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Abstract

Present and historical climate conditions jointly determine contemporary biodiversity patterns and
ecosystem functions. However, it remains unclear how contemporary climate and paleoclimate
changes together affect the three dimensions of biodiversity (i.e., taxonomic diversity, functional
diversity and phylogenetic diversity) and their relationship with ecosystem functions. Here, we
assess the impact of current climate, paleoclimate and its anomalies on contemporary biodiversity
and ecosystem functions. We estimated the taxonomic-diversity, functional diversity-and
phylogenetic diversity of grassland on the Mongolian Plateau using vegetation survey data and trait
information. We then used Random Forest models-and Structural Equation models to assess the
relative importance of the present climate, the Mid Holocene elimate;the Last-Glacial Maximum
climate and paleoclimate changes as determinants of diversity and aboveground biomass. Our results
showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity
patterns, while community biomass was mainly affected by modern climate, namely the aridity
index. Modern aridity and temperature were two major influences on all three dimensions of
biodiversity. Mid-Holocene climate anomalies had a strong effect on species richness and
phylogenetic diversity, while functional diversity was mainly affected by temperature anomalies
since the Last Glacial Maximum. These findings suggest that contemporary biodiversity patterns
may be affected by processes at divergent temporal scales. Our results show that simultaneously

exploring the response of the three dimensions of biodiversity in different periods of climate change
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and the theoretical framework for its impact on community biomass is helpful to provide a more
comprehensive understanding of patterns of biodiversity and its relationship with ecosystem
functions.

Keywords

Aridity index, biodiversity and ecosystem functions, functional diversity, paleoclimate anomaly,
phylogenetic diversity, taxonomic diversity

1. Introduction

Global climate changes, such as increasing temperature and changing precipitation, are altering
biodiversity patterns at an unprecedented rate, and have serious consequences for ecosystem
functions related to biodiversity changes (Mottl et al., 2021; Nolan et al., 2018; Ye et al., 2019).
Ecosystem functioning associated with biodiversity, and contemporary diversity patterns and their
relationships may be regulated by modern climate, past climate and climate change (Fordham et al.,
2020; Eiserhardt et al., 2015; Svenning et al., 2015).

Ecosystem function are strongly influenced by biodiversity (Isbell et al., 2011; Hooper et al.,
2005), but understanding the effects of different dimensions of biodiversity (i.e., taxonomic diversity,
functional diversity and phylogenetic diversity) on ecosystem functions (BEF) is still a challenge in
ecology (Van Der Plas, 2019; Cadotte et al., 2008; Swenson, 2011). Traditionally, most studies of
BEF have predominantly focused on the relationship between taxonomic diversity (i.e., species
richness) and biomass or productivity. However, only considering taxonomic diversity has the
limitation that it may igneresthe important ecological processes such as the formation of function
traits or the evolutionary history of species (Flynn et al., 2011; Swenson, 2011). The importance of

taking into account other aspects of biodiversity, including functional diversity and phylogenetic
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diversity, has increasingly been recognized. The effects of plant functional diversity on ecosystem
functioning are largely driven by variations in plant functional traits, such as adult plant height and
leaf size (Diaz et al., 2016). Phylogenetic diversity (PD) is a key driver of community assembly and
ecosystem functions (Srivastava et al., 2012; Cavender-Bares et al., 2009). Previous research had
shown that PD may be a better metric than species richness or functional diversity for predicting
plant biomass (Cadotte et al., 2008). Communities with higher PD have stronger anti-interference
ability because of their evolutionary potential to adapt to changing environmental conditions.
However, the role of multi-dimensional biodiversity in driving ecosystem functions in response to
climate change still needs further research. Elucidating the impacts of multi-dimensional biodiversity
on biomass in the changing world can deepen our understanding of the direct and indirect effects of
changes in climate and biodiversity on terrestrial ecosystems, and improve predictions of the
ecological consequences of global climate changes.

