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Abstract

Rapid warming of the arctic terrestrial region has the potential to increase soil decomposition rates and form a carbon-driven
feedback to future climate change. For accurate prediction of the role of soil microbes in these processes it will be important
to understand the temperature responses of soil bacterial communities and implement them into biogeochemical models. The
temperature adaptation of soil bacterial communities for a large part of the Arctic region is unknown. We evaluated the current
temperature adaption of soil bacterial communities from 12 sampling sites in the sub- to High Arctic. Temperature adaptation
differed substantially between the soil bacterial communities of these sites, with estimates of optimal growth temperature
(Topt) ranging between 23.4 £ 0.5 and 34.1 £ 3.7 C. We evaluated possible statistical models for the prediction of the
temperature adaption of soil bacterial communities based on different climate indices derived from soil temperature records,
or on bacterial community composition data. We found that highest daily average soil temperature was the best predictor for
the Topt of the soil bacterial communities, increasing 0.63 °C per °C. We found no support for the prediction of temperature
adaptation by regression tree analysis based on relative abundance data of most common bacterial species. Increasing summer
temperatures will likely increase Topt of soil bacterial communities in the Arctic. Incorporating this mechanism into soil
biogeochemical models and combining it with projections of soil temperature will help to reduce uncertainty in assessments

of the vulnerability of soil carbon stocks in the Arctic.

1. Introduction

The Arctic terrestrial biome has the potential to undergo particularly large losses of soil organic carbon and controls the
potential loss or gain of global carbon stocks (Crowther et al., 2016; Wieder et al., 2019). This is because of the large soil
organic carbon stock in arctic soils (Tarnocai et al., 2009) and the strong response of soil respiration rates to warming in these

cold ecosystems (Carey et al., 2016). Bacterial soil communities in the Arctic terrestrial region are adapted to perform well at
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low temperatures (Baath, 2018). However, these bacterial communities are likely to be exposed to increasing soil temperatures
in this century (Post et al 2018) and it remains uncertain whether these soil bacterial communities will adapt their response
to temperature when exposed to warmed conditions (Rinnan et al., 2011; Weedon et al., 2023; Rousk et al., 2012). Knowledge
of the climate conditions under which such an adaption takes place will help in estimations of the potential vulnerability of
arctic soil carbon stocks to warmer climate conditions (Baath, 2018; Bradford et al., 2019; Garcia-Palacios et al., 2021).

The temperature adaptation of soil bacterial communities is most often characterized in relation to respiration, growth or
enzymatic activity. A commonly applied method is to estimate the relationship between whole community growth and
temperature with an assay that measures *H-leucine uptake (Baath et al., 2001). This relationship between temperature and
bacterial growth can be described by the Ratkowsky model, which has three cardinal points: the (theoretical) minimum growth
temperature (Tmin), optimal growth temperature (Topt) and maximum growth temperature (Tmax) (Ratkowsky et al., 1983).
Previous research has shown that the temperature-growth relationships of soil bacterial communities adapt to their local
environment, such that there is a positive correlation between mean annual air temperature (MAAT) and the parameters
describing the temperature-growth relationships of soil bacterial communities (cardinal points) (Baath, 2018). For example,
recently it has been found that across an elevation gradient in the Peruvian Andes Tmin increased 0.2 degrees per degree
Celsius increase in MAAT (Nottingham et al., 2019) and a similar correlation was found between MAAT and Topt across a
natural climate gradient in Europe (Cruz Paredes et al., 2021). This correlation has also been shown in the Antarctic, where
the temperature-growth relationships of soil bacterial communities show higher values of Tmin with higher mean annual soil
temperature (Rinnan et al., 2009). However, no comparable large-scale study on the temperature-growth relationships of soil
bacterial communities in the Arctic has been performed yet. Such a large scale study is needed for arctic soil bacterial
communities, as the Arctic differs from lower latitudinal regions in terms of its current climate(Convey, 2013), predicted

climate changes (Post et al., 2019) and importance for the global soil carbon stock (Wieder et al., 2019).

