language and address more of the 
existing limitations of this study or provide further validation to some of the authors' larger 
claims. I look forward to receiving your response and want to thank you for conducting great 
work.  

Thank you for your detailed review and overall positive assessment of our manuscript. We 
acknowledge that our flux estimates do not have independent validation, and thus do not 
demonstrate that the fluxes after stratification are improved. The primary aim of this 
paper is to understand the impact of resolution on the simulated C dynamics of 
heterogeneous landscapes. In this regard we show clearly that if heterogeneity is ignored, 
there is a systematic scale-dependent bias, which decreases at finer resolutions, although 
notably didn’t converge at our finest spatial resolution. This scale-variance was much less 
significant after we stratified the landscape into broad land cover classes. 

In terms of ecological fidelity of the model representation, we argue that scale-variance is 
problematic. If strong scale-variance is present, the fidelity of the model to ecological 
processes is degraded because a potentially significant component of the simulated 
dynamics is determined by the characteristics of the model domain rather than the 
ecosystem being studied. However, we acknowledge that scale-invariance is not the only 
contributing factor towards ecological fidelity, which also depends on the model structure 
adequately representing the important ecological processes, and on the data (and 
uncertainties) accurately describing the relevant components of the ecosystem and their 
evolution through time. In our model experiments, our focus was on this issue of scale-
variance, thus we used the same model structure irrespective of the land-use stratum. 
Clearly this means that the fidelity of the model could be improved (assuming there is 
sufficient data to support the increase in complexity) by (i) including ecosystem-specific 
models, e.g. to describe crop development and management in arable systems; (ii) adding 
stratum-specific parameter priors, e.g. leaf lifespan; and (iii) handling stratum-specific 
data issues, e.g. excessive seasonality of conifer woodlands. Including any of these 
additional factors in these experiments would, however, compromise the issue of scale-
dependence in the comparison between the stratified and unstratified models, which is 
the key comparison underpinning the motives for this work. Indeed, stratification is pre-
requisite to implementation of these additional refinements to model fidelity. Future work 
will refine the ecological fidelity of the models used, and will compare regionally 
aggregated fluxes against top-down atmospheric inversion estimates of the biospheric 
flux to test the extent to which attempts to improve ecological fidelity are able to resolve 
existing discrepancies between bottom-up and top-down approaches. 



We will endeavour to improve the discussion of limitations of the analysis in the revised 
manuscript.  

General comments 
 
    The problem of Jenkin's inequity in landscape or earth systems modeling is a valid and 
underrepresented viewpoint. However, the answer the authors' model provides can not solve 
this. Raising this in the introduction raises the idea that authors’ methods will be solving or 
improving on the current structure. Please address in the discussion whether  authors  feel 
results provide further proof for Jenkin's inequity or whether they work to address it. This paper 
does not clearly quantify the advantage of picking one scale (sub-degree +LUC ) in a scale variant 
system. Some may seem likely or self-evident but would need to be proven. For example, the 
effect of Jenkin's inequity might be quite similar from the cellular to sub-degree+LUC scale when 
compared to the explicit plant scale. The authors do however do a great job quantifying that 
there is an amount of scale variance in this model. Quantification and discussion of how this scale 
variance impacts forecast, when compared to observable phenomena, would provide a lot of 
support to this paper. 

We agree with the reviewer Jensen’s inequity is an important challenge for land surface 
modelling. It is a challenge for all modelling applications, for which the system must be 
aggregated to a practical resolution in both space and time. This challenge is particularly 
valid for large-scale data assimilation efforts, where the scale of the analysis dictates grid 
resolutions that may typically be orders of magnitude coarser than the grain of the 
ecological fabric. In this work, we wanted to explore the extent to which C-cycle 
diagnostics from the CARDAMOM model-data framework was scale-variant with respect 
to spatial resolution. We show that the strongest scale-dependence was in disturbance 
fluxes. To a large part, this is driven by the spatial correlations between simulated 
disturbance processes (tree cover loss) and landcover where C stocks are concentrated 
(woodlands). In contrast, biogenic fluxes are more evenly distributed across the landscape, 
and we observe less scale variance. We note that we do not resolve fine-scale 
meteorology in our finer resolution domains, and that doing so could potential provide 
another source of scale-dependence, although based on previous work on meteorological 
uncertainty in data assimilation for C-cycle applications (Spadavecchia et al., 2011), we 
expect this to be subordinate to the errors arising from the inaccurate parameter 
representations that arise from failing to discriminate functionally different ecosystems. 

