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Abstract. The ocean carbon store plays a vital role in setting the carbon response to emissions and variability in the carbon
cycle. However, due to the ocean’s strong regional and temporal variability, sparse carbon observations limit our understanding

of historical carbon changes. We explore how widespread-Argo temperature and salinity profiles can provide information to

reconstruct ocean carbon inventories with Ensemble Optimal Interpolation. Here, Ensemble Optimal Interpolation draws-tpen

carbon using synthetic Argo temperature and salinity observations, with examples for both the top 100m and top 2000m carbon

inventories. When considering reconstructions of the top 100m carbon inventory, coherent relationships between upper-ocean
carbon, temperature, salinity, and atmospheric CO, thatresultin-—result in optimal solutions that reflect the controls of un-

dersaturation, solubility, and alkalinity.

coneentrations—Sensitivity—tests—of-Out-of-sample reconstructions of the top 100m show that, in most regions, the trend in
ocean carbon and over 60% of detrended variability can be reconstructed using local temperature and salinity measure-

with only small changes when considering synthetic profiles consistent with irregular Arego sampling. Extending the method

to reconstruct the upper 2000m reveals that model uncertainties at depth limit the reconstruction skill. The impact of these
uncertainties on reconstructing the carbon inventory over the upper 2000m is small, and full reconstructions with historical
Argo locations show that the method can reconstruct regional interannual and decadal variability. Hence, optimal interpolation

based on model relationships combined with hydrographlc measurements can prov1de valuable information about ehanges—m
fheg/lg&ocean carbon inventory -

carbon-system-—changes.
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1 Introduction

The global ocean plays a important role in the carbon cycle, being both a major reservoir of carbon and substantial sink of
anthropogenic carbon transferred from geological storage to the coupled atmosphere-ocean-terrestrial system. Reeentstudies
estimate-that-the-oecean-has-The ocean is estimated to have taken up around 26% of anthropogenic emissions from fossil fuels
and land use changes since 1850 ¢2)(22?2?). In addition to the long-term uptake of anthropogenic carbon, ocean carbon uptake
exhibits interannual and decadal variability on global and regional scales (????). This variability impacts the ability to detect
trends in observations of the partial pressure of CO5 in seawater (?) and, through oceanic transport, can lead to regionally
enhanced acidification {2)(2?). The ocean carbon inventory is thus an important aspeet-of-eurrent-integral measure of climate
change, and up-to-date estimates on its behaviour are vital for understanding its evolution and impacts on the climate system.

In order to characterise the ocean carbon system with its strong regional and temporal variability, extensive spatial and tem-
poral coverage in observations are required. Whereas there are millions-ef-sufficient surface pCO, measurements to provide
a surface view of the ocean carbon system and air-sea carbon fluxes (?), complementary observations of ocean interior dis-
solved inorganic carbon (DIC) are limited by the logistics of ship-based bottle measurements. Campaigns for ocean interior
DIC observations use repeat transects to provide high-quality observations for many regions (?). The transects resolve spatial
variations in carbon but are limited in their ability to resolve temporal variability as they are repeated on decadal timescales.
Alternatively, ocean DIC time series such as those found at the Bermuda Atlantic Time Series and the Hawaii Ocean Timeseries
can resolve seasonal, interannual, and decadal variability, but are limited in how well they represent variability on larger spatial
scales (?). The Bio-Argo programme has allowed for more autonomous sampling of ocean interior carbonate system variables
such as pH (?), from which interior DIC can be estimated; currently, however, autonomous measurement methods for interior
DIC remain in development.

By itself, the sparsity of interior observations hinders the ability to produce a coherent, global picture of recent ocean carbon
changes from a storage perspective. A mapping technique is necessary to expand points of observations into more coherent
spatial patterns of change and behaviour. Mapping techniques employ statistics to propagate information from observations
to unobserved regions. Time-invariant climatologies of ocean carbon have been created using mapping procedure on data

from repeat transects and other ship-based observations (?). For-observations-of surface-pEOy;non-linear-Non-linear machine

learning procedures have been able to reconstruct spatial patterns in interannual and decadal variability for surface pCO

s-as well as
the seasonal cycle for DIC (?), but the non-linearities can create substantial biases for regions with sparse observations (?)-
Data assimilative methods that use observations to constrain model physics in forward experiments have also been expanded
to include biogeochemistry (?7?).

For any mapping or data assimilative technique, it is imperative to use accurate statistics to avoid the erroneous propaga-
tion of information from observations. These statistical relationships can be parameterised or calculated from observations;
however, parameterised statistics fail to reflect regional differences in the ocean, and for poorly observed variables, averaging

over large length or timescales can lead to overly coarse covariance fields. State-of-the-art climate models provide complete
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pseudo-data in both space and time and therefore may be used to calculate these statistics, though model biases may lead to
errors in the covariances. Nevertheless, fully-coupled climate models have been used to reconstruct ocean heat content trends
and variability from observations, with clear improvements in recent years due to the expansion of the Argo programme (???).

Ocean carbonate chemistry is controlled by both physical and biogeochemical processes. There are well-understood first-
order principles that relate to ocean temperature and salinity to upper ocean carbon; using these relationships, the observations
used in previous heat content mappings may be useful-exploited in a similar manner for carbon mappings. Increases in tempera-
ture reduce the ocean’s ability to take up CO4 through gas solubility laws, while increases in salinity increase the ocean’s ability
to take up CO5 by increasing alkalinity (?). Additionally, temperature and salinity provide constraints on ocean circulation,
which alters the background vertical gradients of both heat and carbon (??). Anthropogenic carbon uptake in the high latitudes

is constrained by salinity and stratification, which can be taken to be proxies for water mass formation (???). The relationships

between temperature, salinity, and carbon are regionally dependent as ocean dynamics and biology can set different drivers
of CO, uptake (?). If these relationships can be exploited, the increase in ocean observations from the Argo programme may
provide valuable information that can help reconstruct ocean carbon fields alongside temperature and salinity fields. While the
ocean carbonate system can also be approximated using other observations such as pH and salinity, for this study we focus on
the readity-available-and-widespread-potential benefit of observations present within the Argo dataset.

In this study, we apply an Ensemble Optimal Interpolation approach to reconstruct modelled upper-ocean dissolved inorganic
carbon from synthetic temperature and salinity observations. To-caleulate—the-covariancefields——we-eonstruet-Covariance
W@gjn ensemble of 6 Earth system models from the Climate Model Intercomparison Project Phase 6

(CMIP6)an . In this “preof-ef-concept™
study—we-atm—to-proof-of-concept study we show the potential skill available in using model covariance fields and Argo-

style measurements—We-ereate-synthetie-synthetic measurements to reconstruct carbon content between 0-2000m. Synthetic
reconstructions of modelled ocean carbon using-perfect-are created by using pseudo-observations of temperature and salinity,

similar to the ocean heat content synthetic reconstructions in ?. We-then-compare-the-The errors within these reconstructions
against-can then be compared with those from the climatological fields to see where and how the method best works in the
model world.

We-set-out-the-The work in this study is set out as follows. tn-Seetion2-we-deseribe-Section 2 introduces the Ensemble

Optimal Interpolation scheme for ocean DIC using an ensemble of 6 CMIP6 models ;—with-an-overview-of-the-experiments
we-conduet-and the experiments used to test the reconstruction skill. Jn-Seetion-3-1-we-present-The method is first assessed

by reconstructing DIC inventory changes over the top 100m, and then over the top 2000m. Section 3.1 presents the ensemble
correlation fields between DIC over the top 100m and temperature and salinity at the same location, with a discussion as to how
these correlations relate to physical controls on the ocean carbon response. In Sections 3.1 and 3.1 we-presentsensitivityresults
to-diseuss-the reconstruction potential of different temperature and salinity sampling distributions is assessed for the upper
100m, ranging from perfect spatial coverage to coverage more representative of ARGO-ebservations;-with-global-and-regional
comparisons-of the-different synthetic Argo reconstruetions-Argo observations. The method is then extended to consider the
full 2000m profiled by Argo floats in Section 4, and the potential to reconstruct recent global carbon changes is illustrated with
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a reconstruction using time-varying synthetic Argo observations in Section 5. Lastly, in Section 6 we discuss the potential and
shortcomings of this method, both in terms of the setup with temperature and salinity and further-expansions-how the method
may be expanded with other oceanographic observations.

