
Response to reviewers on “Reconstructing ocean carbon storage with CMIP6 models and 
synthetic Argo observations” 

To the editor and reviewers: 

On behalf of myself and my co-authors, I would like to thank you for sending our manuscript 
“Reconstructing ocean carbon storage with CMIP6 models and synthetic Argo observations” out to 
review. We have found the reviewers’ comments insightful and thought-provoking, and we would 
like to thank both reviewers for taking the time and effort to carefully consider the manuscript. We 
hope that we can iterate upon this manuscript, taking all the comments into account, and produce 
an improved version for Biogeosciences. 

Before answering the reviewers’ comments and questions line by line, we would like to provide an 
overview to our response. Both reviewers raise important points on the scope of the study, 
particularly regarding two points: 1) the decisions made about depth level chosen for our 
reconstruction, and 2) the lack of a real-world construction using existing Argo profiles. We propose 
to extend the manuscript to include an analysis over the upper 2000m and a longer discussion on 
the transition from synthetic to real-world reconstructions to respond to the reviewers’ comments. 

1. Extension of synthetic reconstructions with depth 

Both reviewers have questioned the restriction of our reconstruction method to the top 100m 
carbon response. Upon reflection, we agree with the reviewers that this choice is too restrictive. 
The Ensemble Optimal Interpolation method, being an off-line and linear method, is highly flexible, 
and extensions with depth are straightforward in our synthetic reconstructions. We originally chose 
the depth horizon of 100m as a test case, but can extend the method to the upper 2000 m. This 
choice of the upper 2000 m is to maximise the data coverage of the ocean and to be consistent 
with the maximum depth range for Argo profiles.    

It is possible to reconstruct carbon up to 2000m by breaking up the water column into various 
layers. This method considers how different depths have different controlling processes and will 
therefore have different imprints on the covariance fields between carbon, temperature, and 
salinity. We have extended the method by considering reconstructions for three additional layers to 
the 0-100m layer presented in the first manuscript: 100m-500m, 500m-1000m, and 1000m-2000m.  
For simplification, we present here the optimal coefficients for atmospheric pCO2 and co-located 
temperature and salinity, alongside average improvements calculated from our sensitivity tests.



 

Figure 1 Optimal weights for interior ocean DIC as a combination of atmospheric pCO2 (top row, panels a-c), ocean temperature 
(middle row, panels d-f), and ocean salinity (bottom row, panels g-i). The weights were calculated to solve for DIC in various interior 
layers: 100-500m (left column, panels a,d,g), 500m-1000m (centre column, panels b,e,h), and 1000-2000m (right column, panels c,f,i). 

The optimal coefficients for solving for interior DIC using atmospheric pCO2 and co-located 
temperature and salinity anomalies show depth-dependency in their structure (Figure 1). 
Coefficients for atmospheric pCO2 (subplots a-c) remain positive over the top 1000m; for the 100m-
500m layer, they exhibit local maxima in the subtropical gyres, whereas for the 500m-1000m layer 
the maxima are located in the regions of mode water formation. For the deepest layer of 1000m-
2000m (subplot c), the coefficients are near-zero for most of the ocean and very slightly negative in 
the regions with oldest waters (i.e., the equatorial Indian and equatorial and north Pacific). The 
strongest impacts are found in the North Atlantic and Southern Ocean, consistent with the 
ventilation and transport equatorward of North Atlantic Deep Water and Subantarctic Mode Water 
in this layer. 

As for the top 100m, temperature coefficients (subplots d-f) are generally negative and salinity 
coefficients (subplots g-i) are generally positive for the ocean interior. The regional structures of 
both of these terms differ from those for the upper 100m, most noticeably in the 500m-1000m 
salinity coefficients (subplots e,h). We also note that for the deepest layer of 1000m-2000m, both 
temperature and salinity coefficients exhibit dipole behaviour in the Pacific Ocean and are near-
zero elsewhere (subplots f,i). The dipoles for salinity and temperature coefficients are similar, 
suggesting that the information provided by temperature and salinity profiles in the deep Pacific is 
correlated and therefore less independent than in the upper levels. 



 

Figure 2 Ensemble average relative RMSE reduction e, as measured across the out-of- sample tests as described in section 4, for (a) 
integrated DIC between 0-100m, (b) integrated DIC between 100-500m, (c) integrated DIC between 500-1000m, and (d), integrated 
DIC between 1000-2000m. Subfigures (e-h) are as above, but consider only the detrended aspect of integrated DIC in the same layers.  

For the reconstructions of individual layers, we find that the overall skill in the reconstructions 
decreases as we move further into the ocean interior (Figure 2). Up to a depth of 500m, the 
covariances between ocean DIC, temperature, salinity, and atmospheric improve upon the 
climatology almost everywhere (subplots a-b), while there is improvement in the representation of 
variability around the trend in most regions (subplots e-f). Below 1000m, the reconstruction is still 
predominantly skilful though there are now regions where uncertainties in the covariances lead it 
to perform worse than the climatological first guess, particularly in the Pacific (subplots c-d and g-
h). The regions that show skill are those in which mode water formations maintains similar 
relationships between DIC and hydrography via solubility and alkalinity arguments. 