Changes in community biodiversity and composition caused by climate change have been
explored in various ecosystems(Avolio et al., 2021)7, including tropical forests in the Amazon’,
alpine meadows on the Qinghai-Tibet Plateau (Liu et al., 2018) and a heterogeneous California
(Esquivel-Muelbert et al.; 2019) grassland (Harrison et al., 2015). Dispersal limitation and
environmental filtering (i.e., climatic conditions and paleoclimate change) plays an important role in
sorting species from the global species pool and in shaping large-scale diversity patterns (Kubota et
al., 2018; Liu et al., 2021). Many studies have found that climate changes in the Mid-Holocene and
the Quaternary interglacial period are the main driving factors of current species distribution,
functional traits and community phylogeny (Svenning and Skov, 2007b). The current patterns of

species richness and distribution of European flora are jointly affected by contemporary climatic
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89  conditions and climate change during the Late Quaternary glacial-interglacial period (Svenning and
90  Skov, 2007a; Svenning and Skov, 2007b). Contemporary plant functional traits and composition are
91  highly sensitive to climate and influenced by climate from tens of thousands of years ago, with
92  important consequences for ecosystem functions(Blonder et al., 2018; Butler et al., 2017). For
93  example, in Europe patterns of plant functional diversity exhibited prominent glacial-interglacial
94  climate change imprints (Ordonez and Svenning, 2015; Ordonez and Svenning, 2017). This is partly
95  due to the non-random removal of functional combinations that may have occurred during the Last-
96  Glacial Maximum (LGM; ~21,000 years ago), increasing functional differences between native and
97  migratory species, leading to smaller and dispersed functional spaces (Ordonez and Svenning, 2017).
98  Evidence derived from the fossil pollen sequence and ecological datasets has shown that the
99  acceleration of biodiversity changes began millennia ago, whereas vegetation changes during the
100  Late Pleistocene to Early Holocene were driven primarily by changing climates (Mottl et al., 2021).
101 In the South American tropics, the species composition and structure of Last Glacial Maximum
102  forests were quite different from those of today, and biomass was also lower than that of
103 contemporary forests (Mayle et al., 2009).
104 Furthermore, the effects of climate change on biodiversity should depend partly on climate
105  displacement rate (climate-change velocity) (Sandel et al., 2011). For example, phylogenetic
106  clustering increased with increasing intensity of Quaternary glacial-interglacial climatic oscillations
107  in South America and Africa (Kissling et al., 2012). There is evidence that vegetation changes in
108  Northern Europe were non-linear and varied greatly among regions in the early-mid Holocene
109  (Seddon et al., 2014). Paleoclimate simulations since 21,000 years B.P. suggest that there are great

110  similarities between past and future temperature changes in Eurasian temperate grasslands (Fordham
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et al., 2020). During the last glacial-interglacial transition period, global warming and related climate
change led to changes in ecosystems to a degree comparable to the predicted warming under future
high-emission scenarios (Nolan et al., 2018). Therefore, studying the impact of past climate and its
changes on contemporary biodiversity patterns will help us understand the potential effects of future
climate changes. However, most studies exploring the impact of present climate and paleoclimate
drivers on ecosystem functions have focused on forest ecosystems, while grassland ecosystems
remain understudied. In addition, it is not yet clear whether taxonomy, function and phylogenetic
diversity will vary with climate gradients and climate changes, and the intensity of any such changes
remain unclear. Therefore, there is an urgent need to consider the impact of current climate,
paleoclimate and its anomalies on contemporary biodiversity and ecosystem functions.

The Mongolian Plateau is located in the arid and semi-arid area of eastern Eurasia. During the
Late Quaternary, the Mongolian Plateau experienced severe alternating dry and wet climatic
fluctuations (Maestre et al., 2021; Tian et al., 2017), which may have a significant impact on current
plant diversity and ecosystem function. However, the impacts of climate in different periods and
climate legacy effects on aboveground biomass of steppes in the Mongolian Plateau, as well as
whether these effects are biodiversity dependent, remain to be evaluated. To address these knowledge
gaps, we coupled data from a field survey of 152 sites in the Mongolian Plateau (Fig. S1) to existing
databases on present and past climates to explore present climate and the legacy effects of climate
during the Last Glacial Maximum and the Mid-Holocene on current biodiversity and biomass.

