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Abstract 

Rapid warming of the arctic terrestrial region has the potential to increase soil decomposition rates and form a carbon-driven 

feedback to future climate change. For accurate prediction of the role of soil microbes in these processes it will be important 10 

to understand the temperature responses of soil bacterial communities and implement them into biogeochemical models. The 

temperature adaptation of soil bacterial communities for a large part of the Arctic region is unknown. We evaluated the current 

temperature adaption of soil bacterial communities from 12 sampling sites in the sub- to High Arctic. Temperature adaptation 

differed substantially between the soil bacterial communities of these sites, with estimates of optimal growth temperature 

(Topt) ranging between 23.4 ± 0.5 and 34.1 ± 3.7 C. We evaluated possible statistical models for the prediction of the 15 

temperature adaption of soil bacterial communities based on different climate indices derived from soil temperature records, 

or on bacterial community composition data. We found that highest daily average soil temperature was the best predictor for 

the Topt of the soil bacterial communities, increasing 0.63 °C per °C. We found no support for the prediction of temperature 

adaptation by regression tree analysis based on relative abundance data of most common bacterial species. Increasing summer 

temperatures will likely increase Topt of soil bacterial communities in the Arctic. Incorporating this mechanism into soil 20 

biogeochemical models and combining it with projections of soil temperature will help to reduce uncertainty in assessments 

of the vulnerability of soil carbon stocks in the Arctic. 

1. Introduction 

The Arctic terrestrial biome has the potential to undergo particularly large losses of soil organic carbon and controls the 

potential loss or gain of global carbon stocks (Crowther et al., 2016; Wieder et al., 2019). This is because of the large soil 25 

organic carbon stock in arctic soils (Tarnocai et al., 2009) and the strong  response of soil respiration rates to warming in these 

cold ecosystems (Carey et al., 2016). Bacterial soil communities in the Arctic terrestrial region are adapted to perform well at 
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low temperatures (Bååth, 2018). However, these bacterial communities are likely to be exposed to increasing soil temperatures 

in this  century (Post et al 2018) and  it remains uncertain whether these soil bacterial communities will adapt their response 

to temperature when exposed to warmed conditions (Rinnan et al., 2011; Weedon et al., 2023; Rousk et al., 2012). Knowledge 30 

of the climate conditions under which such an adaption takes place will help in estimations of the potential vulnerability of 

arctic soil carbon stocks to warmer climate conditions (Bååth, 2018; Bradford et al., 2019; García-Palacios et al., 2021).  

The temperature adaptation of soil bacterial communities is most often characterized in relation to respiration, growth or 

enzymatic activity. A commonly applied method is to estimate the relationship between whole community growth and 

temperature with an assay that measures 3H-leucine uptake (Bååth et al., 2001). This relationship between temperature and 35 

bacterial growth can be described by the Ratkowsky model, which has three cardinal points: the (theoretical) minimum growth 

temperature (Tmin), optimal growth temperature (Topt) and maximum growth temperature (Tmax) (Ratkowsky et al., 1983). 

Previous research has shown that the temperature-growth relationships of soil bacterial communities adapt to their local 

environment, such that there is a positive correlation between mean annual air temperature (MAAT) and the parameters 

describing the temperature-growth relationships of soil bacterial communities (cardinal points) (Bååth, 2018). For example, 40 

recently it has been found that across an elevation gradient in the Peruvian Andes Tmin increased 0.2 degrees per degree 

Celsius increase in MAAT (Nottingham et al., 2019) and a similar correlation was found between MAAT and Topt across a 

natural climate gradient in Europe (Cruz Paredes et al., 2021). This correlation has also been shown in the Antarctic, where 

the temperature-growth relationships of soil bacterial communities show higher values of Tmin with higher mean annual soil 

temperature (Rinnan et al., 2009). However, no comparable large-scale study on the temperature-growth relationships of soil 45 

bacterial communities in the Arctic has been performed yet. Such a large scale study is needed for arctic soil bacterial 

communities, as the Arctic differs from lower latitudinal regions in terms of its current climate(Convey, 2013), predicted 

climate changes (Post et al., 2019) and importance for the global soil carbon stock (Wieder et al., 2019). 

Despite strong correlations over large spatial scales, an increase in the mean annual soil temperature does not necessarily 

lead to a shift in temperature-growth relationships of bacterial communities when soils are experimentally warmed in 50 

lab incubation and field studies (Pietikäinen et al., 2005; Birgander et al., 2013, 2018; Rinnan et al., 2011; Weedon et 

al., 2023). Instead, a common observation is a rapid change in the temperature-growth relationships driven by a 

community turnover when soils are incubated above the optimal growth temperature of the in situ soil bacterial 

community, (Birgander et al., 2013; Donhauser et al., 2020). This suggests that the maximum soil temperature is an 

important predictor of the temperature-growth relationships of bacterial communities. Supporting evidence for this 55 

comes from a study in the Antarctic, where coastal water bacterial communities are adapted to lower temperatures (lower 

Tmin) than soil bacterial communities in the same region, despite the mean annual temperature of Antarctic water being 

higher than that of Antarctic soils (van Gestel et al., 2020). The Antarctic soils are exposed to higher summer 

temperatures than the Antarctic marine environment, leading to the hypothesis that the maximum temperature, rather 
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than the annual average, is a more important driver for the temperature adaptation of bacterial communities across 60 

different habitats (Birgander et al., 2013; van Gestel et al., 2020).  

Analogous to the maximum temperature, the coldest soil temperature could also influence temperature-growth 

relationships. In desert soils, the upper layer (0-5 cm) is characterized by relatively large amplitude fluctuations in 

temperature over both diurnal and annual timescales. Consequently, the bacterial communities of these upper layers tend 

to have lower Tmin values and higher Topt values than deeper soil layers that are exposed to more moderate  and stable 65 

soil temperatures (van Gestel et al., 2013). These studies show that while the mean annual temperature might correlate 

strongly with the cardinal points of the temperature-growth relationships of soil bacterial communities, the temperature 

adaption might be more directly related to other selective pressures of the thermal regime such as the highest or lowest 

soil temperature.  