We argue that our results show that when we aggregate data over coarse pixels prior to 
assimilation, as is common practise for data assimilation applications, the diagnostics of 
the C cycle are scale-dependent. Across the range of resolutions we tested, this scale 
dependence was largely resolved after a broad stratification of the landscape. As the 
reviewer correctly remarks, we do not fully “solve” Jensen’s inequity, but we can say from 
our experiments that the effects of Jensen’s inequity were reduced through stratification. 
There is information loss when aggregating individual strata, and if we were to extend our 
analysis to finer spatial resolutions (e.g. individual stands), we may observe some 
additional scale dependence in the simulated C dynamics. However, moving to such fine 
scales is impractical for large-scale applications, and where resolving such fine detail is 
deemed critical, an alternative sampling strategy may be better suited. A good example of 
such a situation is in the UK-wide assessment of the UK grassland C balance by Myrgiotis 
et al. (2022). In this study they sampled and assimilated individual fields within each 



coarse grid cell, specifically because for this application, part of the retrieval included 
identification of specific management events (cutting and grazing). Sampling presents its 
own challenges in scalable applications in other ecosystems, such as forests, where 
disturbance is highly localised, and may be missed by sampling approaches. Developing 
and comparing these approaches would be an interesting avenue for future work. 

We hope that are approach and conclusions are now clearer for the reviewer, and will 
present key elements from the above in the discussion. We have also modified the title to 
avoid giving the impression that Jensen’s inequity is “solved”. However we have left the 
discussion of Jensen’s inequity in the introduction because it provides the rationale for 
undertaking the scale experiments. 

In terms of the forecasts, we provided a limited analysis as we were conscious that we did 
not have validation of forecasts even for a short period. There is deviation between the 
most-likely estimates for the future C balance between the stratified and baseline 
approaches. The forecast uncertainties are very large, in part because the residence times 
in the C pool are also uncertain (see Smallman et al., (2021) for an illustration of this), and 
we are wary to over-interpret. However, the median estimates do show divergence of the 
individual strata, and this demonstrates the practical significance of stratification when 
forecasting with coarse-resolution models. These differences are maintained across the 
spatial resolutions, and we will present additional comparable figures for the other 
domains in the SI. There is little scale-dependence in the forecasts, but we did not try to 
extend the disturbance regimes beyond the end of the calibration period. As a result, the 
forecasts only show the impact of climate on the biogenic fluxes, which our earlier analysis 
suggested were not strongly sensitive to the range of resolutions explored in our analysis. 

    If I understand the authors’ methods correctly, for the baseline model the authors parametrize 
each pixel separately and in the stratified version the authors separately parameterize each pixel 
and each pixel's land cover. Is there no information shared across pixels or land cover?  Given 
that land covers would presumably share ecological properties, what is the advantage of not 
using a hierarchical Bayesian, with priors informed by the larger population of land covers or a 
bayesian mixed model approach? Please either clarify the decision to make this choice or discuss 
further the limitations of the separate pixel approach. 

We know that traits can vary as much within a given biome as between biomes. Pixel-
independent calibration allows functional traits (as expressed by the model parameters) to 
vary in space. While we do not suggest that our approach resolves Jenkin’s inequality, we 
do suggest that by targeting individual ecosystem types the parameter retrievals should 
more accurately reflect the ecosystems of interest. Moreover, by increasing the 
coordination between ecosystem type and observations, this results in the analysis 
partitioning uncertainty to the appropriate ecosystem (e.g. coniferous vs grasslands), thus 
allowing subsequent efforts to target the largest uncertainties. 

In the stratified case, we do not share information across pixels. In part we did not want to 
make any changes to the assimilation scheme beyond stratification to avoid complicating 
the interpretation of the comparison against the behaviour of the baseline experiment 
across spatial resolutions. Instead, we focus on utilising datasets available at high 
resolution and thus sit within our framework. 



Of course, stratification open up possibilities to improve the ecological information that 
we apply to the model, either through improved model structures that better represent 
specific ecosystems (e.g. crop development), or refining the parameter priors (e.g. leaf 
lifespan) to represent the ranges found in specific ecosystems. 