Here, we aim to evaluate the relative importance of taxonomic, functional, and phylogenetic
diversity on community biomass of steppe in the Mongolian Plateau, and to assess whether and how

climate in different periods and their changes affect the three dimensions of diversity, and their


anonymous reviewer
Durchstreichen

anonymous reviewer
Eingefügter Text
effects


133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

relationships with community biomass. We specifically ask: (1) Do the three dimensions of diversity
affect community biomass, and if so, to what extent? (2) Whether and how climate at divergent
temporal scales and paleoclimatic changes affect different dimensions of biodiversity? And (3) If
there are effects, how do they affect the biodiversity-biomass relationship?
2. Materials and Methods
2.1 Study Area
We conducted field surveys in the grasslands of the Mongolian Plateau, including Inner Mongolia
Autonomous Region in China and Mongolia, during June to August of 2014~2018 (Fig. S1). The
Mongolian Plateau is located in the eastern part of Eurasia, with a geographic range of 37.61° to
53.35° N, 87.83° to 125.95° E, and an elevation range from 85 m to 4203 m a.s.l. (above sea level).
The mean annual temperature (MAT) of the study region ranges from -12 °C to 10 °C and mean
annual precipitation (MAP) ranges from 26 mm to 641 mm.
2.2 Data Collection
2.2.1 Sites Sampled and Vegetation Investigation
We investigated 152 grassland sites set in flat areas With limited human intérference and a relatively
homogeneous environment. These sites were separated by about 50 km. (Oné or threée 10 m < 10 m
quadrats were set in each site. Within each quadrat, five 1 m % 1 m plots were placed at each corner
and at the center of the quadrat (only thréeé 1 m x 1 m plots along the diagonal line of the quadrat in a
few sites) to investigate vegetation. A total of 899 plots were investigated and 296 vascular plant
species were recorded.

We measured species height, density, coverage and standing biomass of each species in each

plot. All plant species were cut at ground level and were-separately bagged, then oven-dried at 65 °C
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to constant weight, and weighed for dry matter.

2.2.2 Climate Data

Mean annual temperature (MAT, °C) and the-mean annual precipitation (MAP, mm) were obtained
from the CHELSA database (Climatologies at High Resolution for the Earth’s Land Surface Areas,
http://chelsa-climate.org/) (Karger et al., 2017). Potential evape-transpiration (PET) was obtained
from the CGIAR-CSI (CGIAR Consortium for Spatial Information, http://www.cgiar-csi.org) based
on latitude and longitude data for each site (Trabucco and Zomer, 2019). The resolution of both is 30
arc seconds. Aridity was measured using the aridity index (Al, Al =MAP/ PET). Higher Al values
indicate lower aridity and higher humidity. Paleoclimate data were downloaded from Worldclim
(http://worldclim.com/paleo-climatel) with a resolution of 2.5 minutes. The database was made
available by CMIP5 (Coupled Model Intercomparison Project Phase 5) and was calibrated based on
the current climate using WorldClim 1.4. The MAT and MAP of the Mid-Holocene (MID, about
6000 years ago) and the Last Glacial Maximum (LGM, about 22,000 years ago) were simulated
based on CCMS4 (Community Climate System Model version 4). Climate anomaly (i.e., present-day
values minus paleoclimate values) Was used to indicate the degree of climate variability since the
MID and the LGM (Sandel et al., 2011). Temperature-change velocity from the LGM to the present
(velocity, m/yr) was obtained from DRYAD (https://datadryad.org) (Sandel et al., 2011). The climate

variables used in this study are shown in Table 1.
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Table 1 Climate variables included in this study