To predict future temperature-growth relationships of soil bacterial communities in the Arctic, more knowledge is needed 70 

on 1) the current temperature adaptation of soil bacterial communities in the Arctic and 2) the specific mechanisms 

driving temperature adaptation. Bacterial communities from polar ecosystems are hypothesized to be adapted to low 

temperatures, shown by a low Tmin (Baath, 2018). For example, sub-Arctic bacterial communities exhibit lower cardinal 

points of their temperature-growth relationships compared to bacterial communities of temperate ecosystems, with a 

Tmin of –9.6 to -7.0 °C and Topt 25 to 30 °C (Cruz-Paredes et al., 2021; Rinnan et al., 2011). It is likely that soil warming 75 

will shift the temperature-growth relationships of sub-Arctic soil bacterial communities (Weedon et al., 2023; Rijkers et 

al., 2022). However, the in situ temperature-growth relationships of soil bacterial communities in the mid- to High Arctic 

are so far unknown and will need to be evaluated to understand the current temperature adaptation of soil bacterial 

communities and drivers of temperature adaptation under future climate conditions.   

It is important to evaluate which soil thermal parameters are the most accurate predictor for soil bacterial communities 80 

in the sub- to High Arctic, as this might not be accurately predicted from the mean soil annual temperature alone. In 

these (sub-) Arctic regions the maximum and minimum daily soil temperatures are only weakly correlated with the mean 

annual soil temperature, due to the influence of local environmental parameters on the soil climate extremes. For 

example, winter soil temperatures also vary greatly on the meter-scale in the Arctic, due to the influence of snow cover 

on winter microclimate (Karjalainen et al., 2018). On the other hand, summer soil temperature is more closely related to 85 

the air temperature, which varies less between (sub-) arctic soils (Fig. 1). Implementing knowledge about these possible 

drivers of the temperature adaptation of soil bacterial communities at these high northern latitudes will support accurate 

predictions of soil decomposition of the large carbon stock present in the Arctic under future climates.  
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Due to the possible influence of multiple soil thermal parameters, accurate prediction of temperature adaptation by soil 

bacterial communities will likely require high-resolution soil temperature data. However, soil temperature logger data 90 

are particularly scarce in the Arctic region (Lembrechts et al., 2021), leading to a need for potential alternative predictors 

of soil microbial temperature adaptation.  DNA-based bacterial community composition measures have recently been 

shown to correlate with shifts in the temperature growth relationships of a soil bacterial communities (Donhauser et al., 

2020; Rijkers et al., 2022; Weedon et al., 2023). More generally, temperature traits differ between members of bacterial 

communities from arctic soils (Wang et al., 2021), and specific bacterial OTUs taxa have been associated with warming 95 

in forest soils across North America (Oliverio et al., 2017). The aggregated community response, such as the temperature-

growth relationship, might therefore be predictable using the abundance of specific species that are associated with a 

warm or cold adapted community (Hicks et al., 2021). In a pan-arctic survey soil bacterial community showed a large 

diversity of species, with 15 common OTUs taxa shared between all soils (Malard et al., 2019). Therefore, potentially 

there are bacterial species that could indicate the current temperature adaptation of arctic soil bacterial communities. If 100 

so, this provides opportunities to determine the temperature adaptation of soil bacterial communities in the Arctic where 

long term soil temperature logging is absent. 

In this study we tested which soil thermal parameters best predicts the cardinal points of the temperature-growth 

relationships of bacterial communities from 12 soils collected in the sub- to high Arctic region. We hypothesized that 

the highest and lowest daily soil temperatures would be the best predictor of the corresponding cardinal points of the 105 

temperature-growth relationships. We also compared the DNA-based compositional profiles across soil types and 

explored whether such compositional data can be used as an alternative predictor for the temperature-growth 

relationships of the soil bacterial communities in Arctic soils. 
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 2. Methods 110 

2.1 Sample collection 

In the summers of 2018 and 2020, soil samples were collected from 12 soil types at 9 sites ranging from sub- to High 

Arctic (Figure 1). The 2018 sampling at Toolik Lake Field station, Svalbard, Abisko and Iceland has been previously 

described in (Rijkers et al., 2022). In brief, soil cores of 10 cm depth were collected from Toolik Field Station, USA 

(68°38’ N, 149°36’ W) at the LTER Heath site, LTER Moist Acidic Tussock and LTER Non-Acidic Tussock; on 115 

Svalbard, from the Bjorndalen site (78°13’N, 15°19’E), dominated by Carex sp. vegetation;  at the FORHOT site in 

Iceland (64° 00′N, 21° 11′W), a grassland (Agrostis capillaris) and forest site (Picea sitchensis) were sampled. Lastly, 

soil samples were collected from the blanket bog (Sphagnum sp.) where the ITEX warming experiment is located, close 

to the Abisko Research Station in Sweden (68°21’N, 18°49’E). 

In 2020 a second sampling campaign collected triplicate soil cores to a depth of 10 cm at sites in Greenland (two sites), 120 

Canada, Norway, and Finland. On Disko Island, Greenland soil cores were collected near the AWS-2 logger at Østerlien 

site of the Greenland Ecosystem monitoring (GEM; 69°15’’’ N, 53°30’W), which were covered by Vaccinium sp. At 

Kobbefjord, Greenland soil samples with Empetrum sp. cover were collected near the SoilEMP logger of GEM (64°08’N 

51°22’W). At Inuvik, Canada soil cores were sampled at Inuvik airport bog (68º 18.9342 N, 133º 26.0214 W), which is 

characterized by low shrubs (Nixon et al 2003). In Finland, samples were collected directly next to the ITEX site in 125 

Kilpisjarvi (69.4 N, 20.490E), for which the vegetation cover is dominated by Vaccinium and Empetrum sp (Ylänne et 

al 2015). Lastly, soil samples were collected at Petersfjellet in Norway (N69°35.5277’ E29°55.1939’), which was 

covered by Empetrum nigrum. 

