
Response to reviewers on “Reconstructing ocean carbon storage with CMIP6 models and 
synthetic Argo observations” 

To the editor and reviewers: 

On behalf of myself and my co-authors, I would like to thank you for sending our manuscript 
“Reconstructing ocean carbon storage with CMIP6 models and synthetic Argo observations” out to 
review. We have found the reviewers’ comments insightful and thought-provoking, and we would 
like to thank both reviewers for taking the time and effort to carefully consider the manuscript. We 
hope that we can iterate upon this manuscript, taking all the comments into account, and produce an 
improved version for Biogeosciences. 

Before answering the reviewers’ comments and questions line by line, we would like to provide an 
overview to our response. Both reviewers raise important points on the scope of the study, 
particularly regarding two points: 1) the decisions made about depth level chosen for our 
reconstruction, and 2) the lack of a real-world construction using existing Argo profiles. We have 
extended the manuscript to include an analysis over the upper 2000m and a longer discussion on the 
transition from synthetic to real-world reconstructions to respond to the reviewers’ comments. 

1. Extension of synthetic reconstructions with depth 

Both reviewers have questioned the restriction of our reconstruction method to the top 100m carbon 
response. Upon reflection, we agree with the reviewers that this choice is too restrictive. The 
Ensemble Optimal Interpolation method, being an off-line and linear method, is highly flexible, and 
extensions with depth are straightforward in our synthetic reconstructions. We originally chose the 
depth horizon of 100m as a test case, but have extended the method to reconstruct carbon within the 
upper 2000 m. This choice of the upper 2000 m is to maximise the data coverage of the ocean and to 
be consistent with the maximum depth range for Argo profiles.    

It is possible to reconstruct carbon up to 2000m in two ways, by either using temperature and salinity 
anomalies integrated over the entire depth range, or by breaking up the water column into layers. We 
have opted for the second method, as different depths have different controlling processes and will 
therefore have different imprints on the covariance fields between carbon, temperature, and salinity. 
We have extended the method by considering reconstructions for three additional layers to the 0-
100m layer presented in the first manuscript: 100m-500m, 500m-1000m, and 1000m-2000m.  For 
simplification, we present here the optimal coefficients for atmospheric pCO2 and co-located 
temperature and salinity, alongside average improvements calculated from our sensitivity tests.



 

Figure 1 Optimal weights for interior ocean DIC as a combination of atmospheric pCO2 (top row, panels a-c), ocean temperature 
(middle row, panels d-f), and ocean salinity (bottom row, panels g-i). The weights were calculated to solve for DIC in various interior 
layers: 100-500m (left column, panels a,d,g), 500m-1000m (centre column, panels b,e,h), and 1000-2000m (right column, panels c,f,i). 

The optimal coefficients for solving for interior DIC using atmospheric pCO2 and co-located 
temperature and salinity anomalies show depth-dependency in their structure (Figure 1). Coefficients 
for atmospheric pCO2 (subplots a-c) remain positive over the top 1000m; for the 100m-500m layer, 
they exhibit local maxima in the subtropical gyres, whereas for the 500m-1000m layer the maxima 
are located in the regions of mode water formation. For the deepest layer of 1000m-2000m (subplot 
c), the coefficients are near-zero for most of the ocean and negative in the regions with oldest waters 
(i.e., the equatorial Indian and equatorial and north Pacific). The strongest impact is found in the 
North Atlantic, consistent with the ventilation of North Atlantic Deep Water and transport 
equatorward in this layer. 

As for the top 100m, temperature coefficients (subplots d-f) are generally negative and salinity 
coefficients (subplots g-i) are generally positive for the ocean interior. The regional structures of 
both of these terms differs from those for the upper 100m, most noticeably in the 500m-1000m 
salinity coefficients (subplots e,h). We also note that for the deepest layer of 1000m-2000m, both 
temperature and salinity coefficients exhibit dipole behaviour in the Pacific Ocean and are near-zero 
elsewhere (subplots f,i). The dipoles for salinity and temperature coefficients are similar, suggesting 
that the information provided by temperature and salinity profiles in the deep Pacific is no longer 
independent. 



 

Figure 2 Ensemble average relative RMSE reduction e, as measured across the out-of- sample tests as described in section 4, for (a) 
integrated DIC between 0-100m, (b) integrated DIC between 100-500m, (c) integrated DIC between 500-1000m, and (d), integrated 
DIC between 1000-2000m. Subfigures (e-h) are as above, but consider only the detrended aspect of integrated DIC in the same layers.  

For the reconstructions of individual layers, we find that the overall skill in the reconstructions 
decreases as we move further into the ocean interior (Figure 2). Up to a depth of 500m, the 
covariance fields between ocean DIC, temperature, salinity, and atmospheric pCO2 is good almost 
everywhere; the reconstruction improves upon the climatology (subplots a-b), while there is 
improvement in the representation of variability in most regions (subplots e-f). Below 1000m, we 
find large areas where the reconstruction performs worse than the climatological first guess, 
particularly in the Pacific (subplots c-d and g-h). The regions that show skill are those in which mode 
water formations maintains similar relationships between DIC and hydrography via solubility and 
alkalinity arguments. 

However, as Reviewer #1 has noted, the deeper ocean contributes a small fraction of the overall 
change in ocean carbon. When conducting the same sensitivity tests on reconstructions of the upper 
2000m (Figure 3, not included in manuscript), the reconstruction errors in the 500m-1000m layer and 
1000m-2000m layer reduce the overall skill, but the method still provides more information over the 
climatology outside of a few points.  