The suggestion to explore hierarchical Bayesian is a very interesting one. One particularly 
powerful advantage to a hierarchical approach is that it could open up possibilities to 
assimilate coarser resolution satellite-derived products that describe important 
components of the terrestrial C cycle (e.g. GPP) or top-down atmospheric inversions (e.g. 
NBE), which are currently too coarse to relate to individual ecosystems within 
heterogeneous landscapes. Implementing a hierarchical system is beyond the scope of this 
work but would be a valuable avenue to develop in future research to maximise the value 
of the potential observation constraints that current and future satellite missions are likely 
to provide at a range of spatial resolutions. 

     Given that none of your parameters seem to directly map onto disturbance, is your model 
capturing the heterogeneity on the landscape, or overfitting a model?  Perhaps some of my 
concern comes from a lack of understanding of how harvest or fire operates in this model (see 
below). Harvest would be inversely correlated with the likelihood of future harvest at certain 
temporal scales and correlated at others. At the scale of a few decades recovering stands would 
likely (though not exclusively) experience an increase in GPP as forests regrow. Given the 
stationarity of your parameterization, how does your parameterization constrain such instances? 

Ecosystem disturbance (whether biomass removal or fire) is imposed on the model based 
on observational information, rather than a data point for DALEC to be calibrated on. As a 
result, we do not have to contend with challenges around likelihood of subsequent 
disturbances.  

We recognise that our retrieved parameters are time invariant. Consequently, these 
parameters may not correctly represent time-varying ecosystem properties, such as 
shifting allocation of photosynthate during post-disturbance recovery. This is an ongoing 
challenge with the majority of process-orientated models used in major model 
intercomparisons due to the uncertainty in how ecosystem parameters evolve. Thus, 
including this aspect is out of scope of the current analysis. However, CARDAMOM and 
DALEC have previously demonstrated a capacity to be calibrated to and evaluated with 
independent site level observations for aggrading forests across multiple decades 
(Smallman et al., 2017). 

Hypothesis three- could be improved. To test that any two methods of model parameterization 
will have contrasting parameters is almost by definition true. Further, they will always have 
divergent projections on some level. Please provide better constraints to make this hypothesis 
falsifiable or use a more stringent definition of the contrasting and divergening of parameters. 

The key component of H3 is the following clause that aggregation will degrade the 
ecological information embedded in the retrieved parameters. This is important because 
current comparable methods to data assimilation frequently rely on “pixel-aggregate” 
parameterisations. The contrasting parameter sets and divergent evolutions follow 
directly from the different calibrations as the reviewer highlights, and we appreciate that 
these components would be better communicated as the consequences of the 



degradation of ecological information, rather than the starting point for our hypothesis. 
We will rephrase the hypothesis statement to make this clearer. 

It now reads: 

“without accounting for fine-scale variations in land cover, the ecological information 
embedded within the retrieved parameters will be degraded when assimilating data 
streams at coarser resolutions, resulting in divergent carbon dynamics in simulations of 
future trajectories.” 

Specific comments 
 
 
 
Line 155: Please provide either here, in the results, or in the appendix the results of the MCMC 
process. Or how your criteria for model convergence. Accepted sample rates, plots of 
autocorrelation, and hyperparameters provided are all necessary to determine if confidence 
intervals are reasonable.   

We have clarified the MCMC process in the methods, adding the following sentences: 
“We use the Gelman-Rubin’s convergence criterion to determine whether multiple chains 
at each pixel have converged. The Adaptive-proposal MCMC (Haario et al., 2001) does not 
stipulate or target an acceptance rate; the emergent acceptance rate typically varies 
between 5 and 25 %. The covariance matrix used in adapting the parameter sampling is 
generated from an initial phase of the MCMC. No hyperparameters are estimated as part 
of the process. “ 

However, given that our analysis includes several thousand individual pixels, generating 
per pixel figures would be impractical and digress from the main focus of the paper. 

Line 167: Given the importance of EDCs in determining this you should list them plainly, and 
discuss the constraint they do or do not provide with regard to the function you are trying to 
achieve. 
 
See: Buotte, P. C., Koven, C. D., Xu, C., Shuman, J. K., Goulden, M. L., Levis, S., ... & Kueppers, L. M. 
(2021). Capturing functional strategies and compositional dynamics in vegetation demographic 
models. Biogeosciences, 18(14), 4473-4490. 

