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Abstract 

 1 

Ectomycorrhizal fungi (EMF) are important components of the soil microbial 2 

communities and EMF biomass can potentially increase carbon (C) stocks by 3 

accumulating in the soils as necromass and producing recalcitrant structures. EMF 4 

growth depends on the C allocated belowground by the host trees and the nutrient 5 

limitation on tree growth is expected to influence this allocation. Therefore, studying 6 

EMF production and understanding the factors that regulates it in natural soils is 7 

important to understand C cycling in forests. 8 

Fungal mycelium collected from ingrowth meshbags is commonly used to estimate 9 

EMF biomass, but these measurements might not reflect the total EMF production 10 

since turnover rates of the hyphae are not considered. Here we estimated EMF 11 

production and turnover in response to P fertilization (applied as superphosphate) in a 12 

Norway spruce forest where nitrogen (N) deposition has resulted in phosphorus (P) 13 

limitation of plant production by using a combination of meshbags with different 14 

incubation periods and with Bayesian inferences. To test how localized patches of N 15 
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and P influence EMF production and turnover we amended some bags with a nitrogen 20 

source (methylene urea) or P source (apatite). Additionally, the Bayesian model tested 21 

the effect of seasonality (time of meshbag harvesting) on EMF production and 22 

turnover. 23 

 24 

We found that turnover of EMF was not affected by P fertilization or meshbag 25 

amendment. P fertilization had a negative effect on EMF production in all the 26 

meshbag amendments suggesting a reduced belowground C allocation to the EMF 27 

when P limitation is alleviated. Apatite amendment significantly increased EMF 28 

biomass production in comparison with the pure quartz bags in the control plots but 29 

not in the P-fertilized plots. This indicates that P-rich patches enhance EMF 30 

production in P limited forests, but not when P is not limiting. Urea amendment had a 31 

general positive effect on EMF production, but this was significantly reduced by P 32 

fertilization, suggesting that a decrease in EMF production due to the alleviated P 33 

limitation will affect N foraging. Seasonality had a significant effect on EMF 34 

production and the differences registered between the treatments were higher during 35 

the warmer months and disappeared at the end of the growing season.  36 

 37 

Many studies highlight the importance of N for regulating belowground C allocation 38 

to EMF in northern coniferous forests, but here we show that the P status of the forest 39 

can be equally important for belowground carbon allocation to EMF production in 40 

areas with high N deposition.  41 

Key words: Ectomycorrhizal fungi, fungal growth, fungal turnover, nitrogen 42 
deposition, phosphorus limitation, apatite, methylene urea, Bayesian inference.  43 
 44 
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 53 

 54 

1 Introduction: 55 

In terrestrial ecosystems forest soils are important reservoirs for carbon (Falkowski et 56 

al., 2000). Boreal forests contribute approximately 50% of the total forest carbon 57 

stock from which around 85% is stored in the soil (Malhi et al., 1999). At least half of 58 

the carbon stock in boreal soils originates from belowground carbon allocation 59 

through roots (Clemmensen et al., 2013) and a large portion of boreal forest primary 60 

production is allocated belowground by the trees (Gill & Finzi 2016). The carbon 61 

dynamics in forest soils are highly dependent on the soil microbial communities that 62 

either enhance C losses by degrading organic matter or increase C stocks by 63 

immobilizing C (Clemmensen et al., 2013). Filamentous fungi forming mycorrhizal 64 

associations for example, play an important role for C fluxes since some species have 65 

the capability to degrade a great variety of organic compounds while others can 66 

contribute to soil organic matter formation by releasing exudates that promote soil 67 

aggregation (Rillig, 2005) or produce slowly decomposing and highly melanized 68 

hydrophobic tissues (Almeida et al., 2022).  The effect of EMF on soil microbial 69 

communities might not be trivial since up to 20% of the net primary production is 70 

allocated belowground to support the symbiosis (Hobbie, 2006). Therefore, 71 

ectomycorrhizal mycelium is expected to be a significant part of the soil fungal 72 

biomass and its production and turnover play an important role in forest carbon 73 

cycling and organic matter formation (Ekblad et al., 2013). For that reason, the 74 

development of methods that allows us to quantify EMF growth in forests natural 75 

soils is of paramount importance (Fernandez, 2021). 76 

 77 
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Therefore, understanding the factors that regulate the growth rates of filamentous 78 

fungi like EMF is important to understand carbon dynamics in soils.  Growth rates of 79 

free-living fungi from natural soils has been studied in laboratory by measuring 80 

labeled acetate incorporated in the fungal membrane component ergosterol (Sheng et 81 

al., 2022; Rousk and Bååth, 2007) or labeled water incorporated into DNA (Schwartz 82 

et al., 2016). Quantifying growth (production) of EMF natural communities on the 83 

other hand is more complicated since EMF are dependent on plant roots (Smith and 84 

Read, 2008) and such measurements must be performed when the fungi is living in 85 

symbiosis. Many studies have attempted to quantify EMF production in situ in forests 86 

soils by using ingrowth meshbags and fungal biomarkers like ergosterol or PLFAs 87 

(Wallander et al., 2013). In those studies, EMF production has been estimated based 88 

on the standing fungal biomass measured in meshbags after a specific time of 89 

incubation in the soil (Ekblad et al., 2013; Wallander et al., 2013; Wallander et al., 90 

2001). However, the standing biomass does not necessary reflect growth since the 91 

standing biomass is the result of the interaction between fungal growth and the 92 

residence time of the fungal mycelium in the meshbag (Ekblad et al., 2016). In order 93 

to overcome these shortcomings, some studies have estimated fungal production and 94 

mycelium turnover by repeated harvests of mycelial meshbags, applying ergosterol as 95 

a marker of mycelial biomass and mathematical models to estimate the production 96 

and turnover of EMF mycelium biomass (Hagenbo et al., 2021; Hagenbo et al., 2017) 97 

or, combined with analyses of chitin, to enable estimates of production and turnovers 98 

of both bio- and necromass (Ekblad et al., 2016). In these studies, the standing 99 

biomass and necromass were analyzed in bags incubated over periods varying in 100 

length, combining several shorter periods, one after the other, with overlapping longer 101 

periods. Common assumptions in these studies were that EMF growth occurs at a 102 
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constant rate and that biomass and necromass were lost at constant exponential rates 105 