We have extended the manuscript considerably to include results with depth. In addition to the work 
calculating the optimal coefficients and conducting similar out-of-sample tests with reconstructions 
at depth, we have extended the NorESM reconstruction to consider changes in the upper 2000m over 
a modelled “Argo-observed” period (Figure 9 in the manuscript). The extension shows that linear 
reconstructions can provide skill to interior carbon layers, that there are higher uncertainties and 



potential errors associated with these interior reconstructions, and that the skill for column 
inventories remains substantial due to the vertical structure of carbon inventory changes. 

 

 

Figure 3 Ensemble average relative RMSE reduction e, as measured across the out-of-sample tests as described in section 
4, for column integrate DIC down to a level of 0-100m (a,b), 0-500m (c,d), 0-1000m (e,f), and 0-2000m (g,h). Left column 
shows e for the full DIC signal, whereas the right column shows e for the DIC signal once a linear trend has been removed. 



2. Inclusion of real-world Argo floats into a full carbon reconstruction 

Both reviewers also mentioned a degree of disappointment that this method has not yet been applied 
to Argo. A real-world reconstruction is the overall goal of this work; however, we feel that a full 
reconstruction should be approached in a second work, as there is an additional substantial amount of 
analysis to understand how errors in the observations impact the reconstruction. Without conducting 
this additional analysis, it would be easy to provide a misleading view as to the benefits of applying 
the method to real Argo data. 

Synthetic reconstructions draw upon the assumption that model data is a near-perfect representation 
of the climate system at any given location and time. Model output should have no errors other than 
those created from regridding and rounding. However, when considering real-world data, there are 
additional errors within the observations. These observational errors arise from a combination of: 

1. Sensor errors 
2. Representation errors, consisting of 

a. Spatial binning errors, such as aliasing of structures such as eddies through repeat 
sampling with Lagrangian profilers 

b. Temporal binning errors, particularly regarding the estimation of an annual mean state 
from different months of observations 

3. The estimate of the climatological first-guess field 

We believe that the errors arising from points 2 and 3 may be substantial. While it would be possible 
to calculate an estimate by assuming the real-world observational errors are 0, we believe this 
inclusion could mislead the readers as to the actual impact of the method and have therefore 
refrained from doing so. 

Ultimately, creating a real-world reconstruction includes an observational error covariance field that 
considers errors from the above sources. Reconstructions of salinity and temperature have used a 
parameterised observation error covariance field; for instance, Smith and Murphy (2007) 
parameterise the observational error in their temperature and salinity reanalyses to be 

𝐸!"# = 𝐸$%#&
𝑁$ + 𝑓𝜎'(1 𝑁$ + 1)	 , 

where 𝐸$%#& is the instrumental error, 𝑁 is the number of profiles in a grid cell in a given month, and 
𝑓𝜎' is the fraction of monthly variability within a grid cell. The authors objectively choose values 
for 𝑓𝜎' based off extra validation studies.  

Based off our knowledge of similar reconstructions and the differences between previous works and 
our multivariate system for ocean carbon, we would prefer to create our own validation studies 
against existing carbon observations to quantify these error covariance fields. These validation 
studies could be used to further compare linear and nonlinear reconstruction methods, as increased 
wintertime observations have lowered estimates of the Southern Ocean carbon sink (Bushinsky et al., 
2019). We propose that we extend the discussion in the manuscript to include a more in-depth 
description of how the method will be extended to account for observational errors and the 
complexities involved.   

 



Responses to individual reviewer comments – Reviewer #1 

(Reviewer’s comments are in black, authors’ response is in blue italics) 

The manuscript “Reconstructing ocean carbon storage with CMIP6 models and synthetic Argo 
observations” by Turner et al. is well written and easy to follow. The figures are well chosen, good to 
read, and facilitate the understanding of the study. The methods are sound and well presented, 
although some precisions at a few points would be needed, I think. 

However, I am somewhat concerned about the novelty and significance of this work for this journal, 
although this might well be due to a misunderstanding of the methods. To be sure that no 
misunderstandings have occurred, I am first summarizing the paper very(!) briefly in my own words. 
If the authors detect significant flaws, please consider them when reading my following comments. 

As far as I understand, the here presented method builds on the assumption that the DIC (averaged 
over the first 100 m in the ocean) at a point x,y can be expressed as the average DIC from 1955 to 
2014 at this point x,y plus a delta DIC. This delta DIC can, for any moment in time, be approximated 
by a linear combination of delta pCO2, delta T, and delta S at locations more or less close to point 
delta x,y. 

We thank Reviewer #1 for their thoughtful and constructive review. Our aim with this manuscript is 
to present an independent method for reconstructing ocean carbon changes. The method is flexible 
and can be constructed with a variety of choices regarding depth horizon, ensemble makeup, and 
input parameters – all whilst being able to refer to model covariance fields to understand the scope 
and impact of any choices within the method. We believe that this flexibility is a strong feature of our 
approach and is a novel method for reconstructing interior carbon content. Our study provides a 
framework for a new carbon reconstruction alongside current nonlinear estimates of carbon fluxes 
(e.g., Landschützer et al., 2014) and seasonal interior DIC (e.g., Keppler et al., 2020).  

