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Abstract. The ocean carbon store plays a vital role in setting the carbon response to emissions and variability in the carbon

cycle. However, due to the ocean’s strong regional and temporal variability, sparse carbon observations limit our understand-

ing of historical carbon changes. We explore how widespread Argo temperature and salinity profiles can provide information

to reconstruct ocean carbon inventories with Ensemble Optimal Interpolation. Ensemble Optimal Interpolation draws upon

first-order relationships between variables, and high-complexity climate models been used previously to reconstruct interior5

ocean heat content and salinity changes from Argo profiles. The CMIP6 model ensemble shows coherent relationships be-

tween upper-ocean carbon, temperature, salinity, and atmospheric CO2 that result in solutions that reflect the controls of

undersaturation, solubility, and alkalinity. The Ensemble Optimal Interpolation method is tested with synthetic reconstructions

of upper-ocean carbon fields using perfect information of temperature and salinity changes, along with atmospheric CO2 con-

centrations. Sensitivity tests of show that, in most regions, the trend in ocean carbon and over 60% of detrended variability can10

be reconstructed using local temperature and salinity measurements. Expanding the synthetic reconstructions to include irreg-

ular sampling consistent with Argo profile locations results in a similar capacity to reconstruct ocean carbon variability, as the

increased information provided from multiple sampling locations compensates for the propagation of errors within the CMIP6

covariance fields. Overall, our work indicates that hydrographic measurements can provide valuable information about changes

in the ocean carbon inventory. The flexibility of optimal interpolation indicates a strong potential for new, independent, and15

mechanistic estimates of the historical carbon inventory that can be used to compare with other estimates of the ocean carbon

system.

1 Introduction

The global ocean plays a important role in the carbon cycle, being both a major reservoir of carbon and substantial sink of

anthropogenic carbon transferred from geological storage to the coupled atmosphere-ocean-terrestrial system. Recent studies20

estimate that the ocean has taken up around 26% of anthropogenic emissions from fossil fuels and land use changes since

1850 (Friedlingstein et al., 2022). In addition to the long-term uptake of anthropogenic carbon, ocean carbon uptake exhibits

interannual and decadal variability on global and regional scales (Landschützer et al., 2016; McKinley et al., 2017; Gruber

et al., 2019; McKinley et al., 2020). This variability impacts the ability to detect trends in observations of the partial pressure of
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CO2 in seawater (McKinley et al., 2016) and, through oceanic transport, can lead to regionally enhanced acidification (Gruber25

et al., 2021). The ocean carbon inventory is thus an important aspect of current climate change, and up-to-date estimates on its

behaviour are vital for understanding its evolution and impacts on the climate system.

In order to characterise the ocean carbon system with its strong regional and temporal variability, extensive spatial and

temporal coverage in observations are required. Whereas there are millions of surface pCO2 measurements to provide a surface

view of the ocean carbon system and air-sea carbon fluxes (Bakker et al., 2016), complementary observations of ocean interior30

dissolved inorganic carbon (DIC) are limited by the logistics of ship-based bottle measurements. Campaigns for ocean interior

DIC observations use repeat transects to provide high-quality observations for many regions (Sloyan et al., 2019). The transects

resolve spatial variations in carbon but are limited in their ability to resolve temporal variability as they are repeated on decadal

timescales. Alternatively, ocean DIC time series such as those found at the Bermuda Atlantic Time Series and the Hawaii Ocean

Timeseries can resolve seasonal, interannual, and decadal variability, but are limited in how well they represent variability on35

larger spatial scales (Bates et al., 2014). The Bio-Argo programme has allowed for more autonomous sampling of ocean interior

carbonate system variables such as pH (Claustre et al., 2020), from which interior DIC can be estimated; currently, however,

autonomous measurement methods for interior DIC remain in development.

By itself, the sparsity of interior observations hinders the ability to produce a coherent, global picture of recent ocean carbon

changes from a storage perspective. A mapping technique is necessary to expand points of observations into more coherent40

spatial patterns of change and behaviour. Mapping techniques employ statistics to propagate information from observations to

unobserved regions. Time-invariant climatologies of ocean carbon have been created using mapping procedure on data from

repeat transects and other ship-based observations (Lauvset et al., 2021). For observations of surface pCO2, non-linear machine

learning procedures have been able to reconstruct spatial patterns in interannual and decadal variability (Landschützer et al.,

2016; Landschützer et al., 2019; Gloege et al., 2022), although these algorithms can lead to substantial biases if observations45

are too sparse for certain regions. Data assimilative methods that use observations to constrain model physics in forward

experiments have also been expanded to include biogeochemistry (Verdy and Mazloff, 2017; Carroll et al., 2020).

For any mapping or data assimilative technique, it is imperative to use accurate statistics to avoid the erroneous propaga-

tion of information from observations. These statistical relationships can be parameterised or calculated from observations;

however, parameterised statistics fail to reflect regional differences in the ocean, and for poorly observed variables, averaging50

over large length or timescales can lead to overly coarse covariance fields. State-of-the-art climate models provide complete

pseudo-data in both space and time and therefore may be used to calculate these statistics, though model biases may lead to

errors in the covariances. Nevertheless, fully-coupled climate models have been used to reconstruct ocean heat content trends

and variability from observations, with clear improvements in recent years due to the expansion of the Argo programme (Smith

and Murphy, 2007; Smith et al., 2015; Cheng and Zhu, 2016).55

Ocean carbonate chemistry is controlled by both physical and biogeochemical processes. There are well-understood first-

order principles that relate to ocean temperature and salinity to upper ocean carbon; using these relationships, the observations

used in previous heat content mappings may be useful for carbon mappings. Increases in temperature reduce the ocean’s ability

to take up CO2 through gas solubility laws, while increases in salinity increase the ocean’s ability to take up CO2 by increasing
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alkalinity (Williams and Follows, 2011). Additionally, temperature and salinity provide constraints on ocean circulation, which60

alters the vertical gradients of both heat and carbon (Thomas et al., 2018; Williams et al., 2021). The relationships between

temperature, salinity, and carbon are regionally dependent as ocean dynamics and biology can set different drivers of CO2

uptake (Lauderdale et al., 2016). If these relationships can be exploited, the increase in ocean observations from the Argo

programme may provide valuable information that can help reconstruct ocean carbon fields alongside temperature and salinity

fields. While the ocean carbonate system can also be approximated using other observations such as pH and salinity, for this65

study we focus on the readily available and widespread observations present within the Argo dataset.