(Ekblad et al., 2016).  106 

 107 

By using this approach, Ekblad et al. (2016) tested the effect of nitrogen (N) 108 

fertilization on EMF turnover and growth in a Pinus taeda forest. They reported that 109 

fertilization significantly decreased both EMF standing biomass and growth but 110 

turnover rates of biomass and necromass were not affected. It was suggested that the 111 

decrease in EMF growth was regulated by changes in carbon allocation as a result of 112 

an increase in soil fertility. These results are in line with evidence indicating that the 113 

relative amount of carbon allocated to EMF is sensitive to plant nutrient status and 114 

soil fertility (Gill & Finzi 2016). Thus, in boreal forests where N is the nutrient that 115 

limits tree growth (Högberg et al., 2017), high amounts of carbon are invested below 116 

ground to support ectomycorrhizal symbiosis to facilitate N uptake (Gill & Finzi 117 

2016).  118 

 119 

The role of N as limiting nutrient in high latitude forested ecosystems and its effect on 120 

EMF is well known and has been described in several studies (Binkley & Högberg, 121 

2016; Hedwall et al., 2013 ; Gill & Finzi, 2016) . However, anthropogenic N 122 

deposition can potentially change the forests nutrient requirements and push the 123 

system toward phosphorus (P) limitation (Tarvainen et al., 2016; Du & Fang, 2014; 124 

Akselsson et al., 2010; Vitousek et al., 2010; Talkner et al. 2015; Prietzel et al. 2020 125 

; Du et al ., 2021). In fact, in a region with high N deposition in southwest Sweden, 126 

Almeida et al. (2019) reported that P fertilization had a stronger effect on tree growth 127 

than N fertilization, subverting the expectation that N is the main nutrient regulating 128 

plant growth in northern forests. The effect of the transition from N to P limitation on 129 
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the below ground C allocation and EMF growth has not been studied in natural soils, 133 

but P deficiency is expected to increase EMF biomass to improve P foraging and 134 

uptake (Rosenstock et al., 2016; Ekblad et al. 1995; Wallander & Nylund 1992). In a 135 

field study, Rosenstock et al., (2016) reported an increase in root and standing 136 

biomass in a Norway spruce (Picea alba) forest limited by P compared to forests with 137 

sufficient P. In the field study performed by Almeida et al. (2019) however, no effect 138 

on EMF standing biomass was found in meshbags incubated for 133 days. Yet, since 139 

only the standing biomass was measured and the turnover rates and production were 140 

not estimated, we cannot exclude the possibility that P fertilization had an effect on 141 

EMF production, an effect that cannot be detected by studying the standing biomass 142 

alone.  143 

 144 

In this study, we aimed to improve our understanding of EMF production and 145 

turnover in natural soils by testing how fungal biomass collected from ingrowth 146 

meshbags is affected when P is limiting tree growth.  In the forest described by 147 

Almeida et al. (2019) we estimated fungal production (which is assumed to be 148 

dominated by EMF production) and turnover using the mathematical model of Ekblad 149 

et al. (2016) with Bayesian inferences. Our first hypothesis was that P fertilization 150 

will decrease EMF biomass production in this P limited forest as a result of the 151 

limitation being alleviated. 152 

 153 

In addition, because EMF growth is subsidized by the host, in exchange for N and P, 154 

EMF production in the meshbags should be affected by the nutrients found at the 155 

hyphal front. Indeed, EMF biomass in P-poor forests is stimulated around localized 156 

patches of the P-rich mineral apatite (Rosenstock et al., 2016; Berner et al., 2012; 157 
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Hagerberg et al., 2003). Therefore, besides purely sand-filled meshbags, we incubated 172 

meshbags amended with apatite or methylene urea (referred as urea throughout the 173 

manuscript) in order to simulate soil N and P nutrient patches respectively. We 174 

expected that the nutrient patches will increase EMF biomass production depending 175 

on fertilization. In particular: apatite amendment will increase EMF biomass 176 

production in the control plots but not in P fertilized plots (second hypothesis) ; and 177 

urea amendment will increase EMF biomass production in the P fertilized but not in 178 

the control plots (third hypothesis).  179 

 180 

Finally, since belowground C allocation follows the three phenological cycles  181 

(Endrulat et al., 2016), EMF production is likely to vary with season peaking in 182 

autumn (Hagerberg & Wallander, 2002 ; Wallander at al., 2001; Hagenbo et al., 183 

2021),  we performed a more extensive incubation scheme and more frequent harvests 184 

of bags than in Ekblad et al., (2016). This allowed us to test not only effects of 185 

treatments (P fertilization) and of meshbag amendments, but also to estimate possible 186 

seasonal effects. Therefore, our fourth hypothesis was that EMF biomass production 187 

will be higher in autumn than in summer.  188 

 189 

 190 

2 Materials and Methods: 191 

 192 

2.1 Field site and fertilization treatments 193 

This study was performed at Tönnersjöheden forestry research station (56° 41’ N, 13° 194 

6’ E, 80 m a.s.l.) with a mean annual temperature of 6.4 °C and a mean annual 195 

precipitation of 1064 mm (Högberg et al., 2013). Soils are podzols developed in a 196 
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glaciofluvial parent material with a pH (in H2O) of 4.05 and a C/N of 25.1 in the mor 237 

layer (Hansson, 2011; Högberg et al., 2013). The forests consist of managed Norway 238 

spruce (Picea abies) planted on former pastureland in 1979. The site is in southwest 239 

Sweden with an N deposition of 14.5 kg N-1 ha-1 yr-1 (Rosenqvist et al., 2007), which 240 

is high in comparison with most other forests in the country (Akselsson, 2010; 241 

Högberg et al., 2013). The total experimental area comprised 2.1 ha1. The experiment 242 

consisted of 6 plots (30-40 m x 25 m); 3 control and 3 fertilized with 200 kg P ha-1 of 243 

superphosphate (100 kg ha-1 applied twice in September 2011 and July 2012).  244 

2.2 Experimental design 245 

To estimate EMF mycelial production, ingrowth meshbags (Wallander et al., 2001) 246 

were incubated in the plots. The meshbags were cylindrical, 2 cm wide and 10 cm 247 

long. They were made of 50 µm nylon mesh and filled with approximately 40 g of 248 

acid washed quartz sand. Three different amendments in the meshbags were used: 249 

quartz-only (pure sand), apatite-amended (quartz and 1.5 % (w/w) crushed apatite 250 

mineral with a grain size of 50 to < 250 um) and urea-amended (quartz and 0.5% 251 