My comments are: 

• Long-term trend 

To me, it seems somewhat trivial that the long-term trajectory of DIC in the first 100 m, a depth that 
is more or less representative of the average mixed layer depth, is mainly determined by the 
atmospheric pCO2. The provided BATS example is an excellent example (blue dashed line in Figure 
7b). By knowing also temperature, which affects solubility, and salinity, which is closely related to 
alkalinity, at only one point close to the point of interest, slight deviations of this long-term trend can 
be represented, as well as inter-annual and decadal variability that is not due to changes in primary 
production or remineralization can be represented. This is nicely represented by the HOT example 
(blue dashed line in Figure 7c). As the authors describe in their paper, the underlying mechanisms 
are well-understood: air-sea CO2 flux due to increasing atmospheric pCO2, decreased solubility with 
increasing temperatures, and more DIC with increasing alkalinity. Therefore, I think that the 
predictability of DIC in the mixed layer from pCO2, T, and S as well as a background DIC, is not 
surprising. 

On timescales longer than a few decades, changes in DIC are dominated by the addition of carbon 
through emissions. The top 100m response is indeed generally a mixed-layer response. T and S 
observations do add further information for the long-term response, particularly in terms of how 
they are related to atmospheric pCO2 changes (manuscript figures 2b, 2c, 3a). As the referee 



suggests, the dominant response is well understood and involves increases in atmospheric pCO2, 
changes in buffered chemistry, decreasing solubility with increasing temperature, and increasing 
solubility with increasing alkalinity. The consistency to which these mechanisms are replicated 
within the model ensemble provides evidence of skill for the reconstructions for near-surface DIC 
using the model ensemble.  

However, reconstructing the trend for deeper layers is less straightforward. On extension of the 
method to include the ocean interior down to 2000m, we find that the optimal solution from the 
CMIP6 model ensemble reflects the control of pCO2 in regions with well-ventilated waters (Figure 1, 
subplots a-c). Up to a depth of 1000m, the optimal solutions for temperature and salinity remain 
consistent with previous solubility and alkalinity arguments, although the structure of the optimal 
solution is depth-dependent (Figure 1, d-e and g-h). Below 1000m, the optimal solutions for 
temperature and salinity have higher regional structure and become positively correlated, 
particularly in the Pacific. 

To illustrate the role of various depth levels in setting long-term versus interannual DIC signals, we 
have expanded the original manuscript’s Figure 7 (now Figure 9) to show model truth and 
reconstructed DIC at our depth levels down to 2000m. Globally, the longer-term trend is dominated 
mainly by the 100m-500m layer, while the 0-100m layer shows the strongest interannual variability 
(new Figure 9a). On a regional scale these relationships are altered; for instance, at BATS there is a 
strong linear signal below 1000m, and the 100-500m exhibits strong interannual variability (new 
Figure 9b). The HOT reconstruction also shows that the 100-500m reconstruction can be important 
for capturing the trend and variability of regional carbon inventories (new figure 9c). 

• Variability (detrended signal) 

When the detrended response is looked at, pCO2, which is responsible for the largest part of the 
trend, should not play any role anymore as annual globally averaged pCO2 has little variability. At 
this point, the RMSE improvement seems to drop (Figures 5d-f and 6d-f). It remains mainly high in 
the relatively slow and calm subtropical gyres and becomes smaller in the more dynamical regions 
like the tropical Pacific, eastern upwelling regions, or the Southern Ocean. In these regions, 
variability in close-to-surface DIC is likely influenced by a variability in the circulation and hence 
the upwelling of nutrients and carbon. The negative correlation between DIC and T in the tropical 
eastern Pacific (2d) due to El Nino is a good example. It would be nice to discuss and analyze a little 
bit more, why these regions are less predictable. As these regions are usually also the regions with 
the highest variability in surface ocean DIC, I was wondering how the statement that the RMSE of 
the detrended signal was reduced by 60% was calculated. Did you calculate the area-averaged eta 
from Figures 5e and 6e? Or did you compare the detrended true signal of globally averaged DIC to 
the predicted signal of globally averaged DIC? I am not sure which way is better as both have 
potential pitfalls. Taking the area-weighted average of eta gives potentially to strong emphasize to 
regions with little variability, as the subtropical gyres, that contribute only little to the global ocean 
DIC signal. However, by taking the area-averaged DIC first, errors in different directions may 
globally compensate. Maybe it would be best to use the local eta at each point x,y and weight them 
by the true DIC variability at that point x,y? 

Thank you for your comments. For the detrended response, we remove a linear trend from the 60-
year model runs taken for each of the out-of-sample tests. As atmospheric pCO2 rises approximately 
exponentially during this longer period, the detrended response retains some second-order 
behaviour in pCO2.  



The regions which show the greatest RMSE improvement (when considering the detrended signal) 
are regions in which the models have similar ratios between temperature, salinity, and DIC 
variability, even if they differ on the structure or power of modes of variability such as ENSO.  For 
instance, the negative correlations between DIC and T found in the models results in detrended 
RMSE improvements that, while less than those for the western basins, is greater than those for the 
shadow zones in the Pacific and Atlantic.  Additionally, the dynamically active North Atlantic shows 
strong improvements in the detrended RMSE.   

Regions with minimal RMSE improvements are marked by moderate correlations between 
temperature and salinity, which suggests that the information provided by temperature and salinity is 
less orthogonal in those regions. This could be a result of dynamical uncertainty within the model 
ensemble or an underdetermined system that would benefit from the addition of other ocean tracers. 
As our reconstruction method is statistical rather than dynamic, understanding the causes of these 
uncertainties requires a detailed examination of the controlling processes within each model before 
relating back to the covariance fields. 