Climate variables Abbreviation
Mean annual precipitation of the present MAP
The present climate Mean annual temperature of the present MAT
Aridity index of the present Al
The Mid-Holocene Mean annual precipitation of the Mid-Holocene MAPmid
climate Mean annual temperature of the Mid-Holocene MAT mid
The Last Glacial Mean annual precipitation of the Last Glacial Maximum MAPigm
Maximum climate Mean annual temperature of the Last Glacial Maximum MAT gm
MAP anomaly from the Mid-Holocene to the present AMAPyid
MAT anomaly from the Mid-Holocene to the present AMAT mig
Paleoclimate change MAP anomaly from the Last Glacial Maximum to the present ~ AMAPignm

MAT anomaly from the Last Glacial Maximum to the present ~ AMATigm

Temperature-change velocity from the LGM to the present Velocity

2.2.3 Plant functional traits

The functional traits of each plant species include growth form, life form, phyllotaxy, single or
compound leaf, petiole, inflorescence, fruit type, flowering period, fruit ripening period, length of the
flowering period, water ecotypes, leaf length, leaf width and plant height (Table S1). These traits
were looked up in the Flora of Inner Mongolia (Third Edition) or Flora of China (Online Edition)
(http://www.iplant.cn/frps). The trait data for leaf length and leaf width were the median values
provided in Flora of China (Fig. S2). For example, if the leaf length of Leymus chinensis was

described as 7-18 cm in the Flora of China, then leaf length was defined as 12.5 cm.

9
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2.3 Aboveground biomass

The aboveground biomass of the community was calculated based on the dry matter accumulation
value (g/m?) of all plant samples in each plot, and the average aboveground biomass of each plot in
each quadrat was calculated to represent the aboveground biomass of the plant community (g/m?).
2.4 Diversity calculations

2.4.1 Taxonomic diversity

We used species richness (SR), Shannon-Wiener index and Pielou index as measures of community
taxonomic diversity. The species richness (number of species/m?) at each site was calculated as the
average number of species per plot. The Shannon-Wiener index and Pielou index were calculated
using the ‘diversity’ function in the “vegan” R package (Oksanen et al., 2020).

2.4.2 Functional diversity

The functional richness (FRic), functional evenness (FEve), functional divergence (FDiv), functional
dispersion (FDis) and Rao index (Rao’s Q) were calculated based on the Gower distance of
functional traits using the ‘dbFD’ function in the ‘FD’ R package (Laliberté et al., 2015).

2.4.3 Phylogenetic diversity

All plant species names recorded in surveys were checked in the plant list (www.theplantlist.org) to
obtain acceptable species names. Based on the APG III system (The Angiosperm Phylogeny Group,
2009), we entered the taxonomic information (family/genus/species) of all species into the
Phylomatic online plant database (Phylomatic Version 3, http://phylodiversity.net/phylomatic/),
selected storedtree = “zanne2014 (Zanne et al., 2014)”, and output a phylogenetic tree with branch
length and differentiation time (Fig. S2). Faith’s phylogenetic diversity (PD, the sum of the

phylogenetic branch lengths), the mean pairwise distance (MPD) and the mean nearest taxon
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distance (MNTD) between species in a community were calculated using the ‘mpd’ function in the
‘picante’ R package (Kembel et al., 2010).

2.5 Data analysis

First, we conducted a Random Forest model to estimate the relative importance of the three
dimensions of biodiversity to community biomass. The Random Forest model can alleviate
multicollinearity and complex interactions between independent variables. We built 5000 regression
trees in Random Forest, and each tree was fitted with 2/3 of the data. The other 1/3 of the data was
used to estimate the importance of each predictor variable, which was represented by the increase in
mean square error (MSE). In the Random Forest model, the variables ranked first in terms of
taxonomic, functional and phylogenetic diversity were selected as proxies for the three dimensions of
biodiversity.

To explore the influence of climate in different periods and climate anomalies on biodiversity,
we also used the Random Forest model to analyze the relative importance of the present climate, the
Mid-Holocene climate, the Last Glacial Maximum climate, and paleoclimate change on the three
dimensions of biodiversity. To evaluate the relative importance of climate drivers of biodiversity, we
calculated the ratio between the increase in MSE of the predictor and the sum of all the increases in
MSE, which is expressed as a percentage.