We will provide a more detailed discussion of the EDCs in a revised manuscript. However, 
a complete list and description of EDCs is available in cited literature (Bloom et al., 2016). 
Our updated methods now includes: 

“EDCs comprise a series of mathematical rules and functions that impose conditions on 
the inter-relationships between model parameters to ensure ecological “realism” in the 
accepted parameter sets, based on ecological theory (Bloom and Williams, 2015). For 
example, turnover of the wood carbon pool must be slower than foliage turnover. Where 
EDCs are not satisfied, the likelihood is set to zero. By restricting the acceptable parameter 
space, the EDCs therefore reduce the effective model complexity (Famiglietti et al., 2021), 
and tend to reduce bias and equifinality in the calibrated ensembles (Bloom and Williams, 



2015). The resulting ensemble of parameter sets encapsulate the uncertainty in the 
calibration within the available observational constraints.” 

Line 256 (Disturbance): My apologies if I misunderstand this in other comments. Can the authors 
please provide greater detail on how disturbance is implemented in the model? This paragraph 
deals primarily with how it is constrained. There are no direct parameters listed in table A1. If I 
interpret this correctly, did the authors remove a percentage of tree cover or carbon % to match 
these data sets? Again, given that this is one of the key differences in the stratified model, a 
better understanding of the disturbances function in the model is important. 

We will improve the methodological description so that this is clearer for the reader:  

To convert area estimates of tree cover loss into changes in C stocks, we use a simple 
clearance model in which a fraction of the C stored in C$_{wood}$, C$_{foliage}$ and 
C$_{labile}$ is removed based on the pixel fraction (or stratum-specific subpixel fraction) 
identified within the GFW dataset as experiencing tree cover loss. In practise, most tree 
cover loss occurs in the conifer woodlands, and is therefore concentrated in these 
woodlands in the stratified analysis, compared to the baseline experiments, in which we 
do not consider the sub-pixel distribution of land cover. 

For the specifics of the disturbance method, please refer to the earlier General Comment 
on disturbance. 

Line 320: Shredding of information implies a specificity not realized here. Information loss is 
inherent in all models. Without estimating the level of information that is lost, shredding seems 
overly evocative.   

We have softened the language according to the reviewer’s suggestion, for example, this 
particular sentence now reads: 
“In the baseline experiments, comparing across domain resolutions, it is apparent that 
aggregation to coarser spatial resolutions reduces the range of retrieved traits. The 
reduction in the widths of the retrieved parameter distributions highlights the loss of 
information relating to variations of fundamental aspects of ecosystem function in the 
baseline experiments, as the resolution of ecological gradients is lost. In contrast, it is 
evident that stratification leads to a reduction in the ecological information loss when 
aggregating to coarser resolutions, as the widths of the aggregated parameter 
distributions is maintained.” 

Line 361: While more consistent, what evidence do we have that the prediction is significantly or 
functionally different from the baseline model? The confidence intervals seem to overlap 
significantly. 

The calibration is made using identical model structure and the same assimilated data, 
gridded to different domain resolutions. We argue that the differences across spatial 
resolutions should be regarded as systematic, and therefore the systematic offset of 
ensemble medians is the key characteristic to be considered. 

Line 376: I feel this sentence speaks to my larger concerns. There is no way to say that 
disaggregation ensures the ecological fidelity of a system. Ecology is also scale-dependent. 



Further, without validation by observation, there is no way to know that the version outperforms 
the previous version, given that Jenkins inequity would be a property of this scale as well. 

We have made it clearer throughout the manuscript that the ecological fidelity of the 
model ensemble is not just related to how data are aggregated, but also to the quality of 
the data, and the degree to which the model structure captures the key ecological 
processes. Without direct validation, the reviewer is correct that we cannot test the extent 
to which the changes to the framework lead to improvements in flux estimates. However 
we can use the relationships between the experiments (i.e. across resolutions, and 
between stratified and baseline) and make inferences about whether the scale at which 
data are aggregated systematically impacts on the parameter retrievals and flux 
estimates. Given that aside from stratification, the model structure and assimilated data 
sources and pre-processing are the same, these systematic shifts for the baseline 
experiments reveal the presence of scale-dependent biases, and the contraction of the 
parameter ranges indicates significant loss of ecological information encoded into the 
observations. There is undoubtedly information loss too when using stratification in 
coarser domains, but critically, this information loss does not prevent the retrieval of 
parameter ensembles that reflect the functional differences between, for example, conifer 
woodlands and arable land. We have rewritten the paragraph to make these points more 
clearly, and qualify the extent to which we can draw conclusions around ecological fidelity. 