(w/w) granulated methylene urea). The mesh-bags were vertically installed into holes 252 

made with a soil corer (2 cm diameter) with the upper end of the bag at level with the 253 

soil surface. 254 

 255 

To calculate turnover rates and biomass production as done by Ekblad et al. (2016), 256 

sequential meshbag incubations were performed. For a five-month period starting in 257 

July 2015 and ending in November 2015, the meshbags were incubated for variable 258 

periods of time (30, 60, 90, 120 or 150 days; Fig 1).  259 

 260 
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There were five different 30-day incubation periods. Four 60-day incubation periods 269 

each overlapping with two 30-day incubation periods. Three 90-day incubation 270 

periods each overlapping with three 30-day incubation periods. Two 120-day 271 

incubation periods each overlapping with four 30-day incubation periods. One 150-272 

day incubation period overlapping with all 30-day incubation periods. 273 

The bags incubated over 30 days were incubated sequentially and when one set of 274 

bags was collected, a new set of bags was directly installed using the same holes as 275 

the ones just emptied (Fig 1).  276 

In each plot, a quartz-only meshbag for each of the incubation periods described 277 

above was placed along a 15 m long transect. The distance between each meshbag 278 

was approximately 1.5 m. The apatite-amended and urea-amended bags were placed 279 

10 cm (perpendicular to the long transect) at each side of the quartz-only meshbags. 280 

Three 15 m long transects were done to have three sub-replicates (for each set of 281 

bags) that were pooled before further analysis to give one sample from each 282 

incubation period and amendment (quartz-only, apatite and urea) per plot.  283 

 284 

Each incubation period consisted of 54 meshbags (2 treatments C/P, 3 replicated 285 

plots, three sub-replicates, three amendments (2 x 3 x 3 x 3 =54). In total, 810 286 

meshbags were installed and collected according to their incubation period.  287 
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 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

Figure 1: Overview of the incubation design. Different color bars represent the incubation time periods: 301 
Yellow corresponds to 30 days, Light green to 60 days, Dark green to 90 days, Purple to 120 days and 302 
Blue to 150 days of incubation. The arrows represent the points in time when the same holes from the 303 
previous incubation were used to incubate the next set of meshbags. 304 
 305 

 306 

Upon harvest, the meshbags were kept in an icebox until arrival to the laboratory 307 

where they were stored at -20oC.  308 

The fungal cell membrane compound ergosterol, a proxy for fungal biomass, was 309 

extracted and measured from 5 g of the pooled samples as per Bahr et al. (2013) 310 

using high-pressure liquid chromatography (auto sampler L2130 with UV detector 311 

L2400 by Hitachi, Japan). It was assumed that after incubation in the soil the 312 

meshbags contents were dominated by EMF as it has been shown by metabarcoding 313 

(Almeida et al., 2018; Rosenstock et al., 2016; Berner et al., 2012; Wallander et al. 314 

2010; Hedh et al. 2008) and isotopic studies (Wallander et al., 2001). Therefore, the 315 

fungal biomass collected was expected to be of EMF origin.  316 

 317 

2.3 Mathematical models 318 

July August September October November 
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The turnover rates and EMF biomass production were estimated applying the 324 

mathematical model used in Ekblad et al. (2016). In this paper however the 325 

mathematical model was tested under two assumptions: 326 

EMF production was dependent on the treatments alone (Model 1), or EMF 327 

production was depended on treatments and sampling season (Model 2), allowing to 328 

test for the interactions between treatment and seasonal effects. 329 

 330 

Model 1: 331 

 332 

This model works under the assumption that EMF production occurs at a constant rate 333 

and that biomass is lost at a constant exponential rate (see Hagenbo et al., 2017 & 334 

Ekblad et al., 2016). Briefly, the sum of the biomass during two sequential short 335 

incubation periods is expected to exceed the biomass in an overlapping longer 336 

incubation period due to an on average older mycelium and hence larger turnover in 337 

bags with a longer incubation period.  338 

 339 

The model in its differential form is defined as: 340 

 341 

𝑑𝐵
𝑑𝑡 = 𝑃 − 	𝜇 ∙ 𝐵 342 
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 346 

Equation 1 347 

Where 𝑃 is the production of new mycelium (in mass units), 𝐵 is the mycelium 348 

biomass (also in mass units) and 𝜇 represent the mortality, the fraction dying over a 349 

specified time-period (adimensional). This equation is solved over time as: 350 

 351 

Equation 2 352 

𝐵(𝑡) =
𝑃!
𝜇!
∙ (1 − 𝑒"!#) 353 

In our case we assumed that both 𝑃! and 𝜇! are influenced by the fertilization 354 

treatments, denoted here by 𝑘, and we therefore assigned a specific (unknown) P and 355 

𝜇 to each treatment in the Bayesian model. 356 

 357 

Model 2:  358 

 359 

Equation 2 has been utilized in other publications (Hagenbo et al. 2021; Hagenbo et 360 

al. 2017; Ekblad et al., 2016) and one of the  main assumptions of this model is that 361 

EMF production occurs at a constant rate. However, EMF production can vary 362 

depending on the time of the year (Coutts & Nicoll, 1990 ; Walker et al., 1986) so we 363 

tested a modification of the model by introducing an additional degree of freedom 364 

into the model represented by the term 𝛽!,%, dependent on sampling seasons (	𝑗) and 365 

their interactions with treatments (𝑘) so that the calibration can apply to each 366 

treatment a correction for seasonality (independent from the other treatments). When 367 
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the term 𝛽!,% = 1 then the model is equivalent to what described in eq. 1 and 2. We 370 

utilized this model to decompose 𝑃 in two components, defining a new term 𝑃′:  371 