In the submitted manuscript we avoided creating area-weighted averages of eta. The formulation of 
the relative RMSE reduction eta includes a normalisation by the RMSE from the first-guess 
climatology field, which is equivalent to the variance of DIC at a given location. We have refrained 
from creating a global measure for the same reasons the reviewer has pointed out. In the manuscript 
abstract and show in manuscript Figure 5 we show that in most regions, the reconstruction reduces 
the RMSE by 60% or more. We have extended the manuscript to include the global RMSE reduction 
(equivalent to the variance-weighted eta) in Section 3.3: “For reconstructions of global DIC 
inventories using co-located temperature and salinity observations, the sensitivity experiments show 
an average RMSE reduction of 93%. When considering detrended DIC inventories, the sensitivity 
experiments reduce the RMSE by 68% on average.”  

For the ocean interior, the errors in the sensitivity tests coupled with the low variability found in 
these layers make the quantification of global improvements difficult. Our extended Figure 9 now 
shows reconstructed carbon for interior layers both on global and regional scales. 

• Significance of the first 100 m for the long-term ocean carbon sink 

Another point that I am not sure about is the importance of this analysis for the global ocean carbon 
sink. How much of the additional DIC is in the first 100 m? The Global Carbon Budget 2021 
(https://essd.copernicus.org/articles/14/1917/2022/essd-14-1917-2022.html) estimates that from 1960 
to 2020, 115 Pg C has entered the global ocean. Recent estimates from observationally constrained 
ESM output suggests that it might be a bit more. Thus from 1960 to 2014, the ocean has taken up 
very approximately ~100 Pg C. The upper ocean carbon inventory shoes an uptake of ~14 Pg C 
(tried to read that number from Figure 7a). Thus, the upper ocean is ‘only’ responsible for 14% of the 
global ocean carbon sink. Wouldn’t it be more important to quantify how much is transferred from 
the surface ocean to the interior ocean, i.e., subducted below the mixed layer 
(https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/gbc.20092, 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL065073). Recent studies indicate 
that salinity and temperature might indeed be able to reproduce the interior ocean Cant 
(https://www.science.org/doi/10.1126/sciadv.abd5964, https://www.nature.com/articles/s41586-020-
2360-3, https://bg.copernicus.org/articles/18/2221/2021/bg-18-2221-2021.html#&gid=1&pid=1, and 
https://bg.copernicus.org/preprints/bg-2022-134/). However, the interior ocean transport might make 
this much harder. The authors mention that this will happen in the next step, but I think it 
could/should also be incorporated in here if(!) the long-term trend remains a focus of this study. 



Originally, we chose the top 100m as a test case to show how the linear optimal interpolation system 
performs by drawing upon the covariance fields. Upon reflection of the comments for both reviewers 
we agree that this choice was too limited. Instead we have extended the method to a depth of 2000m. 
Much of the carbon uptake and variability is likely to be in the upper 2000m of the ocean, so this 
extension should better capture the ocean carbon sink response. Our analysis highlights the 
difficulties that the reviewer brings up, where uncertainties in ocean transport and a less surface-
driven response to emissions reduces the reconstruction skill. 

We have also updated the original manuscript Figure 7 (now Figure 9) to include a full 
reconstruction with depth using the Norwegian ESM in all panels. For simplicity we use cutoff radii 
for each depth level, going as far as to us only co-located profiles below 1000m where there are 
smaller signals and larger errors present in our sensitivity tests (see Figure 2 in this response). The 
dominance of the upper 500m is noticeable for the trend and variability in ocean carbon content. 
For regional carbon inventory changes such as those found at BATS, our reconstructions show the 
importance of even deeper carbon content changes.  

• Significance of the first 100 m for the variability of the ocean carbon sink 

Figure 7a suggests, however, that the fist 100 m might be very interesting for the inter-annual or 
decadal variability. In Figure 7a, you show the variability of the upper ocean 100 m DIC. How much 
of this is caused by the air-sea CO2 flux and how much by transport to the interior ocean. Could the 
variability in the air-sea CO2 flux maybe largely be derived from variability in the ocean T and S? 
Or in the variability of subduction on these time-scales?  Can your method provide an estimate of the 
subduction of DIC on an annual basis using the surface ocean air-sea CO2 flux estimates in 
combination with your estimates? The example of HOT in NorESM is striking as it suggests that the 
upper-ocean has taken up almost no carbon between 1990 and 2014 despite an increase in 
atmospheric pCO2. 

From covariance fields alone it is difficult to disentangle the various flux drivers of carbon content; 
however, with current estimates of pCO2 fluxes from other products (such as the machine learning 
methods in Landschützer et al., 2014) alongside reconstructions at various depth horizons, it would 
be possible to create an estimate of global subduction rates for carbon. In a model analogue, 
Lauderdale et al. (2016) have explored the drivers of atmospheric CO2 uptake using the MITgcm, 
and include discussion on the role of advection, diffusion, and biological activity on upper ocean 
carbon content.  

We note that the Earth system model runs used for this work are not reanalysis datasets but 
historical simulations with their own timings for climate modes of variability. Thus, the hiatus in 
upper-ocean carbon at HOT in the NorESM is not necessarily indicative of real-world conditions in 
the 1990s and 2000s, but it is still an interesting note that these local hiatuses are present in the 
model data. 