To study the effects of climate in different periods and climate anomalies on biodiversity and
aboveground biomass, we performed piecewise structural equation models (pSEM) to test the direct
and indirect causal relationships between the climate in different periods and paleoclimate change,
species diversity, functional diversity, phylogenetic diversity and biomass. Model construction

procedures involved the following three stages. First, based on the results of the Random Forest
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model, we identified the climate variables that significantly affected biodiversity and divided them
into composite variables. The model contained two composite variables that potentially represent
collections of variables in terms of the present climate and paleoclimate change. We calculated
Pearson correlations between the climate factors (Fig. S3) and deleted the predictors with high
correlation coefficients (>0 .85, P < 0.05) to avoid multicollinearity. Before pSEM analysis, all
selected predictors were standardized. Second, principal component analyses (PCAs) were used for
the composite variables with multiple predictors. For each composite variable, the first principal
component (PC1) explained 64~71% of the total variance and was used in the subsequent pPSEM
analysis (Table S2). Third, pPSEM was developed from the full conceptual model. We fitted the
component models of the piecewise SEM as linear models and reported the standardized coefficient
for each path from each component model. We used Shipley's d-separation test to evaluate the
overall fit of the pSEM, as well as Fisher's C statistic and AIC.

We conducted all analyses in R x64 4.0.5. The Random Forest model was conducted using the
‘randomForest’ function in the ‘randomForest’ package (Cutler et al., 2007; Breiman et al., 2018),
and the significance of the variables was tested using the ‘rp.importance’ function in the ‘rfPermute’
package (Archer, 2016). PCA was performed using the ‘princomp’ function in the ‘psych’ package in
R (Revelle, 2021). Piecewise structural equation modeling was conducted and tested using the
‘piecewiseSEM’ package (Lefcheck, 2020; Lefcheck and Freckleton, 2015).

3. Results
3.1 Effects of biodiversity on aboveground biomass
Among the 11 biodiversity variables, SR, PD and Pielou index identified by the RF model were the

three most significant predictors influencing aboveground biomass (Fig. 1a). Taken together,
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taxonomic diversity represented by SR, Pielou and Shannon-Wiener index collectively contributed
43.78% to the RF model for aboveground biomass, while phylogenetic diversity represented by PD
(including MNTD and MPD) and functional diversity represented by FRic (including FDiv, FEve,
FDis and RaoQ) contributed 30.02% and 26.2%, respectively (Fig. 1b).

Based on the ranking results from the Random Forest model, SR, PD, and FRic were selected as
agents oftaxonomic, functional, and phylogenetic diversity, respectively, and used for subsequent

analysis.

(b)

Taxonomic
diversity

Phylogenetic

diversity
Functional
diversity
R=0.22%*+
0 10 20 30 40 50 0 10 20 30 40
Increase in MSE (%) Relative effect of estimates (%R?)

Fig. 1 The importance (a) and relative contributions (b) of the three dimensions of biodiversity to
community biomass. An increase in IMSE denotes an increase in the percentage mean square error.
Significance levels are as follows: *: P <0.05 and ***: P <0.001.

3.2 Paleoclimate and present climate predictors of contemporary diversity

Random Forest models explained 35% (cross-validation R?= 0.35, P < 0.001), 31% (cross-validation
R*=0.31, P<0.001) and 31% (cross-validation R*= 0.31, P < 0.001) of the variance in SR, PD and
FRic, respectively (Fig. 2). Temperatures in different periods, including MAT g, MAT and MATigm,

were the main factors driving SR and PD (P < 0.05, Fig. 2a and 2b), followed by climate anomalies
13
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FRic (P <0.05, Fig. 2c¢).
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Fig. 2 The importance of climate variables in different periods and paleoclimate change to species

richness (a), phylogenetic diversity (b) and functional richness (c¢). An increase in MSE denotes an

increase in the percentage mean square error. Significance levels are as follows: *: P < 0.05 and ***:

P <0.001.