2 The Ensemble Optimal Interpolation method for ocean carbon

Optimal interpolation is a non-dynamical mapping approach that uses weights to propagate information from observations to
regions without observations (??). The optimal interpolation method involves creating an analysis A at locations ¢ and times
t from the sum of a background state B; and a weighted sum of the difference between the observed and background values,
also known as the observation increments. The observations can be the same property as the final analysis, or can be of other
properties, i.e. temperature and salinity observations can be used to reconstruct DIC if there is a physical link between them.
The inclusion of these sorts of physically relevant data produces a multivariate analysis. For observations O at locations k
within a sampling region K, the optimal interpolation method can be represented as

Ai=Bi+ Y wi(Ox — By). (1)

kEK

The crux of the optimal interpolation problem is thus finding a suitable solution for the weights wy. The optimal weights are
those that minimise the expected analysis error at each gridpoint ¢, calculated as the root mean squared error (RMSE) between

the analysis and the truth 7;:

RMSE(A,T) - \/Zm,-,(t) ~T(0)2. @

In this work we explore how the relationships between DIC and observed ocean variables such as temperature and salinity
can be used to reconstruct upper ocean carbon steeksinventories down to a depth of 2000m. The use of optimal interpolation to
reconstruct ocean carbon from available carbon measurements is inherently limited by the poor temporal and spatial coverage
of existing DIC observations. However, temperature and salinity observations are far more plentiful, particularly in the Argo
era, so we explore the extent to which these observations could be used to reconstruct DIC. To avoid the problems associated
with sparse input data, we take a multivariate analysis approach to reconstruct carbon from extensive synthetic observations
of ocean temperature 7' and salinity S consistent with observations from the Argo programme (?), as well as annual average
atmospheric CO5 concentrations. On annual and longer timescales, atmospheric CO» is well-mixed, and so the use of annual
atmospheric CO5 measurements can allow the analysis to capture longer-term DIC changes from changes in the global carbon
budget. With background fields for DIC, T, and S taken to be their global climatologies (i.e., DIC (i, t) = DIC(i)+DIC'(i,t),
where DIC (i) is the temporal average DIC concentration at location i over the period 1955-2014), the optimal interpolation

scheme is formulated to calculate the residual DIC’ from T, S’ within a region K:

DIC'(i,t) = Y (we xpCO4(t) + wr kT (k. ) + ws 15" (k, 1)), 3)
keK
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where wc i, is the local weighting for the annual global averaged atmospheric pCO5 and w7, and wg, ;. are the weightings for

observed ocean temperatures and salinities within the sampling region K. These optimal weights thus describe how information

is propagated from atmospheric pCO5 and hydrographic observations to the ocean carbon system, taking into account the
interdependencies between input variables.

2.1 Choices for calculating background error covariances

The optimal weights wy, in (1) and (3) are determined by the covariances between the background errors B; —T;. The covariance
fields describe how information should be propagated from areas with observations to those without; the optimal solution
will consider how much new information observations provide to the reconstruction and depend on local and larger-scale
relationships within the climate system. Any ensemble optimal interpolation method must involve decisions made on how the
background error covariances are calculated, and which covariances are included to solve for the weights wy. In the following
we describe how we have made these decisions using a CMIP6 multi-model ensemble and with various assumptions as to

which observations are used for the multivariate DIC analyses.
2.1.1 Background covariances from a CMIP6 ensemble

Climate model outputs can be used to provide covariance fields for optimal interpolation solutions. By providing complete
pseudo-data in both space and time, climate models avoid some of the errors that arise from the coarseness of observational or
parameterised covariance fields. Background covariance fields from global climate models have been used to reconstruct ocean
temperatures and salinities from observations as well as to initialise decadal forecasts (???). However, the model ensemble
background covariance field will still contain errors that will need to be evaluated using sensitivity testing before the fields can
be used with real-world observations.

To construct the background covariance fields, we obtained ocean potential temperature, ocean salinity, and ocean DIC model
output from 6 CMIP6 Earth System models with a nominal horizontal resolution around 1° (Table 1). The output was taken
from the historical experiments and covers the period of year 1955 to year 2014. This period was chosen as it has consistent
behaviour in atmospheric CO> concentrations and is long enough to allow some multidecadal variability to be captured in
the covariance fields. For each model, output from 5 realisations was-were used so that the models’ internal variability was
captured by the ensemble.

For all variables, annual averages were calculated from monthly mean outputs, and outputs were bilinearily regridded from
their native horizontal grids to a 1° x 1° grid using the Python package xESMF (https://doi.org/10.5281/zenodo.1134365).
Oceanic variables were further integrated vertically - salts-in-this—s focust : i

top1+00min layers that span the ocean surface to 2000m depth. The integrated layers were chosen to be Om-100m, 100m-500m




Table 1. CMIP6 Earth System Models and realisations used for reconstruction

Model (Reference) Realisations

ACCESS-ESM-1.5 (?) | rlilplfl, r2ilplfl, rdilplfl, rSilplfl, r6ilplfl
CanESMS (?) rl0ilplfl, rllilplIfl, r12ilp1fl, r13ilplfl, r14ilplfl
CESM2 (?) rlilplfl, r2ilplfl, r3ilplfl, rdilplfl, r5ilp1fl

IPSL-CM6A-LR (?) rlilplfl, r2ilplfl, r3ilp1fl, rdilplfl, r32ilplfl
MPI-ESM1.2-LR (?) rlilplfl, r2ilplfl, r3ilplfl, r4ilplfl, r5ilp1fl
UKESM1 (?) rlilplf2, r2ilplf2, r3ilp1f2, r4ilp1f2, r8ilp1f2

2.1.2 Spatial limits on background covariances

The sampling region K for temperature and salinity observations in (3) can vary from co-located observations to global ob-
155 servations; the choice of sampling region requires balancing the extra information provided by additional observations with
spurious propagation of information through errors in the covariance fields. In this study we use two idealised sampling meth-

ods to explore the limits of this first-order reconstruction of ocean carbon:

The first reconstruction
W&g@lﬂcoverage of temperature and sahmty profiles—The-reconstruction-is-then-set-up-to-useloecal
ity-observations. For these synthetic reconstructions, the
ocean inputs to reconstruct ocean DIC are co-located model temperature and salinity anomalies, as well as globalty

averaged-globally-uniform atmospheric pCO2 —anomalies. The resulting system thus has 3 input parameters to solve
for ocean carbon at each grid cell. With this method, we explore how the local relationships between upper-ocean DIC,

160

temperature, and salinity can be used to reconstruct carbon with perfect hydrographic knowledge. Since observations are
165 complete in this test, the presence of errors can be attributed to poorly known relationships or nonlinear dynamics within

the model ensemble.