In this study, we apply an Ensemble Optimal Interpolation approach to reconstruct upper-ocean dissolved inorganic carbon

from temperature and salinity observations. To calculate the covariance fields, we construct an ensemble of Earth system

models from the Climate Model Intercomparison Project Phase 6 (CMIP6) and examine their relationships between upper-

ocean carbon and other climate variables. In this “proof of concept" study we aim to show the potential skill available in using70

model covariance fields and Argo-style measurements. We create synthetic reconstructions of modelled ocean carbon using

perfect pseudo-observations of temperature and salinity similar to the ocean heat content synthetic reconstructions in Allison

et al. (2019). We then compare the errors within these reconstructions against those from the climatological fields to see where

and how the method best works in the model world.

We set out the work in this study as follows. In Section 2 we describe the Ensemble Optimal Interpolation scheme for ocean75

DIC using an ensemble of CMIP6 models, with an overview of the experiments we conduct to test the reconstruction skill. In

Section 3 we present the ensemble correlation fields between DIC and temperature and salinity at the same location, with a

discussion as to how these correlations relate to physical controls on the ocean carbon response. In Sections 4 and 5 we present

sensitivity results to discuss the reconstruction potential of different temperature and salinity sampling distributions, ranging

from perfect spatial coverage to coverage more representative of ARGO observations, with global and regional comparisons of80

the different synthetic Argo reconstructions in Section 6. Lastly, in Section 7 we discuss the potential and shortcomings of this

method, both in terms of the setup with temperature and salinity and further expansions with other oceanographic observations.

2 The Ensemble Optimal Interpolation method for ocean carbon

Optimal interpolation is a non-dynamical mapping approach that uses weights to propagate information from observations to

regions without observations (Daley, 1991; Smith and Murphy, 2007). The optimal interpolation method involves creating an85

analysis A at locations i and times t from the sum of a background state Bi and a weighted sum of the difference between the

observed and background values, also known as the observation increments. The observations can be the same property as the

final analysis, or can be of other properties, i.e. temperature and salinity observations can be used to reconstruct DIC if there

is a physical link between them. The inclusion of these sorts of physically relevant data produces a multivariate analysis. For

observations O at locations k within a sampling region K, the optimal interpolation method can be represented as90

Ai = Bi +
∑

k∈K

wk(Ok −Bk). (1)
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The crux of the optimal interpolation problem is thus finding a suitable solution for the weights wk. The optimal weights are

those that minimise the expected analysis error at each gridpoint i, calculated as the root mean squared error (RMSE) between

the analysis and the truth Ti:

RMSE(Ai,Ti) =
√∑

t

(Ai(t)−Ti(t))2. (2)95

In this work we explore how the relationships between DIC and observed ocean variables such as temperature and salinity

can be used to reconstruct upper ocean carbon stocks. The use of optimal interpolation to reconstruct ocean carbon from

available carbon measurements is inherently limited by the poor temporal and spatial coverage of existing DIC observations.

However, temperature and salinity observations are far more plentiful, particularly in the Argo era, so we explore the extent

to which these observations could be used to reconstruct DIC. To avoid the problems associated with sparse input data, we100

take a multivariate analysis approach to reconstruct carbon from extensive synthetic observations of ocean temperature T and

salinity S consistent with observations from the Argo programme (Wong et al., 2020), as well as annual average atmospheric

CO2 concentrations. On annual and longer timescales, atmospheric CO2 is well-mixed, and so the use of annual atmospheric

CO2 measurements can allow the analysis to capture longer-term DIC changes from changes in the global carbon budget.

With background fields for DIC, T, and S taken to be their global climatologies (i.e., DIC(i, t) = DIC(i)+DIC ′(i, t), where105

DIC(i) is the temporal average DIC concentration at location i over the period 1955-2014), the optimal interpolation scheme

is formulated to calculate the residual DIC ′ from T ′,S′ within a region K:

DIC ′(i, t) =
∑

k∈K

(wC,kpCO′2(t) +wT,kT ′(k,t) +wS,kS′(k,t)), (3)

where wC,k is the local weighting for the annual global averaged atmospheric pCO2 and wT,k and wS,k are the weightings for

observed ocean temperatures and salinities within the sampling region K.110

2.1 Choices for calculating background error covariances

The optimal weights wk in (1) and (3) are determined by the covariances between the background errors Bi−Ti. The covariance

fields describe how information should be propagated from areas with observations to those without; the optimal solution

will consider how much new information observations provide to the reconstruction and depend on local and larger-scale

relationships within the climate system. Any ensemble optimal interpolation method must involve decisions made on how the115

background error covariances are calculated, and which covariances are included to solve for the weights wk. In the following

we describe how we have made these decisions using a CMIP6 multi-model ensemble and with various assumptions as to

which observations are used for the multivariate DIC analyses.

2.1.1 Background covariances from a CMIP6 ensemble

Climate model outputs can be used to provide covariance fields for optimal interpolation solutions. By providing complete120

pseudo-data in both space and time, climate models avoid some of the errors that arise from the coarseness of observational or
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parameterised covariance fields. Background covariance fields from global climate models have been used to reconstruct ocean

temperatures and salinities from observations as well as to initialise decadal forecasts (Smith and Murphy, 2007; Smith et al.,

2015; Cheng and Zhu, 2016). However, the model ensemble background covariance field will still contain errors that will need

to be evaluated using sensitivity testing before the fields can be used with real-world observations.125

To construct the background covariance fields, we obtained ocean potential temperature, ocean salinity, and ocean DIC model

output from 6 CMIP6 Earth System models with a nominal horizontal resolution around 1◦ (Table 1). The output was taken

from the historical experiments and covers the period of year 1955 to year 2014. This period was chosen as it has consistent

behaviour in atmospheric CO2 concentrations and is long enough to allow some multidecadal variability to be captured in the

covariance fields. For each model, output from 5 realisations was used so that the models’ internal variability was captured by130

the ensemble.

Table 1. CMIP6 Earth System Models and realisations used for reconstruction

Model (Reference) Realisations

ACCESS-ESM-1.5 (Ziehn et al., 2020) r1i1p1f1, r2i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1

CanESM5 (Swart et al., 2019) r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, r14i1p1f1

CESM2 (Danabasoglu et al., 2020) r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

IPSL-CM6A-LR (Boucher et al., 2020) r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r32i1p1f1

MPI-ESM1.2-LR (Mauritsen et al., 2019) r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

UKESM1 (Sellar et al., 2019) r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2

For all variables, annual averages were calculated from monthly mean outputs, and outputs were bilinearily regridded from

their native horizontal grids to a 1◦× 1◦ grid using the Python package xESMF (https://doi.org/10.5281/zenodo.1134365).