In terms of relative contributions, the current climate and the paleoclimate changes had greater

impacts on the three dimensions of biodiversity. Paleoclimate change was the best predictor of SR

(33.90%) and PD (32.10%). Strikingly, the present climate (38.68%) showed a larger contribution to

the prediction of FRic than paleoclimate change (26.06%; Fig. 3).
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Fig. 3 Relative contributions of present-climate; paleo-{mid-Holocene and-Last Glacial Maximum)
and paleoclimate change as drivers of species richness, phylogenetic diversity and functional
richness.

3.3 Influence of climate factors on biodiversity and aboveground biomass
The present climate, MAT of the Mid-Holocene and the Last Glacial Maximum, and paleoclimate
change explained 38% (R> = 0.38), 33% (R* = 0.33), 36% (R> = 0.36) and 29% (R> = 0.29) of the
variances in SR, PD, FRic and AGB, respectively (Fig. 4). The ptesent elimate had direct and
indirect significant associations with AGB via all biodiversity variables (Fig. 4). The present climate
was significantly and positively associated with SR (v5 = 0.46, P <0.05), PD (v =0.35, P <0.05)
and FRic (ro = 0.58, P < 0.05, Fig. 4). However, the (paléoclimate change had direct significant
negative effects on SR (r5 =-0.28, P <0.05), PD (ro=-0.32, P <0.05) and FRic (rs =-0.25, P <

0.05, Fig. 4).
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Fig. 4 SEMs fitted to the effects of climate in different periods and paleoclimate change on diversity
and AGB. The present climate is PCA component 1 of the Al and MAT. The paleoclimate change
represents a composite variable including MAT anomaly from the Mid-Holocene to the present,
MAT and MAP anomaly from the Mid-Holocene to the present. Numbers adjacent to arrows
represent the standardized path coefficients (r5). R indicates the proportion of variance explained.
Blue (positive paths) and orange (negative paths) solid arrows indicate significant paths (P < 0.05),

and gray dashed arrows indicate non-significant paths (P > 0.05).

For the present climate, the direct effects of Al on SR (r5=0.33, P <0.05), PD (r=0.27, P <
0.05), FRic (ra=10.49, P <0.05), and AGB (5 =0.37, P <0.05) were all significantly positive, while
the direct effects of MAT on the three dimensions of biodiversity (SR, 75 = -0.34; PD, rs = -0.36;
FRic, ra=-0.29; P <0.05 in all cases) were all significantly negative (Fig. 5). In addition, SR (r5 = -
0.25, P <0.05) and PD (r5 =-0.25, P < 0.05) were negatively affected by MAT anomaly from the
Mid-Holocene to the present (AMATmiq), but FRic (r5 =-0.23, P < 0.05) was mainly driven by MAT

anomaly from the Last Glacial Maximum to the present (AMAT gm; Fig. 5).
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Fig. 5 The effects of present climate (Al and MAT) and paleoclimate change (AMATmi¢ and
AMAT gm) on diversity and AGB. Numbers adjacent to arrows represent the standardized path
coefficients. R? indicates the proportion of variance explained. Blue (positive paths) and orange
(negative paths) solid arrows indicate significant paths (P < 0.05), and gray dashed arrows indicate
non-significant paths (P > 0.05).
4. Discussion
4.1 The effects of different dimensions of biodiversity on aboveground biomass
Our research showed that, without considering the influence of climatic conditions, taxonomic
diversity was the most important factor influencing the aboveground biomass of Mongolian Plateau
grasslands, followed by phylogenetic diversity and functional diversity. However, a large number of
studies have emphasized the importance of phylogenetic diversity and functional diversity te,
ecosystem functions (Srivastava et al., 2012; Cadotte et al., 2008; Swenson et al., 2012). For
example, research on subtropical forests in northern China showed that functional diversity is more
important than taxonomic diversity in controlling aboveground biomass, which is related to the

acquisitive resource use strategy of functional traits (Hanif et al., 2019). However, in Mongolian
17
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Plateau grasslands taxonomic diversity may be more critical. Selection effects and compensatory
effects are the main mechanisms through which biodiversity impacts on biomass. The grassland
community structure of the Mongolian Plateau is relatively simple, and biomass mainly depends on
the number or dominance of dominant species. However, functional traits considered in this study,
such as leaf size and plant height, do not have a strong impact on biomass. The Mongolian Plateau is
located in an arid and semi-arid area, and drought-tolerant species invest a lot in seed resources, leaf
structure and root biomass (Wolf et al., 2021). Studies have shown that these traits are negatively
correlated with aboveground biomass, while functional traits consistent with growth strategies, such
as leaf nitrogen concentration and photosynthetic utilization efficiency, can promote aboveground
biomass (Wolf et al., 2021).

