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Abstract. Future global changes will impact carbon (C) fluxes and pools in most terrestrial ecosystems and the feedback of 

terrestrial carbon cycling to atmospheric CO2. Determining the vulnerability of ecosystems to future changes in C is thus 

vital for targeted land management and policy. The C capacity of an ecosystem (𝑋𝐶) is a function of its C inputs (e.g., net 

primary productivity – NPP) and how long C remains in the system before being respired back to the atmosphere (ecosystem 

C residence time – 𝜏𝐸). The proportion of 𝑋𝐶 C capacity currently stored by an ecosystem (i.e., its C saturation – CSAT) 20 

provides information about the potential for long-term C pools to be altered by environmental and land management 

regimes. We estimated 𝑋𝐶 , C capacity, C saturation,CSAT, NPP, and ecosystem C residence time 𝜏𝐸 in six US grasslands 

spanning temperature and precipitation gradients by integrating high temporal resolution C pool and flux data with a process-

based C model. As expected, NPP across grasslands was strongly correlated with mean annual precipitation (MAP), while 

yet C residence time𝜏𝐸  was primarily a functionnot related to MAP or of mean annual temperature (MAT). We link soil 25 

temperature, soil moisture, and inherent C turnover rates (potentially due to differences in microbial function and tissue 

quality) as determinants of 𝜏𝐸. Overall, we found that intermediates between extremes in moisture and temperature had low 

CSATC saturation, indicating that ecosystem C in these systems grasslands may trend upwards and may be buffered against 

global change impacts on 𝑋𝐶. Hot and dry grasslands had greatest CSAT C saturation due to both small C inputs through NPP 

and high C turnover rates during periods of favorable soil moisture conditions favorable for microbial activity. Additionally, 30 

leaching of soil C during monsoon events may lead to C loss. CSAT C saturation also was also high in tallgrass prairie due to 

frequent fire that reduced inputs of aboveground plant material. Accordingly, we suggest that both hot, dry ecosystems and 

those frequently disturbed should be subject to careful land management and policy decisions to prevent losses of C stored in 

these systems. 
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1 Introduction 35 

In the coming decades, most terrestrial ecosystems will experience changes in environmental drivers, including increased air 

temperatures and atmospheric CO2 concentrations, altered precipitation amounts and patterns, changes in fire frequency, and 

various anthropogenic impacts (e.g., agriculture)(IPCC, 2022). These changes are likely to have strong impacts on ecosystem 

functioning, such as C assimilation via plant growth or C losses via respiration (Hungate et al., 1997, Wang et al., 2016, 

Naylor et al., 2020). These will in turn affect critical ecosystem services, such as C sequestration (Lal, 2004, Wiesmeier et 40 

al., 2019). These effects are particularly important in grassland ecosystems due to their global extent (White et al., 2000) and 

their ability to be sinks for soil C (Conant et al. 2016, Bai and Cotrufo, 2022). Information about 

grasslands that may experience substantial changes in C storage when subjected to future environmental 

change is important for targeted land management (Rees et al., 2005) and policy decisions (Daily et al., 2009; Chambers et 

al., 2016). Experimental studies offer a way to assess how global changes are likely to impact ecosystem processes. Yet, 45 

experiments often have difficulty tracking effects on C storage since changes in soil C pools can take decades (Balesdent et 

al., 1988; Chapin et al., 2011), and most experiments are conducted for relatively short time periods. Process-based models 

offer another method to assess alterations in soil C under future conditions and have been shown to be useful tools to assess 

soil C across grasslands (Parton et al., 1993, Bonan et al. 2013). Yet, variation of ecosystem properties and processes 

controlling C cycling across ecosystems, such as microbial community composition, is not well represented in many current 50 

models. Additionally, uncertainty surrounding ecosystem C is currently very large (Todd-Brown et al., 2014, Friend et al., 

2014, Luo et al., 2015, Sulman et al., 2018). This highlights the need for better understanding of how C processes

 vary across ecosystems. 

Many estimates of C sequestration rates use two or more time points of C pool measurements to infer annual rates of C 

accumulation or loss in ecosystems (e.g., Sperow et al. 2016, Smith et al. 2005). While informative, these estimates of C flux 55 

rates will not extend indefinitely (Smith 2004), likely due to the non-linear nature of C accumulation or loss through time. 

(Luo et al. (2017) introduced C capacity (𝑋𝐶; Table 1) as the amount of C that would be stored in soil and vegetation 

in an ecosystem if given enough time to reach equilibrium under current environmental conditions. Comparisons of C 

capacity and the amount of C currently stored by that system allows for predictions of long-term trends of system C and 

identification of ecosystems that are vulnerable to C loss under global change. In most terrestrial ecosystems, C capacity is 60 

primarily a function of C inputs (NPP) and the amount of time that carbon remains in a system before being 

respired back to the atmosphere (ecosystem C residence time - 𝜏𝐸, Luo et al., 2017). There are often mismatches between the 

amount of C currently present within ecosystems and a system’s C capacity because recovery from previous 

disturbances/environmental conditions can take decades or centuries (e.g., tillage, Smith, 2014). This may underlie 

observations of grasslands acting as strong C sinks (Soussana et al., 2007). The long-term trajectory (e.g., gains or losses) of 65 

C in an ecosystem can be inferred through a comparison of its current C storage at present (𝑋𝑃) with its C capacity (Fig. 

1a). It is important to note that the factors influencing C capacity – NPP and C residence time – are constantly changing, and 
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if these changes cause mismatches 

between present C and C capacity, this will likely alter long-term C trajectories

 (Fig. 1b). Alternately, C trajectories where present C is far below capacity may be less vulnerable to 70 

global change scenarios if present C remains below future capacity (Fig. 1c). Therefore, we suggest that 

the proportion of C capacity that is currently present in ecosystems (hereafter termed C saturation – CSAT) may be used 

as an indicator of how vulnerable C pools are to future changes in environmental drivers. 

 

Table 1. Focal terms, descriptions, and calculation methods used in this study. 75 

Symbol Term Units Description Method of calculation 

𝜏𝐸  Ecosystem C 
residence time 

year The average amount of time 
between fixation of a single 
C molecule and respiration 
from the soil. 

Integrates residence times of six carbon pools, 
transfer coefficients among pools, soil 
moisture, soil temperature, and sensitivity of 
turnover rates to temperature and moisture 
(Eqn. 1-5). Here, uncertainty of all the above 
parameters is integrated into estimates of 
ecosystem C residence time through 
bootstrapping methods. 
 

NPP Net primary 
productivity 

g C m-2 
year-1 

The quantity of C produced 
by plants in one year 

Modeled using climate forcing data, 
benchmarked to empirical observations. 
 

XC Carbon capacity g C m-2 The amount of carbon the 
ecosystem will contain 
under continuing steady-
state conditions 
 

Multiplication of ecosystem C residence time 
and net primary productivity. We bootstrapped 
these estimates to incorporate uncertainty in 
NPP and ecosystem C residence time. 

XP Present carbon g C m-2 How much carbon is 
currently present in the 
system 

Sum of C in aboveground plant biomass, 
belowground plant biomass, and the soil. All 
estimates were based on empirical 
measurements but extrapolated to 0-20 cm 
depths in the soil. 
 

CSAT Carbon 
saturation 

% The proportion of carbon 
saturation that is currently 
present in the system 
 

Carbon capacity divided by the amountng of 
present carbon in the system.  

FT Temperature 
scalar 

-- Modifies the base C 
turnover rate dependent on 
soil temperature 
 

Calculated using soil temperature 
measurements and the Q10 parameter, which is 
estimated based on empirical data during the 
data assimilation process. 
 

FW Moisture scalar -- Modifies the base C 
turnover rate dependent on 
soil moisture 

Calculated using soil moisture measurements 
and the mscut parameter, which is estimated 
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based on empirical data during the data 
assimilation process. 
 

ξ Environmental 
scalar 

-- Modifies base C turnover 
rates based on soil 
temperature and soil water 
content 
 

The effect of water (FT) multiplied by the effect 
of temperature (FW) on C turnover. 

 

Geographic patterns of 𝑋𝐶  C capacity depend on how its components (NPP and  C residence time)𝜏𝐸) vary across vary 

across e ecosystems and environmental gradients. There is robust evidence showing patterns of ANPP along gradients of 

mean annual precipitation (MAP; Sala et al., 1988, 2012, Burke et al. 1997, 2012, Huxman et al., 2004, Maurer et al. 2020). 

Yet, root:shoot ratios may be greater in drier ecosystems (Schenk and Jackson, 2002; Zhou et al. 2009, Mokany et al., 2006; 80 

Wilcox et al., 2016, Hu et al., 2022), which may result in shallower relationships between MAP and total NPP. Biomass 

turnover is associated with C residence time a 𝜏𝐸 and has been shown to be an important part of biogeochemical responses to 

changes in environmental conditions (De Kauwe et al., 2014), yet.  tPatterns of turnover of above and belowground plant 

biomass have been linked with numerous drivers in grasslands, including average temperature (Gill and Jackson 2000), 

precipitation (Yahdjian et al. 2006), tissue quality (Adair et al. 2008), microbial and fungal decomposer communities 85 

(Williams and Rice, 2007; García-Palacios et al., 2016), disturbance (Lorenz and Lal, 2018), and often with interactive 

effects (Bontti et al. 2009). Yet, our understanding is often clouded by abundant contingencies associated with these patterns, 

effectively limiting our ability to predict which ecosystems will continue to sequester or release C.  

Here, we endeavor to generate process-based understanding about how and why C inputs (e.g., NPP) and losses (C turnover) 

differ among grassland ecosystems, and then use this understanding to identify grasslands where C losses may occur in the 90 

future. within a growing season is often difficult to measure empirically and is missing from many above- and belowground 

NPP field measurements.  

Similar to NPP, there is evidence that respiration rates increase with MAP and MAT due to favorable soil conditions for 

decomposition (Bird et al., 1996, Carvalhais et al., 2014, Stielstra et al., 2015, Feng et al., 2018), leading to shorter 𝜏𝐸 in 

warm and wet ecosystems. Additionally, 𝜏𝐸 may be controlled by differences in microbial and fungal decomposer 95 

communities (Williams and Rice, 2007; García-Palacios et al., 2016). For example, You et al. (2014) found that the relative 

abundances of gram-negative bacteria, saprophytic fungi, and actinomycetes had strong impacts on C acquisition and soil 

organic matter loss in central China forest ecosystems. Currently, information is limited as to how these C input versus 

output relationships across ecosystems combine to impact 𝑋𝐶 along climatic gradients, or how the difference between 𝑋𝐶  and 

𝑋𝑃 (i.e., CSAT) varies.  100 
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To do this we (a) assimilated C pool and flux data from six US grassland sites with a process-based ecosystem model (see 

methods for in depth description of the model) to estimate primary C inputs (NPP), C residence time, and C saturation; and 

(b) measured present C as the sum of soil and vegetative C to quantify what proportion of C capacity was currently present 

in each of these ecosystems. We address the following questions and predictions: 

1. How do NPP, C residence time, and present C vary across gradients of MAP and MAT? We 105 

predict that NPP should be primarily related to precipitation since much previous work has shown strong 

water limitation in grasslands (Sala et al., 1988, Huxman et al., 2004, Maurer et al. 2020), and C residence time 

will be related to both temperature and precipitation due to strong limitation of these factors on microbial activity. 

2. How sensitive is C capacity to turnover rates of different C pools? We predict that changes in turnover rates within 

slower C pools will have larger effects than faster C pools. 110 

2.3. Is the amount of C present in any of these systems close to their C capacity? We predict that cooler 

and drier ecosystems will be further from their C capacity. 

 Ecosystems with low moisture and 

colder temperature have lower productivity and slower turnover of C pools, both 

of which can slow the rate that present C approaches C capacity.  115 

3. Addressing these questions and hypotheses will provide an initial perspective on how much these key C attributes 

Addressing these questions and hypotheses will provide an initial perspective on how much these key C attributes 



6 
 

Addressing these questions and hypotheses will provide an initial perspective on how much these key C attributes 

Addressing these questions and hypotheses will provide an initial perspective on how much these key C attributes 

Figure 1. (a) Conceptual figure showing how carbon (C) changes through time to approach C storage capacity as a 120 
function of the difference between C storage at present (𝑿𝑷) and C storage capacity (𝑿𝑪). Changes in C capacity (blue 

dashed lines in b-c) can be caused by alterations in net primary productivity or ecosystem C residence time. (b) 

Ecosystems that have present C close to capacity are susceptible to C loss if environmental conditions cause 

reductions in C capacity, while (c) ecosystems having present C far below capacity may be buffered against C 

losses, at least in the short-term. 125 

2. Methods 

2.1 Site descriptions 

We conducted this study at six US grassland sites spanning climatic gradients of mean annual precipitation (MAP) and mean 

annual temperature (MAT; Table 2). Data collection sites were set up and maintained as part of the Extreme Drought in 

Grasslands Experiment (EDGE) and represent the major grassland types within the central United States: desert 130 

grassland (SBK), shortgrass prairie (SBL, CPER), northern mixed grass prairie (HPG), southern mixed grass prairie (HAR), 

and tallgrass prairie (KNZ). All sites were ungrazed for at least 10 years before the start of data collection, 

yet the sites did vary in the length of time between the first year of our 

measurement and when they were last grazed (SBL and SBK: 39 years, CPER: 15 years, HPG: 10 years, HAR: 9 years, 

KNZ: at least 30 years). All sites except KNZ were not frequently burned, but KNZ was burned annually to reflect common 135 

management in this region (Knapp et al. 1998, Freckleton et al. 2004). See Table 2 and Appendix E for 

more information about these sites. 