However, as Reviewer #1 has noted, the deeper ocean contributes a small fraction of the overall 
change in ocean carbon. When considering the skill for full-column reconstructions (Figure 3), the 
reconstruction errors in the 500m-1000m layer and 1000m-2000m layer reduce the overall skill, but 
the method still provides more information over the climatology outside of a few points. However, 
when extending the method we would recommend restricting the use of deeper observations to 
locations where they are beneficial. 



We propose that we extend our manuscript to include a new section on how the reconstructions 
work at different depth levels, and the implications for recreating depth-integrated ocean carbon 
reconstructions using real Argo floats. We believe that a form of these additional Figures 1-3 
(shown here) reveal how the method can provide skill for other interior layers that store carbon. 

Figure 3 Ensemble average relative RMSE reduction e, as measured across the out-of-sample tests as described in section 
4, for column integrate DIC down to a level of 0-100m (a,b), 0-500m (c,d), 0-1000m (e,f), and 0-2000m (g,h). Left column 
shows e for the full DIC signal, whereas the right column shows e for the DIC signal once a linear trend has been removed. 



2. Inclusion of real-world Argo floats into a full carbon reconstruction 

Both reviewers also mentioned a degree of disappointment that this method has not yet been 
applied to Argo. A real-world reconstruction is the overall goal of this work; however, we feel that a 
full reconstruction should be approached in a second work, as there is an additional substantial 
amount of analysis to understand how errors in the observations impact the reconstruction. 
Without conducting this additional analysis, it would be easy to provide a misleading view as to the 
benefits of applying the method to real Argo data. 

Synthetic reconstructions draw upon the assumption that model data is a near-perfect 
representation of the climate system at any given location and time. Model output should have no 
errors other than those created from regridding and rounding. However, when considering real-
world data, there are additional errors within the observations. These observational errors arise 
from a combination of: 

1. Sensor errors 
2. Representation errors, consisting of 

a. Spatial binning errors, such as aliasing of structures such as eddies through repeat 
sampling with Lagrangian profilers 

b. Temporal binning errors, particularly regarding the estimation of an annual mean 
state from different months of observations 

3. The estimate of the climatological first-guess field 

We believe that the errors arising from points 2 and 3 may be substantial. While it would be 
possible to calculate an estimate by assuming the real-world observational errors are zero, we 
believe this inclusion could mislead the readers as to the actual impact of the method and have 
therefore refrained from doing so. 

Ultimately, creating a real-world reconstruction includes an observational error covariance field 
that considers errors from the above sources. Reconstructions of salinity and temperature have 
used a parameterised observation error covariance field; for instance, Smith and Murphy (2007) 
parameterise the observational error in their temperature and salinity reanalyses to be 

𝐸!"# = 𝐸$%#&
𝑁$ + 𝑓𝜎'(1 𝑁$ + 1)	 , 

where 𝐸$%#& is the instrumental error, 𝑁 is the number of profiles in a grid cell in a given month, and 
𝑓𝜎' is the fraction of monthly variability within a grid cell. The authors objectively choose values for 
𝑓𝜎' based off extra validation studies.  

Based off our knowledge of similar reconstructions and the differences between previous works 
and our multivariate system for ocean carbon, we would prefer to create our own validation 
studies against existing carbon observations to quantify these error covariance fields. These 
validation studies could be used to further compare linear and nonlinear reconstruction methods, 
as increased wintertime observations have lowered estimates of the Southern Ocean carbon sink 
(Bushinsky et al., 2019). We propose that we extend the discussion in the manuscript to include a 
more in-depth description of how the method will be extended to account for observational errors 
and the complexities involved.  



Responses to individual reviewer comments – Reviewer #1 

(Reviewer’s comments are in black, authors’ response is in blue italics) 

The manuscript “Reconstructing ocean carbon storage with CMIP6 models and synthetic Argo 
observations” by Turner et al. is well written and easy to follow. The figures are well chosen, good 
to read, and facilitate the understanding of the study. The methods are sound and well presented, 
although some precisions at a few points would be needed, I think. 

However, I am somewhat concerned about the novelty and significance of this work for this journal, 
although this might well be due to a misunderstanding of the methods. To be sure that no 
misunderstandings have occurred, I am first summarizing the paper very(!) briefly in my own words. 
If the authors detect significant flaws, please consider them when reading my following comments. 

As far as I understand, the here presented method builds on the assumption that the DIC (averaged 
over the first 100 m in the ocean) at a point x,y can be expressed as the average DIC from 1955 to 
2014 at this point x,y plus a delta DIC. This delta DIC can, for any moment in time, be approximated 
by a linear combination of delta pCO2, delta T, and delta S at locations more or less close to point 
delta x,y. 