Oceanic variables were further integrated vertically, with the results in this study focusing on the results from the integrated

top 100m.135

2.1.2 Spatial limits on background covariances

The sampling region K for temperature and salinity observations in (3) can vary from co-located observations to global ob-

servations; the choice of sampling region requires balancing the extra information provided by additional observations with

spurious propagation of information through errors in the covariance fields. In this study we use two idealised sampling meth-

ods to explore the limits of this first-order reconstruction of ocean carbon:140

1. Observations are taken from at each ocean grid cell at each year, therefore assuming perfect coverage of temperature

and salinity profiles. The reconstruction is then set up to use local relationships between ocean carbon, temperature,

and salinity, as well as globally averaged atmospheric pCO2. With this method, we explore how the local relationships

between upper-ocean DIC, temperature, and salinity can be used to reconstruct carbon with perfect hydrographic knowl-
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Figure 1. Argo profile distributions consistent with sampling for (a) year 2002 and (b) year 2015. Coloured regions indicate bins that have at

least 6 months of observations in the given year.

edge. Since observations are complete in this test, the presence of errors can be attributed to poorly known relationships145

or nonlinear dynamics within the model ensemble.

2. Observations are taken irregularly, consistent with Argo profiles (Wong et al., 2020). While coverage of ocean temper-

ature and salinity observations is significantly higher than those for ocean carbon, sampling remains irregular in space

and time, so real-world reconstruction methods must account for this irregularity. We take Argo data from years 2002

and 2015 and bin the profiles onto the 1◦× 1◦ horizontal grid. Any grid cell that has at least 6 months of profiles in a150

given year is taken to be sufficiently observed, and the modelled annual average profile there is used as an observation

for the reconstruction. For year 2002, this leads to a distribution of synthetic profiles that is heavily concentrated in the

Northern Hemisphere and the North Atlantic in particular (Fig. 1a). By year 2015, the scheme allows for sampling of

most of the global ocean outside the Southern Ocean and the Arctic Ocean (Fig. 1b).

As the Argo profiles have incomplete global coverage, we conduct additional sensitivity tests to see how nearby Argo155

observations can be used to construct near-global reconstructions. For these reconstructions, the reconstruction at any given

point is made to be a linear combination of observations within a certain radius. We choose radii of 1◦, 2◦, or 5◦: for a radius

of 5◦ and current Argo coverage like that for year 2015, most regions of the ocean have observations within the search radius,

allowing for nearly globally complete DIC reconstructions.

2.2 Synthetic reconstructions and tests160

Evaluating how well an analysis reproduces variability requires a comparison with a field truth. As the ocean carbon field

is not known to a high accuracy, we conduct synthetic reconstructions in which we reconstruct other models’ ocean carbon

fields using various distributions of modelled temperature and salinity (Allison et al., 2019). For these tests, the observations

come from the models and therefore contain no errors outside of small errors possible from sampling and regridding. As the

observations can be assumed to have little error, the weights wk in (2) can be solved for through a least-squares algorithm,165

without having to consider observational errors (Smith and Murphy, 2007).
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The models used in the synthetic reconstructions are the same models used to calculate the ensemble covariance fields.

The inclusion of a model in the ensemble can over-fit the results and produce spuriously accurate reconstructions; therefore,

for a synthetic reconstruction of, for instance, UKESM1 DIC inventories, we eliminate all the UKESM1 realisations from

the ensemble. We then calculate the covariances and optimal weights calculated from the remaining out-of-sample ensemble170

members. Then, these optimal weights are used with the UKESM1 temperature and salinity profiles to create a DIC analysis.

To compare the reconstructions, we calculate the improvement in the RMSE, relative to the RMSE of the first-guess back-

ground:

εi(A) =
RMSE(Bi,Ti)−RMSE(Ai,Ti)

RMSE(Bi,Ti)
. (4)

Here the conventions follow those in (1), where RMSE(Bi,Ti) is the RMSE between the modelled truth T and the background175

climatology field B (equivalent to the variance of T ), and RMSE(Ai,Ti) is the RMSE between the modelled truth and the

multivariate analysis A. Each RMSE is calculated for the same historical period used in the creation of the model ensemble,

i.e. t is taken from output within the modelled years 1955 to 2014. The maximum value of 1 indicates a perfect reconstruction

A, whereas values below 0 indicate that the errors are larger for the analysis than they are if the solution were to be taken as

the climatological first-guess.180

3 Model correlation fields between pCO2, temperature, salinity, and DIC

The least-squares solution for the weights for temperature, salinity, and atmospheric CO2 is a function of the covariances

between the input variables and DIC. Thus, the structure of the covariance fields provides insight into how temperature and

salinity can be used to reconstruct carbon. For simplicity, we illustrate these relationships through correlation fields taken for

the entire model ensemble, which normalise the relationships using the variances of each input variable.185

The correlation fields of DIC, temperature, and salinity with atmospheric pCO2 reflect the impact of emissions on the upper

ocean. Atmospheric pCO2 is strongly positively correlated with upper-ocean DIC, with strongest correlations (near 1) in the

mid-latitude ocean (Fig. 2a). The correlation between atmospheric pCO2 and upper-ocean integrated temperature is weaker

than that with DIC but still positive almost everywhere (Fig. 2b). Lastly, the correlation between atomospheric pCO2 and

upper-ocean integrated salinity is spatially heterogeneous and near-zero in most regions of the ocean, although smaller regions190

such as the Gulf Stream show stronger positive correlations.