 

Table 2. Site characteristics of each of the six grassland sites in this study. 

 Site characteristic SBL SBK CPER HPG HAR KNZ 

 
Grassland type 

Shortgrass 
prairie 

Desert 
grassland 

Shortgrass 
prairie 

Mixed-
grass 

prairie 

Mixed-
grass 

prairie 

Tallgrass 
prairie 

C
lim

at
ea

 

Mean annual 
precipitation (mm) 

246 246 375 400 584 892 

Mean growing season 
precipitation (mm)b 

163 163 293 303 426 652 

CV of growing season 
precipitationb 

48.5 48.5 33.5 32.8 34.7 29.8 

Mean annual 
temperature (°C) 

13.4 13.4 9.5 7.9 12.3 13.0 

Mean growing season 
temperature (°C)b 

19.3 19.3 16.4 14.6 20.8 21.4 



7 
 

So
il 

Bulk density (g cm-3)c 1.68 1.68 1.26 1.18 1.16 1.03 
Field capacity (% soil 
moisture)d 

27 30 17 29 35 38 

Wilting point (% Soil 
moisture)d 

7 5 5 10 16 15 

V
eg

et
at

io
n

e
 

C3 graminoid (%) 0 0 17.5 53.7 9.0 11.9 
C4 graminoid (%) 48.7 52.0 54.0 27.0 68.9 77.0 
CAM (%) 22.8 0 6.6 0 0.4 0 
Forb (%) 24.2 44.86 19.2 12.5 19.6 8.4 
Woody (%) 3.4 2.3 1.9 5.9 1.2 2.5 
Perennial (%) 82.4 77.5 82.5 95.1 96.6 99.5 
Annual (%) 16.8 21.5 16.6 3.9 2.4 0.4 

aClimate characteristics are from 1982-2012 weather data, obtained from Knapp et al. 2015 
bGrowing season was defined as April-September for CPER, HPG, HAR, and KNZ, and as April-October for SBL and SBK 
cBulk density data obtained from measurements taken at each site in 2015 
dEstimated using hourly soil moisture data from 2012-2013 in SBL and SBK and from 2013-2015 in CPER, HPG, HAR, and KNZ 
eEstimated from plant species composition measurements taken during the 2012-2013 growing seasons at SBL and SBK and 
during the 2014 growing season at CPER, HPG, HAR, and KNZ 

  140 

2.2 Sampling design 

For this study, we used measurements of aboveground net primary productivity (ANPP), belowground net primary 

productivity (BNPP), root standing crop biomass, vegetative litter biomass, soil C, volumetric soil moisture, soil 

temperature, soil CO2 efflux, plant species abundance, soil bulk density, and hourly meteorological data. Most of these data 

were collected from control plots within the EDGE experimental infrastructure, which is a randomized block design having 145 

10 blocks each containing three treatments: one control and two drought treatments; for the purposes of this study, we only 

use control data from the ten 6 m2 control plots at each site. See Appendix C for additional details about sampling regimes. 

2.3 Estimating GPP and NPP 

To generate gross primary productivity (GPP) and net primary productivity (NPP) estimates, we operated the grassland 

version of the Terrestrial Ecosystem Model (TECO; Weng and Luo, 2008; Shi et al., 2015), which has been shown to 150 

produce C fluxNEE estimates that match observations well in US grassland ecosystems (Shi et al., 2014). TECO is a 

process-based ecosystem model that has four major sub-models to simulate canopy photosynthesis, plant growth (allocation 

and phenology), soil water dynamics, and soil carbon turnover based on weather data and site level soil characteristics 

(Figure A1). To run the model, we used hourly air temperature, relative humidity, vapor pressure deficit, precipitation, and 

incident photosynthetically active radiation data from nearby weather stations (see Appendix C for additional details about 155 

collecting and cleaning meteorological data). GPP and NPP were generated for the main analyses in this paper using TECO 

for 2012-2014 at SBL and SBK, and for 2013-2015 at the other four sites. Daily GPP estimates were subsequently used to 
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drive the C sub-model (section 2.4), and annual NPP estimates were used to calculate C capacity (section 2.5). The mismatch 

in time frame among sites was due to data availability. 

Formal validation of the vegetation components of the model was conducted at each of the six sites. This was done by 160 

calibrating the model for each site based on measured above and belowground plant growth, soil texture, site-level field 

capacity and wilting point. Then, model spin-up of 500 years (all pools stabilized at each site between 200 and 400 years) 

was conducted and output from 2014-2017 was compared with observations at each site. Overall, cross-site mean primary 

production estimates from the model matched empirical observations very well (aboveground biomass R2=0.99, 

belowground NPP R2=0.94). Interannual variability in production from the model was less well correlated with empirical 165 

observations, although model predictions most often fell within one standard deviation of empirical observations. (See 

Appendix D for additional model validation discussion, figures, and tables). 

2.4 Optimizing C sub-model parameters 

Within the C turnover sub-model in TECO (Fig. A1), parameters for C turnover rates, C transfer rates, and environmental 

scalars (Table B1) were estimated for each site using data assimilation techniques (Xu et al., 2006; Shi et al., 2015). 170 

Compared with benchmarking, this is a more powerful approach for improving model parameterization, but it also requires 

higher temporal resolution of data to be successful. We used estimated daily GPP, soil moisture, and soil temperature to 

operate the C sub-model within the data assimilation procedure to optimize the following sets of 

parameters: (1) six C turnover parameters associated with leaf, fine root, litter, fast SOM, slow SOM, and passive 

SOM carbon pools, (2) seven C transfer coefficients controlling the proportion of C turnover transferred to other C pools, 175 

and (3) two environmental scalars that control C turnover rates based on soil moisture and soil temperature (Table B1). 

We used a Markov Chain Monte-Carlo method with Metropolis-Hastings algorithm to optimize these parameters

. Starting parameter values were obtained from previous studies (Xu et al., 2006, Shi et al., 2015, Zhou et al., 2012) and were 

. Starting parameter values were obtained from previous studies (Xu et al., 2006, Shi et al., 2015, Zhou et al., 2012) and were 

. Starting parameter values were obtained from previous studies (Xu et al., 2006, Shi et al., 2015, Zhou et al., 180 

2012) and were allowed to vary uniformly between biologically reasonable bounds (Table B1). Within each 

iteration, the current set of parameters was tested against a new set of parameters, generated based on the current set of 

parameters using a step size of 15 with the Metropolis-Hastings Algorithm. Both the current and new set of parameters were 

used to run the C sub-model with daily GPP estimates (section 2.3), daily measured soil moisture, and daily measured soil 

temperature from each site. Model output from each of these two runs was then compared with the observations of 185 

aboveground vegetation biomass (annually), root standing crop (annually), plant litter (annually), soil C (single 

measurement), and surface CO2 efflux (daily). Model performance using the new set of parameters assessed against 

Metropolis criterion to determine whether the new set of parameters should be kept or discarded. This was done for 360,000 

iterations for each of 4 chains within each site to ensure convergence of parameter estimates. Gelman-Rubin (GR) values 
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were mostly < 1.1, with the exception of a few parameters having 1.2 or 1.3 GR values at HPG and HAR (Table B2). All 190 

parameters where GR values were high did not converge and drifted slowly over iterations. This resulted in estimates of 

these parameters close to the midpoint of the parameter bounds, and large uncertainty. To account for this, uncertainty in 

parameter estimates was incorporated into C residence time estimates via bootstrapping methods (see below). Cross-

correlations were calculated for all parameters at each site (Table B3). Maximum likelihood estimates (MLE) and 

uncertainty (95% confidence intervals) were calculated for each parameter at each site by assessing normal, log-normal, or 195 

Weibull distributions depending on the magnitude and direction of skew (Fig. A2-A4, Table B2). 

2.5 Estimating C residence time, C capacity and C saturation 

We calculated ecosystem C residence time (𝜏𝐸) following Luo et al. (2017): 

𝜏𝐸 = (𝐴𝜉(𝑡)𝐾)
−1𝐵          (1) 

, where ξ(t) represents the environmental scalar determined by soil moisture and soil temperature at time step t, A is a matrix 200 

of C transfer coefficients, K is a 6x6 diagonal matrix representing rates of C loss per day from each of the six C pools, and B 

is a 6x1 matrix representing the allocation fractions of GPP to each of the six C pools: 

ξ(t) = F𝑇(t)F𝑊(t);          (2) 

𝐴 =  

(

 
 
 

−1 0 0 0 0 0
0 −1 0 0 0 0
1 1 −1 0 0 0
0 0 𝑓4←3 −1 𝑓4←5 𝑓4←6
0 0 𝑓5←3 𝑓5←4 −1 0
0 0 0 𝑓6←4 𝑓6←5 −1 )

 
 
 

:       (3) 

𝐾 =  

(

 
 
 

𝑐1 0 0 0 0 0
0 𝑐2 0 0 0 0
0 0 𝑐3 0 0 0
0 0 0 𝑐4 0 0
0 0 0 0 𝑐5 0
0 0 0 0 0 𝑐6)

 
 
 

         (4) 205 

𝐵 = (𝑋𝐴, 𝑋𝐵, 0, 0, 0, 0)          (5) 

In Eqn. 2, FT is the effect of soil temperature on microbial decomposition rates at time t: Ft(t) = 0.58Q10
(T(T)-10)/10, where Q10 

is a constant parameter and T is soil temperature. FW is the potential effect of soil water content on microbial decomposition 

rates at time t: FW(t) = 1 - 5(mscut-W(t)), where mscut is a constant parameter representing the soil water content (W) below 

which microbial decomposition becomes limited. If W is greater than mscut, FW = 1. The impact of FT and Fw scalars on ξ 210 
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are dependent on one another (i.e., FW will limit ξ in dry conditions even if soil temperatures lead to a large FT). In Eqn. 3, fi 

← j represents the fractions of C turnover entering pool i pool from pool j. In Eqn. 4, c1-6 represents the amount of carbon lost 

from pools 1-6 per day, where pool 1=aboveground plant biomass, 2=belowground plant biomass, 3=fine litter biomass, 

4=active (fast) soil organic matter (SOM), 5=slow SOM, 6=passive SOM. In Eqn. 5, XA and XB are the fractions of GPP 

allocated to aboveground and belowground vegetative pools, respectively. For each site, XA and XB were estimated from 215 

observed ANPP:BNPP ratios, and data assimilation was used to estimate c1-6,  fi ← j, Q10, and mscut parameters. To generate 

uncertainty surrounding 𝜏𝐸, we bootstrapped 1000 parameter sets from the Markov chain Monte Carlo (MCMC) and 

obtained the MLE and 95% confidence intervals from the resulting distribution of 𝜏𝐸 estimates. 

C capacity (𝑋𝐶) was calculated following Luo et al. (2017) as: 

𝑋𝐶 = 𝑁𝑃𝑃 ∙  𝜏𝐸           (6) 220 

, where NPP is net primary productivity of a site, obtained via TECO simulations, and 𝜏𝐸 is the MLE of the distribution of 

bootstrapped 𝜏𝐸 values. C capacity estimates were obtained by combining the boostrapped iteration of C residence estimates 

with 1000 randomly sampled values of NPP using the mean and standard deviation of NPP across years. This allowed us to 

propagate the uncertainty present in both NPP and C residence time to C capacity estimates. The 1000 boostrapped iterations 

were then used below in the calculation of C saturation.  225 

At KNZ, NPP in Eqn. 6 consisted only of the belowground component because annual fire removes all aboveground plant 

material each spring. We recognize the limitation of using three years of NPP data to estimate 𝑋𝐶, yet we believe it is 

important that NPP and 𝜏𝐸 estimates are derived from the same time periods, and the data necessary to estimate 𝜏𝐸 were only 

available for three years. Weather within the three focal years was comparable to long-term averages at most of the sites 

(Fig. A5), although precipitation was greater than the long-term average at HPG, lower than the long-term average at HAR, 230 

and air temperatures were warmer at SBK and SBL in 2012-2014. Standard deviation of C residence time (Csd) was 

calculated as the standard deviation of the 1000 bootstrap iterations.