2. Observations-Synthetic observations are taken irregularly, consistent with the distribution of Argo profiles (?). While
coverage of ocean temperature and salinity observations is significantly higher than those for ocean carbon, sampling
remains irregular in space and time, so real-world reconstruction methods must account for this irregularity. We take

170 Argo data from years 2002-and-2015-and-2002-2015 and bin the profiles onto the 1° x 1° horizontal grid. Any grid cell
that has Argo observations for at least 6 months of-profites-in-within a given year (running from January to December)
is taken to be sufficiently observed, and the modelled annual average profile there is used as an observation for the
reconstruction. For year 2002, this leads to a distribution of synthetic profiles that is heavily concentrated in the Northern
Hemisphere and the North Atlantic in particular (Fig. 1a). By year 2015, the scheme allows for sampling of most of the

175 global ocean outside the Southern Ocean and the Arctic Ocean (Fig. 1b). Using this distribution of available profiles,
we create reconstructions using time-varying profile locations and test how profile density impacts the reconstruction by,
setting the distribution as constant in time.
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Figure 1. Argo profile distributions consistent with sampling for (a) year 2002 and (b) year 2015. Coloured regions indicate bins that have at

least 6 months of observations in the given year.

As the Argo profiles have incomplete global coverage, we conduct additional sensitivity tests to see how nearby Argo
observations can be used to construct near-global reconstructions. For these reconstructions, the reconstruction at any given
point is made to be a linear combination of observations within a certain radius. We-cheese-radii-Radii of 1°, 2°, or 5° are
chosen: for a radius of 5° and current Argo coverage like that for year 2015, most regions of the ocean have observations within

the search radius, allowing for nearly globally complete DIC reconstructions.
2.2 Synthetic reconstructions and tests

Evaluating how well an analysis reproduces variability requires a comparison with a field truth. As the ocean carbon field is
not known to a high accuracy, we-conductsynthetic reconstruetionsin-which-wereconstruet-other-synthetic reconstructions of
models’ ocean carbon fields are created using various distributions of modelled temperature and salinity (?). For these tests, the
synthetic observations come from the models and therefore contain no errors outside of small errors possible from sampling
and regridding. As the synthetic observations can be assumed to have little-negligible error, the weights wy, in (2) can be solved
for through a least-squares algorithm, without having to consider observational errors (?).

The models used in the synthetic reconstructions are the same models used to calculate the ensemble covariance fields. The
inclusion of a model in the ensemble can over-fit the results and produce spuriously accurate reconstructions; therefore, for
a synthetic reconstruction of, for instance, UKESM1 DIC inventories, we eliminate all the UKESMI realisations from the
ensemble. We-then-caleutate-the-The covariances and optimal weights are then calculated from the remaining eut-of-sample
ensemble members. Then, these optimal weights are used with the UKESM1 temperature and salinity profiles to create a DIC
analysis.

To compare the reconstructions, we-caleultate-the improvement in the RMSE +is calculated relative to the RMSE of the
first-guess background using:

_ RMSE(B;,T;) — RMSE(A;,T;)

&il4) RMSE(B;,T))

“4)

Here the conventions follow those in (1), where RM SE(B;,T;) is the RMSE between the modelled truth 7" and the back-
ground climatology field B (equivalent to the varianee-standard deviation of T'), and RM SE(A;,T;) is the RMSE between the



205

210

215

220

225

230

modelled truth and the multivariate analysis A. Each RMSE is calculated for the same historical period used in the creation of
the model ensemble, i.e. ¢ is taken from output within the modelled years 1955 to 2014. The maximum value of 1 indicates a
perfect reconstruction A, whereas values below 0 indicate that the errors are larger for the analysis than they are if the solution

were to be taken as the climatological first-guess.

For the following analysis, synthetic reconstructions of DIC are first made over the upper 100m, and then over the upper
2000m, using both global and irregular temperature and salinity observations. Over the top 100m, the ocean carbon distribution
is expected to reflect the controls of solubility and alkalinity on ocean carbon, due to the dominance of air-sea gas exchange on

the carbon inventory. Over the upper 2000m, ocean circulation and ventilation are expected to play a larger role in determinin
the reconstructed carbon fields.

and-Reconstruction of ocean DIC within the to

100m

Our reconstruction approach using the ensemble of 6 CMIP6 model runs is now applied to carbon inventory changes in the to

100m.

3.1 Model correlation fields between pCQO,, temperature, salinity, and DIC

The least-squares solution for the weights for temperature, salinity, and atmospheric CO5 is a function of the covariances
between the input variables and DIC. Thus, the structure of the covariance fields provides insight into how temperature and
salinity can be used to reconstruct carbon. For simplicity, we illustrate these relationships through correlation fields taken for

the entire model ensemble, which normalise the relationships using the variances of each input variable.

3.1.1 Correlations with atmospheric pCO

The correlation fields ef-between atmospheric pCO, and DIC, temperature, and-salinity-with-atmespheriec pEO2-or salinity
reflect the impact of emissions on the tpper-oeean-ocean mixed layer. Atmospheric pCOs is strongly positively correlated with
upper-ocean-DIC—with-strongest-correlations—(mixed layer DIC and reaches values near 1 )-in the mid-latitude ocean (Fig.
2a). This strong correlation reflects how the ocean takes up carbon under higher atmospheric pCO> due to gas disequilibrium.
The correlation between atmospheric pCO, and upper-ocean-integrated-temperature—is—weakerthan—that-with- DIC-but-st

pesitivealmost-everywhere-integrated temperature changes is widely positive, consistent with the long-term ocean uptake of
both heat and carbon during carbon emissions (Fig. 2b). Lastly, the correlation between atomospherie-atmospheric pCO2 and

Hpper-ocean—intesrated-sakinityis-spatially-heterosencous—and-near-zero-integrated salinity changes is close to zero in most
regionsef-the-ecean, although smaller regions such as the Gulf Stream show stronger pesitive-correlations.

3.1.2 Correlations between DIC and temperature
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(a) pCO,/DIC (b) pCOy/temperature (c) pCOz/sahmty

Figure 2. Correlations for the entire CMIP6 historical ensemble between changes in (a) atmospheric pCO2 and upper-ocean (0-100m inte-
grated) DIC, (b) atmospheric pCO2 and upper-ocean temperature, (c) atmospheric pCO2 and upper-ocean salinity, (c) upper-ocean tempera-

ture and DIC, (e) upper-ocean salinity and DIC, and (f) upper-ocean temperature and salinity.

Whereas atmospheric pCO» has little interannual variability, mixed layer temperature, salinity, and DIC will have variability on

interannual and decadal timescales alongside long-term trends. The correlation fields between mixed layer DIC, temperature

and salinity reflect the combined response to external forcing from atmospheric pCO, and internal variability.

Mixed layer temperature and DIC are positively correlated in most of the ocean, with strong negatlve correlations in the
eastern equatorial Pacific and Indian Oceans (Fig. 2d). i

weuld-be-This positive correlation contradicts the negative correlation expected from the solubility control of temperature on

To separate the correlation into terms relating to the external forcing and ocean variability, we can decompose temperature
and DIC into terms proportional to atmospheric pCOs and ren-pEO-components-to-separate-the-variousresponses:

7Var(pC’OQ) . cov(DIC,,T,) ’

oprcor oprcor

p(DIC",T') ~ «

pCO, term non-pCO,, term
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(a) p(T", DIC'"), pCO; term (b) p(T", DIC'), non-pCO, term

Figure 3. Breakdown of the correlation between upper-ocean DIC and temperature, p(DIC’, T"), from Fig. 2d: (a) a term proportional to
the variance of atmospheric pCO2, and (b) a term consisting of the covariance of the residuals calculated after removing a linear fit against

atmospheric pCO-. For discussion of the breakdown of the correlation into terms and on the approximation, see Appendix A.

an anomaly term:

T'(@y,t)= olz,9)pC0x(t) + Ta(x,y,1) 5)
DIC (zy,t)= 2(2,)pC0x(t) + DICu(z,y.1) (©6)

where-The terms «, 7 describe the respective spatial patterns of changes in 7", DIC” with changes in pCOy - PHEare-the
. The anomalies of 77, DIC" after a regression against pCOs is removed -are denoted as T, and epreve1-DIC,.
With the decomposition in (5) and (6), the correlation between DIC’ and T’ can be approximated as the sum of a pCQO» and

a non-pCO- component, where o o are the standard deviations of MW

var(pCOs) n cov(DIC,,T,)

oprcor opIrcor

p(DIC",T") ~ ary (7

pCO, term non-pCO,, term

This decomposition is accurate to first order. A more detailed derivation of this breakdown and a discussion of the approxima-
tion can be found in Appendix A.