We thank Reviewer #1 for their thoughtful and constructive review. Our aim with this manuscript is 
to present an independent method for reconstructing ocean carbon changes. The method is flexible 
and can be constructed with a variety of choices regarding depth horizon, ensemble makeup, and 
input parameters – all whilst being able to refer to model covariance fields to understand the scope 
and impact of any choices within the method. We believe that this flexibility is a strong feature of 
our approach and is a novel method for reconstructing interior carbon content. Our study provides a 
framework for a new carbon reconstruction alongside current nonlinear estimates of carbon fluxes 
(e.g., Landschützer et al., 2014) and seasonal interior DIC (e.g., Keppler et al., 2020).  

My comments are: 

• Long-term trend 

To me, it seems somewhat trivial that the long-term trajectory of DIC in the first 100 m, a depth 
that is more or less representative of the average mixed layer depth, is mainly determined by the 
atmospheric pCO2. The provided BATS example is an excellent example (blue dashed line in Figure 
7b). By knowing also temperature, which affects solubility, and salinity, which is closely related to 
alkalinity, at only one point close to the point of interest, slight deviations of this long-term trend 
can be represented, as well as inter-annual and decadal variability that is not due to changes in 
primary production or remineralization can be represented. This is nicely represented by the HOT 
example (blue dashed line in Figure 7c). As the authors describe in their paper, the underlying 
mechanisms are well-understood: air-sea CO2 flux due to increasing atmospheric pCO2, decreased 
solubility with increasing temperatures, and more DIC with increasing alkalinity. Therefore, I think 
that the predictability of DIC in the mixed layer from pCO2, T, and S as well as a background DIC, is 
not surprising. 

On timescales longer than a few decades, changes in DIC are dominated by the addition of carbon 
through emissions. The top 100m response is indeed generally a mixed-layer response. T and S 



observations do add further information for the long-term response, particularly in terms of how 
they are related to atmospheric pCO2 changes (manuscript figures 2b, 2c, 3a). As the referee 
suggests, the dominant response is well understood and involves increases in atmospheric pCO2, 
changes in buffered chemistry, decreasing solubility with increasing temperature, and increasing 
solubility with increasing alkalinity. The consistency to which these mechanisms are replicated 
within the model ensemble provides evidence of skill for the reconstructions for near-surface DIC 
using the model ensemble.  

However, reconstructing the trend for deeper layers is less straightforward. On extension of the 
method to include the ocean interior down to 2000m, we find that the optimal solution from the 
CMIP6 model ensemble reflects the control of pCO2 in regions with well-ventilated waters (Figure 1, 
subplots a-c). Up to a depth of 1000m, the optimal solutions for temperature and salinity remain 
consistent with previous solubility and alkalinity arguments, although the structure of the optimal 
solution is depth-dependent (Figure 1, d-e and g-h). Below 1000m, the optimal solutions for 
temperature and salinity have higher regional structure and become positively correlated, 
particularly in the Pacific. 

• Variability (detrended signal) 

When the detrended response is looked at, pCO2, which is responsible for the largest part of the 
trend, should not play any role anymore as annual globally averaged pCO2 has little variability. At 
this point, the RMSE improvement seems to drop (Figures 5d-f and 6d-f). It remains mainly high in 
the relatively slow and calm subtropical gyres and becomes smaller in the more dynamical regions 
like the tropical Pacific, eastern upwelling regions, or the Southern Ocean. In these regions, 
variability in close-to-surface DIC is likely influenced by a variability in the circulation and hence the 
upwelling of nutrients and carbon. The negative correlation between DIC and T in the tropical 
eastern Pacific (2d) due to El Nino is a good example. It would be nice to discuss and analyze a little 
bit more, why these regions are less predictable. As these regions are usually also the regions with 
the highest variability in surface ocean DIC, I was wondering how the statement that the RMSE of 
the detrended signal was reduced by 60% was calculated. Did you calculate the area-averaged eta 
from Figures 5e and 6e? Or did you compare the detrended true signal of globally averaged DIC to 
the predicted signal of globally averaged DIC? I am not sure which way is better as both have 
potential pitfalls. Taking the area-weighted average of eta gives potentially to strong emphasize to 
regions with little variability, as the subtropical gyres, that contribute only little to the global ocean 
DIC signal. However, by taking the area-averaged DIC first, errors in different directions may 
globally compensate. Maybe it would be best to use the local eta at each point x,y and weight them 
by the true DIC variability at that point x,y? 

Thank you for your comments. For the detrended response, we remove a linear trend from the 60-
year model runs taken for each of the out-of-sample tests. As atmospheric pCO2 rises approximately 
exponentially during this longer period, the detrended response retains some second-order 
behaviour in pCO2.  