The level of C saturation (CSAT) represents the percentage of C capacity that is represented by present C, calculated as 

The level of C saturation (CSAT) represents the percentage of C capacity that is represented by present C

, calculated as 235 

𝐶𝑆𝐴𝑇 = 
𝐶𝑆 + 𝐶𝐴 + 𝐶𝐵

𝑋𝐶
           (7) 

, where CS is the mass of C in the soil standardized by area, CA is the observed aboveground biomass * 0.45, and CB 

is the observed root biomass * 0.45, also standardized by area. Combined, CS, CA, and CB make up present C from 0-10 cm 

Formatted: Font: Italic

Formatted: Font: Italic, Subscript

Formatted: Font: Italic

Formatted: Font: Italic, Subscript

Formatted: Font: Italic

Formatted: Font: Italic, Subscript



11 
 

in the soil. Soil C measurements from 0-10 cm in the soil were then extrapolated to 0-20 cm to match up with the depth of 

BNPP observed and used to calibrate the model. This was done by extracting soil C data along a depth profile (0 to >1 m 240 

depth) from the international soil carbon network (ISCN; Nave et al 2017) in nearby areas having similar cover types and 

land management regimes (Table B4). These depth profiles were used to calculate the proportion of soil C across depths 

using a beta distribution described by Jobággy and Jackson (2000)(Fig. A7). Then, each soil C measurements from 0-10 cm 

was extrapolated along this curve to estimate the amount of soil C from 0-20 cm (Fig. A7). The mean and standard 

deviation among replicates within a site were used to generate 1000 random draws from a normal distribution. We then 245 

combined these random draws with the bootstrap iterations from Eqn. 6 to propagate the uncertainty of C capacity (XC) into 

the estimate of C saturation. This means that all levels of uncertainty, from individual parameter estimates (Fig. A2-A4) all 

the way through present C are incorporated into our estimates of C saturation. 

We conducted variance partitioning to determine the amount of cross-site variance in C capacity that was driven by 

variation in NPP versus C residence time. Since only BNPP was incorporated into the 𝑋𝐶 calculation for KNZ, we 250 

performed this analysis both with and without KNZ (Fig. A6). 

2.6 Sensitivity analyses 

For each parameter used to calculate C residence time, we varied the parameter while keeping all other parameters 

constant at their MLE and recorded the resulting C residence time. We did this for 20 intervals ranging from the 

minimum to maximum parameter values shown in Table B1. We also wished to determine the impact of each parameter 255 

value at each site as estimated via data assimilation. To this end, we shifted each parameter from its default value (Table B1) 

to the MLE value obtained from data assimilation (Table B2) – holding all other parameters at their default values – and 

observed the resulting effect on C residence time (Fig. 3g-l).  

2.7 Statistical analyses 

For regression analysis comparing NPP, C residence time, and present C across gradients of  260 

MAP, and MAT, all variables were centered by their mean and scaled by their standard deviation, allowing 

for comparable slope values. 

Additional site-level characteristics (Bulk density, grass:forb, C3:C4, Annual species abundance) were combined with climate 

data using partial regression and adjusted R2 values were assessed to test whether climate-NPP or climate-C 265 

residence time relationships were being driven by other site-characteristics (vegan package, Oksanen et al. 2016). 

Bayesian data assimilation and bootstrapping analyses were run using custom scripts; linear regression models were 

run with the lm() function. All analyses were conducted in R (R core team, 2022). 
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3 Results 

3.1 Net primary productivity (NPP) and present C (XP) 270 

Estimates of NPP varied across sites from 45.3 g C m-2 yr-1 at SBL to 400.2 g C m-2 yr-1 at KNZ (Table 3). The standardized 

full NPP model (NPP ~ MAP + MAT) was significant (F2,3=63.8, P<0.01) and explained 96% of the cross-site variation in 

NPP estimates (Adj. R2 = 0.96). Within the model, MAP was strongly correlated with NPP across sites (F1,3=123.7, P<0.01), 

while the relationship with MAT was not significant (F1,3=0.58, P=0.50)(Fig. 2). The non-standardized relationship between 

MAP and NPP was of the form NPP = 0.53*MAP - 51.4. We looked for collinearity of MAP with soil bulk density, 275 

grass:forb, C3:C4, and annual species abundance using partial regression analysis. We found that MAP was still a significant 

and strong predictor of NPP when these other variables were accounted for (Table B5). Similarly, we found a weak positive 

relationship between present C and MAP (F1,3=6.59, P=0.08, Adj. R2=0.54), and no relationship between MAT and 

present C (Fig. 2). The non-standardized relationship between MAP and present C was of the form 𝑋𝑃 = 767.4 + 

4.0*MAP. 280 

 

Table 3. Estimates (µ and q50) and uncertainty (σ and other quantiles) of NPP and ecosystem carbon residence time 

at all six sites.

 

Site 

𝜏𝐸  (years) 
C residence time (𝜏𝐸)(years) 

q2.5-97.5 
q5-95 
q25-75 

NPP NPP (g C 
m-2) 

(g C m-2)NPP σ 
(g C m-2) 

Site q2.5 q5 q25 q50 q75 q95 q97.5 µ σ 

SBL 
5.226

.74 
7.1 

18.36
.86-

104.2
7 

35.38
.53-

83.78 
68 

175.1
16.74

-
42.71 

238.1 
45.30
6373 

15.31
9883 

SBK 
11.42
6.59 

13.2 
20.41
3.47-
52.46 

27.81
5.03-
47.03 

37.7 
58.52
1.04-
33.59 

67.5 
67.74
4047 

27.54
9446 

CPER 
19.15
4.24 

22.5 

36.81
8.02-
163.2

5 

51.82
1.51-
136.7

5 

72.9 

119.2
37.12

-
79.25 

139.9 
143.5
6316 

25.00
4920 

HPG 
21.25
2.44 

25.2 

42.52
5.82-
106.4

9 

61.32
8.94-
95.03 

88.2 

149.2
41.09

-
66.91 

176.9 
157.5
4996 

65.17
6312 

HAR 
17.35
3.08 

21.1 
3919.

88-
59.92
3.28-

91.9 
170.2
37.85

207.9 
173.2
5853 

31.82
5418 
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KNZ 
9.927

.76 
11.9 

20.71
0.23-
75.31 

30.41
2.01-
64.14 

44.7 
77.81
9.69-
39.13 

93.2 
400.2
0682 

140.9
7561.

0 

  285 

3.2 Ecosystem carbon residence time (τE) 

Estimates of 𝜏𝐸  C residence time were obtained by calculating the 50th percentile of the lognormal distribution of 

bootstrapped C residence time values. These estimates ranged across sites from 26.627.8 years in at SBK to 5461.3.2 years 

in at CPER HAR (Table 23). The standardized full 𝜏𝐸  C residence time model (𝜏𝐸 ~ MAP + MAT) was less robust than that 

of NPPwas not significant (F2,3=3.32.05, P=0.180.27). Within the full model, neither MAP (F1,3=0.10, P=0.77) nor MAT 290 

(F1,3=4.10, P=0.14) was were not correlated with C residence time  𝜏𝐸 across sites  (F1,3=0.13, P=0.74), while the relationship 

with MAT was only significant at α=0.1 (F1,3=6.57, P=0.08)(Fig. 2b). The non-standardized relationship between MAT and 

𝜏𝐸 was of the form 𝜏𝐸 = -3.6*MAT + 81.6. Based on partial regression, underlying relationships with other site-based 

variables were not driving the relationship between MAT and 𝜏𝐸 (Table B5). 

 295 

 

Figure 2. Slopes between standardized net primary productivity (NPP), ecosystem C residence time (𝝉𝑬), or present C 

(𝑿𝑷) and standardized mean annual precipitation (MAP) and mean annual temperature (MAT). Error bars represent 

9095% confidence intervals. 

3.3 Soil moisture and temperature effects on C residence time τE 300 

All sites exhibited a cyclical pattern of soil moisture and temperature effects on C turnover rates (denoted ξ), with higher ξ 

during the growing season due to warmer temperatures (Fig. 3 black lines). ξ during the growing season was > 1 for all sites 
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except CPER, meaning that C turnover rates were increased in the data driven model, rather than limited by soil conditions. 

At SBL and SBK (Fig. 3a,b), temperature constraints (𝐹𝑇; Fig. 3 dashed orange lines) on ξ were > 1 for much of the growing 

season, yet ξ was limited by soil moisture constraints (𝐹𝑊; Fig. 3 dotted blue lines) outside of the monsoon season. Only 305 

when monsoon rains removed soil moisture limitations did ξ generally persist above one. At CPER (Fig. 3c), ξ was not 

limited by 𝐹𝑊. Yet, 𝐹𝑇 was < 1 throughout the year due to the low Q10 value estimated for CPER (Table B2). 𝐹𝑇 was much 

greater than one during the growing season at both the mixed grass and tallgrass prairie sites (Fig. d-f), but 𝐹𝑊 limited ξ at 

both mixed grass prairies. ξ was high at KNZ due to a lack of 𝐹𝑊 effect at the site, which was a result of both high soil 

moisture content throughout the growing season, and a relatively low estimated mscut parameter value (Table B2). 310 
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Figure 3. Environmental scalars for decomposition rates at six grassland sites (a-f) and impact of individual parameter 

estimates on ecosystem carbon residence time (g-l). In a-f, values less than 1 represent soil conditions limiting 

decomposition while values greater than 1 represent acceleration of decomposition due to soil conditions.  Dashed 

orange lines represent the temperature scaling effect (FT) – based on the site-estimated value of the Q10 parameter and 315 
daily soil temperature data. Dotted blue lines represent the moisture scaling effect (FW), which is based on the site-

estimated value of the mscut parameter and daily soil moisture data. Black solid lines represent the product of the 

temperature and moisture scalars (ξ), which is the overall environmental scalar that controls decomposition rates in the 

model. In g-l, parameters were shifted one at a time from their mean parameter space (baseline parameter) to the 

parameter estimates obtained from data assimilation, and the resulting effect on ecosystem carbon residence time is 320 
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shown. This represents the inherent effect of each model parameter on τE independent from soil moisture or 

temperature. Panels correspond to different sites: a,g=Sevilleta National Wildlife Refuge blue grama grassland; 

b,h=Sevilleta National Wildlife Refuge black grama grassland; c,i=Central Plains Experimental Range; d,j=High Plains 

Grasslands Research Station; e,k=Hays Agricultural Research Center; f,l=Konza Prairie Biological Station. Transfer 

parameters (fx←y) dictate the proportion of C turnover in pool y transferring to pool x: f1=f4←3; f2=f5←3; f3=f5←4; 325 
f4=f6←4; f5=f4←5; f6=f6←5; f7=f4←6. 

3.4 Sensitivity of C residence time to model parameters 

We performed two sensitivity analyses to (1) identify variables in the model with potential to contribute the most to 𝜏𝐸 

(Fig. 4), and (2) quantify the realized effect of model parameter estimates, 

obtained through the data assimilation process, on C residence time at each site (Fig. 3). 330 

These sensitivity analyses simulated C residence time under a range of parameter values while incorporating daily soil 

temperature and moisture measurements from each site. We found that C turnover rates of the slow and passive SOM pools 

had the potential to have the greatest impacts on C residence time, highlighting the importance 

of C sequestration in these pools for maintaining C stocks (Figure 4). C residence time was also sensitive to the mscut 

parameter, with the 335 

effect increasing exponentially until reaching ca. field capacity at each site. In the drier sites (SBL, SBK, and CPER), the 

effect of the mscut parameter started to increase rapidly around 10-15% volumetric soil moisture. The steep increase began at 

greater soil moisture levels (20-25%) at the more mesic sites (HPG, HAR, KNZ). At the warmer sites (SBL, SBK, 

KNZ), C residence time was less sensitive to Q10, unless Q10 was very low (ca. 1). Interestingly, 

higher Q10 values had the potential to increase C residence time at the cooler sites (CPER, HPG). Although Q10 is 340 

generally negatively related to C residence time, the form of the Q10 relationship is such 

that, although lower Q10 values result in slower turnover rates at high soil temperatures, they also result in higher turnover 

rates under cooler temperatures due to their shallower slope. As such, this can lead to a positive relationship between Q10 

values and C residence time at cooler sites.  

When we applied the estimated parameters to these sensitivity curves to estimate the actual effect of individual parameters 345 

on the C residence time estimates (Fig. 3 right panels), we found that turnover rates of the slow SOM pool increased C 

residence time greatly compared with starting parameters across all sites (+8 to +25 years). Root turnover had a 

substantial effect on C residence time at HPG (+14 years) and HAR (+5 years). The transfer proportion from fast SOM to 

slow SOM had a positive effect on C residence time at CPER, HPG, HAR, and KNZ (+5 to +11 years), and a negative 

effect on C residence time at SBL and SBK (-5 to -8 years). mscut had opposite effects on C residence time for SBL 350 

(+6 years) than SBK (-10 years), while Q10 had minimal effects at both sites. mscut and Q10 had strong negative effects on C 

residence time at CPER (-31 years and -9 years, respectively), likely due to particularly low mscut and Q10 estimated for 

that site (Fig. A4) and strong potential for impact of these parameters at CPER (Fig. 3). At the other cool site, HPG, both 
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mscut and Q10 increased C residence time (+9 and +14 years, respectively). At HAR, a high mscut estimate increased C 

residence time (+18 years), suggesting that C turnover at this site may be particularly sensitive to soil moisture. Q10 355 

estimated at HAR had minimal impact. mscut and Q10 estimates at KNZ had small impacts on C residence time (-1 and +4 

years, respectively, Fig. 3). 