Despite strong correlations over large spatial scales, an increase in the mean annual soil temperature does not necessarily
lead to a shift in temperature-growth relationships of bacterial communities when soils are experimentally warmed in
lab incubation and field studies (Pietikdinen et al., 2005; Birgander et al., 2013, 2018; Rinnan et al., 2011; Weedon et
al., 2023). Instead, a common observation is a rapid change in the temperature-growth relationships driven by a
community turnover when soils are incubated above the optimal growth temperature of the in situ soil bacterial
community, (Birgander et al., 2013; Donhauser et al., 2020). This suggests that the maximum soil temperature is an
important predictor of the temperature-growth relationships of bacterial communities. Supporting evidence for this
comes from a study in the Antarctic, where coastal water bacterial communities are adapted to lower temperatures (lower
Tmin) than soil bacterial communities in the same region, despite the mean annual temperature of Antarctic water being
higher than that of Antarctic soils (van Gestel et al., 2020). The Antarctic soils are exposed to higher summer

temperatures than the Antarctic marine environment, leading to the hypothesis that the maximum temperature, rather
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than the annual average, is a more important driver for the temperature adaptation of bacterial communities across
different habitats (Birgander et al., 2013; van Gestel et al., 2020).

Analogous to the maximum temperature, the coldest soil temperature could also influence temperature-growth
relationships. In desert soils, the upper layer (0-5 cm) is characterized by relatively large amplitude fluctuations in
temperature over both diurnal and annual timescales. Consequently, the bacterial communities of these upper layers tend
to have lower Tmin values and higher Topt values than deeper soil layers that are exposed to more moderate and stable
soil temperatures (van Gestel et al., 2013). These studies show that while the mean annual temperature might correlate
strongly with the cardinal points of the temperature-growth relationships of soil bacterial communities, the temperature
adaption might be more directly related to other selective pressures of the thermal regime such as the highest or lowest

soil temperature.

To predict future temperature-growth relationships of soil bacterial communities in the Arctic, more knowledge is needed
on 1) the current temperature adaptation of soil bacterial communities in the Arctic and 2) the specific mechanisms
driving temperature adaptation. Bacterial communities from polar ecosystems are hypothesized to be adapted to low
temperatures, shown by a low Tmin (Baath, 2018). For example, sub-Arctic bacterial communities exhibit lower cardinal
points of their temperature-growth relationships compared to bacterial communities of temperate ecosystems, with a
Tmin of 9.6 t0 -7.0 °C and Topt 25 to 30 °C (Cruz-Paredes et al., 2021; Rinnan et al., 2011). It is likely that soil warming
will shift the temperature-growth relationships of sub-Arctic soil bacterial communities (Weedon et al., 2023; Rijkers et
al., 2022). However, the in situ temperature-growth relationships of soil bacterial communities in the mid- to High Arctic
are so far unknown and will need to be evaluated to understand the current temperature adaptation of soil bacterial

communities and drivers of temperature adaptation under future climate conditions.

It is important to evaluate which soil thermal parameters are the most accurate predictor for soil bacterial communities
in the sub- to High Arctic, as this might not be accurately predicted from the mean soil annual temperature alone. In
these (sub-) Arctic regions the maximum and minimum daily soil temperatures are only weakly correlated with the mean
annual soil temperature, due to the influence of local environmental parameters on the soil climate extremes. For
example, winter soil temperatures also vary greatly on the meter-scale in the Arctic, due to the influence of snow cover
on winter microclimate (Karjalainen et al., 2018). On the other hand, summer soil temperature is more closely related to
the air temperature, which varies less between (sub-) arctic soils (Fig. 1). Implementing knowledge about these possible
drivers of the temperature adaptation of soil bacterial communities at these high northern latitudes will support accurate

predictions of soil decomposition of the large carbon stock present in the Arctic under future climates.
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Due to the possible influence of multiple soil thermal parameters, accurate prediction of temperature adaptation by soil
bacterial communities will likely require high-resolution soil temperature data. However, soil temperature logger data
are particularly scarce in the Arctic region (Lembrechts et al., 2021), leading to a need for potential alternative predictors
of soil microbial temperature adaptation. DNA-based bacterial community composition measures have recently been
shown to correlate with shifts in the temperature growth relationships of a soil bacterial communities (Donhauser et al.,
2020; Rijkers et al., 2022; Weedon et al., 2023). More generally, temperature traits differ between members of bacterial
communities from arctic soils (Wang et al., 2021), and specific bacterial ©Fs-taxa have been associated with warming
in forest soils across North America (Oliverio etal., 2017). The aggregated community response, such as the temperature-
growth relationship, might therefore be predictable using the abundance of specific species that are associated with a
warm or cold adapted community (Hicks et al., 2021). In a pan-arctic survey soil bacterial community showed a large
diversity of species, with 15 common ©FUJs-taxa shared between all soils (Malard et al., 2019). Therefore, potentially
there are bacterial species that could indicate the current temperature adaptation of arctic soil bacterial communities. If
s0, this provides opportunities to determine the temperature adaptation of soil bacterial communities in the Arctic where

long term soil temperature logging is absent.