	372 

Equation 3 373 

𝑃′!,% = 𝑃0! ∙ 𝛽!,% 374 

 375 

𝑃′!,% corresponds to 𝑃!(if the distributions were perfectly symmetric the average for P 376 

and P´ should converge to the same value) but the predicted biomass production now 377 

is the results from the interactions between sampling season and treatments. 378 

 379 

Eq. 3 is then substituted into Eq. 2 by substituting 𝑃 with 𝑃′. The resulting model is 380 

equivalent to the one described by Eq. 2 for certain parameter combinations and 381 

describes the same curve. The only difference is that now two components are used to 382 

decompose the variance explained by the calibrated model in two separate terms: 𝑃0! 383 

which expresses the production variable with treatments only (𝑘); and 𝛽!,%which 384 

expresses the effects of seasonality and their interactions with treatments. 𝑃0! 	 is now 385 

equivalent to the production normalized by the seasonality effect &'!,#
(!,#

 . By letting 𝑃0! 386 

and 𝛽!,% vary independently (therefore describing each point as a combination of k 387 

and j) we avoid to make any strong assumption on the effect of seasonality (since we 388 

are not imposing a parametric function of time to describe it but we let it free to vary 389 

for each time point) or on its interactions with treatments (which are still free to vary 390 

depending on the treatment), while on the other end we maximize the information we 391 

can extract from the data by representing the interactions between the terms in one 392 

single model calibration. If we instead relied on fully independent calibrations within 393 
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each subset of seasons × treatments we would have had to divide the data in 𝑗 × 𝑘 394 

subsets where we would calibrate each model parameter independently, limiting each 395 

calibration to a smaller number of samples.  396 

2.4 The calibration: 397 

The model was calibrated within a formal Bayesian framework, developed with the 398 

Stan toolbox (Stan Development Team, 2021). This approach is based on a numerical 399 

implementation of Bayesian statistics, which allows for a continuous update of the 400 

knowledge while new data are developed, based on stochastic principles (through a 401 

modification of the Metropolis-Hastings sampler). The main assets of the method are 402 

that: a) we can integrate and utilize previous information in the calibration, defining it 403 

as prior probability distributions of model parameters (from now on, “priors), b) such 404 

information is combined with the statistical information contained in the data to 405 

determine the posterior distributions of model parameters and consequently 406 

predictions, and such distribution is non-parametric (so not assuming any specific 407 

shape but determined only by the available information). The methodology is 408 

therefore extremely useful to combine multiple sources of information and very 409 

valuable when information is scarce, and at the same time quite robust given that it 410 

estimates detailed posterior probability distributions (which can be examined closely). 411 

 412 

In our case the methodology allows us to draw information from previous studies.   413 

In particular, we used information from a EMF production study in a conifer forest by 414 

Hagenbo et al. (2017). This information is considered probabilistically. It does add 415 

information to our final results (our posterior distributions), but such information is 416 

combined with the information contained in our data. The chosen statistical approach 417 
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updates the old information with new data, and old and new information can be 423 

therefore compared. 424 

 425 

We calibrated both a model with only Eq. 2 (so considering only treatment effects; 426 

Model 1) and one considering Eq. 2 and Eq. 3 (considering treatments × seasonality 427 

effects; Model 2). 428 

 429 

Priors for 𝑃! and 𝜇!were derived from the mean EMF biomass production and 430 

turnover for a forest of similar age as the forest in the current study and estimated by 431 

Hagenbo et al. (2017) after unit conversion.  Both priors were expressed as normal 432 

distributions with deviation prudentially estimated as 25% of the mean (please note 433 

that this does not mean that the prior was limited within this range, due to the tails of 434 

the normal distributions). 435 

𝑃!  was expressed as 436 

𝑃! 		∼ 𝑁(0.099, 0.099 ∙ 0.25) 437 

 438 

While 𝜇! as 439 

𝜇! 	∼ 𝑁(0.009, 0.009 ∙ 0.25) 440 

 441 

The Bayesian system was run considering one independent 𝑃! and 𝜇!for each 442 

treatment. 443 

 444 

When we also considered Eq. 3, priors for 𝑃0! were defined as the priors for 𝑃! while 445 

priors for 𝛽% were set as uniform between 0 and 5.  446 

𝛽	 ∼ 𝑈(0,5) 447 
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Please note that 𝛽% = 1 means no seasonality effect, 𝛽% = 5 means a five-fold increase 455 

of production due to seasonality, while 𝛽% = 0 means a complete halt of production 456 

due to seasonal effect. 457 

 458 

2.5 Statistical analysis and probability distribution comparisons 459 

The standing biomass, data was tested for homogeneity of variances and normal 460 

distribution using Levene’s and Shapiro Wilk tests, respectively.  Analysis of the 461 

variances (ANOVA), Tukey’s Post-hoc test and Dunn analyses were performed on the 462 

data to check for statistical differences between the fertilization treatments and 463 

meshbag amendments. The Levene’s and Shapiro Wilk tests, as well as ANOVA and 464 

Dunn analyses were done by using R (R Core Team, 2014).  465 

 466 

The stochastic approach of the Bayesian method produces Markov chains Monte 467 

Carlo (MCMC) that represents a probability distribution with as many discrete 468 

parameter values as iterations in the chains (in our case 10 independent chains of 469 

10000 iterations, so a total of 100000 iterations), with a histogram that approximates a 470 

continuous distribution (probability distribution). Thus, the predicted EMF production 471 

and turnover for each treatment (fertilization regime and meshbag amendment) is 472 

represented by a probability distribution.  473 

 474 

The means of the probability distributions were calculated and the highest density 475 

intervals of the estimated parameters were interpreted as confidence intervals at 95% 476 

and 90% (Kruschke and Liddel, 2018). To test the significance of the treatments 477 

(fertilization regime, meshbag amendment and season), the confidence intervals of the 478 

probability distributions were compared. 479 
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3 Results: 482 

 483 

3.1 Mycelial standing biomass 484 

The standing biomass of mycelia in the meshbags was significantly affected by 485 

incubation period (time of the year) (Kruskal-Wallis, p < 0.0001, X2 = 116.4).  486 

Biomass in one-month incubation mesh bags from July, August and September was 487 

significantly higher than the biomass collected in October and November for both 488 

control plots and P fertilized plots (Dunn´s test, p < 0.001, X2 = 26.1) (Fig 2). 489 