 

Figure 4. Results from sensitivity analysis where ecosystem C residence time was calculated when altering one 

parameter value at a time. Rows of panels correspond to different sites with: SBL= Blue grama dominated site at the 360 
Sevilleta National Wildlife Refuge; SBK= Black grama dominated site at the Sevilleta National Wildlife Refuge; 

CPER=central plains experimental range; HPG=High Plains Grassland Research Station; HAR=Hays Agricultural Research 

Station; KNZ=Konza Prairie Biological Station. Ecosystem carbon residence time was often very high at very extreme 

parameter values so the y axis was set for clarity. Transfer parameters (f1-7) are as in Fig. 3. 

 3.5 Carbon capacity and carbon saturation 365 

Finally, we used NPP and C residence time estimates to calculate C capacity. Cross-site variation of NPP and C 

residence time were both important for determining C capacity across the six grassland sites (Fig. A6). 

Median C capacity varied from as little as 1485 g m-2 in SBL to as much as 10203 g m-2 in HAR (Fig. 5). We 

estimated C saturation as the percentage of C capacity made up by present C. In the two hot and dry 

sites (SBL and SBK), we found that C capacity was relatively small and less than present C (Fig. 5), 370 

resulting in greater C saturation values (50th percentiles of C saturation lognormal distribution: SBL 148%, SBK 

130%, Fig. 5 inset). The cooler and/or wetter sites all had greater C capacity 
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values and present C below capacity (Fig. 5), resulting in smaller C saturation values (50th percentiles: CPER 36%, HPG 

56%, HAR: 58%, Fig. 5 inset). The exception to this was KNZ, the most mesic but frequently burned site with a C saturation 

value of 137% (50th percentile, Fig. 5 inset). 375 

 

 

 

Figure 5. Ecosystem C capacity (𝑿𝑪; grey points) and present C (𝑿𝑷; black points) in six 

grassland ecosystems. Present C was calculated using estimates of soil C from 0-20 cm + aboveground and 380 
belowground vegetative C. Black error bars represent one standard deviation around the mean, and grey rectangles 

represent the 25th and 75th percentiles of the lognormal distribution of C capacity, surrounding the 50th percentile (grey 

points). Inset: Violin plots and bootstrap estimates of C saturation, 

calculated as present C divided by the product of NPP and ecosystem C residence time. The dashed line shows where 

present C is equal to C 385 
potential. 

4. Discussion 

Our findings provide insights for the three questions we posed at the start of this study: (1) How do NPP, C residence time,

 and present C vary across gradients of MAP and MAT? (2) Is present C in any of these systems close to C 

capacity? and (3) How does the level of C saturation vary across these grasslands? Related to our first question, we 390 

found general support for the prediction that NPP and present C exhibited positive relationships with 

MAP, yet found no relationship between ecosystem C 
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residence time and climate or other site-level characteristics. Instead, the cross-site pattern of C residence time was driven by 

differences in local edaphic environments (soil moisture and soil temperature) as well as inherent differences in turnover 

rates, which may be indicative of biological or physical differences across sites (Baisden et al., 2013, Mathieu et al., 2015, 395 

Doetterl et al., 2015, Zhao et al., 2021). Related to our second and third questions, we found that three of these grasslands 

had particularly high C saturation values, indicating vulnerability to C change in the future and a limited ability of these 

systems to be long-term C sinks. Two of these three grasslands were in hot, dry climates where C turnover rates were high 

and C inputs through NPP low. The third grassland (KNZ) was the most mesic and had the highest levels of productivity, yet 

annual burning at KNZ increased C saturation substantially. Below, we discuss these findings in more detail. 400 

4.1 Relationships of NPP, C residence time, and present C with climate 

Abundant research exists showing spatial relationships between ANPP and climate. Sala et al. (1988) was able to explain 

90% of the cross-site variation in averaged ANPP with mean annual precipitation across the Great Plains. Yet, total NPP 

(ANPP + BNPP) is a better determinant of C processes due to large contributions of root C to soil pools (Sulzman et al., 

2005; Guzman and Al-Kaisi, 2010; Leppälammi-Kujansuu et al., 2014). A potential reason why BNPP and total NPP 405 

relationships with climate may be less clear than ANPP relationships is that, in wetter ecosystems, plants tend to allocate less 

carbohydrates to roots and more to aboveground material (Schenk and Jackson, 2002, Mokany et al., 2006, Zhou et al. 2009, 

Wilcox et al., 2016, Hu et al., 2022). This pattern results in a weaker relationship between MAP and NPP than predicted by 

ANPP-MAP relationships since BNPP is proportionally greater in drier ecosystems. Indeed, we found some evidence for this 

from our model simulations – the slope of the BNPP-MAP regression (0.24 +/- 0.03, slope estimate +/- standard error) was 410 

shallower than the slope of the ANPP-MAP regression (0.29 +/- 0.02, Fig. A8). Also, differences in functional composition 

of vegetation may drive site differences in root:shoot (e.g., annual versus perennial species). Despite the additional 

uncertainty associated with total NPP, we found that MAP was a strong predictor of total NPP across the six grassland sites 

(Fig. 2a). 

We predicted that C residence time should be greater in (1) cooler systems due to lower soil temperatures 415 

and shorter growing seasons and (2) drier systems due to moisture limitations on microbial activity. Previous studies 

examining patterns of C residence time have found relationships of varying strengths with climate or latitude 

(Bird et al., 1996, Chen et al., 2013, Carvalhais et al., 2014, Moore et al., 2018), biome type (Zhou and Luo, 2008), soil 

properties (Telles et al., 2003), vegetation tissue quality (Adair et al. 2008, Bontti et al. 2009), and land use change (Sperow 

et al., 2016, Wu et al., 2020). Yet, there is still much uncertainty associated with trends in C residence time (Friend et al., 420 

2014). We did not find relationships between any of the course site-

level characteristics fo0und that neither MAP nor MAT were good predictors of C residence time across the six 

grasslands we examined (Fig. 2b). Instead, it is likely that more nuanced characteristics of sites. SBL and SBK

 both had particularly short C residence times, likely 
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due to strong C limitation of microbes at these sites and high abundances of fungal decomposers that efficiently break down 425 

recalcitrant C (Collins et al., 2008, Sinsabaugh et al., 2008). Additionally, intense wet-dry cycles (Fierer and Schimel, 2002), 

soil burial (Brandt et al., 2010), and photo-degradation (Austin and Vivanco, 2006, Parton et al., 2007) have all been shown 

to be important accelerators of decomposition rates in arid systems and may be contributing to the low C residence times 

in these grasslands. As soil C is a function of both NPP and C residence time, it makes sense that the stronger relationship 

of the two is the one that is best related to present C. We found that the best variable related to present C was MAP 430 

(Fig. 2), so soil C may be more sensitive to changes in precipitation versus temperature in U.S. grassland systems. This 

corresponds with observational studies (Saiz et al., 2012) as well as meta-analysis findings of stronger moisture than 

temperature effects on net ecosystem exchange (Wu et al., 2011). 

4.2 Effects of soil environment versus inherent site differences on C turnover rates 

C residence time is directly related to various C turnover rates within an ecosystem (Luo et al., 2017). These turnover 435 

rates can be driven by favorability of soil environments for microbial activity (Bird et al., 1996, Carvalhais et al., 2014, 

Stielstra et al., 2015) or by differences in soil types and microbial communities (Williams and Rice, 2007, Collins et al., 

2008, Garcia-Palacios et al., 2016, Bhattacharyya et al., 2022). With our approach, we were able to model the effect of 

temperature and moisture on turnover rates while accounting for site-level differences in how sensitive turnover is to soil 

moisture and temperature (through data-assimilation estimation of Q10 and mscut parameters; Fig. A5). At four of the six 440 

grasslands, both moisture and temperature had strong effects on C turnover during the growing season (Fig. 3a,b,d,e), which 

corresponds to well-known moisture and temperature controls on microbial activity (Bell et al., 2008). However, in the mesic 

tallgrass prairie (KNZ) and the cooler shortgrass prairie (CPER), we found moisture limitation on C turnover was 

minimal (Fig. 3c,f). At KNZ, this was likely due to relatively high soil moisture levels throughout the growing season (Table 

B6). In conjunction with soil temperatures optimal for microbial activity, this resulted in high C turnover rates throughout 445 

the growing season at KNZ (Fig. 3f) and low overall ecosystem C residence times.  

Alternately, soils at CPER are coarse (Table B1) and become very dry during later months of the growing season, yet C 

turnover was not limited within the model by soil moisture. The lack of sensitivity of 

C turnover to soil moisture may be due to microbial communities adjusted to low soil moisture conditions 

at the site. The mscut parameter in TECO represents the soil moisture level at which C turnover – and by inference, soil 450 

microbial activity – in the system becomes limited. Because we were able to use daily soil CO2 fluxes that were directly 

linked with soil temperature and soil moisture data for at least two years at each site, our estimates of mscut (and Q10) 

parameters were remarkably well constrained (Fig. A4; Table B2). The estimate of the mscut parameter at CPER was 7%, 

the lowest of all six sites. This means that when volumetric soil moisture is above 7%, microbial activity is not restricted by 

soil moisture in the model. Soils at CPER during the growing season (June-Sept) were the driest of all the sites, having an 455 

average soil volumetric water content (VWC) of 11% (Table B6). Additionally, the site having the second driest soils (12% 
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VWC – SBK) also had a low mscut estimate (Fig. A4). This raises the interesting possibility that ecosystems with drier soils 

have microbial communities adapted to low water conditions, which would result in C turnover rates persisting even in 

relatively xeric conditions. If it is the case that C turnover is less responsive to altered soil moisture, this could result in 

mismatches between responses of C inputs versus outputs under altered precipitation regimes, since NPP has been shown to 460 

be highly sensitive to precipitation in more arid ecosystems (Huxman et al., 2004, Sala et al., 2012, Maurer et al., 2020). 

Turnover rates of more recalcitrant pools of soil carbon have the potential to have strong influences on ecosystem 

C residence times, as has been shown using a long-term cross-site decomposition experiment (Harmon et al., 2009). 

Turnover rates of more recalcitrant pools are represented in this study using the c5 and c6 parameters, which represent the 

amount of C lost from the slow and passive C pools each day. It is important to note that these turnover estimates represent 465 

the inherent turnover rates without the effects of moisture and temperature. The estimates for the c5 parameter were well 

constrained across all sites by the data assimilation process (Figure A2) and turnover rate estimates were relatively slow, 

ranging from 8.7 years at HPG to 21.4 years at CPER. Indeed, the turnover rate of the slow pool at CPER was a big reason 

why the ecosystem C residence time was high at that site (Fig. 3i). Although lignin and cellulose contents of litter have been 

shown to be important drivers of turnover rates of intermediate C pools (Adair et al. 2008), the CPER site is dominated by 470 

Bouteloua gracilis, a C4 perennial grass that has relatively high cellulose and tissue nitrogen, and low lignin (Adair et al. 

2008, Blumenthal et al., 2020). As such, we think it unlikely that litter quality is driving these slow rates. One reason the 

data-driven model represents slow turnover rates at CPER is that the temperature scalar is limiting turnover rates (Fig. 3c). 

This may be a combination of the colder temperatures and a low Q10 estimate at CPER. Only the HPG is cooler, yet the Q10 

estimate at HPG is much greater than at CPER (Fig. A5, Table B2). This raises the interesting possibility that the 475 

decomposer communities at the shortgrass site may be strongly temperature limited, although additional inquiries are 

necessary to assess potential mechanisms. It could also be that C in CPER is older, and thus less susceptible to losses via 

decomposition (Conant et al., 2011). This idea fits with findings from findings of Liski et al., (1999) showing that 

decomposition rates of old soil C are relatively temperature insensitive, which aligns with the low Q10 value estimated for 

CPER. 480 

The potential distribution of the c6 parameter resulting from the data assimilation process was quite broad for each site (Fig. 