2.2 Soil temperature data 

Soil temperature records were collected from the involved research stations (at Abisko (Dorrepaal et al., 2004), Svanhovd 130 

(BioForsk Svanhovd; http://lmt.bioforsk.no/agrometbase/getweatherdata_new.php?weatherStationId=36), Inuvik 

(National Resources Canada),  Svalbard (Global Terrestrial Network for Permafrost database; 

http://gtnpdatabase.org/boreholes/view/166), Toolik Lake (Hobbie and Laundre, 2021), FORHOT research site in 

Iceland (Sigurdsson et al., 2016), Kilpisjarvi ITEX site (unpublished, personal communication Sari Stark), Greenland 

sites (Green Ecosystem monitoring database; https://data.g-e-m.dk/)). To overcome differences in the time intervals of 135 

data collection between sites, we calculated the mean daily temperature for each day that soil temperature records were 

available (all records >3 years, except for Kilpisjarvi; Table 1). Based on the daily soil temperature records of each soil, 

we determined the mean annual temperature (MAT), mean warmest day (MaxTSTmax), mean coldest day (MinTSTmax) 

based on the annual records for the warmest day, coldest day and mean daily temperature per year (Table 2). 

http://lmt.bioforsk.no/agrometbase/getweatherdata_new.php?weatherStationId=36
http://gtnpdatabase.org/boreholes/view/166
https://data.g-e-m.dk/)
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2.3 Soil analysis 140 

After collection, soils were shipped on ice and cooled upon arrival at 4°C. The upper 10 cm was sampled for the following 

analyses: density of the soils samples was determined by rapid submersion in a water filled cylinder. The water content 

was calculated based on the weight before and after drying the soil at 70° C for 48 h. The dried samples were ground 

with a Retsch MM200 ball mill (Retsch, Haan, Germany) for 1 min at 30 rounds per second. A subsample was then 

ashed at 600⁰C for 6 h. The carbon and nitrogen content of ashed and non-ashed subsamples were measured on a Flash 145 

EA 1112 (ThermoFisher, Waltham, USA). For the calculation of organic carbon in the soil, the carbon content of the 

ashed samples was subtracted from the total amount of carbon content. Soil pH was measured by adding 5 g of soil to 

25 ml deionized water, after which the slurries were shaken for 1 h at 100 rpm. The soil pH was then measured on a 

WTW Inolab level2 pH meter (Xylem Analytics, Rye Brook, New York, USA). The slurry was then centrifuged at 200 

rpm, for 1 hr and then filtered on 0.45µm nylon filter. The filtered solution was used for the measured of extractable 150 

dissolved organic carbon content on a TOC-L CPH/CPN (Shimadzu, Columbia, USA). with NPOC method by 

manufacturer’s protocol. For the soil samples of Svalbard only pH measurements were performed due to limited amounts 

of soil. 

2.4 Temperature-growth relationships of soil bacterial communities 

For the assessment of the temperature sensitivity of bacterial growth, 1 gram of soil was subsampled for a leucine 155 

incorporation assay using methods adjusted from Bååth et al., (2001). Briefly, 20 ml of sterilized deionized water was 

added to the soil samples and these slurries were vortexed for 2 min at full speed. After 10 min centrifugation at 1000 

G, the 1 ml aliquots of the supernatant were suspended in 2 ml screw-top Eppendorf tubes. A 20 µl mixture 3H-labeled 

and unlabeled leucine was added, resulting in a final concentration of 401 nM and 72.5 kBq ml-1 in the assay tube. The 

sample aliquots were incubated either at 0, 4, 10, 15, 24.5, 28.5, 33.5 and 40 °C for 24 – 2 hours 24 h at 0°C, 8 h at 4°C, 160 

4 h at 10 and 15°C and 2 h at 24.5, 28.5, 33 or 40°C.. Trichloroacetic acid was added to the assay tubes to terminate the 

leucine incorporation. Washing steps for removal of non-incorporated leucine were followed as described in (Bååth et 

al., 2001). For scintillation 1 ml Optiphase HiSafe 3 (PerkinElmer, Waltham, Massachusetts, USA) was finally added to 

the biomass pellet after the washing steps. 3H-activity was measured on a Tricarb2800T (Perkin Elmer), Waltham, USA) 

with 5 minute measurement for 3H. Finally, the leucine incorporation rate, nM leucine 1 h -1 g dry weight soil, was 165 

calculated based on 3H activity measured. 

2.5 Bacterial community composition 

For the characterization of the soil microbial community, 0.2 grams of soil were subsampled for DNA extraction and 

amplicon sequencing of the 16S rRNA gene. DNA was extracted by the use of Powersoil kit (Qiagen, Hilden, Germany), 
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following the manufacturer’s protocol with elution of the purified DNA into 60 sterile µl Millipore water. Amplicons 170 

were generated by a two-step PCR of the 16S V4 rRNA gene with primers designed by (Caporaso et al., (2012). An 

initial PCR consisted of 24 cycles with an initial denaturation step of 1 min at 98°, followed by 25 cycles of denaturation 

for 10 s at 98 °C, annealing for 30 s at 55°C, elongation for 30 s at 72°C, followed by a final extension of 5 min at 72°C. 