Biomass in two-months incubation mesh bags from July-August and August-490 

September was significantly higher than the biomass collected in September-October 491 

and October-November for both control plots and P fertilized plots (Dunn´s test, p < 492 

0.001, X2 = 27.7; Fig 2). Fertilization significantly affected the standing biomass in 493 

the quartz-only, apatite and urea-amended meshbags (Kruskal-Wallis, p < 0.05, X2 = 494 

6.5; p < 0.0001, X2 = 18; p < 0.0001, X2 = 15.5; respectively). Phosphorus 495 

fertilization reduced the standing biomass in all the incubation times (numbers of 496 

incubation days) for the apatite and the urea amended meshbags (Fig 3). Apatite 497 

amendment significantly increased the standing biomass in comparison with the 498 

quartz-only bags in the control plots after 60 and 150 days of incubation (Dunn´s test, 499 

p < 0.05, X2 = 18; p < 0.05, X2 = 11.2, respectively), and the effect of apatite was 500 

stronger after 150 days of incubation where on average the biomass in the apatite bags 501 

was three-fold higher than the biomass in the quartz-only bags. Apatite amendment 502 

did not increase biomass in the P-fertilized plots in any incubation time while urea 503 

amendment increased biomass in most of the incubation times and for both C and P 504 

fertilized plots (Dunn´s test, p < 0.05) (Fig 3).   505 
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  509 

Figure 2: Standing EMF biomass in the meshbags incubated in the soil for 2 and 1 months. The error 510 
bars represent the standard error of the mean (n=3).Lowercase letters represents statistically significant 511 
(P<0.05) differences between the incubation periods according to Dunn´s test. 512 
 513 
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523 

 524 

 525 
                    Figure 3: Standing EMF biomass in the three meshbags amendments (quartz-only, apatite and urea) and in 526 

the control plots (red symbols) and P-fertilized plots (blue symbols) and control plots during different 527 
incubation times (30, 60, 90, 120 and 150 days). The error bars represent the standard error of the mean.528 

 529 

3.2 EMF production and turnover rates (Model 1) 530 

The predicted EMF biomass production varied between the P-fertilized plots and the 531 

control plots and between the meshbag amendments (Fig 4a). P fertilization 532 

significantly decreased EMF production in all the meshbag amendments (urea and 533 

apatite and quartz-only) (Table 1). In the P-fertilized plots the EMF production was 534 

reduced to a third in the apatite and quartz-only bags in comparison with the prior 535 

used to set the model (0.099 g m2 day-1). P fertilization caused a reduction on average 536 

quartz-only apatite urea
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of 43% in the quartz bags, 60% in the apatite bags and 39% in the urea bags in 553 

comparison with the control plots.  554 

 555 

The meshbags amended with urea had the highest predicted biomass production in 556 

both control and P-fertilized plots (Fig 4). Relative to the quartz bags, the urea 557 

amendment doubled the production in both fertilizer treatments.  The apatite 558 

amendment, in contrast, gave no significant change in production relative to the 559 

quartz bags in the P-fertilized plots while a 35% increase was found relative to the 560 

quartz bags in the Control plots (Table 1). 561 

 562 

According to the mathematical modeling, the biomass turnover rates were not affected 563 

by P fertilization or meshbag amendment (Fig 4 b). 564 
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 565 

Figure 4: a) Probability distribution of the predicted EMF biomass production (Pk) (g m2 day-1) for the 566 
different fertilizer treatments (Control and P fertilization) and meshbag amendments (quartz-only, 567 
apatite and urea). b) Probability distribution of the turnover rates (day-1) for the different fertilizer 568 
treatments (Control and P fertilization) and meshbag amendments (quartz-only, apatite or urea). 569 
 570 

 571 

 572 

 573 
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Table 1. Mean of the EMF production in different treatments (Pk) estimated by Model 1. The Highest 575 
Density Intervals (HDI, Kurshke and Liddel, 2018) represent the boundaries of each estimate at 576 
different degrees of confidence. 577 

Fertilization and 

amendment 

Mean EMF 

production (g m2 day-1) 

HDI low 

(95%) 

HDI high 

(95%) 

HDI low 

(90%) 

HDI high 

(90%) 

control/apatite 0.094 0.072 0.117 0.075 0.113 

control/urea 0.129 0.103 0.156 0.107 0.152 

control/quartz 0.061 0.045 0.079 0.047 0.076 

phosphorous/apatite 0.038 0.028 0.05 0.029 0.048 

phosphorous/urea 0.079 0.059 0.1 0.062 0.096 

phosphorous/quartz 0.035 0.026 0.045 0.027 0.043 

 578 

 579 

3.3 Seasonal effect (Model 2) 580 

The effect of seasonality as described by β had a positive effect on the predicted EMF 581 

production and this effect was highest in July and decreased over time. Moreover, the 582 

effect of β on EMF production differed depending on the fertilization and on the 583 

meshbag amendment (Fig 5).  584 

 585 

For example, in July the model suggests a seasonal effect increasing the predicted 586 

EMF production by up to 5 times in the quartz meshbags from the P-fertilized plots 587 

and up to 2.5 times in the urea meshbags in the control plots in comparison with the 588 

apatite bags from the P-fertilized plots where season had no effect on EMF 589 

production. The positive effect of sampling season on the EMF production, as 590 

identified by the model, decreased in general with time and at the end of the growing 591 

season (October and November) 𝛽 had the same effect on all the samples 592 

independently from the treatment (fertilization and meshbag amendment). 593 
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Even though the 𝛽 probability distributions of the different treatments were not 602 

significantly different, the effect of the season on biomass production was important 603 

and when we decompose EMF production by seasonality (P´k), the differences in 604 

EMF production between P fertilized and control plots and between the meshbag 605 

amendments are present only early in the season (July, August) and disappear in 606 

September October and November (Fig 6).  607 

 608 

Figure 5: Seasonality effect on biomass production expressed by the 𝛽 parameter for the different 609 
months of the growing season.  610 
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613 

Figure 6: Probability distribution of P´k (g m2 day-1) for the different months of the growing season. 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 
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4 Discussion: 624 