A2), which is likely a big part of the uncertainty present within our estimated ecosystem C residence times and the resultant 

uncertainty around the estimate of C capacity (grey bars in Fig. 5). For example, the MLE of the c6 parameter for the black 

grama grassland was 1.55E-05 g C ∙ g C-1 ∙ day-1 (Table B2), which translates to a baseline turnover rate of 177 years for the 

passive C pool. Yet, the lower bound of the 95% confidence interval for the c6 parameter at the same site results in a 485 

baseline turnover rate of 1940 years. Differences in passive C turnover rates can have substantial effects on ecosystem C 

residence times, as shown in our sensitivity analysis (Fig. 4). In terms of our example above, going from passive C turnover 

rates of 177 to 1940 years causes ecosystem C residence time to go from 27 to 62 years. In this example, the magnitude of 
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change of the ecosystem C residence time is less than that of the passive C turnover rates because ecosystem C residence 

time incorporates turnover of many other C pools, and not all C molecules end up in recalcitrant C pools. The overall effect 490 

on C saturation is substantial and important. We would like to note that variation in the passive and slow C turnover rates 

was a major component of the uncertainty in C capacity and saturation estimates (Fig. 5). This observation highlights the 

importance of these recalcitrant C pools for limiting losses of C from ecosystems. 

4.3 Patterns of C saturation 

Three of the grasslands we assessed had large gaps between present C and C capacity (CPER, HPG, and HAR; 495 

Fig. 5). Similar to forests acting as long-term C sinks during recovery from clear cutting regimes (Pan et al. 2011), it is 

possible that these cooler and/or wetter grassland ecosystems will act as C sinks due to long-term agricultural or other land-

management legacies (Smith, 2014). These systems may be buffered against C losses if environmental changes occur, at 

least in the short-term. Alternately, the two hot and dry ecosystems showed high C saturation levels (Fig. 5), which 

corresponds with previous work at the SBK site showing this system is often a C source (Petrie et al., 2015), although long-500 

term SOC data from this site indicate no net change in total soil C over time (Hou et al. 2021). High C saturation in 

these systems may also lead to C losses in the future, especially if global changes chronically reduce either NPP or C 

residence times. Short term effects on NPP or C residence times, such as those imposed by drought, may not have as strong 

effects on soil C because they do not permanently modify the capacity to store C of these systems, which may explain a lack 

of response of soil C in drought experiments (Holguin et al., 2022). 505 

 

 

KNZ had short C residence time, but it also had the highest NPP estimate (Table 2), which should have 

resulted in a high C capacity. Yet, this system is burned annually in the spring, reflecting common management 

practices in this region (Knapp et al., 1998; Freckleton, 2004). Burning minimizes the amount of aboveground tissue 510 

that is incorporated into the soil due to volatilization of C to the atmosphere (Seastedt, 1988), although some C is deposited 

as pyrogenic C  (Soong and Contrufo, 2015). Despite these annual losses, C capacity is still relatively 

close to present C, perhaps due to increased root production under frequent fire regimes (Johnson and Matchett, 2001). 

This may be one reason that research in this ecosystem has found that soil C is resistant to altered environmental conditions 

despite frequent fire (Wilcox et al., 2016), which has been predicted to reduce soil C through time due to losses through 515 

volatization (Ojima et al. 1994). 

Our estimates of soil C extended from 0-20 cm in the soil, which presents two potential limitation in this study. First, since 

our measurements of soil C were from 0-10 cm in the soil, it was necessary to extrapolate this C to 20 cm using depth-soil C 

relationships from each site. This was important to match depths with all the other measurements used in this study, but the 
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extrapolation process introduces additional sources of error. Additionally, our estimates of both C capacity and present C did 520 

not include measurements of C below 20 cm in the soil. Deeper C represents an additional store of C in many ecosystems 

and may stabilize C in ecosystems where C inputs by roots at depth are frequent, such as savanna and shrubland ecosystems. 

Additionally, soil microbial communities differ markedly in deeper soil layers than shallow layers (Fierer et al., 2003), so 

turnover rates across these systems may be quite different for deeper soils. Yet in many grasslands, C fluxes aboveground 

and in shallow soil layers are more likely to respond under global change scenarios than deeper soils because: (1) the 525 

proportion of root production of soil organic C and microbial activity are typically greatest within shallow soil layers 

(Jackson et al., 1996, Jobággy and Jackson, 2000, Blume et al., 2002, Taylor et al., 2002), and (2) altered air temperature is 

more likely to impact soil temperatures in surface soils versus deeper soils. 

5 Conclusions 

Here we used a recently developed metric, carbon capacity, to assess potential future trajectories of ecosystem C across 530 

six grasslands in the US Great Plains, and to identify grasslands that may be vulnerable to C loss under future global change 

scenarios. We showed that hot and dry grasslands had C contents greater than their C capacity, suggesting 

future C loss in these systems, especially if environmental conditions continue to change

. As arid ecosystems have been shown to be key components of the global C cycle due to their broad spatial 

extent (Poulter et al., 2014), understanding how NPP and ecosystem carbon residence times respond to alterations in 535 

environmental conditions in these ecosystems is vital for assessing future global C budgets. Additionally, the effect of 

frequent burning on C saturation suggests that land management practices that remove aboveground biomass may result 

in reduced capacity for these systems to be C sinks into the future. However, the effects of disturbances such as fire are 

complex and often are critical to maintaining ecosystem structure so holistic consideration of all effects is important for 

management decisions. Because anthropogenic and climate effects on ecosystems are global and ubiquitous, considerations 540 

of how land management and environmental impacts interact to control ecosystem functioning are critical for land 

management and policy decisions related to C sequestration. 

Appendices: 

Appendix A. Supplemental Figures A1-A8 

Appendix B. Supplemental Tables B1-B6 545 

Appendix C. Supplemental text describing data collection and cleaning methods 

Appendix D. Model evaluation text, Table D1, Figures D1-D2 

Appendix E. Land use history of study sites 
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Appendix A. Supplemental figures A1-A8 565 

 

Figure A1. Schematic of the submodels making up the Terrestrial Ecosystem model. Canopy photosynthesis is 

determined by hourly meteorological information through direct impacts (e.g., vapor pressure deficit) and 

alterations to soil environmental conditions (e.g., soil moisture and temperature). GPP is estimated from the 

canopy photosynthesis model. Carbon from the canopy model is transferred to different components of 570 

vegetation, which is summed over an annual time step to estimate NPP (GPP – autotrophic respiration). See 

Weng and Luo (2008) for additional details of the model. The soil C model incorporates turnover rates for 

aboveground vegetation (c1), roots (c2), litter (c3), active SOM (c4), slow SOM (c5), and passive SOM (c6). 

Turnover rates are modified by an environmental scalar (τ) at each time step. The proportion of C transferred 

between pools are controlled by the fi,j parameters, which represent the proportion of C turnover transferred 575 

from C pool j to pool I, with the pool numbers corresponding to the subscripts by the C turnover parameters.   
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Figure A2. Density plots showing distribution of estimated carbon turnover parameters (columns) using data 

assimilation techniques with a 6 pool carbon model and 4-5 data sets describing carbon pools and fluxes at 

each of the six sites (rows). Densities reflect 4 chains of 360k simulations each, with the first 20k simulations 580 

removed. SBL= Blue grama dominated site at the Sevilleta National Wildlife Refuge; SBK= Black grama 

dominated site at the Sevilleta National Wildlife Refuge; CPER=central plains experimental range; HPG=High 

Plains Grassland Research Station; HAR=Hays Agricultural Research Station; KNZ=Konza Prairie Biological 

Station. All carbon turnover parameters are in units of gC lost gC-1 day-1: c1=leaf turnover; c2=root turnover; 

c3=litter turnover; c4=fast SOM turnover; c5=slow SOM turnover; c6=passive SOM turnover. 585 
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Figure A3. Density plots showing distribution of estimated carbon transfer parameters (columns) using data 

assimilation techniques with a 6 pool carbon model and 4-5 data sets describing carbon pools and fluxes at 

each of the six sites (rows). Densities reflect 4 chains of 360k simulations each, with the first 20k simulations 590 

removed. SBL= Blue grama dominated site at the Sevilleta National Wildlife Refuge; SBK= Black grama 

dominated site at the Sevilleta National Wildlife Refuge; CPER=central plains experimental range; HPG=High 

Plains Grassland Research Station; HAR=Hays Agricultural Research Station; KNZ=Konza Prairie Biological 

Station. Transfer parameters (fx,y) dictate the proportion of C turnover in pool y transferring to pool x: 

f1=f43; f2=f53; f3=f54; f4=f64; f5=f45; f6=f65; f7=f46. 595 
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Figure A4. Density plots showing distribution of environmental scaling parameters (columns) dictating 600 

decomposition rates. We used data assimilation techniques with a 6 pool carbon model and 4-5 data sets 

describing carbon pools and fluxes at each of the six sites (rows). Densities reflect 4 chains of 360k 

simulations each, with the first 20k simulations removed. SBL= Blue grama dominated site at the Sevilleta 

National Wildlife Refuge; SBK= Black grama dominated site at the Sevilleta National Wildlife Refuge; 

CPER=central plains experimental range; HPG=High Plains Grassland Research Station; HAR=Hays Agricultural 605 

Research Station; KNZ=Konza Prairie Biological Station. mscut is the soil moisture level at which 

decomposition rates begin to become water limited; Q10 is the temperature sensitivity of decomposition. 
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Figure A5. Precipitation and air temperature during the growing season (Apr-Oct for SBK and SBL, Apr-Sept 

for all other sites) during the three focal years at each site compared with the long-term mean precipitation 610 

and air temperature. Averages represent the period of 1982-2012 obtained from Knapp et al. 2015, and error 

bars represent 1 standard deviation from the mean.  
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Figure A6. Three-dimensional plots (A,C) and variance partitioning results (B,D) showing the importance of 

ecosystem residence time and net primary productivity in making up the systems carbon capacity for our six 615 

focal ecosystems. A and B panels show results without KNZ, C and D include KNZ. In (B,D), numbers within the 

circles represent the amount of cross-site variance in carbon capacity explained solely by ecosystem 

residence time or net primary productivity. The number in the intersection represent variance explained 

jointly by both components. 

 620 

 



31 
 

 

Figure A7. Top panel: Cumulative proportion of soil C along depth profile (main) and beta distribution of 

proportion by depth (inset). Data were obtained from the International Soil Carbon Network (see table B4) 

from areas close to study sites and having similar cover types and management regimes. In main panel, we 625 

included estimated proportions for temperate grasslands (Temp grass) from Jobbágy and Jackson (2000). 

Bottom panel: soil C measured at each study site from 0-10 cm and soil C estimates from 0-20 cm based on 

relationships in top panel. Estimates were obtained using: C20=C10/CP10 ∙ CP20, where C10 is the soil C measured 

in the top 10 cm, CP10 is the proportion of C in the top 10 cm based on the beta regression, and CP20 is the 

proportion of C in the top 20 cm. Green bars represent soil C estimates from 0-20 cm plus vegetation C. 630 
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Figure A8. Average ANPP and BNPP simulation output across mean annual precipitation of our six grassland 

sites. 635 
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Appendix B. Supplemental tables B1-B6 645 

Table B1. Constraints and descriptions of carbon cycling and environmental scaling parameters used in data 
assimilation.   

 

 

 650 

 

 

 

 

 655 

 

 

 

  

Param. Default Lower Upper Description Units 

c1 1.00E-03 1.00E-04 1.00E-02 The proportion of leaf C turning over each day gC gC-1 day-1 

c2 9.00E-03 1.00E-04 1.00E-02 The proportion of root C turning over each day gC gC-1 day-1 

c3 9.00E-03 5.00E-04 2.00E-02 The proportion of litter C turning over each day gC gC-1 day-1 

c4 1.50E-02 5.00E-03 5.00E-02 Proportion of fast SOM turning over each day gC gC-1 day-1 

c5 6.00E-04 1.00E-05 2.00E-03 Proportion of slow SOM turning over each day gC gC-1 day-1 

c6 2.00E-05 1.00E-08 3.00E-05 
Proportion of passive SOM turning over each 

day 
gC gC-1 day-1 

f43 2.50E-01 3.00E-01 7.00E-01 
Proportion of litter C turnover going to fast 

SOM pool 
- 

f53 1.00E-01 5.00E-02 1.50E-01 
Proportion of litter C turnover going to slow 

SOM pool 
- 

f54 5.00E-01 2.50E-01 6.50E-01 
Proportion of fast SOM turnover going to slow 

SOM pool 
- 

f64 4.00E-03 1.00E-03 8.00E-03 
Proportion of litter C turnover going to passive 

SOM pool 
- 

f45 4.20E-01 1.00E-01 6.00E-01 
Proportion of slow SOM turnover going to fast 

SOM pool 
- 

f65 5.00E-02 2.00E-03 7.00E-02 
Proportion of slow C turnover going to passive 

SOM pool 
- 

f46 4.50E-01 3.00E-01 7.00E-01 
Proportion of passive C turnover going to fast 

SOM pool 
- 

Q10 2.20E+00 1.00E+00 4.00E+00 Temperature sensitivity of decomposition - 

mscut 2.00E-01 1.00E-02 4.00E-01 
Soil moisture level at which decomposition 

starts to become water limited 
- 
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Table B2. C cycling and environmental scaling parameters estimated via data assimilation with a six pool C 660 
model and 4-5 C pool and flux data sets for each of six grassland sites. 95% confidence intervals (CLl and cLu) 
are estimated from normal, log-normal, or Weibull distributions depending on the magnitude and direction 
of skew. Gelman-Rubin statistics (G-R) indicate convergence among independent chains. 