“We found that by stratifying the landscape prior to MDF, the variability in ecosystem 
function exhibited between ecosystems, manifest in their retrieved parameters, was 
retained across the range of spatial resolutions considered (Figure 
\ref{fig:retrieved_traits}). Conversely this ecological information is degraded if data are 
aggregated without considering \textit{a priori} the underlying distribution of land-use 
and land-cover, demonstrated by the contraction of the distribution of median parameters 
across the model domains in the baseline experiments compared to the stratified 
experiments. Critically, this misrepresentation of ecosystem function was exacerbated at 
the coarser grid resolutions commonly employed in large scale MDF applications, 
demonstrated by the contraction of the distribution of median parameters across the 
model domains. The degradation of ecological information is exemplified by our attempts 
to constrain mean residence times in the long-lived wood and soil pools, which are critical 
for understanding the potential carbon sink of terrestrial ecosystems (Luo et al., 2015; 
Smallman et al., 2021): in the baseline experiment, where data were the relationship 
between stocks and land-use was ignored, the longer residence times specific to woodland 
ecosystems (MRT$_{Wood}$; Figure \ref{fig:retrieved_traits}) and heathland areas 
supporting C-rich peat deposits (MRT$_{Soil}$; Figure \ref{fig:residence_times_dom}) 
were not well-represented by the posterior parameter estimates, particularly in the 
coarser model domains. In this sense, stratification led to the retention of greater 
ecological fidelity in the model ensemble when aggregating to coarser spatial resolution 
domains. The overall ecological fidelity of the model representation will also be limited by 
the process representation embedded in the model structure, and in the fidelity of the 
observation data to the relevant characteristics of the actual ecosystem. Prior research 
has demonstrated that CARDAMOM can retrieve trait differences across biomes (Bloom et 
al., 2016; Smallman et al., 2021). We demonstrate that CARDAMOM can also retrieve 
ecosystem-specific traits in mosaic landscapes when the assimilated data is stratified 
based on prior knowledge of land-use, as far as the observations available for assimilation 
faithfully convey the ecosystem characteristics. Given the relative importance of 



parameter uncertainty on future trajectories of the terrestrial C cycle (Smallman et al., 
2021), stratification also presents significant opportunities to take advantage of the 
Bayesian framework embedded within CARDAMOM by taking advantage of the prior 
information on land-cover and land-use, for example using global trait databases (e.g. 
Kattge et al., 2020), to inform parameter prior estimates.” 

Line 385: Different modeling frameworks providing different (though I would not say divergent) 
outcomes are highly likely. I feel your argument would be improved if you would better quantify 
or qualify the significance (either statistical or practical) of this level of difference. 

The practical significance relates to the fact that by stratifying, we not only get different 
parameters, but that the parameters reflect distinct ecosystems. For many stakeholders, 
the “community-average” dynamics of a pixel are not particularly informative, and there is 
much greater potential utility for models that can be related to specific ecosystem types. 

Line 410: Given static and statistical parameterization, it would be nice to understand the climate 
change implications of the stratification approach. 

The projections represent the evolution of our calibrated model to future climate and 
CO2. Model parameters do not vary over time, thus we do not account for shifts in species 
composition that may occur and drive functional shifts in the terrestrial C cycle. Likewise 
we make no attempt to simulate adaptive management strategies. In terms of the 
implications for climate change forecasting generally, the static representation of model 
parameters is likely to become increasingly limited further into the projections, as one 
might expect that adaptation to the shifting climate become increasingly significant. 
Furthermore, the lack of process representation for managed landscapes (harvest, 
grazing) limit the extent to which climate-change impacts should be interpreted based on 
this analysis. Instead the projections as shown are intended to highlight the different 
trajectories for the model parameters calibrated with different strata, and therefore the 
utility of stratification for making the calibrated models informative for a range of 
stakeholders who might be interested in individual ecosystem types, rather than the 
aggregated impact of climate change on the range of ecosystems present. 