The pCO, component of the temperature/DIC-correlation-field-correlation field between temperature and DIC is positive
almost everywhere -which-correspends-with-the-additien-(Fig. 3a). This relationship is consistent with the combined oceanic
uptake of heat and carbon to-the-oecean—system-through-from CO, emissions(Fig—3a)—,_Conversely, the anomaly term for
the temperature/DIC correlation field-is-negative-almosteverywherecorrelation field between temperature and DIC is broadly
negative, which corresponds with the solubility argument-control for DIC (Fig. 3b). Thus the heterogenity found in the overall

correlation between DIC and temperature in Figure 2 can be understood as the sum of two-separate-relationships-that-arise
relationships from the forced and natural variability in temperature and DIC.

10
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3.1.3 Correlations between salinity and DIC or temperature

Unlike DIC, temperature, and atmospheric pCO-, mixed-layer salinity changes have weak trends. Decomposing the correlations
between salinity and temperature or DIC show little role for the pCO» term in (7) (Appendix A). Therefore we continue b

exploring the full correlation fields with mixed layer salinity.
The correlations between upper-ocean salinity and upper-ocean DIC are positive in most regions, reflecting the alkalinity

control on carbon solubility (Fig. 2e). Correlations are weak and slightly negative in the Southern Ocean and eastern equatorial
Pacific, respectively. These correlations may be imprints of dynamical changes; for the Southern Ocean, the salinity in the
frontal zone impacts the strength of mode and intermediate water formation (?), while for the equatorial Pacific enhanced wind-
driven upwelling transports fresher, carbon-rich waters to the surface (?). Lastly, correlations between upper-ocean temperature
and salinity are moderate and show strong regional variability (Fig. 2f).

Overall, the correlation fields show first-principle controls relating to the increase of ocean heat and carbon under emissions,

as well as solubility and alkalinity controls of temperature and salinity anomalies on ocean DIC.
3.2 Ensemble optimal weights for pCO-, temperature, and salinity

Translating covariance and correlation fields to optimal mapping parameters involves both the relationships between the input
variables and the output variables as well as the relationships between input variables. Therefore, optimal solutions are non-
trivial; for instance, regions with similar correlations between DIC and temperature and salinity (such as the equatorial Pacific)
may have coefficients with different signs depending on how the system fits the linear model to the data. We thus continue by
comparing the least square coefficients fit to atmospheric pCO-, integrated ocean temperature, and integrated ocean salinity to
the correlations in Section 3.1 and the first-principle controls on carbon solubility.

Increases in atmospheric pCO4 are translated to increases in upper-ocean carbon (Fig. 4a). The weight magnitudes reach
local maxima in the subtropics, in accordance with regional variability in the Revelle buffer factor, which describes the ratio
between increases in DIC and increases in atmospheric pCO; (?) and thermocline ventilation. Temperature coefficients are
negative almost everywhere (Fig. 4b), while salinity coefficients are positive everywhere (Fig. 4c). Thus, while the correlations
between upper-ocean DIC, temperature, and salinity show regional variability, the ensemble ultimately reveals a consistent
forced control of atmospheric CO5, solubility control by temperature, and alkalinity control by salinity.

Thus, the least-squares solution for DIC as a combination of atmospheric pCOs, temperature, and salinity changes is able

to capture the controls of the Revelle buffer factor, solubility, and alkalinity on upper-ocean carbon. While-the-eorrelations

gional-variability-and-strueture-in-their-eross-eorrelations; The information from ocean

temperature and salinity observations end-up-actingincomplementarywaysare complementary: regions with relatively high/low
temperature coefficients correspond with low/high salinity coefficients. Thus the optimal weight solutions indicate that the

information provided by these observations are consistent with our hypothesised first-order controls.

11
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(a) pCO; coefficients (b) T coefficients
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Figure 4. Ensemble coefficients for reconstructing upper-ocean (0-100m integrated) DIC with co-located observations. (a) Coefficients for
annual average atmospheric CO» concentrations, in units mol C (ppm CO2 m?)~!, (b) coefficients for upper-ocean integrated temperature,

in units mol C (°C m®)™!, and (c) coefficients for upper-ocean integrated salinity, in units mol C (psu m®)~L.
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3.1 Reconstruction potential using co-located observations

Sensitivity tests are now conducted to estimate
the ability to reconstruct ocean carbon, as well as explore how the makeup-of-the-ensemble-ensemble composition impacts the
reconstruction. In total, 6 reconstructions were created, in which one model was removed from the ensemble, the covariance
fields between BFEF-S-DIC, 17, S’, and atmospheric pCOs are recalculated using the remaining models, and then D&
DIC' from the excluded model is reconstructed using the new covariance fields and its own F-and-5-1" and S’ observations
(Section 2). The coefficients for atmospheric CO5, temperature, and salinity are similar across the sensitivity setups with each
model removed (Appendix-BSupplementary Figures S1-S3), so we continue by comparing the RMSE improvements ¢ from
(4) for each sensitivity test.

We-caleutate-the The ensemble minimum, average, and maximum relative RMSE improvements within-the-are calculated for
6 reconstructions, each created by eliminating speeifie-models-a model from the CMIP6 ensemble. The minimum and maximum
error improvements min(e) and max(e) reflect the makeup of the ensemble. A negative minimum error improvement at
any point indicates where one of the models in the ensemble has covariances that are substantially different than the others;
therefore, including the model within the ensemble adds uncertainty to the reconstruction and pushes the reconstruction towards
the first-guess climatology field. A high maximum error improvement indicates that the solution weights for the sensitivity
results are similar. This similarity can arise from strong physical constraints on the upper ocean carbon system but may also
arise because the ensemble members are spuriously similar in their architecture or representations of climate processes.

We-consider-the-The RMSE improvement of the reconstruction relative to the climatological first-guess as—in—(4)-is now

considered for both the full upper-ocean carbon response and the detrended carbon response (Fig. 5). Over multiple decades,

we expect the full-integrated-earbon-carbon inventory response to be dominated by an upwards trend due to continuing carbon
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emissions; thus, the improvement in the detrended response provides insight into how interannual and decadal variability in
ocean carbon storage is reproduced. Areas where the RMSE increases relative to the climatological first guess are noted in red.
For this analysis we focus on the open-ocean RMSE reductions, as the CMIP6 models have different coastlines after being
regridded, leading to small areas of RMSE increases near the land/sea boundary.

315 Outside of some coastal and Arctic regions, each sensitivity test reduces the upper-ocean RMSE for upper-ocean carbon
(Fig. 5a). This improvement is not due solely to the reproduction of the long-term increase in ocean carbon, as most regions
show improvements in detrended ocean carbon as well; exceptions to this improvement can be found in the high latitudes
and subtropical regions (Fig. 5d). The average reconstruction reduces the RMSE by between 60% to 90% on average, relative
to the climatology first-guess RMSE (Fig. 5b) and reduces the detrended RMSE by 30% to 80% (Fig. Se). These relative

320 improvements are equivalent to the method capturing over 60% of the detrended variability in most regions of the ocean. The
high (close to 1) relative RMSE reductions found in the ensemble maximum statistics (Figs. 5¢ and e) suggest that there are
models which are substantially similar to one another and thus able to reduce the RMSE of the full signal by over 80% in most

regions and the RMSE of the detrended signal by over 60%.