• Proof-of-concept without application to real data 

After having read through the manuscript, I was really disappointed that this new method is not yet 
applied to observations right now. There is much potential, and I understand the idea of making two 
publications, one for ‘proof-of-concept’ and one for the application, but now it seems as if something 
is missing in this paper. If no institutional, or PhD-related restrictions exists, I would recommend to 
also present the application here. 



The implementation of Argo data into the Ensemble Optimal Interpolation method is non-trivial, as 
observations contain their own errors, both in terms of instrumental errors and (in our view, more 
importantly) errors in how binned and averaged observations represent the desired input variables 
(for this setup, annual average temperature and salinity fields). We have outlined the difficulties in 
applying the method to observations in the first part of our response.  

Argo sensor measurements have relatively small errors, especially when restricting profiles to those 
that have passed rigorous quality control. However, Argo observations are snapshots rather than 
mean values over space and time.  We will need to carefully consider: 

• The impact of observations that cover only some months of the year, and particularly those 
that might be biased towards specific seasons. This bias may be random but it may also be 
inherent in the Argo programme setup. For instance, the presence of seasonal ice cover will 
prevent measurements from being taken in winter months. 

• The aliasing of small-scale structures not present in coarse CMIP6 models with Lagrangian 
Argo floats. If an Argo float remains within the core of an eddy, its monthly fields may reflect 
anomalous conditions not representative of the relatively large area we aim to average 
across. 

• Sensitivity tests against existing carbon datasets such as GLODAP or time series sites to 
quantify relative uncertainties from different aspects. Particularly in the interior, validation 
against GLODAP and time series sites may be important in setting the optimal localisation 
method. 

We have provided a short outline of these considerations in our discussion. We have included our 
logic for this choice in Section 6.5: “Moving from synthetic to real-world reconstructions of DIC.” 

My overall recommendation would therefore be to de-emphasize the long-term trend, focus on the 
variability, apply the method to observations, compare it to estimates of the air-sea CO2 flux, and try 
to address the subject of the decadal and inter-annual variability of the ocean carbon sink. 

As you already have the models, you might even be able to draw conclusions why and where models 
do not capture the variability. Are the regions with the largest variability in the air-sea CO2 flux also 
the regions with the largest variability in the upper ocean DIC? 

If the focus is more on the detrended signal, the subsurface ocean would not fit anymore and could 
be left for another study. 

While this sounds somewhat negative, I am in strong favor of publishing this manuscript in 
Biogeoscience but with an application to observations. If not applied, maybe GMD is more suited for 
'proof-of-concept' studies? But that is an editorial decision.  

Thank you for your thoughtful review. We will provide an extension for reconstructing ocean carbon 
behaviour at depth in order to mitigate concerns about how well the upper ocean represents the 
global ocean carbon response. With this extension we believe we can discuss both the long-term 
behaviour and interannual behaviour more completely. We will provide context for how modelled 
DIC behaves with depth (i.e., which layers contain most of the forced signal vs. interannual 
variability).  

As the reconstruction uses a limited number of inputs, regions where variability is not captured are 
not necessarily regions where the models have a mismatch in the variability. There are areas where 



the models do not capture variability, but our reconstructions are likely more limited by the lack of 
other tracers to describe ventilation rates or biological activity. Understanding the drivers of the 
model biases in ocean carbon is an important and difficult question, and likely requires diagnostics 
of overturning as well as the drivers of pCO2 fluxes (such as in Lauderdale et al., 2016). 

Minor comments: 

Line 22, page 1: While the Global Carbon Budget summarizes the numbers, I prefer to give credit to 
the original studies (for example: https://bg.copernicus.org/articles/10/2169/2013/, 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013GB004739, and recently 
https://bg.copernicus.org/preprints/bg-2022-134/) 

Agreed. We will update the introduction to include the original studies. We will retain the GCB 
figure as well as it contains an estimate of anthropogenic fossil fuel emissions and land use changes. 

Line 25, page 2: Gruber et al. is about compound extreme events and rather summarizes literature. I 
would recommend to replace it by this earlier study on global ocean acidity extremes 
(https://bg.copernicus.org/articles/17/4633/2020/) and this regional study 
(https://www.nature.com/articles/s43247-021-00254-z) that provides one example in detail. 

Thank you for this correction, we have made the adjustment in the manuscript. 

Line 57: I think this is the first time that you use the term ‘upper ocean’. Maybe define it here. 

We will add a definition for the upper ocean here and define the upper ocean down to a depth level 
of 2000m due to the depth profiles of Argo data. We have edited the paragraph to include the 
following (lines 71-73):  

In this proof-of-concept study we aim to show the potential skill available in using model 
covariance fields and Argo-style synthetic measurements to reconstruct carbon content 
between 0-2000m. 

Lines 60-66 and lines 99-100: Would suggest to add the Southern Ocean studies 
(https://www.science.org/doi/10.1126/sciadv.abd5964, https://www.nature.com/articles/s41467-022-
27979-5), and one study from the Arctic Ocean (https://www.nature.com/articles/s41586-020-2360-
3) that show how surface observations (and variations) of S and T can alter the CO2 uptake. Or 
maybe keep that for later in the Discussion when you describe the potential to go below the surface. 

Thank you for the recommendations. In the introduction we have included the sentence in Line 62: 

Anthropogenic carbon uptake in the high latitudes is constrained by salinity and 
stratification, which can be taken to be proxies for water mass formation (Terhaar et al., 
2020; Terhaar et al., 2021; Bourgeois et al., 2022).  