Correlations between upper-ocean temperature and DIC are positive in most of the ocean, with strong negative correlations in

the eastern equatorial Pacific and Indian Oceans (Fig. 2d). A positive correlation appears to contradict the negative correlations

that would be expected from the control of temperature on solubility. However, the residuals for temperature and DIC contain

forced and climate variability responses. We can approximate the correlation as the sum of pCO2 and non-pCO2 components195

to separate the various responses:

ρ(DIC ′,T ′)≈ αγ
var(pCO2)
σDICσT︸ ︷︷ ︸

pCO2 term

+
cov(DICa,Ta)

σDICσT︸ ︷︷ ︸
non-pCO2 term

, (5)
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Figure 2. Correlations for the entire CMIP6 historical ensemble between changes in (a) atmospheric pCO2 and upper-ocean (0-100m inte-

grated) DIC, (b) atmospheric pCO2 and upper-ocean temperature, (c) atmospheric pCO2 and upper-ocean salinity, (c) upper-ocean tempera-

ture and DIC, (e) upper-ocean salinity and DIC, and (f) upper-ocean temperature and salinity.

where α,γ describe the respective spatial patterns of changes in T ′,DIC ′ with changes in pCO2, Ta,DICa are the anomalies

of T ′,DIC ′ after a regression against pCO2 is removed, and σDIC ,σT are the standard deviations of DIC’ and T’. A more

detailed derivation of this breakdown and a discussion of the approximation can be found in Appendix A.200

The pCO2 component of the temperature/DIC correlation field is positive almost everywhere, which corresponds with the

addition of heat and carbon to the ocean system through CO2 emissions (Fig. 3a). Conversely, the anomaly term for the

temperature/DIC correlation field is negative almost everywhere, which corresponds with the solubility argument for DIC (Fig.

3b). Thus the heterogenity found in the overall correlation between DIC and temperature can be understood as the sum of two

separate relationships that arise from the forced and natural variability in temperature and DIC.205

The correlations between upper-ocean salinity and upper-ocean DIC are positive in most regions, reflecting the alkalinity

control on carbon solubility (Fig. 2e). Correlations are weak and slightly negative in the Southern Ocean and eastern equatorial

Pacific, respectively. These correlations may be imprints of dynamical changes; for the Southern Ocean, the salinity in the

frontal zone impacts the strength of mode and intermediate water formation (Terhaar et al., 2022), while for the equatorial

Pacific enhanced wind-driven upwelling transports fresher, carbon-rich waters to the surface (Williams et al., 2021). Lastly,210

correlations between upper-ocean temperature and salinity are moderate and show strong regional variability (Fig. 2f). Overall,

the correlation fields show first-principle controls relating to the increase of ocean heat and carbon under emissions, as well as

solubility and alkalinity controls of temperature and salinity anomalies on ocean DIC.
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(a) ρ(T ′,DIC ′), pCO2 term (b) ρ(T ′,DIC ′), non-pCO2 term

−0.8 −0.4 0.0 0.4 0.8

Figure 3. Breakdown of the correlation between upper-ocean DIC and temperature, ρ(DIC′,T ′), from Fig. 2d: (a) a term proportional to

the variance of atmospheric pCO2, and (b) a term consisting of the covariance of the residuals calculated after removing a linear fit against

atmospheric pCO2. For discussion of the breakdown of the correlation into terms and on the approximation, see Appendix A.

3.1 Ensemble optimal weights for pCO2, temperature, and salinity

Translating covariance and correlation fields to optimal mapping parameters involves both the relationships between the input215

variables and the output variables as well as the relationships between input variables. Therefore, optimal solutions are non-

trivial; for instance, regions with similar correlations between DIC and temperature and salinity (such as the equatorial Pacific)

may have coefficients with different signs depending on how the system fits the linear model to the data. We thus continue by

comparing the least square coefficients fit to atmospheric pCO2, integrated ocean temperature, and integrated ocean salinity to

the correlations in Section 3 and the first-principle controls on carbon solubility.220

Increases in atmospheric pCO2 are translated to increases in upper-ocean carbon (Fig. 4a). The weight magnitudes reach

local maxima in the subtropics, in accordance with regional variability in the Revelle buffer factor, which describes the ratio

between increases in DIC and increases in atmospheric pCO2 (Williams and Follows, 2011) and thermocline ventilation.

Temperature coefficients are negative almost everywhere (Fig. 4b), while salinity coefficients are positive everywhere (Fig.

4c). Thus, while the correlations between upper-ocean DIC, temperature, and salinity show regional variability, the ensemble225

ultimately reveals a consistent forced control of atmospheric CO2, solubility control by temperature, and alkalinity control by

salinity.

Thus, the least-squares solution for DIC as a combination of atmospheric pCO2, temperature, and salinity changes is able

to capture the controls of the Revelle buffer factor, solubility, and alkalinity on upper-ocean carbon. While the correlations

between input variables exhibit strong regional variability and structure in their cross-correlations, ocean temperature and230

salinity observations end up acting in complementary ways. Thus the optimal weight solutions indicate that the information

provided by these observations are consistent with our hypothesised first-order controls.
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Figure 4. Ensemble coefficients for reconstructing upper-ocean (0-100m integrated) DIC with co-located observations. (a) Coefficients for

annual average atmospheric CO2 concentrations, in units mol C (ppm CO2 m2)−1, (b) coefficients for upper-ocean integrated temperature,

in units mol C (◦C m3)−1, and (c) coefficients for upper-ocean integrated salinity, in units mol C (psu m3)−1.

4 Reconstruction potential using co-located observations

We continue by conducting the sensitivity tests to provide initial bounds for the ability to reconstruct ocean carbon, as well

as explore how the makeup of the ensemble impacts the reconstruction. In total, 6 reconstructions were created, in which235

one model was removed from the ensemble, the covariance fields between DIC,T,S, and atmospheric pCO2 are recalculated

using the remaining models, and then DIC from the excluded model is reconstructed using the new covariance fields and its

own T and S observations (Section 2). The coefficients for atmospheric CO2, temperature, and salinity are similar across the

sensitivity setups with each model removed (Appendix B), so we continue by comparing the RMSE improvements ε from (4)

for each sensitivity test.240

We calculate the ensemble minimum, average, and maximum relative RMSE improvements within the 6 reconstructions

created by eliminating specific models from the CMIP6 ensemble. The minimum and maximum error improvements min(ε)

and max(ε) reflect the makeup of the ensemble. A negative minimum error improvement at any point indicates where one of

the models in the ensemble has covariances that are substantially different than the others; therefore, including the model within

the ensemble adds uncertainty to the reconstruction and pushes the reconstruction towards the first-guess climatology field. A245

high maximum error improvement indicates that the solution weights for the sensitivity results are similar. This similarity can

arise from strong physical constraints on the upper ocean carbon system but may also arise because the ensemble members are

spuriously similar in their architecture or representations of climate processes.