Amplicons were then 50x diluted in σ-purified water and then indexed by a PCR with unique barcode primers for 8 

cycles with the same steps as the initial PCR amplification. Purification of the PCR product was done with Ampure XP 175 

beads (Beckman Coulter, Brea, California, USA), following manufacturer’s protocol. The indexed PCR products were 

then sequenced using paired-end Illumina MiSeq runs with V3-2x300 cycle chemistry. In total 1,243,600 sequences 

were generated for 39 samples (Median sequencing depth; 32,089 sequences per sample). Sequences were truncated at 

250 nucleotides on the forward reads and 220 nucleotides on the reverse reads due to deteriorating quality scores for 

later cycles (average Phred score < 30). Raw sequences are available in the NCBI Sequence Archive, under BioProject 180 

Accession number PRJNA857550. Amplicon sequence variants (ASVs) were generated by dereplication and chimera 

removal of the truncated sequences using DADA2 allowing a maximum expected error of 2 and ‘consensus’ chimera 

removal mode. Phylogenetic distances between the ASVs were estimated using MAFFT alignment (Katoh and Standley, 

2013) and Fasttree (Price et al., 2009). Taxonomic classification of the ASVs was performed based on the SILVA v138 

database (Yilmaz et al., 2014) using a scikit-learn naive Bayes machine-learning classifier (Bokulich et al., 2018) with 185 

a confidence threshold for limiting taxonomic depth at 70%. ASVs identified as mitochondria or chloroplasts as well as 

singletons were discarded prior to further statistical analyses. 

2.6 Statistical analyses 

All statistical analyses were performed in R (v4.0.2) (R Core Team, 2020). Soil daily temperature records were filtered 

for datapoints between 2002 and 2021. Leucine incorporation rates were fitted to a Ratkowsky model for bacterial growth 190 

(Ratkowsky et al., 1983) by the use of R-package ‘nls.multistart’ (Padfield and Matheson, 2018). The Ratkowsky model 

is based on the following equation;  

Eq. 1 

√𝐿𝑒𝑢 = 𝑎(𝑇 − 𝑇𝑚𝑖𝑛)  × (1 − 𝑒𝑏(𝑇−𝑇𝑚𝑎𝑥))  

where Leu is the rate of leucine incorporation, a is the coefficient below optimal growth temperature, T is the assay 195 

temperature, Tmin is the theoretical minimum growth temperature, b is coefficient above the optimal growth temperature 

and Tmax is maximum growth temperature (Table 2). The optimal temperature was determined by numerical 

interpolation. All figures were made with the ’ggplot2’ R-package. To test for the effects of soil thermal parameters on 

the temperature adaptation of soil bacterial communities, we performed linear regression between the cardinal points of 
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the temperature-growth relationships and minimum (MinTSTmin), mean (MAST), and maximal annual soil temperature 200 

(MaxTSTmax). These linear regression models tested the relationship between Tmin and minimum soil temperature, 

Tmax and the maximum soil temperature and Topt with minimum, mean and maximum soil temperature as independent 

variable. We fitted a linear regression for the relationship between the temperature range (Tmin – Tmax) of the 

temperature-growth relationships of the soil bacterial communities and amplitude of thermal soil regime (minimum 

MinT STmin to maximum soil temperature MaxTSTmax) with a linear regression model.  205 

Processing the microbial community data was done using the R-package ‘phyloseq’ (McMurdie and Holmes, 2013). Samples 

were rarified to depth of 23687 reads. Permutational multivariate analysis of variance (PERMANOVA; Anderson, 2001) was 

performed on the weighted UniFrac distances (Lozupone and Knight, 2005) of the sample of the 11 sites, excluding the 

Svalbard due to lack of data, (Suppl. Table 1.) using the mean annual soil temperature, pH, organic carbon content, organic 

nitrogen content and , community Topt and one of the three soil temperature variables (mean, maximum or minimum daily 210 

soil temperature) as independent variables in the ‘vegan’ R-package. We determined the common ASVs by filtering for mean 

relative abundance above 0.001 % in at least 2, 3, or 4 soil types. The relative abundance of the common ASVs in three datasets 

varying in cut off filter was used to predict the Topt of the soil bacterial communities. The relative abundance of these common 

ASVS was then used to perform a 3 types of regression tree analysis on the Topt of soil bacterial communities using the R-

package ‘caret’ (Kuhn, 2008). Data were randomly split into training (9 soils) and validation (3 soils) dataset, after which a 215 

regression tree analysis was performed with ‘rpart1SE’ function using the control settings (maxdepth=4, minsplit=4, 

minbucket =2). We also build a regression tree with cross validation (10 folds, 10 repeats) using the ‘rpart’ function using the 

same control settings. Additionally, we used ‘Rborist’ function with the default setting to calculate a random forest regression 

tree to predict Tmin based on the relative abundance of common ASVs in the training soils. For direct comparison with 

regression models, we performed an additional linear regression using Topt as independent variable and MaxT STmax as 220 

dependent variable using the 9 soils of the training dataset and 3 soils in the validation dataset. Due to the small datasets that 

these models were based on, the random division into training and validation dataset had a strong influence on the computed 

RMSE (root mean square error) value. Therefore, we trained each of the 4 models on all 220 possible combinations of soils in 

the training and validation dataset of the dataset with the cut-off filter for common ASVs found in 4 soil types (with a 9:3 split 

between soil for train and testing, respectively). We then compared the performance of the 4 different models based on median 225 

RMSE over the 220 simulations.  
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3. Results 

3.1 Temperature adaptation of soil bacterial communities 

From sub- to High Arctic, mean annual soil temperatures at 10 cm depth varied between -3.5 and 6.1 °C (Table 1, Figure 230 

1). The sampled bacterial communities varied in Tmin between -11.1 ± 4 (s.d) in Østerlien and -5.5 ± 2.1 in the Icelandic 

grassland. Topt varied between 23.4± 0.5 in Toolik Lake MAT and 34.1 ± 3.7 in Kilpisjarvi (Figure 2). Tmax varied 

between 42.2 ± 1.0 in Svalbard and 57.8 + 9.3 at Toolik Lake Heath. Temperature range of growth, (Tmin - Tmax) 

varied between 48.7 and 65.2.  