For reconstructions of global DIC inventories using co-located temperature and salinity observations, the sensitivity experiments
325 show an average RMSE reduction of 93%. When considering detrended DIC inventories, the sensitivity experiments reduce

the RMSE by 68% on average.
There are noticeable regional variations throughout all of the improvement statistics. The western low-latitude Pacific and

subtropical Indian ocean show consistent local maxima in all of the improvement statistics. These regions of maximum relative

RMSE reduction are characterised by their strong correlation between salinity and DIC, suggesting that the most constrained

330 responses within the CMIP6 ensemble may be related to the control of alkalinity on DIC. Conversely, the small regions that

show potential degradation in the reconstructions due to the errors in the covariances are characterised by weak correlations

against atmospheric pCO, changes (for the full carbon signal reconstruction, Fig. 2a-c) and weakly positive covariances be-
tween T, and DIC,, (for the detrended carbon system, Fig. 3b).

Thus, when considering pointwise observations of temperature and salinity, alongside global average CO5 concentrations,

335 our sensitivity experiments indicate that a substantial amount of upper-ocean carbon variability can be reconstructed. These es-

timates can provide an upper bound on the reconstruction potential as global coverage of temperature and salinity observations

is theoretically ideal but difficult to accomplish, even with widespread autonomous observing tools. We therefore continue by

exploring how irregular observations of temperature and salinity impact reconstructions of upper-ocean carbon.

340 3.1 Reconstructing carbon using irregular Argo observations

The pointwise reconstructions of upper-ocean carbon from atmospheric pCOs, temperature, and salinity reveal that the phys-
ical controls of solubility and alkalinity can explain a substantial amount of interannual variability in the upper-ocean carbon

system. Although temperature and salinity profiles have a larger global coverage than ocean carbon profiles, coverage remains
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Figure 5. Ensemble statistics for the relative RMSE reductions € using co-located temperature and salinity over the upper 100m: (a) ensemble
minimum, (b) ensemble average, and (c) ensemble maximum. Ensemble statistics for the relative RMSE reductions, but considering only the
detrended carbon signal: (d) ensemble minimum, (e) ensemble average, and (f) ensemble maximum. Red areas indicate regions where the

sensitivity tests show a RMSE increase relative to the assumption of climatology.

irregular and incomplete. Thus, we continue by exploring how the irregular coverage in Argo profiles impacts carbon recon-
structions by conducting further synthetic reconstructions with observations consistent with year 2002-and-year-2015 Argo
coverage (Fig. 1b).

When considering irregular sampling, reconstructions with global coverage use background covariances to propagate infor-
mation from Argo profile locations to the rest of the ocean. There is the potential for information from multiple Argo sites to be
used to reconstruct ocean carbon at a given location. If the covariance fields are correct, additional information should improve
the reconstruction and increase the relative error reduction; however, any errors in the covariance fields can propagate and de-
crease the relative error reduction. Thus, the radius of influence for an observation should ideally balance the extra information
and errors it provides in the reconstruction.

With the smaller radii of 1° and 2°, the method creates an incomplete reconstruction even under current-day Argo profile

distributions. With a larger radius of 5°, most of the global ocean has nearby temperature and salinity profiles that can be used
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Figure 6. As for Fig. 5, but RMSE improvements over the upper 100m for the reconstraction-scheme that uses Argo 2015-type temperature

and salinity observations within 5° of the reconstruction peintlocation.

for the reconstruction (see Fig. 6 coverage). Overall, the benefit of increased coverage outweighs the increases in reconstruction
errors (Appendix-CSupplementary Figure S4). Thus, in this section we focus on the 5° radius results for simplicity .

With the 5° seareh-cutoff radius for observations, the carbon reconstruction at each point will use between 0 and 81 (= 1 local
observation + 80 observations within the cutoff radius) temperature and salinity inputs. Including the globally averaged atmo-
spheric CO; inputs, DIC at each point can be reconstructed from at least 1 and up to 82 input variables (up to 81 temperature
and salinity profiles + globally averaged atmospheric pCO5).

Errors in spatial covariances result in some regions with lower RMSE improvements compared to reconstructions using
co-located observations (Fig. 6a, d). Across the sensitivity tests, most regions show an-a relative RMSE reduction of at least
50%, and when considering the detrended carbon signal most regions show an RMSE reduction of at least 40%. Noticably, the
ensemble minimum RMSE improvement for the detrend-detrended signal shows substantial regions where one of the sensitivity
tests produces poor reconstructions. This sensitivity test is that for MPI-ESM1.2-LR, which exhibits more fine-scale structure
in its annual DIC, temperature, and salinity. The errors arise because the correlation length scales for MPI-ESM1.2-LR are

smaller than those for the other models, resulting in poor fits.

15



For most of the upper ocean the RMSE improvements are similar to those found in the reconstruction with co-located
temperature and salinity measurements, and the regional variation in the RMSE improvements is similar regardless of whether
370 co-located or removed observations are used. Thus the additional information provided by nearby measurements counteracts

the error propagation inherent in the scheme, suggesting that the use of irregular Argo profiles provides sufficient information

to reproduce a substantial amount of upper-ecean-carbon-variability-carbon variability in the mixed layer.

4 Reconstruction of ocean DIC within the top 2000m

Our reconstruction approach is now applied to carbon inventories within the upper 2000m. Our assessment of the CMIP6
375 models indicate that the relationships between carbon, temperature, and salinity may be used to reconstruct ocean carbon
variability within the near-surface ocean. Anthropogenic carbon uptake and decadal variability are concentrated in the top
1000m (22). As Argo profiles can provide temperature and salinity information down to 2000m, the synthetic reconstructions
are extended to cover this vertical extent. For these interior reconstructions, the carbon inventories are reconstructed as a set
of layers: 100m-500m, 500m-1000m, and 1000m-2000m. For the interior layers, we conduct the same analysis as was used
380 for the top 100m reconstructions by first examining the uncertainties when reconstructing carbon using co-located temperature

and salinity measurements, and then extending to reconstructions using irregular observations consistent with Argo profile
locations.

4.1 Sensitivity of optimal weights to depth level

The optimal coefficients for carbon as a function of co-located temperature and salinity, along with atmospheric pCO5 concentrations,

385 display distinct depth sensitivity (Figure 7). The optimal coefficients for atmospheric pCO> remain positive for most region and

depth combinations. For the 100m-500m layer, pCO; coefficients reach their local maxima in the subtropical gyres, similarly.
to the optimal solution found for the upper 100m layer (Figure 4a). Below 500m, the optimal weights reflect regions of strong.
ventilation in the North Atlantic and Southern Oceans; below 1000m. the coefficients outside these regions are near zero.
The optimal coefficients for interior temperature changes remain negative for most regions above 1000m, with depth-dependent
390  structure (Figure 7d-e). For the 1000m-2000m layer, the optimal temperature coefficients exhibit a zonal asymmetry in the
Pacific basin, where the coefficients are negative in the western Pacific and positive in the eastern Pacific. Salinity coefficients

operate similarly to temperature coefficients; for the 100m-500m and 500m-1000m solutions salinity coefficients are largel
ositive (Figure 7g-h). Below 1000m, salinity coefficients exhibit the same zonal structure seen in the temperature coefficients.

The optimal coefficients at this depth are spatially correlated, which suggests that the information provided by temperature and
395 salinities at this depth are less complementary than at shallower levels.

4.2 Carbon inventory reconstructions over 0-2000m using co-located observations

The skill of the Ensemble Optimal Interpolation reconstructions is now assessed for carbon inventory changes in the upper
2000m, following the prior assessment over the upper 100m.