The regions which show the greatest RMSE improvement (when considering the detrended signal) 
are regions in which the models have similar ratios between temperature, salinity, and DIC 
variability, even if they differ on the structure or power of modes of variability such as ENSO.  For 
instance, the negative correlations between DIC and T found in the models results in detrended 



RMSE improvements that, while less than those for the western basins, is greater than those for the 
shadow zones in the Pacific and Atlantic.  Additionally, the dynamically active North Atlantic shows 
strong improvements in the detrended RMSE.  Regions with minimal RMSE improvements are 
marked by moderate correlations between temperature and salinity, which suggests that the 
information provided by temperature and salinity is less orthogonal in those regions. This could be a 
result of dynamical uncertainty within the model ensemble or an underdetermined system that 
would benefit from the addition of other ocean tracers. We will add to the discussion on how 
different dynamic regimes exhibit different RMSE improvements and connect those improvements 
to their dynamics. 

In the submitted manuscript we avoided creating area-weighted averages of eta. The formulation of 
the relative RMSE reduction eta includes a normalisation by the RMSE from the first-guess 
climatology field, which is equivalent to the variance of DIC at a given location. We have refrained 
from creating a global measure for the same reasons the reviewer has pointed out. In the 
manuscript abstract and show in manuscript Figure 5 we show that in most regions, the 
reconstruction reduces the RMSE by 60% or more. There are noticeable exceptions to this value, 
mainly in the Southern Ocean and eastern Pacific, where the RMSE is reduced between 20-60%. For 
clarity, we will revise the manuscript to include a global (area-weighted) RMSE improvements for 
both the full detrended signals. We can calculate these global RMSE improvements for each of the 
model sensitivity tests to create both a range and an ensemble average.  

• Significance of the first 100 m for the long-term ocean carbon sink 

Another point that I am not sure about is the importance of this analysis for the global ocean 
carbon sink. How much of the additional DIC is in the first 100 m? The Global Carbon Budget 2021 
(https://essd.copernicus.org/articles/14/1917/2022/essd-14-1917-2022.html) estimates that from 
1960 to 2020, 115 Pg C has entered the global ocean. Recent estimates from observationally 
constrained ESM output suggests that it might be a bit more. Thus from 1960 to 2014, the ocean 
has taken up very approximately ~100 Pg C. The upper ocean carbon inventory shoes an uptake of 
~14 Pg C (tried to read that number from Figure 7a). Thus, the upper ocean is ‘only’ responsible for 
14% of the global ocean carbon sink. Wouldn’t it be more important to quantify how much is 
transferred from the surface ocean to the interior ocean, i.e., subducted below the mixed layer 
(https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/gbc.20092, 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL065073). Recent studies indicate 
that salinity and temperature might indeed be able to reproduce the interior ocean Cant 
(https://www.science.org/doi/10.1126/sciadv.abd5964, https://www.nature.com/articles/s41586-
020-2360-3, https://bg.copernicus.org/articles/18/2221/2021/bg-18-2221-
2021.html#&gid=1&pid=1, and https://bg.copernicus.org/preprints/bg-2022-134/). However, the 
interior ocean transport might make this much harder. The authors mention that this will happen in 
the next step, but I think it could/should also be incorporated in here if(!) the long-term trend 
remains a focus of this study. 

Originally, we chose the top 100m as a test case to show how the linear optimal interpolation 
system performs by drawing upon the covariance fields. Upon reflection of the comments for both 
reviewers we agree that this choice was too limited. Instead we have extended the method to a 
depth of 2000m. The vast majority of the carbon uptake and variability is likely to be in the upper 
2000m of the ocean, so this extension should better capture the ocean carbon sink response. 



We will also update the manuscript Figure 7 to include a full reconstruction with depth using the 
Norwegian ESM in all panels. We do note that the radius of influence for the “observed” cells is 
likely to be smaller when considering the interior layers, perhaps even restricting reconstructions to 
regions with co-located profiles below 1000m where there are smaller signals and larger errors 
present in our sensitivity tests (see Figure 2 in this response). 

• Significance of the first 100 m for the variability of the ocean carbon sink 

Figure 7a suggests, however, that the fist 100 m might be very interesting for the inter-annual or 
decadal variability. In Figure 7a, you show the variability of the upper ocean 100 m DIC. How much 
of this is caused by the air-sea CO2 flux and how much by transport to the interior ocean. Could the 
variability in the air-sea CO2 flux maybe largely be derived from variability in the ocean T and S? Or 
in the variability of subduction on these time-scales?  Can your method provide an estimate of the 
subduction of DIC on an annual basis using the surface ocean air-sea CO2 flux estimates in 
combination with your estimates? The example of HOT in NorESM is striking as it suggests that the 
upper-ocean has taken up almost no carbon between 1990 and 2014 despite an increase in 
atmospheric pCO2. 