We have added: 

“The static parameterisation also presents a limitation when forecasting ecosystem responses 
to climate change, as we do not account for either adaptive management strategies, or 
shifts in species composition that may drive functional shifts in the terrestrial C cycle. 
Consequently, forecasts become increasingly uncertain as the environmental conditions 
deviate from the calibration period. Moreover, capturing these complex functional 
responses to future climate within ecosystem models remains a major challenge (Fisher 
and Koven, 2020).” 

Line 436: The more you stratify a single cell, the greater proportion of it would be captured by 
this edge or gradient space. If the gradient space has unique ecosystem properties, is there a 
point where further stratification would further miscalibrate the model? 



If helpful, see: Cushman, S. A., Gutzweiler, K., Evans, J. S., & McGarigal, K. (2010). The gradient 
paradigm: a conceptual and analytical framework for landscape ecology. In Spatial complexity, 
informatics, and wildlife conservation (pp. 83-108). Springer, Tokyo. 

This is an interesting question, and an interesting paper – thank you for highlighting it. 
When applying CARDAMOM to a gridded domain, we calibrate all the parameters of the 
model independently at each pixel. One of the key motivations for this approach is that it 
enables the retrieved parameters to vary across environmental gradients. However, our 
ability to resolve these gradients is limited by the resolution of our model domain given 
the computational expense for calibration. In our stratification approach we therefore 
resort to discrete categorisation of the landscape within each pixel. For each stratum, 
each pixel is still calibrated independently to the others, so that, for example the 
parameterisation for conifer woodlands can exhibit gradient responses across the model 
domain as indicated by the observations. 

Specifically relating to edges. We might expect that there are functional shifts close to 
ecosystem boundaries. This could be tested in future work by including a stratified class to 
represent edges, although beyond the scope of this paper. However, within this analysis 
pixels with more fragmentation will provide parameter representations reflecting the 
impacts of this fragmentation on the C-cycle, within the limitations of the data and model 
structure.  

It is not clear exactly what the reviewer is suggesting through the phrase “whether further 
stratification would further miscalibrate the model”. This ecological edge space is present 
irrespective of the degree of stratification. To defend further stratification, one would 
need adequate data on which to base the stratification, and of course, as the stratification 
becomes finer, issues relating to noise in the assimilated data will become increasingly 
prevalent. 

Line 459: Again, accounting for subcellular processes at the scale you provide by stratification 
likely also has a high amount of ecological information loss. 

We do not contest that our stratification approach results in significant levels of ecological 
information loss when aggregating to coarse resolutions. Ecological information loss is 
inevitable in the approximations required to produce models. What our experiments show 
is that the model parameters obtained across spatial resolutions are generally consistent 
for individual strata across resolutions. This is particularly clear when considering mean 
residence times for the woody/structural C pool (Cwood). In the stratified cases, we see 
higher residence times for Cwood in the woodland classes than the non-woodland classes, 
and that these distinctions are preserved across spatial resolutions (Figure 8). In contrast, 
the baseline case exhibits a contraction in the range residence times to an intermediate 
value, consistent with the distinct ecosystem characteristics being blended, and resultant 
parameter values that no longer reflect the actual distinct ecosystems present. To 
highlight this further, we have added rows to Figures 8, A6, A7 and A8, which show the 
combined parameter traits expressed across spatial resolutions when aggregating the 
strata separately. This highlights the difference in information loss between the two 
approaches. 



Throughout the manuscript we have made changes to our language to communicate 
more precisely and make it clear that while some information loss is inevitable when 
aggregating to coarse resolutions, the degree of information loss is much lower when 
using stratification. In Section 3.3., we have the following: 

“The stratified data assimilation scheme reveals emergent differences between 
ecosystems, while traits retrieved for the baseline experiments characterised intermediate 
values (Figures …). In the baseline experiments, comparing across domain resolutions, it is 
apparent that aggregation to coarser spatial resolutions reduces the range of retrieved 
traits. The reduction in the widths of the retrieved parameter distributions highlights the 
loss of information relating to variations of fundamental aspects of ecosystem function in 
the baseline experiments as the resolution of ecological gradients is lost. In contrast, it is 
evident that stratification leads to a reduction in the extent of ecological information loss 
when aggregating to coarser resolutions, as the widths of the aggregated parameter 
distributions maintained.” 