We consider the RMSE improvement of the reconstruction relative to the climatological first-guess as in (4) for both the full

upper-ocean carbon response and the detrended carbon response (Fig. 5). Over multiple decades, we expect the full integrated250

carbon response to be dominated by an upwards trend due to continuing carbon emissions; thus, the improvement in the

detrended response provides insight into how interannual and decadal variability in ocean carbon storage is reproduced. Areas

where the RMSE increases relative to the climatological first guess are noted in red. For this analysis we focus on the open-
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ocean RMSE reductions, as the CMIP6 models have different coastlines after being regridded, leading to small areas of RMSE

increases near the land/sea boundary.255

Outside of some coastal and Arctic regions, each sensitivity test reduces the upper-ocean RMSE for upper-ocean carbon

(Fig. 5a). This improvement is not due solely to the reproduction of the long-term increase in ocean carbon, as most regions

show improvements in detrended ocean carbon as well; exceptions to this improvement can be found in the high latitudes

and subtropical regions (Fig. 5d). The average reconstruction reduces the RMSE by between 60% to 90% on average, relative

to the climatology first-guess RMSE (Fig. 5b) and reduces the detrended RMSE by 30% to 80% (Fig. 5e). These relative260

improvements are equivalent to the method capturing over 60% of the detrended variability in most regions of the ocean. The

high (close to 1) relative RMSE reductions found in the ensemble maximum statistics (Figs. 5c and e) suggest that there are

models which are substantially similar to one another and thus able to reduce the RMSE of the full signal by over 80% in most

regions and the RMSE of the detrended signal by over 60%.

There are noticeable regional variations throughout all of the improvement statistics. The western low-latitude Pacific and265

subtropical Indian ocean show consistent local maxima in all of the improvement statistics. These regions of maximum relative

RMSE reduction are characterised by their strong correlation between salinity and DIC, suggesting that the most constrained

responses within the CMIP6 ensemble may be related to the control of alkalinity on DIC. Conversely, the small regions that

show potential degradation in the reconstructions due to the errors in the covariances are characterised by weak correlations

against atmospheric pCO2 changes (for the full carbon signal reconstruction, Fig. 2a-c) and weakly positive covariances be-270

tween Ta and DICa (for the detrended carbon system, Fig. 3b).

Thus, when considering pointwise observations of temperature and salinity, alongside global average CO2 concentrations,

our sensitivity experiments indicate that a substantial amount of upper-ocean carbon variability can be reconstructed. These es-

timates can provide an upper bound on the reconstruction potential as global coverage of temperature and salinity observations

is theoretically ideal but difficult to accomplish, even with widespread autonomous observing tools. We therefore continue by275

exploring how irregular observations of temperature and salinity impact reconstructions of upper-ocean carbon.

5 Reconstructing carbon using irregular Argo observations

The pointwise reconstructions of upper-ocean carbon from atmospheric pCO2, temperature, and salinity reveal that the phys-

ical controls of solubility and alkalinity can explain a substantial amount of interannual variability in the upper-ocean carbon

system. Although temperature and salinity profiles have a larger global coverage than ocean carbon profiles, coverage remains280

irregular and incomplete. Thus, we continue by exploring how the irregular coverage in Argo profiles impacts carbon recon-

structions by conducting further synthetic reconstructions with observations consistent with year 2002 and year 2015 Argo

coverage (Fig. 1).

When considering irregular sampling, reconstructions with global coverage use background covariances to propagate infor-

mation from Argo profile locations to the rest of the ocean. There is the potential for information from multiple Argo sites to be285

used to reconstruct ocean carbon at a given location. If the covariance fields are correct, additional information should improve
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Figure 5. Ensemble statistics for the relative RMSE reductions ε using co-located temperature and salinity: (a) ensemble minimum, (b)

ensemble average, and (c) ensemble maximum. Ensemble statistics for the relative RMSE reductions, but considering only the detrended

carbon signal: (d) ensemble minimum, (e) ensemble average, and (f) ensemble maximum. Red areas indicate regions where the sensitivity

tests show a RMSE increase relative to the assumption of climatology.

the reconstruction and increase the relative error reduction; however, any errors in the covariance fields can propagate and de-

crease the relative error reduction. Thus, the radius of influence for an observation should ideally balance the extra information

and errors it provides in the reconstruction.

With the smaller radii of 1◦ and 2◦, the method creates an incomplete reconstruction even under current-day Argo profile290

distributions. With a larger radius of 5◦, most of the global ocean has nearby temperature and salinity profiles that can be used

for the reconstruction (see Fig. 6 coverage). Overall, the benefit of increased coverage outweighs the increases in reconstruction

errors (Appendix C). Thus, in this section we focus on the 5◦ radius results for simplicity .

With the 5◦ search for observations, the carbon reconstruction at each point will use between 0 and 81 temperature and

salinity inputs. Including the globally averaged atmospheric CO2 inputs, DIC at each point can be reconstructed from at least295

1 and up to 82 input variables (up to 81 temperature and salinity profiles + globally averaged atmospheric pCO2).
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Figure 6. As for Fig. 5, but for the reconstruction scheme that uses Argo 2015-type temperature and salinity observations within 5◦ of the

reconstruction point.

Errors in spatial covariances result in some regions with lower RMSE improvements compared to reconstructions using

co-located observations (Fig. 6a, d). Across the sensitivity tests, most regions show an relative RMSE reduction of at least

50%, and when considering the detrended carbon signal most regions show an RMSE reduction of at least 40%. Noticably,

the ensemble minimum RMSE improvement for the detrend signal shows substantial regions where one of the sensitivity tests300

produces poor reconstructions. This sensitivity test is that for MPI-ESM1.2-LR, which exhibits more fine-scale structure in its

annual DIC, temperature, and salinity. The errors arise because the correlation length scales for MPI-ESM1.2-LR are smaller

than those for the other models, resulting in poor fits.

For most of the upper ocean the RMSE improvements are similar to those found in the reconstruction with co-located

temperature and salinity measurements, and the regional variation in the RMSE improvements is similar regardless of whether305

co-located or removed observations are used. Thus the additional information provided by nearby measurements counteracts

the error propagation inherent in the scheme, suggesting that the use of irregular Argo profiles provides sufficient information

to reproduce a substantial amount of upper-ocean carbon variability.
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Figure 7. Reconstructions of NorESM upper-ocean carbon (black lines) using year 2002 Argo profile distributions (blue dashed lines) and

year 2015 Argo profile distributions (red dashed lines): (a) globally integrated carbon, in units PgC, (b) Integrated carbon at BATS, in units

gC, and (c) Integrated carbon at HOT, in units gC. Integrated carbon is calculated as a residual from the 1955-2014 average. Changes in

upper-ocean carbon in the NorESM, in units gC m−2, between years 2001 and 2000: (d) modelled truth, (e) reconstructed changes using

year 2002 Argo profile distributions, and (f) reconstructed changes using year 2015 Argo profile distributions. Correlations below (e) and (f)

are spatial correlations calculated against the model truth (d).