From covariance fields alone it is difficult to disentangle the various flux drivers of carbon content; 
however, with current estimates of pCO2 fluxes from other products (such as the machine learning 
methods in Landschützer et al., 2014) alongside reconstructions at various depth horizons, it would 
be possible to create an estimate of global subduction rates for carbon. In a model analogue, 
Lauderdale et al. (2016) have explored the drivers of atmospheric CO2 uptake using the MITgcm, 
and include discussion on the role of advection, diffusion, and biological activity on upper ocean 
carbon content. 

We do note that the Earth system model runs used for this work are not reanalysis datasets but 
historical simulations with their own timings for climate modes of variability. Thus, the hiatus in 
upper-ocean carbon at HOT in the NorESM is not necessarily indicative of real-world conditions in 
the 1990s and 2000s, but it is still an interesting note that these local hiatuses are present in the 
model data. 

• Proof-of-concept without application to real data 

After having read through the manuscript, I was really disappointed that this new method is not yet 
applied to observations right now. There is much potential, and I understand the idea of making 
two publications, one for ‘proof-of-concept’ and one for the application, but now it seems as if 
something is missing in this paper. If no institutional, or PhD-related restrictions exists, I would 
recommend to also present the application here. 

The implementation of Argo data into the Ensemble Optimal Interpolation method is non-trivial, as 
observations contain their own errors, both in terms of instrumental errors and (in our view, more 
importantly) errors in how binned and averaged observations represent the desired input variables 
(for this setup, annual average temperature and salinity fields). We have outlined the difficulties in 
applying the method to observations in the first part of our response. To summarise, we will need to 
carefully consider: 



• The impact of observations that cover only some months of the year, and particularly those 
that might be biased towards specific seasons 

• The aliasing of small-scale structures not present in coarse CMIP6 models with Lagrangian 
Argo floats 

• Sensitivity tests against existing carbon datasets such as GLODAP or time series sites to 
quantify relative uncertainties from different aspects. 

We will explain these considerations in more detail in our discussion to further justify using synthetic 
data to test the feasibility of the ensemble optimal interpolation method. 

My overall recommendation would therefore be to de-emphasize the long-term trend, focus on the 
variability, apply the method to observations, compare it to estimates of the air-sea CO2 flux, and 
try to address the subject of the decadal and inter-annual variability of the ocean carbon sink. 

As you already have the models, you might even be able to draw conclusions why and where 
models do not capture the variability. Are the regions with the largest variability in the air-sea CO2 
flux also the regions with the largest variability in the upper ocean DIC? 

If the focus is more on the detrended signal, the subsurface ocean would not fit anymore and could 
be left for another study. 

While this sounds somewhat negative, I am in strong favor of publishing this manuscript in 
Biogeoscience but with an application to observations. If not applied, maybe GMD is more suited 
for 'proof-of-concept' studies? But that is an editorial decision.  

Thank you for your thoughtful review. We will provide an extension for reconstructing ocean carbon 
behaviour at depth in order to mitigate concerns about how well the upper ocean represents the 
global ocean carbon response. With this extension we believe we can discuss both the long-term 
behaviour and interannual behaviour more completely. We will provide context for how modelled 
DIC behaves with depth (i.e., which layers contain most of the forced signal vs. interannual 
variability).  

As the reconstruction uses a limited number of inputs, regions where variability is not captured are 
not necessarily regions where the models have a mismatch in the variability. There are almost 
certainly areas where the models do not capture variability, but our reconstructions are likely more 
limited by the lack of other tracers to describe ventilation rates or biological activity. Understanding 
the drivers of the model biases in ocean carbon is an important and difficult question, and likely 
requires diagnostics of overturning as well as the drivers of pCO2 fluxes (such as in Lauderdale et al., 
2016). 

Minor comments: 

Line 22, page 1: While the Global Carbon Budget summarizes the numbers, I prefer to give credit to 
the original studies (for example: https://bg.copernicus.org/articles/10/2169/2013/, 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013GB004739, and recently 
https://bg.copernicus.org/preprints/bg-2022-134/) 

Agreed. We will update the introduction to include the original studies.  



Line 25, page 2: Gruber et al. is about compound extreme events and rather summarizes literature. 
I would recommend to replace it by this earlier study on global ocean acidity extremes 
(https://bg.copernicus.org/articles/17/4633/2020/) and this regional study 
(https://www.nature.com/articles/s43247-021-00254-z) that provides one example in detail. 

Thank you for this correction, we have made the adjustment in the manuscript. 

Line 57: I think this is the first time that you use the term ‘upper ocean’. Maybe define it here. 

We will add a definition for the upper ocean here and define the upper ocean down to a depth level 
of 2000m due to the depth profiles of Argo data. We will re-define the 0-100m layer in the following 
sections as a mixed layer approximation. 