Secondly, phylogenetic diversity also had a significant impact on aboveground biomass.
Phylogenetic diversity contains the evolutionary information of species ecology. It is influenced by
the average degree of correlation between species and the number of existing species, and can reflect
the evolutionary sequence of characteristics related to habitat and resource utilization (Srivastava et
al., 2012). If species make better use of all available resources, productivity may increase. Therefore,
our research suggests that protecting taxonomic diversity and conserving evolutionarily different
species are equally important in effectively maintaining high-yielding communities.

4.2 Relationship between paleoclimate anomalies and current biodiversity patterns
Although a rich body of tesearch has explored the factors affecting biodiversity patterns and their
relationships with biomass, further studies are still needed. Here, our results showed that
paleoclimate changes and present climate factors were critical variables influencing contemporary

biodiversity patterns. This illustrates the importance of historical factors, such as evolution, as well
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as contemporary factors, such as climate, in determining the geographic ranges of species and the
accumulation of species in the region (Fine, 2015). Previous studies aiming to explain patterns of
biodiversity have focused on the current climate (Harrison et al., 2015), energy (Kreft and Jetz,
2007), soil attributions (Ulrich et al., 2014), human activities (Hautier et al., 2015; Newbold et al.,
2015) or water availability (Jiao et al., 2021; Liu et al., 2021). Modern climate research on
biodiversity and ecosystem functions has been widely confirmed (Yang et al., 2011; Liu et al., 2021;
Walther et al., 2002), but our research shows that the pattern of biodiversity is also affected by past
climates, @nd especially climate change in a region. Paleoclimate changes filtered the regional
species pool based on climate-related traits, which in turn affected contemporary biodiversity
patterns.

Species richness is affected by the significant positive effects of Al, and the significant negative
effects of MAT and AMATmi4. Jansson’s research showed that the total number of vascular plant
species decreased with increasing temperature change since the LGM in mainland areas (Jansson,
2003), which is inconsistent with our results. We found that the species richness of Mongolian
Plateau grassland is more affected by temperature changes since the Mid-Holocene. In Europe, the
richness of widespread species was largely controlled by the modern climate, while the LGM climate
and climatic heterogeneity were codominant with modern climate as controls of richness for
restricted and intermediate species, which appear to still be associated with their glacial refugia
(Svenning and Skov, 2007b).

Phylogenetic diversity (PD) is usually used to quantify the uniqueness of a region’s evolution.
Our research showed that PD was negatively correlated with MAT and témperature anomalies in the

Mid-Holocene, but not significantly related to temperature anomalies during the Last Glacial
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Maximum. However, the PD of global forest ecosystems is positively associated with temperature
and precipitation and is negatively associated with Quaternary precipitation change (Kubota et al.,
2018). Phylogenetic studies reveal that major ecological niches are more conserved through
evolutionary history than expected, implying that adaptations to major climate changes have not
readily been accomplished in all lineages (Donoghue, 2008).