6 Potential of the method to provide global and regional carbon timeseries

To illustrate the potential for reconstructing upper-ocean carbon using temperature and salinity measurements, we reconstruct310

output from the Norwegian Earth System Model (NorESM2, Seland et al. (2020)) using the full ensemble covariance fields

and temperature and salinity measurements at locations similar to Argo observation locations at year 2002 and year 2015.

NorESM2 was chosen as an independent check as its depth coordinates follow isopycnals rather than distance from the sea

surface like z-level models; as all the models in the CMIP6 ensemble are z-level models, this choice allows us to begin

to consider some potential errors from physical uncertainties and the restrictions of model assumptions. The global upper315

ocean carbon inventory is dominated by a positive, near-linear trend (Fig. 7a, black line). Both Argo-style reconstructions

reproduce this trend; however, due to having fewer observations, the year 2002 reconstruction (dashed blue line) reproduces

less interannual variability than the year 2015 reconstruction (dashed red line).

To show how the reconstructions operate on more regional scales, we provide the same reconstructions but for the modelled

carbon inventory at the Bermuda Atlantic Time Series (BATS, 31◦50’N 64◦10’W) and the Hawaii Ocean Time series (HOT,320
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22◦45′N 158◦00′W). These locations were chosen because they are the sites of multidecadal ocean DIC time series; thus,

for future reconstructions the observations at these sites will can be used for validation. By providing reconstructions at these

locations we can estimate the upper-bound in how well the method works, ignoring any errors in the observations themselves.

Modelled DIC at these two locations show varying levels of CO2-driven increases and interannual variability to provide context

as to how the method reconstructs both aspects.325

At BATS, the signal is again driven by a long-term positive trend (Fig. 7b, black line). As the year 2002-style Argo dis-

tribution has no observations within 5◦, the reconstruction uses atmospheric CO2 measurements to reproduce the trend. For

the reconstruction using a year 2015-style Argo distribution, the increase in observed locations results in a reconstruction that

is able to reproduce the variability in the carbon inventory. The reconstruction using the year 2015 observation locations for

temperature and salinity inputs results in an RMSE that is 68% lower than that for the reconstruction that is based off of330

atmospheric pCO2 changes alone.

At HOT, upper-ocean carbon exhibits more defined interannual and decadal variability (Fig. 7c, black line). The reconstruc-

tion using year 2002 Argo locations (blue dashed line) is able to reproduce the broad behaviour in ocean carbon, whereas the

reconstruction using year 2015 Argo locations (red dashed line) shows an improvement in representation of the interannual

variability. By using multiple observations at year 2015 locations, the RMSE is reduced by 30% relative to the RMSE for the335

reconstruction using one observation. Thus the results at HOT provide further evidence that the inclusion of nearby Argo mea-

surements provides skill in the reconstruction scheme, and emphasises the improvement that is already possible when using

one nearby location for temperature and salinity observations.

Lastly, for a global view of the reconstruction we provide maps of the Norwegian ESM DIC change between years 2001

and 2000 (Fig. 7d) with the reconstructed difference using year 2002 Argo locations (Fig. 7e) and year 2015 Argo locations340

(Fig. 7f). The truth field for DIC changes show regional variability, with increases in the western North Pacific and strong

decreases in the equatorial upwelling zone. The reconstructed change using 2002 Argo locations is restricted by the number of

observations: most regions show little change between the two years. The reconstruction has a spatial correlation of 0.45 using

the relatively sparse temperature and salinity sampling procedure. For the reconstruction using 2015 Argo locations, most of

DIC changes are reconstructed, and the reconstruction has a spatial correlation of 0.87 compared to the model truth.345

7 Discussion and conclusions

In this study we present a new method for reconstructing upper-ocean carbon using observations of ocean temperatures and

salinities. While the ocean plays a large role in determining the partitioning of carbon in the Earth system, sparse observa-

tions inhibit a full characterisation of ocean interior carbon. Using synthetic profiles and creating mapped reconstructions of

model truths, we have explored how wide-spread observations of temperature and salinity from recent autonomous sampling350

programmes can provide global information about ocean carbon.

When considering the carbon system in the near-surface ocean, the correlation fields between atmospheric pCO2, ocean

temperature, ocean salinity, and ocean carbon reflect first-order controls (Fig. 2). Increases in atmospheric pCO2 are correlated
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with increases in ocean heat and carbon due to the chemical and thermal disequilibria created by emissions. Increases in ocean

salinity are broadly correlated with increases in ocean carbon due to the impact of alkalinity on solubility. Regional variations355

in the correlations between temperature and ocean carbon can be decomposed as a sum of a response related to added carbon

from emissions and a residual; the residual correlation reflects the impact of temperature on CO2 solubility in seawater. Within

all these correlation fields there are regional variations. The structure in the correlations between temperature and DIC and

salinity and DIC attain their strongest values in different regions, and the cross-correlations between temperature and DIC are

generally more moderate, indicating that the information provided by these observations are complementary.360

The strength and structure in the covariance fields results in optimal weights for pCO2, temperature, and salinity that reflect

global first-order controls of solubility and alkalinity (Fig. 4). For this linear model, using co-located temperature and salinity

observations along with globally averaged atmospheric pCO2 concentrations reduces the RMSE of the reconstructed DIC

content by over 75% on average, relative to a reconstruction based purely on a time-invariant climatology (Fig. 5). In addition

to replicating the long-term trend, the reconstructions are able to reproduce local interannual and decadal variability, capturing365

over 60% of the detrended upper-ocean carbon signal. When considering the detrended carbon inventory, the sensitivity tests

show an average relative RMSE reduction of 50% in most regions. The lower skill in reconstructing interannual and decadal

variability is expected as the carbon system is nonlinear and controlled by other aspects such as circulation changes and ocean

biology, which are not explicitly included in the variables used to calculate the covariance fields.