Lines 60-66 and lines 99-100: Would suggest to add the Southern Ocean studies 
(https://www.science.org/doi/10.1126/sciadv.abd5964, https://www.nature.com/articles/s41467-
022-27979-5), and one study from the Arctic Ocean (https://www.nature.com/articles/s41586-020-
2360-3) that show how surface observations (and variations) of S and T can alter the CO2 uptake. 
Or maybe keep that for later in the Discussion when you describe the potential to go below the 
surface. 

Thank you for the recommendations. We will include these studies in our introduction and in the 
discussion. Emergent constraints provide an interesting statistical perspective on the realism of 
climate model outputs, and we think that this nicely complements the inter-variable and spatial 
correlations on which the Ensemble Optimal Interpolation method is built. Particularly in the high 
latitudes, where the ensemble members show a low level of agreement in our reconstructions, the 
use of emergent constraints could increase the reconstruction skill. 

Line 112: Does the method account for inter-dependencies between the predictors? Sorry about 
the question, but I am not very familiar with this kind of method. 

The Ensemble Optimal Interpolation method uses all covariances between input parameters and the 
desired output parameters to solve for the optimal weights, and so highly-correlated input 
parameters will have an impact on the optimal weights. We will make this point clearer within the 
methods section. 

Line 132-133: Just wanted to say that I really like that you provided the regridding method here in 
such detail. Often it is not possible to reproduce data because the regridding software is not 
named. 

Thank you. 

Line 141: Something is wrong in the sentence, I think. 

We will make the setup of the first idealised experiment clearer by changing the text in the first two 
sentences to “The first reconstruction method assumes full global coverage of temperature and 
salinity observations. For these synthetic reconstructions, the ocean inputs are taken from co-
located model temperature and salinity output, as well as globally-uniform atmospheric pCO2. The 
resulting system thus has 3 input parameters to solve for ocean carbon at each grid cell.” 



Lines 147-154: Just to be sure that I understand it right. When you use the ARGO 2002 coverage, 
you assume that you have data at each of these points for all years from 1955-2014? Is that right? If 
yes, how do changes in the temporal coverage effect time series as shown in Figure 7? If you have 
little data for the first 30 years and then more, you should get a better representation of the 
variability over time, right? Figure 7c seems to suggest that there is only 1 observation for the blue 
line, but that means one observation per year in the vicinity of the HOT station, right? 

Yes, for coverage consistent with Argo profiles in year 2002, we take the observational coverage to 
be constant in time. This decision was made to better understand how different levels of coverage 
could capture various levels of change (trends vs. interannual vs. multidecadal variability). When 
considering real data, the fit of the reconstruction will be a function of the amount of observations 
available (see Figures 7e and 7f – for the same interannual changes in carbon in the top 100m, the 
spatial correlation is substantially higher with later Argo coverage).  Based off the response from 
both reviewers we suggest that we extend Figure 7 a-c with sample reconstructions from 2002-2015 
that use the temporally-varying coverage, to show how the system converges towards the idealised 
year 2015 Argo reconstructions. 

Section 3: I found this section a little bit difficult to follow. What could help (maybe it doesn’t), is to 
look only at the long-term signal and only at the detrended for the correlations. Than the long-term 
should give you a correlation between pCO2, T, and DIC. T and DIC because the ocean is warming 
and taking up carbon (but one does not cause the other) and the other between pCO2 in the 
atmosphere that causes DIC in the ocean to increase. For the detrended signal, I would expect no 
correlation between pCO2 and DIC as the pCO2 trend is gone. T and DIC should be negatively 
correlated (like shown in Figure 3b). And salinity should be positively correlated. A little bit along 
the lines of Figure 2 in https://www.nature.com/articles/s41467-022-32120-7 

During our creation of the Ensemble Optimal Interpolation method, we experimented with creating 
a reconstruction of the DIC signal with a linear trend removed. We found that temperature and DIC 
remained strongly positively correlated for most of the ocean due to the second-order increase of 
carbon emissions. We find the system reflects the correlations mentioned by the reviewer when 
removing either a term proportional to atmospheric pCO2 or when including atmospheric pCO2 as an 
input. We have opted for the latter option as we believe this setup remains consistent with the 
climatology first guess fields found in ocean temperature and salinity EnOI methods. We also believe 
that this decision increases the transparency of the method, particularly considering that models 
have biases in their Revelle buffer factors. 

However, we recognise that this decision leads to a complicated system in terms of the number of 
covariances involved in setting the optimal weights, and the dissection required to understand the 
covariances between temperature and DIC. We can reframe Section 3 into smaller blocks to 
enhance readability.  

General: Did you think about including the area of sea ice in each cell as well? As this blocks the air-
sea gas exchange to some extent, it might be a powerful predictor in the high-latitude oceans. Just 
a guess. 

We did not include sea ice area for the high-latitude reconstruction because the extent of Argo 
floats is limited to ice-free regions. The presence of sea-ice could provide useful information about 



air-sea carbon fluxes, particularly when the predicted information could be examined alongside 
more recent under-ice profiles of temperature, salinity, and potentially also DIC. 