 625 

4.1 Effect of P fertilization on EMF biomass production and turnover 626 

In support of our first hypothesis, EMF biomass production declined in response to P 627 

fertilization in all meshbag amendments (Fig 4a). This reduction in EMF production 628 

was not trivial and P fertilization decreased the predicted EMF production to a third in 629 

comparison with the EMF production of a forest of similar age estimated by Hagenbo 630 

et al. (2017) (0.099 g m2 day-1).  These results contrast with those of Almeida et al. 631 

(2018) who tested the effect of P fertilization on the EMF standing biomass in the 632 

same plots as in the present study.  This contrast is not depending on variation in 633 

turnover rates between control and P fertilized plots since mortality was not 634 

significantly affected by fertilization as shown indirectly in the current results. In the 635 

present study, P fertilization had a negative effect on the EMF standing biomass in 636 

most of the incubation periods (Fig 3). Thus, the standing biomass of one given 637 

incubation time might not truly reflect the effect of fertilization on EMF growth. The 638 

use of the sequential incubation method and the mathematical model allowed us to 639 

have a more robust estimate of the effect of P fertilization on the extramatrical 640 

mycelium in this forest.  641 

 642 

Fertilization experiments have been largely used to evaluate the effect of soil fertility 643 

and nutrient status of the trees on carbon allocation and EMF production (Bahr et al., 644 

2015; Ekblad et al., 2013). However, studies on the effect of nutrient additions on 645 

EMF in boreal forests have predominantly focused on N fertilization (Leppälammi-646 

Kujansu et al., 2013) probably because N is the most common limiting nutrient in 647 

boreal forests (Högberg et al., 2017). Therefore, the effects of P fertilization alone on 648 
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boreal forests have not been widely tested despite evidence that the steep increase in 669 

anthropogenic C and N inputs can lead to unbalanced nutrition and push forested 670 

ecosystems to P limitation (Jonard et al., 2015; Peñuelas et al., 2013; Talkner et al. 671 

2015; Prietzel et al. 2020 ; Du et al ., 2021). Indeed, in the study performed by 672 

Almeida et al. (2019) in the same experimental plots as the current experiment, it was 673 

reported that P fertilization enhanced tree growth. Moreover, the authors reported that 674 

the foliar N:P ratios measured in the unfertilized control plots corresponded to 675 

suggested tipping points where the ecosystem shifts towards P limitation (see Suz et 676 

al., 2021 & van der Linde et al., 2018).  The results of the current paper suggest that 677 

this shift is linked to changes in EMF growth as shown by the reduction of EMF 678 

biomass production when P fertilization alleviates the nutrient limitation. We propose 679 

that the decreased EMF production in the P-fertilized plots in our study is a result of a 680 

decrease in belowground C allocation due to reduced tree dependency on EMF for P 681 

foraging and acquisition. Fine root production and root tip colonization by EMF could 682 

be advisable as an independent second method to confirm that the decrease in EMF 683 

growth in the P-fertilized plots was an effect of reduced C allocation by the trees. 684 

 685 

A potential decrease in below ground C allocation is also expected to alter EMF 686 

community composition selecting for C efficient species when the ecosystem has 687 

crossed the nutritional tipping point thresholds (Suz et al., 2021). Indeed, in the soil 688 

EMF survey performed in the same experimental plots as the present study, Almeida 689 

et al. (2019) reported that the relative abundance of Tylospora asterophora was 690 

significantly increased after P fertilization. This species has been reported to 691 

extensively occupy ingrowth meshbags while colonizing relatively low amount of tree 692 

root tips which might suggest either a high C efficiency or lower turnover rates 693 
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(Jörgenssen, 2021). The lack of difference in turnover rates between fertilized and 701 

unfertilized plots in the present study might suggest the earlier.  702 

 703 

 704 

4.2 Effect of nutrient amendment on biomass production and turnover 705 

Both nutrient amendments (urea and apatite) increased EMF production in 706 

comparison with the quartz-only meshbags in the control plots. This is consistent with 707 

mesocosm experiments that have shown that when organic (Wallander & Pallon, 708 

2005; Leake et al., 2001; Bending & Read 1995  ) and mineral nutrient patches (Smits 709 

et al., 2012 & Leake et al., 2008) are colonized by EMF, mycelial branching and 710 

proliferation increase to explore the nutrient patch. In support of our second 711 

hypothesis, apatite amendment increased EMF production in comparison with the 712 

quartz-only bags but only in the control plots. Our results are consistent with the view 713 

that trees in the control plots are P limited, and that they allocate more resources to 714 

the EMF when exploring a P source like apatite. When P limitation is alleviated by 715 

fertilization however, there is probably a decrease in C allocation to the root 716 

symbionts which could cause the reduced EMF colonization in the apatite bags.  This 717 

is supported by other studies reporting that apatite amendment increases EMF 718 

standing biomass in meshbags under P-poor conditions (Rosenstock et al., 2016; 719 

Berner et al., 2012; Hedh et al., 2008; Hagerberg et al., 2003). In a fertilization study 720 

in nearby plots in the same forest, Bahr et al., (2015) showed that apatite addition 721 

stimulated EMF standing biomass in mesh bags, in control and in N-fertilized plots, 722 

but when N was added in combination with P, on the other hand, no significant 723 

differences were found between apatite amended and quartz-only bags. All together 724 
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widespread in these ecosystems as reported in this single 842 
forest.¶843 
¶844 
A decrease in EMF production caused by fertilization might 845 
reflect a change in the fungal communities. When there is a 846 
decrease in belowground C allocation, some EMF species 847 
that require less C for growth and produce lower biomass 848 
relative to other members of the community might be 849 
selected. In the previous study in the same research forest 850 
(Almeida et al., 2019), EMF fungal communities from soil 851 
and meshbag samples significantly changed after P 852 
fertilization and P + N fertilization respectively. In particular, 853 
the most abundant EMF species Tylospora asterophora 854 
increased when the plots were fertilized with P or P + N. 855 
Tylospora asterophora, a short exploration type (Agerer & 856 
Raidl, 2004), is expected to produce less biomass than species 857 
with long exploration mycelia. Therefore, it is possible than 858 
an increase of this species relative abundance in the meshbags 859 
of the present study might be related to the lower growth 860 
detected in the P fertilized plots. It is also expected that 861 
turnover rates vary depending on the species traits of the 862 
EMF community (Ekblad et al., 2016). For example, certain 863 
traits like rhizomorphs are expected to have longer life span 864 
in comparison with smooth and short exploration type 865 
mycelium (Pritchard et al., 2008; Ekblad et al., 2016). The 866 
significant increase of T. asterophora after P fertilization 867 
could increase the overall mycelial turnover rate in these.  868 
However, there was not a detectable effect on the turnover 869 
rates between control and P fertilized plots. In a tree age 870 
chronosequence study in a boreal forest in central Sweden, 871 
Hagenbo et al. (2018) reported no clear pattern in exploration 872 
types despite a significant shift in fungal community 873 
composition and turnover with forest age.  This suggests that 874 
factors other than exploration types are also important to 875 
explain turnover rates. Species-specific traits like mycelial 876 
life span, the degree of internal autolysis and the amount of 877 
melanin in cell walls could potentially affect biomass 878 
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these results provide evidence that EMF growth is responsive to P nutrient patches, 879 