Emergent constraints provide an interesting statistical perspective on the realism of climate model 
outputs, and we think that this nicely complements the inter-variable and spatial correlations on 
which the Ensemble Optimal Interpolation method is built. Particularly in the high latitudes, where 
the ensemble members show a low level of agreement in our reconstructions, the use of emergent 
constraints could increase the reconstruction skill. 



Line 112: Does the method account for inter-dependencies between the predictors? Sorry about the 
question, but I am not very familiar with this kind of method. 

The Ensemble Optimal Interpolation method uses all covariances between input parameters and the 
desired output parameters to solve for the optimal weights, and so highly-correlated input 
parameters will have an impact on the optimal weights. We will make this point clearer within the 
methods section. 

We have added the line (115-117): 

These optimal weights thus describe how information is propagated from atmospheric 
pCO$_2$ and hydrographic observations to the ocean carbon system, taking into account the 
interdependencies between input variables. 

Line 132-133: Just wanted to say that I really like that you provided the regridding method here in 
such detail. Often it is not possible to reproduce data because the regridding software is not named. 

Thank you. 

Line 141: Something is wrong in the sentence, I think. 

We will make the setup of the first idealised experiment clearer by changing the text in the first two 
sentences to (Line 148-151): 

“The first reconstruction method assumes full global coverage of temperature and salinity 
observations. For these synthetic reconstructions, the ocean inputs to reconstruct ocean DIC 
are co-located model temperature and salinity anomalies, as well as globally-uniform 
atmospheric pCO$_2$ anomalies. The resulting system thus has 3 input parameters to solve 
for ocean carbon at each grid cell.” 

Lines 147-154: Just to be sure that I understand it right. When you use the ARGO 2002 coverage, 
you assume that you have data at each of these points for all years from 1955-2014? Is that right? If 
yes, how do changes in the temporal coverage effect time series as shown in Figure 7? If you have 
little data for the first 30 years and then more, you should get a better representation of the variability 
over time, right? Figure 7c seems to suggest that there is only 1 observation for the blue line, but that 
means one observation per year in the vicinity of the HOT station, right? 

In the original manuscript, for coverage consistent with Argo profiles in year 2002, we took the 
observational coverage to be constant in time. This decision was made to better understand how 
different levels of coverage could capture various levels of change (trends vs. interannual vs. 
multidecadal variability) and to separate the role of coverage vs covariance errors in determining 
the reconstruction of skill.  

Based off the response from both reviewers we have altered the original Figure 7 a-c (now Figure 9) 
with sample reconstructions from 2002-2015 that use the temporally-varying coverage. In our new 
figures we only reconstruct 14 years of carbon changes. In Section 2.1, point 2, we have included:  

Using this distribution of available profiles, we create reconstructions using time-varying 
profile locations and test how profile density impacts the reconstruction by setting the 
distribution as constant in time.  



Section 3: I found this section a little bit difficult to follow. What could help (maybe it doesn’t), is to 
look only at the long-term signal and only at the detrended for the correlations. Than the long-term 
should give you a correlation between pCO2, T, and DIC. T and DIC because the ocean is warming 
and taking up carbon (but one does not cause the other) and the other between pCO2 in the 
atmosphere that causes DIC in the ocean to increase. For the detrended signal, I would expect no 
correlation between pCO2 and DIC as the pCO2 trend is gone. T and DIC should be negatively 
correlated (like shown in Figure 3b). And salinity should be positively correlated. A little bit along 
the lines of Figure 2 in https://www.nature.com/articles/s41467-022-32120-7 

During our creation of the Ensemble Optimal Interpolation method, we experimented with creating a 
reconstruction of the DIC signal with a linear trend removed. We found that temperature and DIC 
remained strongly positively correlated for most of the ocean due to the second-order increase of 
carbon emissions. We find the system reflects the correlations mentioned by the reviewer when 
removing either a term proportional to atmospheric pCO2 or when including atmospheric pCO2 as 
an input. We have opted for the latter option as we believe this setup remains consistent with the 
climatology first guess fields found in ocean temperature and salinity EnOI methods. We also believe 
that this decision increases the transparency of the method, particularly considering that models 
have biases in their Revelle buffer factors. 

However, we recognise that this decision leads to a complicated system in terms of the number of 
covariances involved in setting the optimal weights, and the dissection required to understand the 
covariances between temperature and DIC. We have reframed Section 3 into smaller blocks to 
enhance readability, with headers focusing on correlations involving pCO2, the correlation between 
DIC and temperature (which uses a decomposition to understand the role of the solubility effect 
versus the combined addition of heat and carbon into the Earth system), and the remaining 
correlations with salinity.  

General: Did you think about including the area of sea ice in each cell as well? As this blocks the air-
sea gas exchange to some extent, it might be a powerful predictor in the high-latitude oceans. Just a 
guess. 

We did not include sea ice area for the high-latitude reconstruction because the extent of Argo floats 
is limited to ice-free regions. The presence of sea-ice could provide useful information about air-sea 
carbon fluxes, particularly when the predicted information could be examined alongside more recent 
under-ice profiles of temperature, salinity, and potentially also DIC. 

In our discussion on how the method could possibly be extended to other observations such as 
oxygen, pH, and nutrients, we will include a statement on how satellite observations of sea ice could 
be added to provide information on the communication between the ocean and the atmosphere. In 
Section 6 we have included (Line 492-493): 

For the high-latitude oceans where there are few Argo profiles, products of sea ice coverage 
could lend additional information on upper-ocean carbon through the impact of sea ice on 
air-sea gas exchange. 