We have also explored whether the use of irregular temperature and salinity observations impacts the capacity to reconstruct370

ocean carbon. In theory, observations do not need to be co-located with the desired reconstruction, as the Ensemble Optimal

Interpolation scheme can include spatial covariances; however, there is the possibility of extra errors in the covariance fields

from poorly represented spatial variability. In our sensitivity tests, we find that using irregular observations consistent with cur-

rent Argo coverage can be combined with the CMIP6 covariance fields and provide similar levels of skill to the reconstruction.

When taking the average RMSE reduction across our sensitivity tests, we find a reduction of over 60% in most regions when375

considering the full carbon signal and a reduction of over 40% in most regions when considering the detrended carbon signal

(Fig. 6b,d). However, we find that there are regions such as the Southern Ocean and the North Atlantic which show substantial

error increases relative to the climatological first guess in some of the sensitivity experiments (Fig. 6a,c). These increases in

errors are found particularly when considering the detrended signal (i.e., the signal from interannual and decadal variability).

The regions that show the largest error increases are those with high mesoscale ocean eddy activity, and are mainly in the380

sensitivity test that reconstructs ocean carbon within MPI-ESM1.2-LR. The horizontal resolution in MPI-ESM1.2-LR model is

higher than that for the other models in our ensemble, suggesting that the covariances’ representation of mesoscale-scale ocean

dynamics impacts the ability to translate nearby Argo observations into reconstructed carbon. Our sensitivity tests indicate that

the correlation lengthscales will be an important feature of any real-world carbon reconstruction. For future work, there are a

variety of methods regarding both the ensemble selection and search radius selection that may be used to account for the model385

differences and model/truth discrepancy in spatial correlation lengthscales.

While we have opted to use only temperature and salinity as our ocean observations for this scheme, the ensemble optimal

interpolation method is flexible and can take additional oceanographic variables such as oxygen, pH, nutrients, or chlorophyll.

16

https://doi.org/10.5194/bg-2022-166
Preprint. Discussion started: 18 August 2022
c© Author(s) 2022. CC BY 4.0 License.



With increased coverage of these variables thanks to campaigns such as the Southern Ocean Carbon and Climate Observations

and Modeling programme (SOCCOM, Johnson et al. 2017) and Bio-Argo (Claustre et al., 2020), there is the potential for390

non-trivial improvements by including these variables. With each new variable it is possible to quantify the amount of added

information and test the ensemble optimal interpolation method at various stages by examining the covariance fields and

uncertainties, and conducting sensitivity tests in a similar way as has been done in this work. As more complex reconstruction

schemes such as the machine learning algorithms of Landschützer et al. (2016) use these biogeochemical observations as well,

including them in the Ensemble Optimal Interpolation scheme could enable a direct comparison between linear and non-linear395

mapping methods and can help to quantify the merits of linear versus non-linear assumptions when reconstructing ocean

interior carbon.

The Ensemble Optimal Interpolation scheme relies on some important assumptions. Firstly, the covariance fields assume that

the processes relating ocean carbon to other variables are stationary. We have used historical CMIP6 experiments to calculate

the covariances fields, so these covariances should be able to represent ocean carbon behaviour under current-day carbon400

emission forcing; however, under low or negative emissions the relationships between atmospheric pCO2, ocean temperature,

and ocean carbon changes will likely change due to hysteresis from continued heat uptake. Additionally, we have chosen to

focus on annual average and depth-integrated carbon content in order to focus on the physical carbon response. It is also

possible to consider seasonal or monthly variability by calculating covariance fields for each month or season, as is done for

surface pCO2 and heat content (Smith and Murphy, 2007; Jones et al., 2015). In the current format, months or seasons that405

are poorly observed will have solutions that return towards climatological inventories. However, the system can be set up in

such a way that lagged covariance fields propagate temperature and salinity information from observed to unobserved months

as well as locations. The lack of wintertime carbon observations has created significant biases in machine learning products,

as enhanced winter outgassing in polar waters is not present in the training data (Bushinsky et al., 2019). As the response to

gaps in data are sensitive to the reconstruction method, the Ensemble Optimal Interpolation reconstructions with seasonal data410

could provide added insight as to how information on the carbon system is best propagated to unobserved regions and seasons.

The use of a model ensemble rather than a single model allows for quantification of some of the uncertainties within the

covariance fields. Our model ensemble has been constructed to consider both inter-model and intra-model uncertainty when

calculating the background error covariances. We have been able to explore the sensitivity of this method to the ensemble

makeup by reconstructing each model separately using out of sample covariances from the other models, and assessing the415

minimum, mean and maximum improvements. The improvements in the reconstructions indicate both that the models have

regions with well-defined and strong correlations that lead to high improvements, such as the western tropical Pacific, as well as

regions where the models are relatively uncertain in their relationships, such as the Southern Ocean when considering irregular

spatial coverage (Figs. 5, 6). While these sensitivity experiments and synthetic reconstructions allow for useful insight into the

capacity of our reconstruction method, some level of uncertainty remains from the use of coarse-resolution CMIP6 models.420

Ocean models underestimate decadal variability in anthropogenic carbon (DeVries et al., 2019) and CMIP6 models exhibit

biases in the Revelle factor (Terhaar et al., 2022). More iterative Ensemble Optimal Interpolation techniques can be used to
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reduce the errors from the model ensemble by recalculating the covariance fields after observations have been included in the

analysis (Smith and Murphy, 2007; Smith et al., 2015; Allison et al., 2019).

As these synthetic tests have suggested that a large amount of ocean carbon variability can be reconstructed using only425

hydrographic observations, future work will include expanding the method to account for observational errors and applying the

method to real-world Argo profile data. The reconstructions from Argo data can be cross-validated against independent time

series sites and GLODAP data, and we will explore the added information from non-DIC biogeochemical observations. We

will expand the method to consider how the covariances behave on various depth levels: as Argo profiles measure temperature

and salinity down to 2000m depth, the vast majority of carbon changes can potentially be captured by the method, although for430

deeper reconstructions there are few independent carbon observations for cross-validation.

In conclusion, we have presented a method that draws upon first-principle relationships between temperature, salinity, and

carbon to reconstruct ocean carbon changes from Argo style observations. We find that, for the upper ocean, the CMIP6 models

show consistent first principle constraints of solubility, alkalinity, and undersaturation, leading to accurate reproductions of

trends and variability in the model world. When considering current-day distributions of Argo profiles, reconstructions that use435

multiple nearby observations are able to still reconstruct the trend and variability in carbon content, and sensitivity tests using

out-of-sample temperature and salinity observations show strong spatial correlations of around 0.8 with the model truth and

capture over 60% of the detrended variance. The results of our work provide a strong theoretical basis for using state-of-the-

art autonomous hydrographic observations to supplement sparse interior carbon coverage. This proof-of-concept work shows

that there is strong potential in using these measurements to create a new, independent estimate that can be used alongside440

reconstruction methods to better understand ocean carbon variability and its controls.