16



(c) pCO; coeff, 1000m-2000m
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(a) pCO; coeff, 100m-500m

a,d,g), 500m-1000m (b.e,h), and 1000m-2000m (c.f,i).

For both the full carbon signal and the detrended carbon signal, the reconstruction skill decreases with depth. For carbon

400 within the top 100m of the water column, the average RMSE reduction is at least 60% in most regions, and for globally-integrated

DIC reconstructions the average RMSE reduction is over 90% (Figure 5b). This RMSE reduction for the full DIC signal drops

10 30%-80% for the 100m-500m layer (Figure 8b)
Below 500m, the sensitivity tests show large regions where the reconstruction increases the RMSE relative to a climatological
first guess: for 500m-1000m the eastern North Pacific and equatorial Pacific show increased errors on average, whereas below.
405 1000m most of the Pacific and Indian basins show increased errors (Figure 8c.d). The regions in which the reconstruction
maintains skill with depth are the well-ventilated regions that show maximum optimal coefficients for pCOy (Figure 7¢).
As with the reconstructions for the top 100m, reconstructions at depth also show a lower RMSE reduction for the detrended
DIC signal (Figure 7f-h). and 0%-60%. For carbon between 100m-500m. the reconstructin reduces the detrended RMSE by
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(a) Full DIC, 100-500m (b) Full DIC, 500-1000m (c) Full DIC, 1000-2000m
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(d) Detrended DIC, 100-500m (e) Detrended DIC, 500-1000m (f) Detrended DIC, 1000-2000m

% 7R N

, for sensitivity tests with out-of-sample models: (a-c) uses average ¢ for the

Figure 8. Average RMSE reduction ¢, relative to a climatolo

full DIC’ signal and (d-f) uses average ¢ for the detrended signal. The average RMSE reduction is calculated for individual depth levels:

100m-500m (a,d), 500m-1000m (b.e), and 1000m-2000m (c,f).

between 0-60% in most regions. Below 500m, the regions that exhibit increase errors in the detrended DIC signal are similar

to those with larger errors in the full DIC signal.

While the sensitivity tests show poor reconstruction skill for large areas below 1000m, carbon changes below this depth

horizon are generally small. Thus, the skill found in the 0-100m and 100-500m layers mitigates the impact of covariance errors

in these deeper layers when considering full column reconstructions.

5 Potential of the method to provide global and regional carbon timeseries

To illustrate the potential for reconstructing upper-ocean carbon using temperature and salinity measurements, we reconstruct
output from the Norwegian Earth System Model (NorESM2, ?) using the full ensemble covariance fields and temperature

and salinity measurements at locations similar to Argo observation locationsat-year2002-and-year2045—, This reconstruction
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Figure 9. Reconstructions of NorESM upper-oeean-0-2000m carbon inventories. (black-tinesa) using-year2002-Argo-profile-distributions
Globally-integrated NorESM carbon inventories (blue—dashed—solid lines) and year—26+5—reconstructed carbon inventories using
vertically-integrated DIC concentrations at BATS, in units-C and-m 2, (c) ntegrated-earbon-As for (b), but vertically-integrated DIC

concentrations at HOT to 500m, in wnits—gC @:f .
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Snapshots of interannual changes in #pper-ocean-—carbon-in-the NorESM0-2000m DIC, in units gC m ™ 2-between-years2004-and-2000: (d)
modeted NorESM truth -and (e) recenstrueted reconstruction. Interannual changes using-are taken as the difference between year 20602-Argo
profite-distributions:2013 and (f)-reconstructed-changes-using-year 2045-Argo-profile-distributions2014 carbon fields. Corretations-beltow

reconstruction.
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is an additional out-of-sample reconstruction, similar to those made for the error reduction statistics in Sections 3.1 and 3.1
but uses covariance fields constructed from the entire CMIP6 model ensemble. We elect to use NorESM2 was-chosen-as an

independent check as i

has only 3 available realisations and uses isopycnal depth coordinates; as all the models in the CMIP6 ensemble are z-level
models, this choice allows us to begin-to-considersome-consider potential errors from physical uncertaintiesand-the-restrietions
of-model-assumptions—The-global-upper-ocean-, _

Within this reconstruction, the cutoff radii for our localization are depth-specific. The cutoff radii decrease with depth: 5°

for 0-100m, 2° for 100-500m, 1° for 500-1000m, and only using co-located observations for 1000-2000m. These cutoff radii
were chosen to limit the influence of errors in the covariance fields on the final reconstruction.

—across all depth levels (solid lines
Figure 9a). Most carbon changes occur within the top 500m (blue and orange lines); at these levels the reconstruction captures

the long-term global behavior, Below 500m, the errors in the covariance fields result in biases in the reconstruction. Between
500-1000m, the reconstruction overestimates DIC accumulation, whereas below 1000m the reconstruction underestimates DIC

accumulation. We note that, particularly below 1000m, the enhanced coverage of the Argo program over time results in a less
accurate reconstruction due to the errors in the ensemble covariance fields.

To show how the reconstructions operate on more regional scales, we provide the-samereconstructions-butforthereconstructed
modelled carbon inventory at the Bermuda Atlantic Time Series (BATS, 31°50’N 64°10’W) and the Hawaii Ocean Time series

Series (HOT, 22°45°N 158°86“W5-W) (Figure 9b.c). The multidecadal time series at BATS will be a useful validation tool
for future reconstructions. With the localisation procedure, BATS has observations for a reconstruction for the top 2000m; at
HOT a lack of observations restricts the analysis to the upper 500m. These-locations-were-chosen-because-they-are-thesites

At BATS, the-signatis-again-driven-by-there is a long-term positive trend (Fig-—9b;-blacktine)—As-the-year2002-style-Argo

H—an ha

anges in DIC in all layers (Figure 9b). Reconstructed DIC captures the trend for carbon
within the 0-100m and 100m-500m layers, but underestimates DIC in the 1000-2000m layer. DIC also exhibits interannual
variability within the top 500m. While both the trend and variability are captured well in the top 100m, between 100m-500m
the interannual variability is dampened.
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100m is characterised by interannual variability, which the reconstruction captures. Between 100-500m DIC has a stron
ositive trend as well as interannual variability. The recontruction captures both the trend and most of the interannual vari-

ability - By using multiple observations at-year 20 ocations—the RMSE-isreduced-by30%relativeto-the RMSEHo

{Fig—9fchanges and their reconstruction analogues. Reconstructed interannual carbon inventory changes, shown here to be the
top 2000m DIC changes between year 2013 and year 2014, broadly match those in the model (Figure 9c-d). The trath-field
for DIC-changes—showregional-variability,with-inereases—in-reconstruction captures the increase in carbon in the equatorial

mestregions-showlittle-change-between-the-two-years—The-smaller-scale structure. Globally, the reconstruction has a spatial

orre on—of-0-4 imothe re A . A tarina a_an 4
ety a-Sa y-Samp o-procedaure—+o onstru Sismen

modektruthpattern correlation of p = 0.52 for these interannual changes.

Longer-term carbon changes in the Argo period are marked by widespread increases, particularly in the Northern Hemisphere,
and a DIC decrease in the Pacific (Figure 9¢-f). The reconstruction captures the near-global increase in DIC and the decreases in
DIC in the north and equatorial Pacific. The finer structures within the decadal DIC, such as the regions with the strongest DIC
increases, are not fully captured by the reconstruction. The pattern correlation of 0.68 is an improvement on the interannual
changes, likely as the role of atmospheric pCO, changes on this timescale are already more important in setting column carbon
inventory changes.