Additionally, in the conclusions, the specific reference to ecological fidelity has been 
modified from : 

“(iii) by separately analysing distinct ecosystems within fragmented landscapes, the 
ecological fidelity of the calibrated model parameters is enhanced, enabling more robust 
ecological forecasting and raising the prospect of mapping spatial variations of ecosystem 
functional traits based on a diverse range of EO data.” 

to: 

“(iii) by separately analysing distinct ecosystems within fragmented landscapes, the loss of 
ecological information associated with aggregation to coarse resolutions is limited. Where 
the observations are accurate and model structure appropriate, this this should improve 
the ecological fidelity of the calibrated models, enable more robust ecological forecasting, 
and raises the prospect of mapping spatial variations of ecosystem functional traits based 
on a diverse range of EO data” 

 

Line 467: While conceptually likely that this provides improved flux estimates, I don’t think you 
have provided enough validation to show this is true. Reduced parameter uncertainty does not 
dictate estimation capability. Also, if I understand section 3.1 correctly then the parameter 
uncertainty is roughly similar, though the means may converge indicating some level of reduced 
scale variance. That this method reduces scale variance, does not directly imply improved 
estimation. 

We acknowledge that the statement in the conclusions that “stratification improves flux 
estimates” would be better-supported with independent validation, as suggested by the 
reviewer. As a result, we have changed the wording here to reflect the aspect that we feel 
is well demonstrated by our experiments, notably that after stratification, flux estimates 
were relatively insensitive to resolution: 

“stratification reduces the scale-dependence of flux estimates” 



 This facilitates scaling of CARDAMOM applications across larger spatial domains, and 
where the model structure and available observations provide a reasonable reflection of 
the ecosystems present, should therefore lead to improved flux estimates in 
heterogeneous landscapes. 

Figure 9: I feel that this figure is crucial to your larger argument of scale-dependent outcomes 
impacting future projections. I feel several aspects of this figure should be revised. Do these 
model runs represent the median trait estimation or a single draw of the cardamom traits? 
Please explain in the text. Further, why is the error not propagated here, given the Bayesian 
approach? This seems crucial to the case that these methods result in fundamentally different 
models. It is hard for me to understand the implementation (or lack thereof) of disturbance in 
these forecasts, given that none of the parameters presented would represent that explicitly. See 
the above comment, some of this may be a misunderstanding of how disturbance works within 
the model. If the disturbance is only applied top-down, do these projections represent what you 
captured (that disturbance is highly scale-relevant)? 

The purpose of Figure 9 is to highlight the different trajectories that might be simulated 
for the individual strata. This has a practical significance when considering the utility of 
the derived models, since in many circumstances stakeholders may be interested in 
specific components of the landscape.  
 
We will clarify the figure description in the revised manuscript. Currently plotted are the 
median estimates from the projected ensemble. 
 
The propagated errors are not shown because overlapping uncertainties for six time series 
are difficult to display in a single plot. We will include supplementary plots to convey this 
information as clearly as possible. Also in the text we now refer directly to projection 
uncertainties being large: 
“… although the projection uncertainties are large (Figure \ref{fig:forecast_summary}), 
reflecting the significant role of parameter uncertainty in forecasts 
\citep{smallman2021}.” 

 
Regarding disturbance, in our model this is imposed top-down based on observations of 
tree cover loss. We do not attempt to parameterise the underlying mechanisms of 
disturbance. For the forecasts we simply did not apply any future disturbance. After 
aggregating the strata, the combined projections for the stratified approach are quite 
similar to the baseline approach, bearing in mind the expansion of uncertainty further into 
the forecast. This is consistent with the result that our simulated biogenic fluxes within the 
calibration period were not very sensitive to resolution and did not differ greatly between 
the two approaches. As the projections are driven by biogenic fluxes in the absence of 
further disturbance, they are not being subject to the aspect of the C-cycle that were most 
strongly scale-dependent in our analysis. 
 
We have added the following into the text: 
“The forecast simulations do not include any impacts of future disturbance, so the 
evolution of dC$_{bio}$ post-2020 was driven only by biogenic processes, which were not 
strongly scale-dependent in our experiments.” 
 
And: 



“The future trajectories were comparable across the range of spatial resolutions (Figures 
…)” 
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