 SBL SBK 

Param MLE CLl cLu G-R MLE CLl cLu G-R 

c1 0.009107 6.75E-03 1.00E-02 1.0 0.007977 0.004471 0.009999 1.0 

c2 0.009405 7.70E-03 1.00E-02 1.0 0.00963 0.008492 0.01 1.0 

c3 0.017967 1.24E-02 2.00E-02 1.0 0.00068 0.0005 0.001112 1.0 

c4 0.017657 1.06E-02 2.67E-02 1.0 0.01101 0.006237 0.0172 1.0 

c5 0.000232 1.00E-05 1.02E-03 1.0 0.000188 5.61E-05 0.000374 1.0 

c6 1.46E-05 8.02E-07 2.87E-05 1.0 1.55E-05 1.41E-06 2.93E-05 1.0 

f43 0.618122 3.74E-01 7.00E-01 1.0 0.593098 0.347119 0.699949 1.0 

f53 0.110032 6.02E-02 1.50E-01 1.0 0.1055 0.056978 0.149515 1.0 

f54 0.298433 2.50E-01 4.10E-01 1.0 0.312915 0.250004 0.435435 1.0 

f64 0.004441 1.16E-03 7.71E-03 1.0 0.004506 0.001239 0.007792 1.0 

f45 0.262651 1.00E-01 5.45E-01 1.0 0.31254 0.103977 0.552567 1.0 

f65 0.036233 4.11E-03 6.77E-02 1.0 0.038417 0.005276 0.068779 1.0 

f46 0.504545 3.17E-01 6.90E-01 1.0 0.497965 0.312594 0.681608 1.0 

mscut 0.223073 1.78E-01 2.56E-01 1.0 0.159795 0.135553 0.18398 1.0 

Q10 1.895981 1.07E+00 2.76E+00 1.0 1.597074 1.231482 1.986987 1.0 

 

 CPER HPG 

Param MLE CLl cLu G-R MLE CLl cLu G-R 

c1 0.00746 0.005609 0.00966 1.0 0.007872 0.004192 0.009959 1.1 

c2 0.001675 0.001518 0.00184 1.0 0.000488 0.000417 0.000562 1.0 

c3 0.011091 0.006979 0.016717 1.0 0.018395 0.0143 0.019997 1.0 

c4 0.017479 0.006234 0.041909 1.0 0.042184 0.024925 0.049978 1.1 

c5 0.000128 0.0001 0.000181 1.0 0.000314 0.000164 0.000482 1.0 

c6 1.49E-05 7.57E-07 2.86E-05 1.1 1.64E-05 1.97E-06 2.92E-05 1.2 

f43 0.68024 0.618193 0.699996 1.0 0.576301 0.377749 0.699959 1.1 

f53 0.137347 0.099531 0.149997 1.0 0.102849 0.057045 0.14747 1.3 

f54 0.62252 0.546666 0.649987 1.0 0.574702 0.35944 0.649937 1.1 

f64 0.004421 0.001187 0.007682 1.1 0.004583 0.001361 0.00768 1.2 

f45 0.427899 0.176967 0.599756 1.0 0.388533 0.150328 0.587869 1.2 

f65 0.040839 0.007248 0.069772 1.1 0.032149 0.002948 0.060738 1.1 

f46 0.506596 0.316463 0.687456 1.0 0.473907 0.305835 0.667426 1.2 

mscut 0.073406 0.014973 0.125796 1.0 0.231396 0.205847 0.253547 1.0 

Q10 1.248167 1.10994 1.393126 1.0 3.482896 2.773369 3.950379 1.0 
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 665 
 HAR KNZ 

Param MLE CLl cLu G-R MLE CLl cLu G-R 

c1 0.005025 0.002799 0.007883 1.0 0.001854 0.000722 0.00367 1.0 

c2 0.000414 0.000257 0.0006 1.0 0.000967 0.000699 0.001413 1.0 

c3 0.004664 0.002313 0.007928 1.0 0.013651 0.004197 0.019902 1.0 

c4 0.026455 0.006518 0.047266 1.0 0.021989 0.005002 0.045437 1.0 

c5 0.000171 0.0001 0.000308 1.0 0.000233 0.000106 0.00041 1.0 

c6 1.41E-05 9.88E-07 2.88E-05 1.0 1.50E-05 1.46E-06 2.94E-05 1.0 

f43 0.561531 0.34928 0.699978 1.0 0.531489 0.347243 0.696558 1.1 

f53 0.102973 0.057002 0.146251 1.1 0.104992 0.05725 0.148682 1.1 

f54 0.54796 0.303471 0.649941 1.3 0.586921 0.387489 0.649992 1.0 

f64 0.004599 0.001247 0.007561 1.2 0.004439 0.001255 0.007846 1.0 

f45 0.354072 0.125197 0.577835 1.3 0.39581 0.156163 0.599482 1.1 

f65 0.03924 0.006196 0.069346 1.1 0.034188 0.004299 0.066817 1.1 

f46 0.509573 0.327535 0.691565 1.0 0.490831 0.314648 0.683017 1.1 

mscut 0.283857 0.231203 0.328458 1.0 0.114386 0.013291 0.232586 1.1 

Q10 2.503186 1.929534 3.128982 1.0 3.445054 2.277028 3.999685 1.0 

 

 

 

 
 670 
 
 
 
 
 675 
 
 
 
 
 680 
 
 
 
 
 685 
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Table B3. Cross correlations between Markov Chain Monte Carlo output of different model parameters 
during data assimilation. 

 

site 
para
m c1 c2 c3 c4 c5 c6 f43 f53 f54 f64 f45 f65 f46 

msc
ut Q10 

SBL c1 1 0.06 0.05 0.14 0.11 0.02 -0.04 -0.04 0.04 0.01 -0.02 0.02 -0.01 -0.09 -0.17 

SBL c2 0.06 1 0.04 0.13 0.02 0 -0.04 -0.02 0 0 0.01 0.01 0 0.05 -0.07 

SBL c3 0.05 0.04 1 0.1 -0.02 0.03 0.11 -0.01 -0.02 0.01 0.01 0.01 -0.02 0.01 -0.07 

SBL c4 0.14 0.13 0.1 1 0.47 0.02 0 -0.05 0.17 0.02 -0.05 0.02 -0.01 -0.18 -0.43 

SBL c5 0.11 0.02 -0.02 0.47 1 -0.03 -0.03 0.02 0.41 0.03 -0.21 0.06 0 -0.79 -0.86 

SBL c6 0.02 0 0.03 0.02 -0.03 1 0.01 -0.01 0 0.05 -0.02 -0.02 -0.05 0.02 0 

SBL f43 -0.04 -0.04 0.11 0 -0.03 0.01 1 0.01 -0.01 -0.02 0.04 0 -0.04 0.1 0.18 

SBL f53 -0.04 -0.02 -0.01 -0.05 0.02 -0.01 0.01 1 0.01 0 -0.04 0 0.01 0.04 0.09 

SBL f54 0.04 0 -0.02 0.17 0.41 0 -0.01 0.01 1 -0.03 -0.08 -0.01 0.03 -0.22 -0.21 

SBL f64 0.01 0 0.01 0.02 0.03 0.05 -0.02 0 -0.03 1 -0.04 -0.01 0 -0.04 -0.04 

SBL f45 -0.02 0.01 0.01 -0.05 -0.21 -0.02 0.04 -0.04 -0.08 -0.04 1 -0.03 0.03 0.25 0.28 

SBL f65 0.02 0.01 0.01 0.02 0.06 -0.02 0 0 -0.01 -0.01 -0.03 1 0.02 -0.03 -0.02 

SBL f46 -0.01 0 -0.02 -0.01 0 -0.05 -0.04 0.01 0.03 0 0.03 0.02 1 0.01 0.01 

SBL 
msc
ut -0.09 0.05 0.01 -0.18 -0.79 0.02 0.1 0.04 -0.22 -0.04 0.25 -0.03 0.01 1 0.87 

SBL Q10 -0.17 -0.07 -0.07 -0.43 -0.86 0 0.18 0.09 -0.21 -0.04 0.28 -0.02 0.01 0.87 1 

                 

SBK c1 1.00 0.05 0.01 0.09 0.11 0.01 0.03 0.03 0.02 0.04 -0.01 -0.02 0.04 0.00 -0.16 

SBK c2 0.05 1.00 0.05 0.15 0.17 -0.01 -0.01 0.00 0.02 0.01 -0.01 0.00 0.01 0.07 -0.21 

SBK c3 0.01 0.05 1.00 0.05 -0.17 0.01 0.08 0.06 0.01 0.00 0.01 -0.02 0.00 0.05 -0.16 

SBK c4 0.09 0.15 0.05 1.00 0.52 -0.01 0.00 -0.02 0.06 -0.01 0.04 0.02 0.02 -0.01 -0.44 

SBK c5 0.11 0.17 -0.17 0.52 1.00 -0.07 0.09 0.01 0.27 0.01 0.11 0.06 0.01 -0.31 -0.75 

SBK c6 0.01 -0.01 0.01 -0.01 -0.07 1.00 0.04 0.04 -0.02 -0.06 -0.05 -0.01 0.03 -0.02 0.00 

SBK f43 0.03 -0.01 0.08 0.00 0.09 0.04 1.00 -0.05 0.09 0.00 0.01 -0.08 0.06 -0.02 0.00 

SBK f53 0.03 0.00 0.06 -0.02 0.01 0.04 -0.05 1.00 0.02 0.04 0.04 -0.08 -0.10 0.00 0.02 

SBK f54 0.02 0.02 0.01 0.06 0.27 -0.02 0.09 0.02 1.00 -0.02 0.02 -0.03 0.01 0.03 -0.02 

SBK f64 0.04 0.01 0.00 -0.01 0.01 -0.06 0.00 0.04 -0.02 1.00 -0.02 -0.01 0.00 -0.01 -0.01 

SBK f45 -0.01 -0.01 0.01 0.04 0.11 -0.05 0.01 0.04 0.02 -0.02 1.00 -0.06 0.00 0.06 0.07 

SBK f65 -0.02 0.00 -0.02 0.02 0.06 -0.01 -0.08 -0.08 -0.03 -0.01 -0.06 1.00 0.01 -0.01 -0.02 

SBK f46 0.04 0.01 0.00 0.02 0.01 0.03 0.06 -0.10 0.01 0.00 0.00 0.01 1.00 0.00 -0.01 

SBK 
msc
ut 0.00 0.07 0.05 -0.01 -0.31 -0.02 -0.02 0.00 0.03 -0.01 0.06 -0.01 0.00 1.00 0.53 

SBK Q10 -0.16 -0.21 -0.16 -0.44 -0.75 0.00 0.00 0.02 -0.02 -0.01 0.07 -0.02 -0.01 0.53 1.00 

                 

CPER c1 1.00 0.18 -0.05 -0.08 0.02 0.04 -0.01 0.04 0.05 0.01 0.02 0.02 -0.02 0.17 -0.16 



37 
 

CPER c2 0.18 1.00 0.09 0.00 0.06 0.02 -0.02 -0.03 -0.03 0.01 -0.02 -0.02 0.00 0.50 -0.47 

CPER c3 -0.05 0.09 1.00 -0.30 -0.01 0.07 0.08 0.02 -0.06 -0.07 -0.05 -0.04 0.00 0.08 -0.02 

CPER c4 -0.08 0.00 -0.30 1.00 0.01 -0.04 -0.03 -0.09 0.08 0.06 0.00 0.01 0.10 -0.03 0.01 

CPER c5 0.02 0.06 -0.01 0.01 1.00 -0.02 0.09 0.09 0.17 0.00 0.18 0.05 -0.03 0.03 -0.13 

CPER c6 0.04 0.02 0.07 -0.04 -0.02 1.00 0.03 0.05 0.05 0.02 -0.04 0.05 0.03 0.00 -0.02 

CPER f43 -0.01 -0.02 0.08 -0.03 0.09 0.03 1.00 -0.08 -0.11 0.03 -0.06 -0.02 -0.02 -0.02 0.08 

CPER f53 0.04 -0.03 0.02 -0.09 0.09 0.05 -0.08 1.00 -0.16 -0.13 -0.03 0.05 -0.04 -0.03 0.06 

CPER f54 0.05 -0.03 -0.06 0.08 0.17 0.05 -0.11 -0.16 1.00 0.01 -0.05 -0.05 0.01 -0.03 0.10 

CPER f64 0.01 0.01 -0.07 0.06 0.00 0.02 0.03 -0.13 0.01 1.00 -0.02 0.01 -0.03 0.01 0.00 

CPER f45 0.02 -0.02 -0.05 0.00 0.18 -0.04 -0.06 -0.03 -0.05 -0.02 1.00 0.01 -0.11 -0.01 0.07 