In this study we tested which soil thermal parameters best predicts the cardinal points of the temperature-growth
relationships of bacterial communities from 12 soils collected in the sub- to high Arctic region. We hypothesized that
the highest and lowest daily soil temperatures would be the best predictor of the corresponding cardinal points of the
temperature-growth relationships. We also compared the DNA-based compositional profiles across soil types and
explored whether such compositional data can be used as an alternative predictor for the temperature-growth

relationships of the soil bacterial communities in Arctic soils.
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2. Methods
2.1 Sample collection

In the summers of 2018 and 2020, soil samples were collected from 12 soil types at 9 sites ranging from sub- to High
Acrctic (Figure 1). The 2018 sampling at Toolik Lake Field station, Svalbard, Abisko and Iceland has been previously
described in (Rijkers et al., 2022). In brief, soil cores of 10 cm depth were collected from Toolik Field Station, USA
(68°38” N, 149°36° W) at the LTER Heath site, LTER Moist Acidic Tussock and LTER Non-Acidic Tussock; on
Svalbard, from the Bjorndalen site (78°13’N, 15°19’E), dominated by Carex sp. vegetation; at the FORHOT site in
Iceland (64° 00N, 21° 11'W), a grassland (Agrostis capillaris) and forest site (Picea sitchensis) were sampled. Lastly,
soil samples were collected from the blanket bog (Sphagnum sp.) where the ITEX warming experiment is located, close
to the Abisko Research Station in Sweden (68°21°N, 18°49’E).

In 2020 a second sampling campaign collected triplicate soil cores to a depth of 10 cm at sites in Greenland (two sites),
Canada, Norway, and Finland. On Disko Island, Greenland soil cores were collected near the AWS-2 logger at @sterlien
site of the Greenland Ecosystem monitoring (GEM; 69°15°”* N, 53°30°W), which were covered by Vaccinium sp. At
Kobbefjord, Greenland soil samples with Empetrum sp. cover were collected near the SoilEMP logger of GEM (64°08°N
51°22°W). At Inuvik, Canada soil cores were sampled at Inuvik airport bog (68° 18.9342 N, 133° 26.0214 W), which is
characterized by low shrubs (Nixon et al 2003). In Finland, samples were collected directly next to the ITEX site in
Kilpisjarvi (69.4 N, 20.490E), for which the vegetation cover is dominated by Vaccinium and Empetrum sp (Ylanne et
al 2015). Lastly, soil samples were collected at Petersfjellet in Norway (N69°35.5277° E29°55.1939°), which was
covered by Empetrum nigrum.

2.2 Soil temperature data

Soil temperature records were collected from the involved research stations (at Abisko (Dorrepaal et al., 2004), Svanhovd

(BioForsk Svanhovd; http://Imt.bioforsk.no/agrometbase/getweatherdata_new.php?weatherStationld=36), Inuvik

(National Resources Canada), Svalbard (Global Terrestrial Network for Permafrost database;
http://gtnpdatabase.org/boreholes/view/166), Toolik Lake (Hobbie and Laundre, 2021), FORHOT research site in

Iceland (Sigurdsson et al., 2016), Kilpisjarvi ITEX site (unpublished, personal communication Sari Stark), Greenland

sites (Green Ecosystem monitoring database; https://data.g-e-m.dk/)). To overcome differences in the time intervals of

data collection between sites, we calculated the mean daily temperature for each day that soil temperature records were
available (all records >3 years, except for Kilpisjarvi; Table 1). Based on the daily soil temperature records of each soil,
we determined the mean annual temperature (MAT), mean warmest day (MaxFSTmax), mean coldest day (MinFSTmax)

based on the annual records for the warmest day, coldest day and mean daily temperature per year (Table 2).
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2.3 Soil analysis

After collection, soils were shipped on ice and cooled upon arrival at 4°C. The upper 10 cm was sampled for the following
analyses: density of the soils samples was determined by rapid submersion in a water filled cylinder. The water content
was calculated based on the weight before and after drying the soil at 70° C for 48 h. The dried samples were ground
with a Retsch MM200 ball mill (Retsch, Haan, Germany) for 1 min at 30 rounds per second. A subsample was then
ashed at 600°C for 6 h. The carbon and nitrogen content of ashed and non-ashed subsamples were measured on a Flash
EA 1112 (ThermoFisher, Waltham, USA). For the calculation of organic carbon in the soil, the carbon content of the
ashed samples was subtracted from the total amount of carbon content. Soil pH was measured by adding 5 g of soil to
25 ml deionized water, after which the slurries were shaken for 1 h at 100 rpm. The soil pH was then measured on a
WTW Inolab level2 pH meter (Xylem Analytics, Rye Brook, New York, USA). The slurry was then centrifuged at 200
rpm, for 1 hr and then filtered on 0.45um nylon filter. The filtered solution was used for the measured of extractable
dissolved organic carbon content on a TOC-L CPH/CPN (Shimadzu, Columbia, USA). with NPOC method by
manufacturer’s protocol. For the soil samples of Svalbard only pH measurements were performed due to limited amounts

of soil.