Code availability. The code to regrid, concatenate, and analyse CMIP6 model output is available in a Zenodo reposity (DOI: 10.5281/zen-

odo.6669897).
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Appendix A: Breakdown of covariance fields into pCO2 and non-pCO2 terms

It is possible to decompose the changes in ocean temperature, salinity, and DIC from their time-averaged states (T ′,S′,DIC ′445

from Section 2) into terms proportional to atmospheric pCO2 and a residual:

T ′(x,y, t) = α(x,y) pCO′2(t) +Ta(x,y, t) (A1)

S′(x,y, t) = β(x,y) pCO′2(t) +Sa(x,y, t) (A2)

DIC ′(x,y, t) = γ(x,y) pCO′2(t) +DICa(x,y, t), (A3)

where α,β,γ are the least-squares coefficients against changes in globally uniform atmospheric pCO2 changes and Ta,Sa,DICa450

indicate the residuals for these decompositions.

While the decomposition into pCO2 and non-pCO2 terms is not inherently physically based, this breakdown may help us

understand how the complex structure in the correlation fields in Fig. 2 arise. Using covariance identities, the covariance

between, for instance, T ′ and S′, is thus the sum of the covariances between the addends:

cov(T ′,S′) = cov(α pCO2(t),β pCO2(t)) + cov(α pCO2(t),S
′′) + cov(T ′′,β pCO2(t)) + cov(T ′′,S′′). (A4)455

The first term is a function of the variance of pCO2, scaled by the product αβ. If the term proportional to atmospheric pCO2

were orthogonal to the residual term for each of these decompositions, the covariances cov(pCO2,Xa) = 0 for any variable

X . An ordinary least squares solution does not lead to orthogonal components, but the covariances between atmospheric pCO2

and DICa,Ta, or Sa are small (shown as correlations in Fig. A1, panels d h and i) and can therefore be ignored to first order.

Thus for these variables we ignore these terms as second-order components and can thus approximate the covariance as:460

cov(T ′,S′)≈ αβ var(pCO2) + cov(Ta,Sa). (A5)

With this decomposition of the covariance fields into pCO2 and non-pCO2 terms, we have the added benefit of approximating

the covariance fields between pCO2 and one of T ′,S′, or DIC ′ through a global scaling of the coefficient terms α,β, or γ,

respectively.

Scaling the decomposition by the product of the standard deviations allows us to explore how the correlation fields arise in465

Fig. 2. We compare the original correlation fields from Fig. 2 with their decompositions according to (A4) in Fig. A1. The

approximation errors show how well the approximation in (A5) reflects the full correlation field.

For the correlations between T ′ and S′ and S′ and DIC ′, the signal is dominated by the term associated with cov(Ta,Sa)

and cov(Sa,DICa), respectively. We therefore understand these covariance and correlation fields to be set by the variability

not forced by carbon emissions. Conversely, the correlation field between T ′ and DIC ′ appears to arise almost equally from the470

pCO2 scaling and the cov(Ta,DICa) terms. Thus we provide both terms in Section 3 to gain insight as to how the covariance

fields reflect both the combined response to added carbon in the Earth system as well as the response to climate variability.
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Figure A1. Correlation fields between non-pCO2 variables T ′,S′, and DIC′, with their terms from (A5) and approximation errors to

measure the level of mismatch between (A4) and (A5).
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Appendix B: Coefficients for sensitivity tests

Here we present the coefficients for reconstructing upper-ocean carbon using atmospheric CO2 and co-located temperature and

salinity measurements.475

(a) ACCESS removed (b) CanESM removed (c) CESM removed

(d) IPSL removed (e) MPI-LR removed (f) UKESM removed

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure B1. Optimal pCO2 weights, in units mol C (ppm CO2 m2)−1, for solving for 0-100m integrated ocean DIC using a subset of models

within the CMIP6 ensemble. The subsets are created by removing the runs of each model: (a) ACCESS, (b) CanESM, (c) CESM, (d) IPSL,

(e) MPI-LR, and (f) UKESM
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(a) ACCESS removed (b) CanESM removed (c) CESM removed

(d) IPSL removed (e) MPI-LR removed (f) UKESM removed

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

Figure B2. Optimal T weights, in units mol C (◦C m3)−1, for solving for 0-100m integrated ocean DIC using a subset of models within

the CMIP6 ensemble. The subsets are created by removing the runs of each model: (a) ACCESS, (b) CanESM, (c) CESM, (d) IPSL, (e)

MPI-LR, and (f) UKESM

(a) ACCESS removed (b) CanESM removed (c) CESM removed

(d) IPSL removed (e) MPI-LR removed (f) UKESM removed

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

Figure B3. Optimal S weights, in units mol C (psu m3)−1, for solving for 0-100m integrated ocean DIC using a subset of models within

the CMIP6 ensemble. The subsets are created by removing the runs of each model: (a) ACCESS, (b) CanESM, (c) CESM, (d) IPSL, (e)

MPI-LR, and (f) UKESM
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Appendix C: Comparison of RMSE reductions with Argo profiles and various search radii

Here we present some reconstruction RMSE reductions for the Norwegian ESM model using the CMIP6 covariance fields,

Argo profiles consistent with year 2015 sampling, and various search radii. We use the Norwegian ESM as it uses isopycnic

depth coordinates as opposed to the z-level coordinates used in the models within the ensemble. We find that the coverage in

the reconstructions increases to near-global coverage when allowing profiles within 5◦ to be used in the reconstruction and480

improves the detrended carbon reproduction; however, for regions that are reproduced with high skill using more restrictive

search radii, the increase in search radius is accompanied by slight weakenings in the RMSE reductions.
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Figure C1. Relative RMSE reduction for the NorESM full carbon (left column) and detrended carbon (right column) signals using year 2015

Argo distributions and varying radii of influence: (a,b) using only co-located temperature and salinity profiles, (c,d) using profiles within 1◦

latitude or longitude, (e,f) using profiles within 2◦ latitude or longitude, and (g,h) using profiles within 5◦ latitude or longitude. Regions of

red indicate regions where the reconstruction increases the RMSE relative to a first-order climatology assumption.
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