The MAST of soils was not significantly related with Topt (P= 0.5) nor was Tmin (P= 0.78, Adj. R2 = --0.1). However, 235 

Topt did relate significantly with MaxTSTmax, increasing 0.63 °C per °C (Figure 12; P < 0.01, Adj. R2 = 0.63) and also 

showed a significant but weaker relationship to the mean summer temperature (P<0.05, Adj. R2=0.34). In contrast, Topt 

was not significantly correlated to the number of days above 0°C (P=0.9). Tmin showed no significant correlation to 

mean winter soil temperature and coldest daily soil temperature (P>0.05). The temperature range of growth was 

significantly related to the amplitude of the temperature soil temperature (Linear regression; Adj. R2= 0.3, P= <0.05). 240 

We computed the optimal growth temperature of soil bacterial communities across the Arctic based on combining the Soil 

Temp database (Lembrechts et al., 2021) with our estimates of the relationship between soil temperature (MaxTSTmax) and 

Topt (Figure 4). 

3.2 Bacterial community composition 

After filtering for singletons, we retrieved a total of 967,146 reads across the samples, belonging to 12692 ASVs. 245 

PERMANOVA analyses showed bacterial community composition to be significantly influenced by pH and MAST of 

the sampling sites (Table 23, Figure 5), but showed no significant correlation with maximum nor minimum daily soil 

temperature (P >0.05; Supplementary Table 2 and 3) . The bacterial community composition was not significantly related 

with the Topt of the bacterial communities (P= 0.124). Proteobacteria (25.9%), Acidobacteriota (21.9%), 

Actinobacteriota (18.4%), Verrucomicrobiota (7%), Bacteroidota (6.7%), Chloroflexi (5.2%), Planctomycetota (5.1%), 250 

and Myxococcota (2.1%) were the most abundant phyla across all samples (Figure 3).  

We found 118 ASVs and 32 ASVs that were observed in 2 or 3 soils with a relative abundance greater than 0.001 %. 

Additionally, We we observed only 12 ASVs that occurred at relative abundance greater than 0.001 % in four or more 

sites (Table 43). The common ASV datasets differing in cut-offs showed similar RMSE-values for predicting Topt of 

the bacterial community (Supplementary Table 4). We therefore focussed on the dataset ASVs that occurred in at least 255 

4 soils for further analysis, as these ASVs are most likely useful in soil types outside this study. Both regression tree and 

random forest analyses based on the relative abundance of these common ASVs in at least 4 soils showed the relative 
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abundance of ASV11 was the best predictor of the corresponding community Topt (Suppl. Figure 1), in which it 

differentiated of ASV11 absence from the community and relative abundance > 0.055%. The pruned regression tree 

showed RMSE lower than the full tree on the validation dataset (Suppl. Figure 2; Suppl. Table 14). The linear regression 260 

model based on the MaxT STmax as dependent variable showed larger predictive power of Topt than the pruned 

regression tree and random forest, since summarized across the 220 possible training sets, the median RMSE of for the 

linear model was lower than that median RMSE of the pruned tree and random forest for common ASVs found in at 

least 4 soil types (2.17, 4.14 and 3.51, respectively; Suppl. Figure 3). 

  265 



11 

 

4. Discussion 

4.1 Temperature adaptation across the Arctic 

In this study we have explored the role of soil thermal parameters on the temperature adaptation of soil bacterial communities 

in the Arctic. The cardinal points estimated from bacterial communities sampled at 12 Arctic locations were comparable to 

other bacterial communities from polar soils and showed a large variety between sites and soil types. We found Tmin to vary 270 

between -11.1 and -5.5 °C, which is comparable to soils sampled from sub arctic soils (Cruz-Paredes et al., 2021; Rinnan et 

al., 2011; Weedon et al., 2023). Tmin was lowest at the low arctic site Østerlien, which is lower than any the Tmin of previously 

described for Arctic soil bacterial community, but fits within the range of Tmin of bacterial communities previously described 

in Antarctic soils (Rinnan et al., 2009). In contrast to Tmin, Topt is hypothesized to vary less between thermal environments 

(Rinnan et al., 2009). At the Toolik Lake Moist Acidic Tundra site, estimated Topt was 23.5 °C, which is so far the lowest 275 

Topt described for a soil bacterial community in the Arctic (Rinnan et al., 2011; Weedon et al., 2023; Cruz-Paredes et al., 

2021) and is also comparable to soil bacterial communities from Antarctica (Donhauser et al., 2020; Rinnan et al., 2009, 2011; 

van Gestel et al., 2020). This site was characterized by relative low summer temperatures and moderate annual mean 

temperatures, compared to the other sites (Table 1, Figure 1).   

4.2 Temperature adaptation is influenced by mean daily maximum soil temperature 280 

Of the soil thermal parameters we tested, only MaxT STmax had a significant correlation with temperature-growth relationships 

of Arctic bacterial communities (Figure 2). Temperatures above the optimum growth temperature can induce heat-related death 

of bacterial cells, which results in a strong selective pressure by the maximum soil temperature on the bacterial community 

(Bárcenas-Moreno et al., 2009; Birgander et al., 2013; Donhauser et al., 2020). Consequently, the optimal growth temperature 

of soil bacterial communities is always observed to greatly exceed the maximum soil temperatures at a given location 285 

(Bárcenas-Moreno et al., 2009; Birgander et al., 2018; van Gestel et al., 2013; Rinnan et al., 2009). Our results show that even 

in cold biome environments the maximum soil temperature is an important determinant of the temperature physiology of soil 

bacterial communities. For two of our sites (Inuvik and Svalbard), soil temperatures were recorded at depths that differed from 

the depth where the soil samples were taken (Table 1). Excluding these sites from our analysis, we still found the same 

relationship between Topt and the maximum soil temperature with a slope coefficient and intercept differing by less than 2% 290 

(Supplementary methods).  While samples in this study were collected in summer, temperature-growth relationships are not 

affected by seasonal dynamics (van Gestel et al., 2013; Birgander et al., 2018), making it likely that the MaxT STmax is the 

most important predictor of thermal adaptation amongst those we measured. All in all, the evidence collected in this study 

provides further support for the idea that temperature adaptation of soil microbial communities is best explained by the 

optimum-driven hypothesis (Alster et al., 2020). According to this hypothesis  temperature-growth relationships are driven by 295 

the maximum soil temperatures, and this was previously proposed as temperature adaptation could only be induced after 
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exposure of communities to conditions above a certain threshold temperature (Bárcenas-Moreno et al., 2009; Birgander et al., 

2013, 2018). 