In our discussion on how the method could possibly be extended to other observations such as 
oxygen, pH, and nutrients, we will include a statement on how satellite observations of sea ice could 
be added to provide information on the communication between the ocean and the atmosphere. 

Section 6: While I completely understand the reason to only choose Nor-ESM to make these tests, I 
would be curious how other models perform. 

Section 4 implicitly includes an evaluation of how the method performs on other models. In Section 4 
we have conducted sensitivity tests, in which models within the ensemble are omitted, the 
covariance fields are re-constructed, and then the out-of-sample models are reconstructed. The 
figures in Section 4 have been chosen to illustrate the range of responses within the ensemble and 
to illustrate how models add confidence or uncertainty to the method. 

Once a model is included in the ensemble, the method can reproduce that model’s DIC with greater 
accuracy. We find this accuracy to be misleading when considering real-world applications in which 
all the models will have shortcomings and biases. Thus in Section 6 we use the full ensemble as 
described in section 2 to reconstruct a completely independent model. In our further work including 
real-world observations, we will likely include the NorESM (as well as other ESMs) in our covariance 
calculations so that a more complete range of model uncertainty is considered within the covariance 
fields. 

To aid the reader in connecting these two sections, in the manuscript we will include a statement in 
the beginning of Section 6 to describe out the reconstruction of the NorESM is an additional out-of-
sample reconstruction in line with the analysis in section 4. 

  



Responses to individual reviewer comments – Reviewer #2 

(Reviewer’s comments are in black, authors’ response is in blue italics) 

In this study Turner et al. reconstruct the ocean carbon storage from first-order relationships 
between temperature, salinity and atmospheric CO2 and Dissolved Inorganic Carbon (DIC). The 
authors use a set of CMIP6 models to assess these relationships and estimate the covariance fields. 
The inferred statistical relations are then used to reconstruct the carbon storage from hydrographic 
pseudo-observations. In order to test the capabilities of this approach, two sampling methods are 
proposed: 1) a complete coverage using CMIP6 co-located observations and 2) Irregular sampling 
consistent with Argo profiles. While co-located observation (1) is taken as a sensitivity test, the 
irregular Argo-style observations (2) show the potential of this method to use real Argo 
measurements to reconstruct the carbon storage. Both of the sampling methods offer a significant 
improvement compared to the reconstruction based solely on the climatological mean. The study is 
well-written, presented in a structured logical manner and the results and their implications are 
easy to follow.   

This study represents a significant advancement within the field, offering a powerful method to 
understand both the spatial and temporal variability of DIC. This method could not only be used to 
reconstruct the carbon storage from real hydrographic measurements but also, the resulting DIC 
fields could be used to identify differences between linear and non-linear mapping methods as well 
as explore the differences in the processes that affect the DIC between different models. Based on 
the aforementioned, I recommend the publication of this study. Here are just some suggestions I 
believe would add value to the publication:   

General Comments: 

- There is an emphasis throughout the manuscript on the application of this method to reconstruct 
ocean carbon storage from real-world Argo observations.  I was expecting such reconstruction at 
the end of the paper and a comparison to existing reconstructions (such as GLODAP). I understand 
that this paper is intended as a "proof of concept" study, followed by another one regarding its 
"real-world applications". If this is decided as the final form of the study, without including the 
reconstruction using real Argo measurements, I think the potential application to Argo 
measurements should be de-emphasized throughout the text. 

The Ensemble Optimal Interpolation approach is a novel approach for ocean carbon in that it is a 
flexible reconstruction that draws upon linear relationships between the ocean state and carbon 
content. The synthetic tests that we conduct in this study form a theoretical basis for a future 
application to real Argo observations. The skill evident in the synthetic reconstructions may be 
viewed as an upper bound and thus an important aspect for understand the true potential of the 
method. The expansion of temperature and salinity observations is a key determinant of this 
potential, and we feel that the Argo programme will be a key aspect in the final reconstruction. 
Additionally, errors from the observations and gridding procedures may be significant, and so we 
have aimed to understand errors from the covariance fields and errors from the observations 
separately. As such, we can restrict the Argo discussion and emphasise that this work is an 
intermediate step, but we do feel that the potential application is an important motivating factor 
for the work. 



- The results in this study are focused on the top 100m, however, I couldn't find in the text the 
motivation to choose such a horizon. Is it because the mixed layer drives the variability in carbon 
sink?  Or, do the statistical relationships between temperature and salinity and DIC break down in 
the interior ocean?  

Originally, we focused on the top 100m to provide an illustration of how the model covariance fields 
can be translated into reconstruction skill; however, this decision is arbitrary and can be extended 
with additional decisions (e.g., whether covariance fields are calculated for interior layers or for full 
integrated carbon). Based on the comments made by both reviewers, we will extend the manuscript 
by including a section on reconstructing the full depth range covered by Argo-style profilers (0-
2000m). We have included example plots and our further analysis in the beginning of our response.  