Section 6: While I completely understand the reason to only choose Nor-ESM to make these tests, I 
would be curious how other models perform. 

Section 4 implicitly includes an evaluation of how the method performs on other models. In Section 4 
we have conducted sensitivity tests, in which models within the ensemble are omitted, the covariance 



fields are re-constructed, and then the out-of-sample models are reconstructed. The figures in 
Section 4 have been chosen to illustrate the range of responses within the ensemble and to illustrate 
how models add confidence or uncertainty to the method. 

Once a model is included in the ensemble, the method can reproduce that model’s DIC with greater 
accuracy. We find this accuracy to be misleading when considering real-world applications in which 
all the models will have shortcomings and biases. Thus in Section 6 we use the full ensemble as 
described in section 2 to reconstruct a completely independent model. In our further work including 
real-world observations, we will likely include the NorESM (as well as other ESMs) in our 
covariance calculations so that a more complete range of model uncertainty is considered within the 
covariance fields. 

To aid the reader in connecting these two sections, in the manuscript we will include a statement in 
the beginning of Section 6 to describe out the reconstruction of the NorESM is an additional out-of-
sample reconstruction in line with the analysis in section 4. We have included the text (line 391-
393): 

This reconstruction is an additional out-of-sample reconstruction, similar to those made for 
the error reduction statistics in Sections 4 and 5 but uses covariance fields constructed from 
the entire CMIP6 model ensemble. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Responses to individual reviewer comments – Reviewer #2 

(Reviewer’s comments are in black, authors’ response is in blue italics) 

In this study Turner et al. reconstruct the ocean carbon storage from first-order relationships between 
temperature, salinity and atmospheric CO2 and Dissolved Inorganic Carbon (DIC). The authors use a 
set of CMIP6 models to assess these relationships and estimate the covariance fields. The inferred 
statistical relations are then used to reconstruct the carbon storage from hydrographic pseudo-
observations. In order to test the capabilities of this approach, two sampling methods are proposed: 
1) a complete coverage using CMIP6 co-located observations and 2) Irregular sampling consistent 
with Argo profiles. While co-located observation (1) is taken as a sensitivity test, the irregular Argo-
style observations (2) show the potential of this method to use real Argo measurements to reconstruct 
the carbon storage. Both of the sampling methods offer a significant improvement compared to the 
reconstruction based solely on the climatological mean. The study is well-written, presented in a 
structured logical manner and the results and their implications are easy to follow.   

This study represents a significant advancement within the field, offering a powerful method to 
understand both the spatial and temporal variability of DIC. This method could not only be used to 
reconstruct the carbon storage from real hydrographic measurements but also, the resulting DIC 
fields could be used to identify differences between linear and non-linear mapping methods as well 
as explore the differences in the processes that affect the DIC between different models. Based on 
the aforementioned, I recommend the publication of this study. Here are just some suggestions I 
believe would add value to the publication:   

General Comments: 

- There is an emphasis throughout the manuscript on the application of this method to reconstruct 
ocean carbon storage from real-world Argo observations.  I was expecting such reconstruction at the 
end of the paper and a comparison to existing reconstructions (such as GLODAP). I understand that 
this paper is intended as a "proof of concept" study, followed by another one regarding its "real-
world applications". If this is decided as the final form of the study, without including the 
reconstruction using real Argo measurements, I think the potential application to Argo measurements 
should be de-emphasized throughout the text. 

The Ensemble Optimal Interpolation approach is a novel approach for ocean carbon in that it is a 
flexible reconstruction that draws upon linear relationships between the ocean state and carbon 
content. The synthetic tests that we conduct in this study form a theoretical basis for a future 
application to real Argo observations. The skill evident in the synthetic reconstructions may be 
viewed as an upper bound and thus an important aspect for understand the true potential of the 
method.  

The expansion of temperature and salinity observations is a key determinant of this reconstruction 
potential, and we feel that the Argo programme will be a key aspect in the final reconstruction. 
Additionally, errors from the observations and gridding procedures may be significant, and so we 
have aimed to understand errors from the covariance fields and errors from the observations 
separately. As such, we can restrict the Argo discussion and emphasise that this work is an 
intermediate step, but we do feel that the potential application is an important motivating factor for 
the work. We have also altered the manuscript to emphasise that the “Argo observations” are 
synthetic rather than actual observations. 



- The results in this study are focused on the top 100m, however, I couldn't find in the text the 
motivation to choose such a horizon. Is it because the mixed layer drives the variability in carbon 
sink?  Or, do the statistical relationships between temperature and salinity and DIC break down in 
the interior ocean?  

Originally, we focused on the top 100m to provide an illustration of how the model covariance fields 
can be translated into reconstruction skill; however, this decision can be extended with additional 
decisions (e.g., whether covariance fields are calculated for interior layers or for full integrated 
carbon). Based on the comments made by both reviewers, we have extended the manuscript by 
including a section on reconstructing the full depth range covered by Argo-style profilers (0-2000m). 
We have included example plots and our further analysis in the beginning of our response.  

We find that the reconstruction skill substantially decreases when moving to depths deeper than 
500m, where the ensemble shows more uncertainty and less-independent information in the 
relationship between DIC, salinity, and temperature (see this document Figure 2, panels c-d and h-
i). However, when considering full column DIC, the response is dominated by the responses within 
the top 500 or 1000m (this document Figure 3, and new manuscript Figure 9). 