4.3 No evidence for influence of soil thermal parameters on Tmin or Tmax 

In contrast to the clear relationship between MaxT STmax and Topt, we found no evidence for a relationship between soil 300 

thermal parameters and the minimum and maximum cardinal points, nor with the thermal breadth of the bacterial temperature-

growth relationships. This non significance could in principle be a result of statistical artefacts, since for the estimation of 

Tmin and Tmax, both cardinal points are extrapolated beyond the assay temperatures, which could cause a large standard 

deviation of the mean and increase the chance of type II errors. Indeed, the mean of site-level standard deviations across sites 

was relatively high for both Tmin and Tmax (respectively mean s.d. of 1.94 and 2.8). However, this variation was on the same 305 

order as that observed for Topt estimates amongst the sampled soil bacterial communities (mean s.d. of 2.06), implying that 

the lack of significance is most likely not due to limited power of the statistical analysis.   

Given the importance of Tmin for determining activity at low temperatures, we expected that Tmin of communities would be 

related to site MinTSTmin. However, we did not detect a significant influence of MinT on the Tmin of soil bacterial 

communities. There is a general consensus that constantly frozen subsoils (permafrost) are an unlikely environment for 310 

proliferation of soil microbial life (Abramov et al., 2021). Due to this limited growth, cold-adapted (low Tmin) species might 

not necessarily thrive at subzero temperature but are likely to be better equipped to survive the winter conditions. Consequently, 

winter temperatures might not pose an environmental filter for the community assembly. Soil temperatures above freezing 

might have a larger influence on the temperature adaption of soil bacterial communities, when soil bacteria are most 

metabolically active (van Gestel et al., 2020). Therefore, the high soil temperatures in summer might induce a large 315 

environmental influence on the assembly of the bacterial communities. Additionally, strategies to survive subzero temperatures 

might not necessarily be indicative of the optimal growth temperature, as many microbial species that can cope with subzero 

temperature still grow best at relatively high temperature and are best described as psychro-tolerant rather than as true 

psychrophiles (Cavicchioli, 2015). These factors might therefore be the reason why we are unable to make predictions of Tmin 

based on the temperature parameters measured in this study.  320 

Since MaxT STmax influenced the Topt of the soil bacterial communities, we expected that this parameter would also correlate 

with the Tmax value of the soil bacterial community. Tmax has been hypothesized to increase with higher soil temperatures 

(Rinnan et al., 2009; Birgander et al., 2013), but to date this has not been  directly tested. In our results, Tmax was not 

influenced by any of the measured soil thermal parameters. As noted above, Topt was far above maximum soil temperatures, 

which suggests that the measured growth rates of bacterial communities above Topt are rarely relevant in the soil environment. 325 

Therefore, it is likely that Tmax is less relevant for the performance of soil bacterial species and consequently, not subject to 

selection in sensu Vellend, (2010). 
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4.4 What will happen in response to warming? 

Since MaxT STmax was found to be most important predictor, it follows that changes to summer temperatures are likely to be 

the most important factor determining temperature-growth relationships of bacterial communities in Arctic soils under a 330 

changing climate. Arctic summer air temperatures are predicted to increase less than the mean annual and winter temperature 

(Karjalainen et al., 2018). While it has been estimated that mean annual soil temperature will rise ~ 2 - 4 °C around the Arctic 

by 2100 under RCP 4.5 (Aalto et al., 2018), accurate predictions of summer soil temperature in the Arctic are complicated by 

a variety of environmental factors that influence soil temperatures. At the local scale, soil temperatures are largely influenced 

by air temperature, solar radiation and precipitation (Karjalainen et al., 2018), leading to > 5 °C variation on the microscale 335 

(Aalto et al., 2013; Karjalainen et al., 2018). Increasing air temperatures in the Arctic can also lead to changes in vegetation 

height and shrub expansion (Mekonnen et al., 2021), which moderate increasing soil temperature by shading during the 

summer season (Paradis et al., 2016; Blok et al., 2011). Furthermore, it is likely that the Arctic terrestrial region will experience 

more frequent and extreme heatwaves, which could induce rapid change in the temperature-growth relationships if soil 

temperatures exceed historical maximum soil temperatures and/or the Topt of the soil bacterial communities (Bárcenas-340 

Moreno et al., 2009; Birgander et al., 2013; Donhauser et al., 2020). These complicated local scale effects imply that more 

microclimatic data will be needed for more accurate assessments of temperature adaptation of soil bacterial communities in 

the Arctic. 

We computed the optimal growth temperature of soil bacterial communities across the Arctic based on combining the Soil 

Temp database (Lembrechts et al., 2021) with our estimates of the relationship between soil temperature (MaxT) and Topt 345 

(Figure 4). Our study covered a large portion of the range of maximum soil temperature within the Arctic region, as these 

temperatures currently vary between -0.4 and 20.6 °C  (Lembrechts et al., 2021). Figure 4 shows that the Topt of Arctic soil 

bacterial communities likely varies between 22 and 35 °C. A combination of this pan-arctic projection,  predicted future 

summer (soil) temperatures, and other spatial databases such as soil C maps,  could be useful to identify locations where soil 

bacterial communities will be sensitive to future warming, where potential shifts in the temperature-growth relations can occur, 350 

and where these may have disproportionate impacts on regional biogeochemistry. For example, by identifying regions where 

local soil temperatures are expected to rise rapidly and soil organic stocks are large.  