2.4 Temperature-growth relationships of soil bacterial communities

For the assessment of the temperature sensitivity of bacterial growth, 1 gram of soil was subsampled for a leucine
incorporation assay using methods adjusted from Baath et al., (2001). Briefly, 20 ml of sterilized deionized water was
added to the soil samples and these slurries were vortexed for 2 min at full speed. After 10 min centrifugation at 1000
G, the 1 ml aliquots of the supernatant were suspended in 2 ml screw-top Eppendorf tubes. A 20 pl mixture *H-labeled
and unlabeled leucine was added, resulting in a final concentration of 401 nM and 72.5 kBg mI in the assay tube. The
sample aliquots were incubated either at-0,-4-10-15-24.5-28.5-33.5and 40-°Cfor 24— 2 hours 24 h at 0°C, 8 h at 4°C,
4hatl10and15°Cand 2 hat 24.5, 28.5, 33 or 40°C.. Trichloroacetic acid was added to the assay tubes to terminate the

leucine incorporation. Washing steps for removal of non-incorporated leucine were followed as described in (Baath et
al., 2001). For scintillation 1 ml Optiphase HiSafe 3 (PerkinElmer, Waltham, Massachusetts, USA) was finally added to
the biomass pellet after the washing steps. 3H-activity was measured on a Tricarb2800T (Perkin Elmer), Waltham, USA)
with 5 minute measurement for *H. Finally, the leucine incorporation rate, nM leucine 1 h -1 g dry weight soil, was

calculated based on H activity measured.

2.5 Bacterial community composition

For the characterization of the soil microbial community, 0.2 grams of soil were subsampled for DNA extraction and

amplicon sequencing of the 16S rRNA gene. DNA was extracted by the use of Powersoil kit (Qiagen, Hilden, Germany),

6
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following the manufacturer’s protocol with elution of the purified DNA into 60 sterile ul Millipore water. Amplicons
were generated by a two-step PCR of the 16S V4 rRNA gene with primers designed by {Caporaso et al., (2012). An
initial PCR consisted of 24 cycles with an initial denaturation step of 1 min at 98°, followed by 25 cycles of denaturation
for 10 s at 98 °C, annealing for 30 s at 55°C, elongation for 30 s at 72°C, followed by a final extension of 5 min at 72°C.
Amplicons were then 50x diluted in o-purified water and then indexed by a PCR with unique barcode primers for 8
cycles with the same steps as the initial PCR amplification. Purification of the PCR product was done with Ampure XP
beads (Beckman Coulter, Brea, California, USA), following manufacturer’s protocol. The indexed PCR products were
then sequenced using paired-end Illumina MiSeq runs with V3-2x300 cycle chemistry. In total 1,243,600 sequences
were generated for 39 samples (Median sequencing depth; 32,089 sequences per sample). Sequences were truncated at
250 nucleotides on the forward reads and 220 nucleotides on the reverse reads due to deteriorating quality scores for
later cycles (average Phred score < 30). Raw sequences are available in the NCBI Sequence Archive, under BioProject
Accession number PRINA857550. Amplicon sequence variants (ASVs) were generated by dereplication and chimera
removal of the truncated sequences using DADA?2 allowing a maximum expected error of 2 and ‘consensus’ chimera
removal mode. Phylogenetic distances between the ASVs were estimated using MAFFT alignment (Katoh and Standley,
2013) and Fasttree (Price et al., 2009). Taxonomic classification of the ASVs was performed based on the SILVA v138
database (Yilmaz et al., 2014) using a scikit-learn naive Bayes machine-learning classifier (Bokulich et al., 2018) with
a confidence threshold for limiting taxonomic depth at 70%. ASVs identified as mitochondria or chloroplasts as well as

singletons were discarded prior to further statistical analyses.