6 Discussion and conclusions

In this study we-present-a new method for reconstructing upper-ocean carbon using observations of ocean temperatures and
salinities is_presented. While the ocean plays a large role in determining the partitioning of carbon in the Earth system,
sparse observations inhibit a full characterisation of ocean interior carbon. Using synthetic profiles and creating mapped re-
constructions of model truths, we have explored how wide-spread synthetic observations of temperature and salinity from

reeentTepresentative of autonomous sampling programmes can provide global information about ocean carbon. Through
reconstructions of CMIP6 model carbon fields, near-surface carbon can be reconstructed using synthetic Argo observations
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due to consistent controls of solubility, alkalinity, and undersaturation on the carbonate system. The method retains skill for
reconstructions down to 1000m. Uncertainties in the model covariance fields below 1000m reduce the skill in which irregular
hydrographic measurements can be used to reconstruct carbon changes.

6.1 Near-surface carbon reconstructions

When considering the carbon system in the near-surface ocean, the correlation fields between atmospheric pCO,, ocean tem-
perature, ocean salinity, and ocean carbon reflect first-order controls (Fig. 2). Increases in atmospheric pCO5 are correlated
with increases in ocean heat and carbon due to the chemical and thermal disequilibria created by emissions. Increases in ocean
salinity are broadly correlated with increases in ocean carbon due to the impact of alkalinity on solubility. Regional variations
in the correlations between temperature and ocean carbon can be decomposed as a sum of a response related to added carbon
from emissions and a residual; the residual correlation reflects the impact of temperature on CO» solubility in seawater. Within
all these correlation fields there are regional variations. The structure in the correlations between temperature and DIC and
salinity and DIC attain their strongest values in different regions, and the cross-correlations between temperature and DIC are
generally more moderate, indicating that the information provided by these observations are complementary.

The strength and structure in the covariance fields results in optimal weights for pCO5, temperature, and salinity that reflect
global first-order controls of solubility and alkalinity (Fig. 4). For this linear model, using co-located temperature and salinity
observations along with globally averaged atmospheric pCO; concentrations reduces the RMSE of the reconstructed DIC
content by over 75% on average, relative to a reconstruction based purely on a time-invariant climatology (Fig. 5). In addition
to replicating the long-term trend, the reconstructions are able to reproduce local interannual and decadal variability, capturing
over 60% of the detrended upper-ocean carbon signal. When considering the detrended carbon inventory, the sensitivity tests
show an average relative RMSE reduction of 50% in most regions. The lower skill in reconstructing interannual and decadal
variability is expected as the carbon system is nonlinear and controlled by other aspects such as circulation changes and ocean
biology, which are not explicitly included in the variables used to calculate the covariance fields.

We have also explored whether the use of irregular temperature and salinity observations impacts the capacity to reconstruct
ocean carbon. In theory, observations do not need to be co-located with the desired reconstruction, as the Ensemble Optimal
Interpolation scheme can include spatial covariances; however, there is the possibility of extra errors in the covariance fields
from poorly represented spatial variability. In our sensitivity tests, we find that using irregular observations consistent with cur-
rent Argo coverage can be combined with the CMIP6 covariance fields and provide similar levels of skill to the reconstruction.
When taking the average RMSE reduction across our sensitivity tests, we-find-there is a reduction of over 60% in most regions
when considering the full carbon signal and a reduction of over 40% in most regions when considering the detrended carbon
signal (Fig. 6b,d). However, we-find-that-there-are-regions such as the Southern Ocean and the North Atlantic whieh-show
substantial error increases relative to the climatological first guess in some of the sensitivity experiments (Fig. 6a,ed). These
increases in errors are found particularly when considering the detrended signal (i.e., the signal from interannual and decadal
variability). The regions that show the largest error increases are those with high mesoscale ocean eddy activity, and are mainly

in the sensitivity test that reconstructs ocean carbon within MPI-ESM1.2-LR. The horizontal resolution in MPI-ESM1.2-LR
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520 model is higher than that for the other models in our ensemble, suggesting that the covariances’ representation of mesoscale-
scale ocean dynamics impacts the ability to translate nearby Argo observations into reconstructed carbon. Our sensitivity tests

indicate that the correlation lengthscales will-be-an-importantfeatare-of-are an important factor for any real-world carbon re-

construction. Fer-future-work; there-are-a-variety-of methodsregarding both-the-ensembleselection-and-searehradius-seleetio

525 6.2 Reconstructions of interior carbon

The Argo programme measures temperature and salinity to 2000m, which potentially allows for the majority of ocean carbon

changes to be captured by our reconstruction. However, within the interior, uncertainties in ocean circulation, ventilation

pathways, and regenerated carbon pools can limit the skill of our reconstruction. We find that the optimal solutions for

our interior carbon reconstructions are highly depth-dependent. Below 1000m, the use of only temperature and salinity as
530  oceanographic variables may be insufficient as the optimal coefficients become highly correlated.

Sensitivity experiments suggest that the heightened uncertainties in the CMIP6 models reduce the available skill in reconstructing
carbon from only temperature and salinity observations at depths greater than 1000m. This increase in errors below 1000m
arises from the ensemble construction, particularly the inclusion of the UKESMI. When the UKESMI is excluded, the
remaining models are more easily able to replicate each other’s carbon fields. Before creating a real-world carbon reconstruction,

535 further investigation is necessary to determine whether the uncertainties provided by outlier models such as MPI-ESM and
UKESMI are physically-based or an artefact of model architecture or spin-up procedure.

When considering global reconstructions within the upper 2000m, we find that the top 500m is important for capturing both
the trend and variability in ocean carbon. Within the top 500m the method is able to reproduce the trend and variability with
skill, and synthetic tests with the NorESM indicate that patterns of interannual and decadal DIC changes can be captured.

540 6.3 Flexibility of Ensemble Optimal Interpolation

While we have opted to use only temperature and salinity as our ocean observations for this scheme, the ensemble optimal
interpolation method is flexible and can take additional oceanographic variables such as oxygen, pH, nutrients, or chlorophyll.
With increased coverage of these variables thanks-to-from campaigns such as the Southern Ocean Carbon and Climate Ob-
servations and Modeling programme (SOCCOM, ?) and Bio-Argo (?), there is the potential fer-nen-trivial-improvementsby

545 ineluding-these—vartables—to include these biologically-affected variables. For the high-latitude oceans where there are few
Argo profiles, sea ice observations could lend additional information on upper-ocean carbon through the impact of sea ice on

With each new variable it is possible to quantify the amount of added information and test the ensemble optimal interpolation

method at various stages by examining the covariance fields and uncertainties, and conducting sensitivity tests in a similar way
550 as has been done in this work. As more complex reconstruction schemes such as the machine learning algorithms of ? use

these biogeochemical observations as well, including them in the Ensemble Optimal Interpolation scheme could enable a direct
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comparison between linear and non-linear mapping methods and can help to quantify the merits of linear versus non-linear

assumptions when reconstructing ocean interior carbon.

6.4 Usage of CMIP6 covariance fields

The Ensemble Optimal Interpolation scheme relies on some important assumptions. Firstly, the covariance fields assume that
the processes relating ocean carbon to other variables are stationary. We have used historical CMIP6 experiments to calculate
the covariances fields, so these covariances should be able to represent ocean carbon behaviour under current-day carbon emis-
sion forcing; however, under low or negative emissions the relationships between atmospheric pCO2, ocean temperature, and
ocean carbon changes will likely change due to hysteresis from continued heat uptake. Additionally, we have chosen to focus
on annual average and depth-integrated carbon content in order to focus on the physical carbon response. It is also possible
to consider seasonal or monthly variability by calculating covariance fields for each month or season, as is done for surface
pCO- and heat content (??). In the current format, months or seasons that are poorly observed will have solutions that return
towards climatological inventories. However, the system can be set up in such a way that lagged covariance fields propagate
temperature and salinity information from observed to unobserved months as well as locations. The lack of wintertime carbon
observations has created significant biases in machine learning products, as enhanced winter outgassing in polar waters is not
present in the training data (?). As the response to gaps in data are sensitive to the reconstruction method, the Ensemble Opti-
mal Interpolation reconstructions with seasonal data could provide added insight as to how information on the carbon system
is best propagated to unobserved regions and seasons.