We do find that the reconstruction skill substantially decreases when moving to depths deeper than 
500m, where the ensemble shows more uncertainty and less-independent information in the 
relationship between DIC, salinity, and temperature (Figure 2, panels c-d and h-i). However, when 
considering full column DIC, the response is dominated by the responses within the top 500 or 
1000m (Figure 3). 

- Since it is possible to separate the detrended covariance fields into pCO2 and non-pCO2 terms, if I 
understood it correctly, it would also be possible to reconstruct the preindustrial DIC and thus 
calculate the Anthropogenic Carbon fields as the difference between Total and the Preindustrial 
DIC. If this is possible, it should be mentioned in the paper as possible applications of the method, 
as there is a significant interest in the community regarding the drivers of the variability of 
anthropogenic carbon sink (e.g. Gruber et al., 2018: 10.1146/annurev-marine-121916-063407; 
Gruber et al. 2019: 10.1126/science.aau5153; DeVries 2017: 10.1038/nature21068).  

A preindustrial reconstruction would not necessarily need the breakdown of the covariance fields 
into terms proportional to pCO2 that we use in Section 3. The full covariance fields could be used to 
reconstruct preindustrial DIC under two conditions: 1) the covariances between T,S,pCO2, and DIC 
are stationary even when considering very low emissions of carbon, and 2) there are sufficient T and 
S observation in the preindustrial to provide information on preindustrial DIC for most of the ocean. 
Assuming stationary may be somewhat inaccurate, but the lack of observations in the preindustrial 
period is likely to be a major obstacle for this application.  

- When reconstructing the carbon time-series from Argo-style observations in Section 6, two 
observation locations are used, one at year 2002 (with very sparse observations) and another at 
year 2015 (with many more observations). As far as I understand, the entire time-series (1955-
2014) is reconstructed based on the spatial distribution of Argo observation locations in 2002 and 
2015, but the number of locations is constant in time. E.g. carbon storage in 1960s is reconstructed 
from observations that did not exist in the real world.  Why not account for both the temporal and 
spatial distribution of the observation locations? This would give a true insight into the potential of 
the real-world Argo measurements to reconstruct the time series of carbon storage.  

Yes, when implementing the method with real world data, the reconstruction will be dependent on 
the number of available observations within a given year. Our original idea behind a constant field 
of observations as determined by a specific Argo year was to examine how different aspects of 
carbon variability were represented with different levels of observations, to see if interannual or 



multidecadal variability required different amounts of nearby observations. To show more easily 
where a real-world reconstruction might fit inside these limits, we will include a reconstruction using 
the time-varying distribution of observations in Figure 7.  
 
Comments by Line: 
 
L150: What does it mean "6 months of profiles"? One profile at least in each of the 6 months? 6 
profiles in total?  

We considered a bin observed if, after binning, there was at least one profile taken in 6 unique 
months of the year (here, we consider the year to run from January to December). We will update 
the text to clarify this point. 

L198: I think there should be a full stop after pCO2 instead of a coma to make the sentence less 
confusing.  

Thank you for pointing this out. We have broken the sentence down into three parts to explain each 
set of terms individually. 

L199: Should DIC' and T' be in italics?   

Yes, thank you for pointing this out. The text in line 199 has been adjusted. 

Figure 4: Would it be possible to use the same colorscale? This would make the comparison of the 
magnitude of the coefficients more intuitive.  

It would be possible to use the same colourscale. For the top 100m, the coefficients for pCO2, T, and 
S are all of the same order of magnitude; however, when moving to the interior ocean the 
coefficients for S are an order of magnitude larger (Figure A). The real impact on the solution for DIC 
remains small as the variance of salinity is small relative to that for pCO2, for instance. We would 
suggest that, if including Figure A, those colourbars should remain different to best compare the 
regional changes in the optimal solutions. 

L378: Do you mean Fig 6a and d, instead of a and c?  

Yes, thank you for pointing this out. The reference has been adjusted. 

  



REFERENCES 

Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R., Baker, D., Mazloff, M. R., et al. (2019). 
Reassessing Southern Ocean air-sea CO2 flux estimates with the addition of biogeochemical float 
observations. Global Biogeochemical Cycles, 33, 1370– 1388. 
https://doi.org/10.1029/2019GB006176  
 
Lauderdale, Jonathan M. et al. “Quantifying the Drivers of Ocean-Atmosphere CO₂ 
Fluxes.” Global Biogeochemical Cycles 30, 7 (July 2016): 983–99. 
 
Keppler, L., Landschützer, P., Gruber, N., Lauvset, S. K., & Stemmler, I. (2020). Seasonal carbon 
dynamics in the near-global ocean. Global Biogeochemical Cycles, 34, e2020GB006571. 
https://doi.org/10.1029/2020GB006571  