but this response is depended on the P demand of the host. 880 

 881 

From the two nutrient amendments, urea had the highest effect on EMF growth both 882 

in the control and P-fertilized plots partially confirming our third hypothesis. From a 883 

phytocentric point of view it could be expected that EMF growing on a P rich source 884 

like apatite are rewarded with more C from the P limited trees than EMF colonizing N 885 

bags. The stronger response of EMF growth to the N nutrient patches than to P 886 

nutrient patches in the P-limited control plots suggests that even though the forest is 887 

limited by P, N still has an important effect on the growth of the extramatrical 888 

mycelium. It is possible that P limitation results in a general increase in C allocation 889 

to the root symbionts and the C invested by the tree is delivered indiscriminately 890 

among its fungal symbionts, independently of the nutrient patch they are colonizing.  891 

Probably this is not surprising since N is needed by fungus and plant alike and in 892 

order to produce biomass to forage for P and enzymes to mineralize it, EMF requires 893 

N. Thus, N uptake can improve the P nutrition of the mycorrhizal system and positive 894 

feedback between plant and fungus might happen.  895 

 896 

Despite the strong effect of N patches on EMF growth, P fertilization decreased 897 

growth in all meshbags independent of the amendment. EMF communities in forests 898 

are diverse and composed of species with different abilities to mineralize the different 899 

nutrients present in the soils (Lilleskov et al., 2011). By amending the meshbags with 900 

different nutrient types, EMF communities are selected depending on the nutrient 901 

added (Almeida et al., 2019; Rosenstock et al., 2016). The consistent effect of P 902 

fertilization on both nutrient patches and even in the barren quartz-only bags suggests 903 
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that P fertilization affects growth of different EMF communities alike and reduces 911 

nutrient foraging for both N and P. This is consistent with the idea that alleviated P 912 

limitation results in a general decrease of C delivered to the roots and the mycorrhizal 913 

symbionts.  914 

 915 

Previous studies on EMF growth have focused on EMF biomass collected from 916 

meshbags filled with acid washed sand (see Hagenbo et al. 2021; Hagenbo et al. 2017; 917 

Ekblad et al 2016). However, since the quartz-only mesh bags are devoid of nutrients 918 

(except probably for dissolved organic material entering the bags during incubation), 919 

they might underestimate EMF production in soils. Moreover, in soils most of N and 920 

P are heterogeneously distributed in nutrient patches (Hodge, 2006). For this reason, 921 

amending the meshbags made possible to imitate the soil nutrient conditions that 922 

influence EMF growth in forests and to understand how the nutrient regimes (both as 923 

inorganic nutrient fertilization and as nutrient patches) affect EMF production. In fact, 924 

the EMF growth in this study was influenced both by the nutrient at the hyphal front 925 

(N and P amendment) and by the C provided by the roots (as shown by the effect of P 926 

fertilization).  927 

 928 

There were no differences in mycelium turnover between the different meshbag 929 

amendments. This contrast with previous studies showing that the nature of a nutrient 930 

patch could also affect hyphal turnover (Ekblad et al., 2013; Jansa et al., 2011). 931 

Mineral substrates like feldspar have been shown to maintain EMF growth for up to 932 

15 weeks (Rosling et al., 2004), while organic nutrient patches have been shown to 933 

sustain EMF growth for around 5 weeks (Bending & Read 1995). Therefore, organic 934 

substrates like urea are expected to be quickly depleted in soils. As a result, the EMF 935 
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hyphae is expected to autolyse and transfer the nutrients to other locations of the 942 

exploring mycelium faster than during the slow weathering of mineral substrates like 943 

apatite (Ekblad et al., 2013 ; Jansa et al., 2011). Therefore, it should be expected that 944 

the apatite bags show lower turnover rates than the urea bags. In the present study 945 

however, we could not detect differences between the two nutrient patches.  The 946 

material used to amend the urea meshbags in this study is methyleneurea which is a 947 

slow N release molecule. Thus, methylene urea is hydrolyzed to ammonium at a 948 

slower rate than the urea molecules (Högberg et al., 2020). Therefore, even if there is 949 

evidence that some EMF species can directly consume urea (Morel et al., 2008; 950 

Yamanaka, 1999), these slow releasing nutrient sources might require a more 951 

persistent mycelium than other organic sources.  952 

 953 

Additionally, previous mesocosm experiments have shown that when EMF mycelium 954 

grows on sand, longevity is enhanced in comparison with EMF growing on nutrient 955 

patches (Wallander & Pallon 2005). Nutrient patches enhance growth and metabolic 956 

activity of EMF, which may enhance turnover rates. For example, Bidartondo et al. 957 

(2001) tested ectomycorrhizal growth response to apatite and ammonium in growth 958 

chambers with EMF colonized Pinus muricata seedlings.  It was found that apatite 959 

and ammonium addition increased the respiration rates of EMF, which could be taken 960 

as an indication of higher metabolic activity and probably higher mortality. Thus, it 961 

can be expected that EMF growing on the quartz bags have lower turnover than the 962 

mycelium colonizing the nutrient amendments, but this was not the case in this study. 963 