The use of a model ensemble rather than a single model allows for quantification of some of the uncertainties within the

covariance fields. Our model ensemble has been constructed to consider both inter-model and intra-model uncertaintywhen

ealeu%&%gﬂae%aekgmm&eke&%eev&n&nees We have been able to explore the sensitivity of this method to the ensemble
makeup sthrough out-of-sample
reconstructions, and assessing the minimum, mean and maximum improvements—RMSE improvements. These statistics are
poor reconstructions reduce the average skill. Including outlier models should dampen the solution towards a climatology in
regions where there are physical uncertainties. The ensemble makeup itself is limited only by the amount of CMIP6 model

runs available, and so for future work we will include additional models with fewer realisations.

The improvements in the reconstructions indicate both that the models have regions with well-defined and strong correlations

that lead to high improvements ﬁueh#ﬂweﬁeﬂweptedkpderﬁﬁkas well as regions where the models are relatively

uncertain in their relationships (Figs. 5, 6). While

these sensitivity experiments and synthetic reconstructions allow for useful insight into the capacity of our reconstruction
method, some level of uncertainty remains from the use of coarse-resolution CMIP6 models. Ocean models underestimate
decadal variability in anthropogenic carbon (?) and CMIP6 models exhibit biases in the Revelle factor (?). More iterative
Ensemble Optimal Interpolation techniques can be used to reduce the errors from the model ensemble by recalculating the

covariance fields after observations have been included in the analysis (???).
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6.5 Moving from synthetic to real-world reconstructions of ocean DIC

Our tests using synthetic reconstructions have suggested that a large amount of ocean carbon variability can be reconstructed
using only hydrographic observations i i

and-applying-the-method-. As such, this work provides a theoretical basis for applying linear reconstruction methods to real-
world Argo profile data -

recent ocean carbon inventory. The transition from synthetic reconstructions to real-world reconstructions involves careful
understanding of observational errors,

Unlike model output, which can be considered to be “perfect” outside of rounding and regridding errors, observational
data have multiple sources of uncertainty, such as sensor errors, the representativeness of area- and time-averaged fields
from Lagrangian observations, and errors in the background climatology fields. While there is rigorous quality control for
Argo observations, the representation errors and climatology errors may contribute a substantial amount of uncertainty to
the real-world reconstruction. Reconstructions of monthly salinity and temperature have used a parameterised observation
error covariance fields (?). Future work towards a real-world reconstruction will include a biogeochemical extension of this

In conclusion, we have presented a method that draws upon first-principle relationships between temperature, salinity, and
carbon to reconstruct ocean carbon changes from Argo style observations. We find that, for the-upper-eeeanwhat can be
considered the mixed layer, the CMIP6 models show consistent first principle constraints of solubility, alkalinity, and un-
dersaturation, leading to accurate reproductions of trends and variability in the model world. When considering current-day

distributions of Argo profiles, reconstructions that use multiple nearby observations are able to still reconstruct the trend and

variability in carbon contentﬁﬂd—seﬂ%w%y—teste—uﬂﬁg Below the mixed layer, the optimal coefficients become more spatiall
heterogeneous, and out-of-sample

However, because carbon uptake occurs at the atmosphere/ocean interface and the response within the top 500m dominantes

the upper-ocean response, reconstructions of the upper 2000m using Argo-type observations can recreate patterns of interannual
and decadal variability. The results of our work provide a strong theoretical basis for using state-of-the-art autonomous hy-

drographic observations to supplement sparse interior carbon coverage. This proof-of-concept work shows that there is strong
potential in using these measurements to create a new, independent estimate that can be used alongside reconstruction methods

to better understand ocean carbon variability and its controls.
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Code availability. The code to regrid, concatenate, and analyse CMIP6 model output is available in a Zenodo reposity (DOI: 10.5281/zen-
620 0d0.6669897).
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645

Appendix A: Breakdown of covariance fields into pCO- and non-pCO terms

It is possible to decompose the changes in ocean temperature, salinity, and DIC from their time-averaged states (7”,5’, DIC’

from Section 2) into terms proportional to atmospheric pCO- and a residual:

T'(x,y,t) = afz,y) pCOL(t) + T (x,y,t) (A1)
S'(x,y,t) = B(z,y) pCOL(t) + Sa(x,y,t) (A2)
DIC'(x,y,t) = ~v(z,y) pCOyY(t) + DICq(2,y,t), (A3)

where «, 3, are the least-squares coefficients against changes in globally uniform atmospheric pCO, changes and T, .5,, DIC,
indicate the residuals for these decompositions.

While the decomposition into pCO2 and non-pCO4 terms is not inherently physically based, this breakdown may help us
understand how the complex structure in the correlation fields in Fig. 2 arise. Using covariance identities, the covariance

between, for instance, 7" and S, is thus the sum of the covariances between the addends:
cov(T",S") = cov(a pCO,(t), 8 pCO4(t)) + cov(a pCO4(t),S”) + cov(T", B pCO4(t)) + cov(T",S"). (A4)

The first term is a function of the variance of pCOs, scaled by the product o.3. If the term proportional to atmospheric pCOq
were orthogonal to the residual term for each of these decompositions, the covariances cov(pCOa2, X,) = 0 for any variable
X. An ordinary least squares solution does not lead to orthogonal components, but the covariances between atmospheric pCOo
and DIC,,T,, or S, are small (shown as correlations in Fig. A1, panels d h and i) and can therefore be ignored to first order.

Thus for these variables we ignore these terms as second-order components and can thus approximate the covariance as:

cov(T",8") ~ af var(pCO,) + cov(T,, Sq). (AS5)

With this decomposition of the covariance fields into pCO5 and non-pCOs terms, we have the added benefit of approximating
the covariance fields between pCOs and one of T7,S’, or DIC’ through a global scaling of the coefficient terms «, 3, or +,
respectively.

Scaling the decomposition by the product of the standard deviations allows us to explore how the correlation fields arise in
Fig. 2. We compare the original correlation fields from Fig. 2 with their decompositions according to (A4) in Fig. Al. The
approximation errors show how well the approximation in (AS5) reflects the full correlation field.

For the correlations between 7" and S’ and S’ and DIC’, the signal is dominated by the term associated with cov(T,,S,)
and cov(S,, DIC,), respectively. We therefore understand these covariance and correlation fields to be set by the variability
not forced by carbon emissions. Conversely, the correlation field between 77 and DIC" appears to arise almost equally from the
pCO; scaling and the cov(T,,, DIC,,) terms. Thus we provide both terms in Section 3 to gain insight as to how the covariance

fields reflect both the combined response to added carbon in the Earth system as well as the response to climate variability.

27



(a) p(T',S" (b) pCO, term, T' and S' (c) non-pCO; term, T' and S' (d) approximation error
_ e ] ] .V
AL - ﬂ

1 — 1 1 =%

\ ‘.: } h _

A /

S ‘-—/ -—f"

(e) p(T',DIC) (f) pCO; term, T' and DIC' (g) non-pCO; term, T' and DIC' (h) approximation error

- : -’
R R \ 1

! «-‘ﬂ

(k) non-pCO, term, S' and DIC'

(1) approximation error

-0.8 -0.4 0.0

Figure A1. Correlation fields between non-pCOz variables T',.S’, and DIC’, with their terms from (AS5) and approximation errors to

measure the level of mismatch between (A4) and (AS).
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