Our results suggested that functional richness was negatively related to Last Glacial Maximum
climate anomaly. This may be due to the tolerance of plant traits to past climatic conditions (Bhagwat
and Willis, 2008) and the postglacial migration lag (Svenning et al., 2008). In the Late Quaternary,
the Mongolian Plateau experienced severe alternating dry and wet climate fluctuations (Tian et al.,
2017), and likely experienced a non-random removal of functional combinations and change in
functional diversity (Ordonez and Svenning, 2017). Previous research has indicated that the
magnitude of past glacial-to-interglacial warming was sufficient at most locations across the globe
(including the Mongolian Plateau) to drive moderate to large changes in vegetation composition and
structure (Nolan et al., 2018). When climate changes, inappropriate species may be quickly ruled out,
and appropriate species may migrate more slowly, resulting in a negative correlation between the
paleoclimate anomaly and contemporary FD in the Mongolian Plateau. This is also limited by the
spreading ability or migration potential of plants after the glaciers, when species with inappropriate
characteristics disappeared from the community and were not replaced by other species (Blonder et
al., 2018). Studies in Europe indicate that the lagging effect of glacial-interglacial climate instability
and @ceessibility on functional diversity is >10,000 years (Ordonez and Svenning, 2015).

The influence of paleoclimate anomalies on contemporary species and phylogeny diversity may

be caused by climate change and human activities in the Mongolian Plateau grasslands. In the eastern

20


anonymous reviewer
Hervorheben
This sentence does not really explain the differences between your results for Mongolian grasslands and the literature reports on global forests. Please elaborate.

anonymous reviewer
Hervorheben
If functional richness was negatively related to LGM climate anomaly, it means that functional richness was decreased more strongly with greater climate anomaly, but then it can't be due to the tolerance of plant traits to past climatic conditions, but due to their intolerance.

anonymous reviewer
Hervorheben
Yes, this backs up my statement that there was very likely a reduction of functional diversity in the past.

anonymous reviewer
Eingefügter Text
 retreated

anonymous reviewer
Hervorheben
You mean impact?


392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

part of the Mongolian Plateau, the interval of 35230 to 25150 yr B.P. was a forest-steppe landscape
under humid conditions, represented by Pinaceae, Compositae and Chenopodiaceae (Tian et al.,
2017). Subsequently, the forest patches gradually shrank, the vegetation transitioned to the steppe

landscape, and drought began to intensify. During the Last Glacial Maximum period, the vegetation

types on the Mongolian Plateau were mainly pela
Adams, 2001), and the main plants were Compositac and Chenopodiaceae. By the Holocene,
xerophytes had declined sharply, and plants of humid climates had increased. The humidity increased
during the early Holocene, and generally humid conditions lasted from 10,400 until 7000 yr BP and
the region experienced the Lavliakan humid phase (Lioubimtseva, 2004; Yin et al., 2011), with more
hygrophilous species, such as Cyperaceae (Tian et al., 2017). This climate condition was also
conducive to the development and spread of Compositae and Gramineae families in the steppes of
Central Asia (Lioubimtseva, 2004). Since approximately 5200 yr BP to present, the climate has
become more arid, with corresponding vegetation change and strong aeolian activity (Yin et al.,
2011). Furthermore, palacoecological and archaeological evidence shows that people have shaped
most of terrestrial nature for at least 12,000 years, including burning, hunting, cultivation and
domestication (Ellis et al., 2021). In the Mongolian Plateau, especially in the Inner Mongolia region
of northern China, grazing appeared at ~5.7-5.5 ka and further intensified again after ~4.2—4.0 ka
(Huang et al., 2021). The intensification of grazing activities also causes changes in biodiversity.

As far as aboveground biomass is concerned, after taking into account climatic factors, it is
mainly directly affected by aridity index, while the three dimensions of biodiversity have no

significant impact on it, which is consistent with Our previous research (Li et al.; 2020). Paleoclimate

changes also have no direct effects on aboveground biomass, which indirectly affects aboveground
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biomass through regulating biodiversity.

5. Conclusion

We conclude that unique evolutionary and ecological histories played key roles in explaining
biodiversity patterns in the Mongolian Plateau. When climatic conditions are not considered,
taxonomic diversity, phylogenetic diversity and functional diversity all have effects on community
biomass, and taxonomic diversity has a more obvious impact on biomass. However, the climate after
the Last Glacial Maximum has left a strong legacy affecting contemporary biodiversity patterns.
These findings extend our understanding of the spatial and temporal scale of climate effects on
biodiversity and aboveground biomass, providing additional confidence that the paleoclimate had a

key role in shaping contemporary biodiversity patterns.
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