- Since it is possible to separate the detrended covariance fields into pCO2 and non-pCO2 terms, if I 
understood it correctly, it would also be possible to reconstruct the preindustrial DIC and thus 
calculate the Anthropogenic Carbon fields as the difference between Total and the Preindustrial DIC. 
If this is possible, it should be mentioned in the paper as possible applications of the method, as there 
is a significant interest in the community regarding the drivers of the variability of anthropogenic 
carbon sink (e.g. Gruber et al., 2018: 10.1146/annurev-marine-121916-063407; Gruber et al. 2019: 
10.1126/science.aau5153; DeVries 2017: 10.1038/nature21068).  

A preindustrial reconstruction would not necessarily need the breakdown of the covariance fields 
into terms proportional to pCO2 that we use in Section 3. The full covariance fields could be used to 
reconstruct preindustrial DIC under two conditions: 1) the covariances between T, S, pCO2, and 
DIC are stationary even when considering very low emissions of carbon, and 2) there are sufficient 
T and S observation in the preindustrial to provide information on preindustrial DIC for most of the 
ocean. Assuming stationary may be somewhat inaccurate, but the lack of observations in the 
preindustrial period is likely to be a major bottleneck for this application.  

- When reconstructing the carbon time-series from Argo-style observations in Section 6, two 
observation locations are used, one at year 2002 (with very sparse observations) and another at 
year 2015 (with many more observations). As far as I understand, the entire time-series (1955-
2014) is reconstructed based on the spatial distribution of Argo observation locations in 2002 and 
2015, but the number of locations is constant in time. E.g. carbon storage in 1960s is reconstructed 
from observations that did not exist in the real world.  Why not account for both the temporal and 
spatial distribution of the observation locations? This would give a true insight into the potential of 
the real-world Argo measurements to reconstruct the time series of carbon storage.  

Yes, when implementing the method with real world data, the reconstruction will be dependent on 
the number of available observations within a given year. Our original idea behind a constant field 
of observations as determined by a specific Argo year was to examine how different aspects of 
carbon variability were represented with different levels of observations, to see if interannual or 
multidecadal variability required different amounts of nearby observations.  



To show more easily where a real-world reconstruction might fit inside these limits, we will include 
a reconstruction using the time-varying distribution of observations that replaces Figure 7 in the 
original manuscript (Figure 9, new manuscript).  

The figure expands upon the original Figure 7 in two ways: a) we illustrate reconstructions over the 
full upper 2000m profiled by Argo floats, and b) we consider the time-varying coverage of Argo 
profiles up to year 2014 (we refrain from using more recent Argo coverage as the historical 
experiments run to year 2014). Additionally, to illustrate the potential information provided by the 
Argo profiles, we provide a comparison of model truth and reconstructed “decadal” DIC changes, 
calculated as the difference between the 2001-2006 DIC and 2009-2014 DIC. While the intersection 
between years with Argo coverage and years contained in the historical period is short, the inclusion 
of these almost-decadal changes provides additional insight as to what sort of information the 
reconstruction provides on longer timescales. 
 
Comments by Line: 
 
L150: What does it mean "6 months of profiles"? One profile at least in each of the 6 months? 6 
profiles in total?  

We considered a bin observed if, after binning, there was at least one profile taken in 6 unique 
months of the year (here, we consider the year to run from January to December). We have changed 
the text to read (Line 148-151): 

Any grid cell that has Argo observations for at least 6 months within a given year (running 
from January to December) is taken to be sufficiently observed, and the modelled annual 
average profile there is used as an observation for the reconstruction. 

L198: I think there should be a full stop after pCO2 instead of a coma to make the sentence less 
confusing.  

We have broken the sentence down to explain each set of terms individually. 

L199: Should DIC' and T' be in italics?   

Yes, thank you for pointing this out. The text in line 199 has been adjusted. 

Figure 4: Would it be possible to use the same colorscale? This would make the comparison of the 
magnitude of the coefficients more intuitive.  

For the top 100m, the coefficients for pCO2, T, and S have the same order of magnitude; however, 
when moving to the interior ocean the coefficients for S are an order of magnitude larger (Figure 1 
in this manuscript). The real impact on the solution for DIC remains small as the variance of salinity 
is small relative to that for pCO2, for instance. If normalising, the magnitude of coefficients should 
be considered alongside a comparison of the magnitude for changes in pCO2, T, and S, as it will be 
the product of the magnitudes that determines their contribution in (3). As these magnitudes are 
model-specific we have refrained from this normalisation. 

L378: Do you mean Fig 6a and d, instead of a and c?  

Yes, thank you for pointing this out. The reference has been adjusted. 



REFERENCES 

Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R., Baker, D., Mazloff, M. R., et al. 
(2019). Reassessing Southern Ocean air-sea CO2 flux estimates with the addition of biogeochemical 
float observations. Global Biogeochemical Cycles, 33, 1370– 1388. 
https://doi.org/10.1029/2019GB006176  
 
Lauderdale, Jonathan M. et al. “Quantifying the Drivers of Ocean-Atmosphere CO₂ 
Fluxes.” Global Biogeochemical Cycles 30, 7 (July 2016): 983–99. 
 
Keppler, L., Landschützer, P., Gruber, N., Lauvset, S. K., & Stemmler, I. (2020). Seasonal carbon 
dynamics in the near-global ocean. Global Biogeochemical Cycles, 34, e2020GB006571. 
https://doi.org/10.1029/2020GB006571  