CPER f65 0.02 -0.02 -0.04 0.01 0.05 0.05 -0.02 0.05 -0.05 0.01 0.01 1.00 0.02 -0.03 0.01 

CPER f46 -0.02 0.00 0.00 0.10 -0.03 0.03 -0.02 -0.04 0.01 -0.03 -0.11 0.02 1.00 0.01 -0.01 

CPER 
msc
ut 0.17 0.50 0.08 -0.03 0.03 0.00 -0.02 -0.03 -0.03 0.01 -0.01 -0.03 0.01 1.00 -0.03 

CPER Q10 -0.16 -0.47 -0.02 0.01 -0.13 -0.02 0.08 0.06 0.10 0.00 0.07 0.01 -0.01 -0.03 1.00 

                 

HPG c1 1.00 -0.11 0.21 0.16 -0.10 -0.04 0.03 -0.07 -0.22 0.13 -0.17 -0.01 -0.08 -0.09 0.01 

HPG c2 -0.11 1.00 0.04 -0.04 0.46 -0.01 0.06 0.08 0.11 -0.06 0.02 -0.07 0.02 0.46 -0.44 

HPG c3 0.21 0.04 1.00 -0.07 -0.06 -0.02 -0.12 -0.13 -0.14 0.05 -0.01 0.00 -0.11 0.01 -0.03 

HPG c4 0.16 -0.04 -0.07 1.00 -0.07 -0.14 -0.13 0.02 -0.05 -0.01 -0.05 0.14 0.04 0.02 0.06 

HPG c5 -0.10 0.46 -0.06 -0.07 1.00 0.04 0.43 0.16 0.57 0.05 0.39 -0.10 0.12 0.02 -0.47 

HPG c6 -0.04 -0.01 -0.02 -0.14 0.04 1.00 0.21 0.05 0.14 0.12 0.03 -0.12 0.11 0.04 0.05 

HPG f43 0.03 0.06 -0.12 -0.13 0.43 0.21 1.00 0.05 0.17 -0.03 0.06 -0.17 0.11 0.04 -0.01 

HPG f53 -0.07 0.08 -0.13 0.02 0.16 0.05 0.05 1.00 0.01 -0.13 -0.13 -0.09 0.14 -0.02 -0.11 

HPG f54 -0.22 0.11 -0.14 -0.05 0.57 0.14 0.17 0.01 1.00 0.06 0.08 -0.17 0.11 0.11 -0.01 

HPG f64 0.13 -0.06 0.05 -0.01 0.05 0.12 -0.03 -0.13 0.06 1.00 0.15 0.02 0.00 -0.02 0.04 

HPG f45 -0.17 0.02 -0.01 -0.05 0.39 0.03 0.06 -0.13 0.08 0.15 1.00 -0.02 0.01 -0.04 -0.06 

HPG f65 -0.01 -0.07 0.00 0.14 -0.10 -0.12 -0.17 -0.09 -0.17 0.02 -0.02 1.00 -0.11 0.00 0.07 

HPG f46 -0.08 0.02 -0.11 0.04 0.12 0.11 0.11 0.14 0.11 0.00 0.01 -0.11 1.00 0.01 -0.01 

HPG 
msc
ut -0.09 0.46 0.01 0.02 0.02 0.04 0.04 -0.02 0.11 -0.02 -0.04 0.00 0.01 1.00 0.54 

HPG Q10 0.01 -0.44 -0.03 0.06 -0.47 0.05 -0.01 -0.11 -0.01 0.04 -0.06 0.07 -0.01 0.54 1.00 

                 

HAR c1 1.00 0.86 0.55 0.04 0.45 0.10 -0.03 -0.10 -0.24 0.00 0.00 -0.06 0.00 0.66 -0.45 

HAR c2 0.86 1.00 0.63 0.03 0.51 0.08 -0.10 -0.10 -0.29 0.00 0.00 -0.07 0.03 0.76 -0.48 

HAR c3 0.55 0.63 1.00 0.02 0.32 0.01 -0.01 -0.06 -0.13 0.00 0.05 -0.08 0.03 0.48 -0.33 

HAR c4 0.04 0.03 0.02 1.00 -0.01 -0.06 -0.18 -0.02 0.15 0.05 -0.13 0.11 0.08 0.03 0.01 

HAR c5 0.45 0.51 0.32 -0.01 1.00 0.03 0.25 -0.10 0.23 0.04 0.23 -0.04 -0.03 0.31 -0.36 

HAR c6 0.10 0.08 0.01 -0.06 0.03 1.00 0.12 0.01 -0.06 -0.06 0.01 -0.05 -0.28 0.02 -0.13 

HAR f43 -0.03 -0.10 -0.01 -0.18 0.25 0.12 1.00 -0.30 -0.01 0.09 0.13 -0.10 -0.21 -0.12 0.03 
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HAR f53 -0.10 -0.10 -0.06 -0.02 -0.10 0.01 -0.30 1.00 -0.06 -0.12 -0.02 -0.01 -0.06 -0.03 0.12 

HAR f54 -0.24 -0.29 -0.13 0.15 0.23 -0.06 -0.01 -0.06 1.00 -0.05 -0.11 0.03 -0.01 -0.16 0.28 

HAR f64 0.00 0.00 0.00 0.05 0.04 -0.06 0.09 -0.12 -0.05 1.00 0.08 0.17 -0.04 -0.02 -0.02 

HAR f45 0.00 0.00 0.05 -0.13 0.23 0.01 0.13 -0.02 -0.11 0.08 1.00 -0.12 0.04 -0.01 0.00 

HAR f65 -0.06 -0.07 -0.08 0.11 -0.04 -0.05 -0.10 -0.01 0.03 0.17 -0.12 1.00 -0.10 -0.06 0.01 

HAR f46 0.00 0.03 0.03 0.08 -0.03 -0.28 -0.21 -0.06 -0.01 -0.04 0.04 -0.10 1.00 0.03 -0.02 

HAR 
msc
ut 0.66 0.76 0.48 0.03 0.31 0.02 -0.12 -0.03 -0.16 -0.02 -0.01 -0.06 0.03 1.00 0.12 

HAR Q10 -0.45 -0.48 -0.33 0.01 -0.36 -0.13 0.03 0.12 0.28 -0.02 0.00 0.01 -0.02 0.12 1.00 

                 

KNZ c1 1.00 0.52 0.04 -0.07 0.28 -0.07 -0.03 0.00 -0.07 -0.02 0.02 0.03 0.01 0.04 -0.48 

KNZ c2 0.52 1.00 0.01 -0.13 0.55 -0.05 -0.07 -0.02 -0.10 -0.06 0.03 0.04 0.02 0.08 -0.93 

KNZ c3 0.04 0.01 1.00 -0.05 0.08 0.09 0.10 0.04 0.02 -0.12 0.03 0.01 0.05 0.04 -0.01 

KNZ c4 -0.07 -0.13 -0.05 1.00 -0.21 -0.02 -0.05 0.11 0.03 0.08 -0.12 -0.04 -0.07 -0.09 0.11 

KNZ c5 0.28 0.55 0.08 -0.21 1.00 -0.05 0.19 0.08 0.23 -0.02 0.34 0.13 0.03 0.17 -0.48 

KNZ c6 -0.07 -0.05 0.09 -0.02 -0.05 1.00 0.02 0.06 0.12 -0.10 0.02 -0.08 -0.03 -0.02 0.03 

KNZ f43 -0.03 -0.07 0.10 -0.05 0.19 0.02 1.00 -0.02 0.05 0.10 0.01 0.01 -0.01 -0.04 0.07 

KNZ f53 0.00 -0.02 0.04 0.11 0.08 0.06 -0.02 1.00 0.05 0.09 0.05 -0.13 -0.12 0.04 0.04 

KNZ f54 -0.07 -0.10 0.02 0.03 0.23 0.12 0.05 0.05 1.00 0.00 -0.12 -0.02 -0.05 -0.02 0.09 

KNZ f64 -0.02 -0.06 -0.12 0.08 -0.02 -0.10 0.10 0.09 0.00 1.00 -0.14 0.07 -0.11 0.05 0.06 

KNZ f45 0.02 0.03 0.03 -0.12 0.34 0.02 0.01 0.05 -0.12 -0.14 1.00 0.08 0.14 0.09 -0.02 

KNZ f65 0.03 0.04 0.01 -0.04 0.13 -0.08 0.01 -0.13 -0.02 0.07 0.08 1.00 0.00 -0.07 -0.06 

KNZ f46 0.01 0.02 0.05 -0.07 0.03 -0.03 -0.01 -0.12 -0.05 -0.11 0.14 0.00 1.00 0.01 -0.02 

KNZ 
msc
ut 0.04 0.08 0.04 -0.09 0.17 -0.02 -0.04 0.04 -0.02 0.05 0.09 -0.07 0.01 1.00 0.16 

KNZ Q10 -0.48 -0.93 -0.01 0.11 -0.48 0.03 0.07 0.04 0.09 0.06 -0.02 -0.06 -0.02 0.16 1.00 
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Table B4. Descriptions of soil profile data sets obtained from the International Soil Carbon Network 

 705 

Location Site code Latitude Longitude 
Profile 
depth 
(cm) 

Sevilleta National Wildlife Refuge, New 
Mexico 

81NM053005 34.18703 -107.21 152 

Central Plains Experimental Range, Colorado S1991CO123007 40.82806 -104.786 130 

Cheyenne, Wyoming S1989WY021007 41.20889 -104.931 160 

Hays, Kansas S1968KS051001 39.01528 -99.1258 145 

Konza Priarie Biological Station, Kansas KZP 1D 39.07597 -96.5638 200 
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Table B5. Variance partitioning results comparing among site variation in net primary productivity explained 725 

by site-level estimates of average annual precipitation, average annual temperature, soil bulk density, 

grass:forb, C3:C4, and annual species abundance. 

 Variable 1 Variable2 Test AdjR2 Fval Pval 

NPP MAP 

MAP 

X1|X2 1.17 123.71 0.01 

X1X2 colin. -0.21 NA NA 

X2|X1 0.00 0.58 0.51 

X1+X2 0.96 63.84 <0.01 

Bulk Density 

X1|X2 0.36 32.70 0.01 

X1X2 colin. 0.61 NA NA 

X2|X1 -0.01 0.03 0.84 

X1+X2 0.95 53.74 0.02 

Grass:forb 

X1|X2 0.09 11.44 0.05 

X1X2 colin. 0.87 NA NA 

X2|X1 0.00 0.82 0.43 

X1+X2 0.96 68.27 <0.01 

C3:C4 

X1|X2 1.15 103.19 <0.01 

X1X2 colin. -0.18 NA NA 

X2|X1 -0.01 0.04 0.83 

X1+X2 0.95 54.02 0.01 

Annual 
species 

abundance 

X1|X2 0.50 74.70 0.01 

X1X2 colin. 0.47 NA NA 

X2|X1 0.01 2.06 0.24 

X1+X2 0.97 90.77 <0.01 

EcoRT MAT 

MAP 

X1|X2 0.540.73 4.106.57 0.180.11 

X1X2 colin. 
-0.16-
0.14 

NANA NANA 

X2|X1 
-0.09-
0.11 

0.100.13 0.710.69 

X1+X2 0.700.52 2.053.29 0.330.14 

Bulk Density 

X1|X2 0.220.35 2.213.60 0.220.18 

X1X2 colin. 
-

0.180.24 
NANA NANA 

X2|X1 
0.24-
0.13 

0.020.02 0.860.90 

X1+X2 0.720.54 1.973.12 0.370.22 

Grass:forb 
X1|X2 0.600.81 4.748.46 0.160.04 

X1X2 colin. 
-0.10-
0.22 

NANA NANA 

Formatted Table
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X2|X1 
-0.15-
0.03 

0.380.75 0.520.31 

X1+X2 0.640.44 2.384.24 0.240.15 

C3:C4 

X1|X2 0.220.55 2.225.34 0.230.14 

X1X2 colin. 
-

0.180.04 
NANA NANA 

X2|X1 
0.23-
0.10 

0.010.23 0.950.69 

X1+X2 0.730.51 1.953.44 0.250.12 

Annual 
species 

abundance 

X1|X2 0.360.58 3.165.31 0.220.13 

X1X2 colin. 
-

0.120.01 
NANA NANA 

X2|X1 
0.10-
0.13 

0.290.03 0.690.94 

X1+X2 0.660.54 2.273.13 0.300.24 
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Table B6. Average soil moisture and soil temperature during June-September at our six focal grassland sites. 750 

Site 
Volumetric 

soil moisture 
(%) 

Soil 
temperature 

(°C) 

SBL 13.3 26.3 

SBK 11.9 27.6 

CPER 11.4 22.9 

HPG 15.4 21.1 

HAR 21.0 24.6 

KNZ 20.9 24.0 

 

 

 

 

 755 

 

 

 

 

 760 

 

 

 

 



43 
 

 765 

 

 

 

 

Appendix C. Detailed description of data collection and cleaning methods 770 

C1 Aboveground net primary productivity (ANPP) 

At CPER, HPG, HAR, and KNZ, ANPP was collected annually by clipping two 0.1 m2 subplots per replicate in September, 

sorted to remove previous years’ growth, dried at 60 C for 48 hours, and weighed. At SBK and SBL, ANPP was estimated 

using species-specific allometric methods (Muldavin et al. 2008, Rudgers et al. 2019) within four 1 m2 subplots within each 

of the 10 control plots.  775 

C2 Vegetative litter 

Litter estimates were obtained by collecting previous year’s biomass to ground level in the same subplots as ANPP. Litter 

was not present at SBL or SBK due to rapid decomposition at the soil surface at these sites, nor at KNZ due to annual 

burning.  