 

4.5 Can we use microbial community data for predicting temperature adaption? 

Predicting temperature adaptation of soil bacterial communities across the Arctic might be limited by lack of long term soil 355 

temperature data across the Arctic as most Arctic research has focused on only few research sites (Metcalfe et al., 2018). To 

explore the potential use of microbial ‘bio-indicators’ for predicting the temperature-growth relationships of in situ soil 

bacterial communities (Hicks et al., 2021), we evaluated whether microbial community data can reveal the temperature 

adaptation of microbial communities. We found that regression tree analysis using bacterial ASVs as potential predictors 
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(Suppl. Fig. 4) produced larger estimation errors on prediction of the Topt of soil bacterial communities when compared with 360 

the linear regression against MaxTSTmax (Supplementary Table 4). This can be partially attributed to the low effective sample 

sizes resulting from the use of cross-validation methods to prune the regression trees, but likely also reflects a lack of consistent 

signal in the bacterial composition data. Although this doesn’t does not refute the potential for using compositional data to 

predict community-broad temperature growth relationships (Hicks et al., 2021), it implies that such methods  would need a 

larger training dataset with more sample sites for proper validation, and more accurate predictions. The full regression tree 365 

used a low number of ASVs (Supplementary Figure 2, Supplementary Table 52), which were not observed in all soil types, 

which might indicate limited use for other datasets. This suggests that indicator species, if they exist, might be indicative of 

the temperature adaptation of bacterial communities for only certain particular soil types or climatic regions. Despite these 

caveats, it is notable that the pruned regression tree and random forest model both identified the abundance of ASV11 as 

effective in predicting the Topt (Supplementary Figure 1). ASV11 matches 100% to ASV that is the most commonly observed 370 

bacterial in arctic soils (Malard et al., 2019). The genus of Candidatus Udaeobacter, to which ASV11 matches, is commonly 

found in soil environments globally (Brewer et al., 2016). It has been proposed to be a small oligotrophic and resilient soil 

bacteria characterized by aerobic heterotrophic metabolism with small genome size (2.8-3.2 Mbp), large diversity of antibiotic 

resistance genes and a preference for acidic soils (Brewer et al., 2016; Willms et al., 2020, 2021). However, so far no study 

has successfully cultivated the any lineage of the genus ‘Candidatus Udaeobacter’ and traits related to temperature preferences 375 

have not been recorded. In the pruned tree (Supplementary Figure 4) the presence or absence of ASV11 was indicative a Topt 

of 26.3 or 31.4, respectively. As this taxon was absent in 7 out of 12 soils, the utility as an indicator of temperature adaption 

is quite limited. In summary, although there is some potential utility in using community data to estimate and predict aspects 

of soil bacterial temperature physiology, our results suggest that more accurate predictions can be made from soil temperature 

records.  380 

5. Conclusions 

In this study, we showed a large variety in the temperature adaptation of soil bacterial communities from the sub to High Arctic 

region. Due to the large influence of maximum soil temperatures, we predict that summer warming, to the extent that leads to 

higher maximum soil temperatures, will lead to increasing community-level increase the Topt of these bacterial communities 

under future climate conditions in the Arctic. The influence of shifting optimal growth temperature for soil bacterial 385 

communities on soil carbon cycling will need further investigation to evaluate the contribution to the vulnerability of soil 

carbon stock in the Artic under future climate conditions. 
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Appendices 390 

Supplementary Figure 1. Importance of variables for Random Forest Tree Regression Analysis 

Supplementary Figure 2. Regression tree analysis for estimation of Topt of bacterial community based on the relative 

abundance of the 12 common ASVS across all soil samples. 

Supplementary Figure 3. Histograms of the performance of each model type by RMSE. 

Supplementary Figure 4. Scatterplot the relationship between Topt of the soil bacterial community and relative abundance 395 

of ASV 11 in the community composition. Lines indicate the predicted Topt values by the pruned regression tree indicate. 

Supplementary Table 1. Characteristics of the soil types  

Supplementary Table 2. PERMANOVA showing the influence of maximum daily soil temperature and other environmental 

on bacterial community composition 

Supplementary Table 3. PERMANOVA showing the influence of minimum daily soil temperature and other environmental 400 

factors on on bacterial community composition 

Supplementary Table 4. Comparison of the performance (RMSE) of regression tree, random forest model and linear model 

to predict Topt of the bacterial community. 

Supplementary Table 52. Taxonomy of ASVs commonly found in samples in study and previous work. N= indicates the 

number of soil types the ASV was present in this study. 405 

Supplementary methods Description and comparison of the additional linear regression test performed on the Topt ~ 

Warmest daily soil temperature relationship for 9 sites.  
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Figure Captions 

Figure 1. A) Map with polar projection showing the 12 sampling sites across the Arctic and B) the average values of soil 

thermal regimes for each site including the maximum (red), mean (grey) and minimum (blue) soil temperature. Error bars 

indicate the standard deviation across the years.  590 

 

Figure 2. A) Estimated growth curves for each soil type depicted by the normalized leucine incorporation over incubation 

temperature. Colors indicate the maximum soil temperature of each sampling site. B) Linear relationships between the optimal 

growth temperature and maximum soil temperature, error bars indicate the standard error. 

 595 

Figure 3. Bar plot showing the relative abundance (%) of top 10 most abundance phyla across all soil samples. Color shades 

indicate the two most abundant Order for each of these phyla. 

Figure 4. Map of the predicted Topt of soil bacterial communities across the Arctic based on the linear relationship between 

maximum soil temperature (from SoilTemp database) and Topt.  