These discrepancies relating EMF turnover rates between the current and previous 964 

studies might be caused by shortcomings on the sequential incubation method used 965 

for the model in this paper. This method relies on the premise that the sum of the 966 
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biomass from meshbags incubated for short continuous periods should exceed the 967 

biomass from meshbags incubated from a long incubation time. However, in a 968 

number of cases the mycelial biomass from a long incubation period was greater than 969 

the sum of the consecutive shorter intervals. This could be caused by a delay or a lag 970 

phase in EMF colonization inside the bags. It is possible that when a meshbag was 971 

collected and the same hole was used to replace a new bag (Fig 2) there was a lag 972 

phase before the hyphae could colonize the newly placed meshbag (Wallander et al., 973 

2013). Thus, those data points could have created noise in the data making the 974 

turnover estimates less robust. In any case, if turnover in the EMF communities 975 

colonizing the nutrient amended bags is higher (as suggested by previous studies), and 976 

was underestimated in the current study, then the high standing biomass measured in 977 

the urea and apatite bags can only be explained by even higher EMF production than 978 

the predicted in these results. 979 

 980 

4.3 Seasonal effects on EMF growth 981 

The general assumption of Model 1 is that fungal growth occurs at a constant rate. 982 

However, this approximation has some limitations, since seasonality usually affects 983 

the amount of C allocated to the roots (Coutts & Nicoll, 1990) and consequently EMF 984 

root colonization (Walker et al., 1986). Indeed, the standing EMF biomass in the 985 

mesh bags peaked in July and decreased over autumn contradicting our fourth 986 

hypothesis (Fig 2). In this paper Model 2 allowed the predicted fungal growth to vary 987 

both with seasonality and with the treatments (P fertilization and meshbag 988 

amendment). The introduction of these different dependencies in the model allowed 989 

us to test for the interactions between treatment and seasonal effects. It must be noted 990 

that the predicted EMF growth resulting from Model 1 is not incorrect and truly 991 
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reflects the EMF growth differences between the treatments. However, by including 996 

seasonality in Model 2, we could detect that those differences predicted earlier were 997 

highly dependent on the season. Indeed, EMF growth not only increased early in the 998 

season, but the magnitude of this increase depended on the treatments (Fig 5). 999 

Therefore, the differences in biomass production between the fertilization regime and 1000 

meshbag amendments were significant only early in the season (Fig 6).  1001 

 1002 

 1003 

In contrast with our fourth hypothesis, the EMF biomass production peaked in 1004 

summer and decreased in autumn. This contrasts with previous studies that have 1005 

reported that the standing biomass in meshbags collected from a Pinus sylvestris 1006 

(Hagenbo et al., 2021; Wallander et al., 2001), Pinus pinaster (Hagenbo et al., 2021) 1007 

and Picea albies (Wallander et al., 2001) forests was higher during the autumn 1008 

season. However, in a study performed in the same experimental area as the present 1009 

study, Wallander et al. (2013) found that the standing biomass in September-October 1010 

incubations was lower than the standing biomass in July-August incubations. It has 1011 

been reported that different EMF species have different seasonal peaks (Castaño et 1012 

al., 2017; Iotti et al., 2014; De la Varga et al., 2013) which could explain the 1013 

differences in EMF growth between previous studies and the current experiment. Our 1014 

results are also consistent with those from Coutts & Nicoll (1990) who found that the 1015 

mycelium extension of Laccaria proxima and Telephora terrestris inoculated in Picea 1016 

sitchensis peaked during July and decreased in autumn. The mycelial extension was 1017 

associated with soil temperature, which peaked early in the growing season. 1018 

 1019 

4.4 Potential non-mycorrizal growth in the meshbags 1020 
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It could be also possible that non-mycorrhizal fungi contributed to the fungal growth 1029 

detected in the current study. The main assumption that the ergosterol in this 1030 

experiment comes mostly from EMF relies on previous evidence that the meshbag 1031 

system favors the growth of EMF over non-mycorrhizal fungi (Almeida et al., 2018; 1032 

Rosenstock et al., 2016; Berner et al., 2012; Wallander et al. 2010; Hedh et al. 2008; 1033 

Wallander et al., 2001).  However, it has been shown that the shorter the time period a 1034 

meshbag remains underground the higher the proportion of non-mycorrhizal fungi 1035 

inside the bags (as measured by the proportion of non-mycorrhizal DNA in Hagenbo 1036 

et al., 2018).  1037 

Thus, non-mycorrhizal fungi growth could partially explain the seasonal effect 1038 

detected as this fungal guild has been reported to respond positively to temperature 1039 

(Pietikäinen et al., 2005).  Unfortunately, the current study lacks non-mycorrhizal 1040 

biomass controls (ie: fungal biomass from ingrowth bags collected in a trenched root-1041 

free area) that can be used to estimate the contribution of non-mycorrhizal fungi.  1042 

Therefore, we cannot rule out the possibility that part of the ergosterol measured in 1043 

the bags came from non-mycorrhizal fungi. Even so, the significant negative effect of 1044 

P fertilization on all the meshbag types suggests that the decrease in fungal growth 1045 

might be related to a potential reduction in C allocation by the trees as discussed 1046 

earlier.  Moreover,  the effects of the P fertilization and meshbag amendment on 1047 

fungal growth were higher early in the season which might imply that the seasonal 1048 

effect seen in the current study is explained mostly by EMF.  1049 

 1050 

It must be noted nevertheless that a potential reduction in belowground C allocation 1051 

could decrease root activity and possibly root exudates which might reduce labile 1052 

sugars in the soils affecting saprotrophic fungi as well. Further studies are necessary 1053 
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to evaluate the effect of P limitation on root dynamics and other members of soil 1071 

microbial communities.  1072 

 1073 

 1074 

 1075 

 1076 

In conclusion, EMF production was strongly reduced when the P fertilizer was added 1077 

to the forest,suggesting a decline in belowground C allocated by the trees to EMF 1078 

when the P limitation was alleviated. This decline affected the colonization of the 1079 

apatite and urea meshbags which might indicate that a potential decrease in 1080 

belowground C allocation affected foraging for P but also foraging for N patches. The 1081 

strong negative effect of P fertilization on EMF production suggests a central role of P 1082 

in regulating EMF biomass production in N rich forests. Moreover, the effect of the 1083 

reduced belowground C allocation and the nutrient patches on EMF growth was 1084 

significant only in the warmest months of the growing season suggesting an important 1085 

effect of seasonality on EMF growth dynamics and nutrient uptake. 1086 

 1087 

 1089 
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