C3 Belowground net primary productivity (BNPP) and root standing crop 780 

BNPP was estimated from 0-20 cm at each site using two root ingrowth cores per plot (Persson 1980). Ingrowth cores were 

constructed from 2 mm fiberglass screen molded into a 5 cm diameter 22 cm long cylinder (2 cm was left above soil 

surface). In April-May, a soil auger was used to drill 20 cm deep in the soil. Ingrowth cores were then inserted, filled with 

sieved, root free soil from the site, and packed to approximate soil density. Ingrowth cores were removed in late September 

and stored at 4 C until processing. Samples were elutriated to separate root biomass from soil. Samples were sorted to 785 

remove soil organic matter, dried at 60 C for 48 hours, and weighed. Finally, samples were fired at 450 C and resulting ash 

subtracted from the biomass value to generate an ash free estimate of BNPP. 5 cm root standing crop samples were also 

taken from 0-20 cm in two subplots. Standing crop root samples were processed similarly to BNPP samples, with the 

exception that dead roots were sorted out of the samples at the same time as SOM.  
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C4 Soil CO2 efflux 790 

Surface soil respiration was calculated using measurements of soil CO2 concentrations (GMP 220 series probes, Vaisala 

Corp., Helsinki, Finland) in three replicates per site at 5, 10, and 20 cm depths, combined with diffusion rates calculated 

using soil temperature and moisture data collected simultaneously with CO2 concentration. See Vargas & Allen (2008), and 

Vargas et al. (2010) for more information about calculating soil respiration rates using this method. We averaged 15 minute 

soil respiration measurements between 10:00 am and 2:00 pm to obtain daily soil respiration values.  795 

C5 Soil moisture and temperature 

Volumetric soil moisture integrated from 0-15 cm was measured in all 10 plots every 15 minutes using time domain 

reflectometry probes (CS-616 model, Campbell Scientific, Inc., Logan, UT, USA). Soil temperature was measured in 3 plots 

at 5 cm and 10 cm depths using thermocouples (K-type, OMEGA Engineering Inc., Stamford, CT, USA).  

C6 Soil bulk density 800 

Bulk density was measured at each site from ten 7 cm diameter soil cores taken 0-30 cm. Soil cores were extracted in 

segments to reduce compaction. All aboveground vegetation was removed, and cores were dried at 105 C for 48 hours, then 

weighed. Bulk density was then calculated as: 

𝐵𝐷 =
𝑀𝑑𝑟𝑦

𝜋𝑟2𝑥 𝐷
           (C1) 

Where Mdry is the dry mass, r is the radius, and D is the depth of the soil core.  805 

C7 Meteorological data 

Hourly air temperature, precipitation, relative humidity, vapor pressure deficit (VPD), and incident photosynthetically active 

radiation data were obtained from nearby weather stations to run the terrestrial ecosystem model (TECO; Weng and Luo, 

2008). Gaps of < 10 time steps (hours) were filled by splining, and all splined sections examined to ensure values were 

within reasonable bounds. Gaps of longer time steps were filled from next closest meteorological stations of the same 810 

elevation. When unavailable, we calculated VPD as actual vapor pressure (ea) minus saturation vapor pressure (es). ea is 

estimated as: 

𝑒𝑎 =
𝑅𝐻

100
𝑒𝑠           (C2) 

where RH is relative humidity, and es is estimated as: 
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𝑒𝑠 = 0.6108𝑒
17.27𝑡

𝑡+237.3          (C3) 815 

where t is air temperature. 

C8 Soil total organic carbon 

At CPER, HGR, HAR, and KNZ, percent C was measured in three 2 cm diameter 10 cm deep soil cores per plot. 

Subsamples were aggregated, sieved with a 2 mm soil sieve to remove root material, dried, and ground. Samples were then 

measured for total C via dry combustion and grass chromatography using a LECO CN 2000 combustion analyzer (LECO 820 

Corp., Saint Joseph, MI, USA). For SBL and SBK, percent organic matter was estimated in soil from 0-10 cm depths from 

nearby areas having similar soils and vegetation to the EDGE sites. Organic matter values were then converted to percent C 

by dividing the percent organic matter by 1.72 (assumes 58% C stoichiometry of organic matter). Percent C for all sites was 

then converted to total C using: 

𝐶𝑇 = 𝐷 𝑥 𝐵𝐷 𝑥 𝐶𝑝𝑥 10000          (C4) 825 

Where CT is total carbon, D is the depth in cm to which the sample was collected, BD is the bulk density in g per cm-2, and 

Cp is the proportion of carbon.  

C9 Plant species abundance 

Abundance of plant species was estimated visually in June and August in four 1 x 1 m2 subplots per plot to the nearest 

percent. Species having less than 1% cover were rounded up to 1%. Calibrations of visual estimates were performed across 830 

researchers and with measurements seasonally. Maximum cover of each species was taken for each subplot, then all 

abundances were averaged across subplots to get plot-level estimates. 
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Appendix D. Model evaluation text, Table D1, Figures D1-D3 

Model validation exercises were conducted to compare the ability of the model to represent (1) average plant growth across 

sites and (2) variability of plant growth across years within each site. To this end, models were parameterized for each site 

based on soil texture, field capacity, wilting point, latitude, and root:shoot ratios. Additionally, maximum and minimum 

specific leaf area and Vcmax parameters were adjusted to better match measured above and belowground plant growth. 850 
Table 1 shows the parameter sets used for each site. 

Empirical observations of ANPP and BNPP (n=10) were compared to leaf+stem biomass and root productivity from the 

model at the time of data collection. At CPER, HPG, HAR, and KNZ, ANPP was collected annually by clipping two 0.1 m2 

subplots per replicate in September, sorted to remove previous years’ growth (leaf litter), dried at 60 C for 48 hours, and 

weighed. At SBK and SBL, ANPP was estimated using species-specific allometric methods (Muldavin et al. 2008) within 855 
four 1m2 subplots within each of the 10 replicates. BNPP within each replicate at each site was estimated from 0-20 cm 

using two 20 cm x 5 cm diameter root ingrowth cores per plot (Persson 1980). See Appendix 3 for additional details about 

empirical data collection. 

Models were spun up for 500 years using cycled meteorological data from each site – all carbon pools stabilized after 200-

400 years. Then simulations were conducted for 2014-2017 for all sites. Empirical ANPP data were available from 2014-860 
2017 for all sites, and BNPP was available for CPER, HPG, HAR, and KNZ for 2014-2017. BNPP was available at SBL and 

SBK from 2015-2017. To assess model performance, we calculated various validation metrics, including R2, RMSE, and the 

correlation coefficient. 

Generally, cross-site averages of model output and observations were tightly correlated, but within-site model output was 

less correlated to interannual empirical observations (Table 1). However, it is important to note the variation associated with 865 
empirical measurements and that most model simulations fell within one standard error of empirical observations (error bars 

in Fig. D2 and D3). A notable exception to this occurred in 2014 at CPER and HPG sites, where BNPP was observed as 

much greater than model simulations. We are unsure what drove the high BNPP at these sites in 2014 since environmental 

conditions were within normal ranges (Fig. D1). It could be that other unmeasured variables (e.g., belowground animal 

activity, small mammal activity) were responsible for this high growth belowground.  870 

 

Table D1. Model output for comparisons between empirical and simulated data. 

Site 
Productivity 
type R2 RMSE 

Correlation 
coefficient 

means anpp 0.988738 17.96882 0.994353 

means bnpp 0.93693 23.4836 0.967952 
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sbl anpp 0.431519 9.568253 -0.6569 

sbl bnpp 0.009114 18.25828 -0.09547 

sbk anpp 0.667188 10.51358 0.816816 

sbk bnpp 0.059729 13.3254 -0.2444 

cper anpp 0.087017 33.30121 0.294986 

cper bnpp 0.181185 98.48398 0.425659 

hpg anpp 0.018955 35.10083 -0.13768 

hpg bnpp 0.022188 131.1703 0.148957 

har anpp 0.526963 28.82132 0.725922 

har bnpp 0.330895 34.27893 0.575235 

knz anpp 0.004173 162.8426 -0.0646 

knz bnpp 0.637154 36.67331 -0.79822 

anpp=aboveground net primary productivity, 
bnpp=belowground net primary productivity, sbl=Sevilleta 
National Wildlife Refuge blue grama grassland; 
sbk=Sevilleta National Wildlife Refuge black grama 
grassland; cper=Central Plains Experimental Range; 
hpg=High Plains Grasslands Research Station; har=Hays 
Agricultural Research Center; knz=Konza Prairie Biological 
Station 
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Figure D1. Cumulative hourly precipitation and hourly air temperature throughout each year simulated within 875 

each site. 
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Figure D2. Within year patterns of simulated aboveground biomass and BNPP for SBL, SBK, and CPER, 

compared with empirical observations. Bars represent one standard deviation from the mean of the 10 

replicate measurements. Years are represented as colors using the scale from Fig. 1. 880 
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Figure D3. Within year patterns of simulated aboveground biomass and BNPP for HPG, HYS, and KNZ, 

compared with empirical observations. Bars represent one standard deviation from the mean of the 10 

replicate measurements. Years are represented as colors using the scale from Fig. 1. 
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Appendix E. Land use history of study sites 905 

Here, we outline the recent land use history starting with the establishment of the current associations responsible for 

managing these areas. 

SBL, SBK: The Sevilleta National Wildlife Refuge in central New Mexico, USA, was established in 1973. Prior to that time 

the land was lightly to moderately grazed by domestic herbivores (mostly cattle along with some horses and sheep) for about 

three centuries as part of a collective land grant to settlers from the King of Spain. All domestic herbivores were removed 910 
from the site when the refuge was established, and the vegetation has recovered from grazing (Gosz and Gosz 1996, Collins 

and Xia 2015). The refuge sits at the intersection of several biomes (Gosz and Gosz 1996) including Great Plains grassland 

dominated by blue grama (Bouteloua gracilis)(SBL site in this study) and Chihuahuan Desert grassland dominated by black 

grama (B. eriopoda)(SBK site in this study). Chihuahuan Desert grassland is advancing northward into Great Plains 

grassland (Collins et al. 2020) in response to increasing aridity throughout the southwestern US (Rudgers et al. 2018, Maurer 915 
et al. 2020). 

CPER: The Central Plains Experimental Range is a shortgrass prairie dominated by B. gracilis (Hazlett 1998). The 

experimental station was established in the 1930s to better understand how to manage lands to avoid catastrophic 

occurrences such as the Dust Bowl. A number of climatic and management effects occurred at CPER, including a severe 

blizzard in 1949, an extreme flood in 1965, and sever droughts in 1939, 1954, 1964 (Shoop et al. 1989), and 2012 (Knapp et 920 
al. 2015). The specific area where our plots were located have been ungrazed for 14 years prior to the start of measurements. 

Before then, grazing occurred in the area but fire was largely absent at the site. 

HPG: The High Plains Grassland Research Station was authorized by congress in 1928 to experiment with various 

horticultural crops in arid lands, which was begun in 1930. In 1974, the station shifted focus to rangeland management, water 

conservation, and land reclamation. The area where the plots were located was ungrazed since 2004 (Dijkstra et al. 2010) 925 
and has little to no history of fire. 

HAR: Kansas State University began management of The Agricultural Research Center-Hays in 1994 and was managed for 

cattle grazing. The plots where our plots were located were ungrazed and unburned since 2005 (Heisler-White et al. 2009). 

KNZ: The land where Konza Prairie Biological Station resides was purchased by the Nature Conservancy in 1971 and 

deeded to Kansas State University to establish a watershed-scale experiment to assess the impacts of fire and grazing on 930 
tallgrass ecological processes (Knapp et al. 1998). The watershed where our measurements took place has been burned 

annually in the spring since 1988 and was ungrazed by large ungulates since the early 1980s. 

 

Code availability 

R scripts to conduct data assimilation, calculate all metrics presented in the paper and statistical analyses publically available 935 
at https://github.com/wilcoxkr/AssessingCarbonCapacity. TECO model code is available on the ECOLAB website here: 

https://www2.nau.edu/luo-lab/?downloads. 

Data availability 

MCMC chains and raw empirical data is available upon request to the corresponding author. 
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