Figure 5. Principal coordinate analysis of bacterial community composition (16s rRNA amplicon sequencing) based on 600 

weighted Unifrac distances. Lines show the correlation of measured environmental factors with the axes of the ordination 

space.  

 

Table 1. Thermal regimes of the 12 soil types 

 605 

Table 2. Description of abbreviations used to described temperature-growth relationships and soil thermal regimes 

 

Table 32. Results of PERMANOVA showing the influence of soil parameters on the bacterial community composition 

 

Table 43. Taxonomy of commonly observed bacterial ASVS. N indicates number of soils the ASV was observed in. 610 
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Table 1. Thermal regimes of the 12 sampling sites in ° C. MaxT STmax depicts the warmest day of the year, MAST the 

mean annual temperature and Min STmin the coldest day of the year. ± indicate standard deviation of the mean value recorded 

of the temperature record from the first year (Start) till the last year (End). Depth indicated the soil temperature logger depth 615 

in centimeters. 

 

  

Site Start End Depth MaxTSTmax MAST MinTSTmin 

Abisko 2015 2019 10 13.2 ± 3.7 0.8 ± 0.1 -9.8 ± 5.3 

Blaesedalen 2013 2020 10 10.5 ± 1.3 -0.7 ± 1.3 -14.5 ± 4.8 

Iceland Forest 2013 2019 10 11.8 ± 0.3 5.1 ± 0.3 0 ± 0.3 

Iceland Grassland 2013 2018 10 14.2 ± 0.7 6.1 ± 0.6 0.1 ± 0.2 

Inuvik 2002 2018 5 13.5 ± 2.2 1.3 ± 0.7 -6.1 ± 3 

Kobbefjord 2008 2019 10 12.3 ± 0.8 1.9 ± 0.5 -5.3 ± 2.5 

Svalbard 2008 2016 25 9 ± 0.8 -3.5 ± 0.5 -18.5 ± 2.3 

Svanhovd 2014 2021 10 15 ± 0.7 3.6 ± 0.6 -3.4 ± 0.1 

Toolik Lake Heath 2002 2019 10 13.5 ± 1 -2.2 ± 1.2 -13.8 ± 3.8 

Toolik Lake MAT 2008 2021 10 2.7 ± 0.4 -2.2 ± 0.6 -8.1 ± 2.2 

Toolik Lake MNAT 2012 2021 10 4.7 ± 0.8 -1.7 ± 0.8 -8.2 ± 2.9 

Kilpisjarvi 2019 2019 10 16.3    
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Table 2. Description of abbreviations used to described temperature-growth relationships and soil thermal regimes 620 
 

ABBREVIATION DESCRIPTION 

CARDINAL POINTS OF 
TEMPERATURE-GROWTH 
RELATIONSHIPS 

Tmin Theoretical minimum temperature of growth 

 
Topt Optimal growth temperature  
Tmax Theoretical maximum growth temperature 

SOIL TEMPERATURES STmin Mean minimum daily soil temperature  
MAST Mean annual soil temperature  
STmax  Mean maximum daily soil temperature 

  

Table 2. Results of PERMANOVA on bacterial community composition 
 Df SumOfSqs R2 F Pr(> F) 

MAST 1 0.013 0.061 3.136 0.037 
pH 1 0.085 0.412 21.115 0.001 
Water Content 1 0.008 0.037 1.882 0.115 
Topt 1 0.008 0.037 1.919 0.124 
Organic C 1 0.004 0.021 1.084 0.290 
Organic N 1 0.008 0.040 2.068 0.095 
Residual 20 0.081 0.391   

Total 26 0.207 1   

Table 3. PERMANOVA showing the association between mean annual soil temperature (MAST) and 
other environmental (pH, water content, organic carbon and nitrogen) and community physiological 
measures (Topt) and bacterial community composition calculated using the weighted UniFrac 
distance betweenmetric based on 16 rRNA gene sequences across the 11 sampled sites (n = 1 –3 per 
site). Bold numbers indicate significance (P<0.05) 

 Df SumOfSqs R2 F Pr(> F) 

MAST 1 0.013 0.061 3.136 0.037 
pH 1 0.085 0.412 21.115 0.001 
Water Content 1 0.008 0.037 1.882 0.115 
Topt 1 0.008 0.037 1.919 0.124 
Organic C 1 0.004 0.021 1.084 0.290 
Organic N 1 0.008 0.040 2.068 0.095 
Residual 20 0.081 0.391   

Total 26 0.207 1   
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Table 43. Taxonomy of commonly observed (present in samples from 4 or more sites) bacterial ASVs. N indicates 

number of soils the ASV was observed in. 

 

 625 

OTUASV PHYLUM CLASS ORDER FAMILY GENUS SPECIES N 

1 Acidobacteriota Acidobacteriae Acidobacteriales Acidobacteriaceae 

(Subgroup 1) 

Granulicella Uncultured 

soil 

4 

2 Acidobacteriota Acidobacteriae Subgroup 2 Subgroup 2 Subgroup 2 Uncultured 

forest 

4 

3 Acidobacteriota Acidobacteriae Subgroup 2 Subgroup 2 Subgroup 2 Uncultured 

eubacterium 

6 

4 Actinobacteriota Thermoleophilia Solirubrobacterales Solirubrobacteraceae Conexibacter 4 

5 Actinobacteriota Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium 4 

6 Actinobacteriota Actinobacteria Frankiales Acidothermaceae Acidothermus 4 

7 Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae 
 

10 

8 Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Bradyrhizobium 4 

9 Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae 
 

5 

10 Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae 
 

7 

11 Verrucomicrobiota Verrucomicrobiae Chthoniobacterales Chthoniobacteraceae Candidatus 

Udaeobacter 

Uncultured 

soil 

5 

12 Proteobacteria Gammaproteobacteria WD260 WD260 WD260 Uncultured 

eubacterium 

4 