2.6 Statistical analyses

All statistical analyses were performed in R (v4.0.2) (R Core Team, 2020). Soil daily temperature records were filtered
for datapoints between 2002 and 2021. Leucine incorporation rates were fitted to a Ratkowsky model for bacterial growth
(Ratkowsky et al., 1983) by the use of R-package ‘nls.multistart’ (Padfield and Matheson, 2018). The Ratkowsky model

is based on the following equation;
Eq.1

VLeu = a(T — Tmin) X (1 — eP(T-Tmax))

where Leu is the rate of leucine incorporation, a is the coefficient below optimal growth temperature, T is the assay
temperature, Tmin is the theoretical minimum growth temperature, b is coefficient above the optimal growth temperature
and Tmax is maximum growth temperature_(Table 2). The optimal temperature was determined by numerical
interpolation. All figures were made with the *ggplot2’ R-package. To test for the effects of soil thermal parameters on

the temperature adaptation of soil bacterial communities, we performed linear regression between the cardinal points of



200

205

210

215

|220

225

the temperature-growth relationships and minimum (MinFSTmin), mean (MAST), and maximal annual soil temperature
(MaxFSTmax). These linear regression models tested the relationship between Tmin and minimum soil temperature,
Tmax and the maximum soil temperature and Topt with minimum, mean and maximum soil temperature as independent
variable. We fitted a linear regression for the relationship between the temperature range (Tmin — Tmax) of the
temperature-growth relationships of the soil bacterial communities and amplitude of thermal soil regime (minimum

MinT-STmin to maximum soil temperature MaxFSTmax) with a linear regression model.

Processing the microbial community data was done using the R-package ‘phyloseq’ (McMurdie and Holmes, 2013). Samples
were rarified to depth of 23687 reads. Permutational multivariate analysis of variance (PERMANOVA,; Anderson, 2001) was
performed on the weighted UniFrac distances (Lozupone and Knight, 2005) of the sample of the 11 sites, excluding the
Svalbard due to lack of data, (Suppl. Table 1.) using the mean annual soil temperature, pH, organic carbon content, organic

nitrogen content-and-, community Topt and one of the three soil temperature variables (mean, maximum or minimum daily

soil temperature) as independent variables in the ‘vegan” R-package. We determined the common ASVs by filtering for mean
relative abundance above 0.001 % in at least 2, 3, or 4 soil types. The relative abundance of the common ASVs in three datasets

varying in cut off filter was used to predict the Topt of the soil bacterial communities. The relative abundance of these common

ASVS was then used to perform a 3 types of regression tree analysis on the Topt of soil bacterial communities using the R-
package ‘caret’ (Kuhn, 2008). Data were randomly split into training (9 soils) and validation (3 soils) dataset, after which a
regression tree analysis was performed with ‘rpartlSE’ function using the control settings (maxdepth=4, minsplit=4,
minbucket =2). We also build a regression tree with cross validation (10 folds, 10 repeats) using the ‘rpart’ function using the
same control settings. Additionally, we used ‘Rborist’ function with the default setting to calculate a random forest regression
tree to predict Tmin based on the relative abundance of common ASVs in the training soils. For direct comparison with
regression models, we performed an additional linear regression using Topt as independent variable and MaxF-STmax as
dependent variable using the 9 soils of the training dataset and 3 soils in the validation dataset. Due to the small datasets that
these models were based on, the random division into training and validation dataset had a strong influence on the computed
RMSE (root mean square error) value. Therefore, we trained each of the 4 models on all 220 possible combinations of soils in

the training and validation dataset of the dataset with the cut-off filter for common ASVs found in 4 soil types (with a 9:3 split

between soil for train and testing, respectively). We then compared the performance of the 4 different models based on median
RMSE over the 220 simulations.
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3. Results
3.1 Temperature adaptation of soil bacterial communities

From sub- to High Arctic, mean annual soil temperatures at 10 cm depth varied between -3.5 and 6.1 °C (Table 1, Figure
1). The sampled bacterial communities varied in Tmin between -11.1 + 4 (s.d) in @sterlien and -5.5 + 2.1 in the Icelandic
grassland. Topt varied between 23.4+ 0.5 in Toolik Lake MAT and 34.1 * 3.7 in Kilpisjarvi (Figure 2). Tmax varied
between 42.2 + 1.0 in Svalbard and 57.8 + 9.3 at Toolik Lake Heath. Temperature range of growth, (Tmin - Tmax)
varied between 48.7 and 65.2.

The MAST of soils was not significantly related with Topt (P= 0.5) nor was Tmin (P= 0.78, Adj. R? = --0.1). However,
Topt did relate significantly with MaxFSTmax, increasing 0.63 °C per °C (Figure 12; P < 0.01, Adj. R? = 0.63) and also

showed a significant but weaker relationship to the mean summer temperature (P<0.05, Adj. R?=0.34). In contrast, Topt

was not significantly correlated to the number of days above 0°C (P=0.9). Tmin showed no significant correlation to

mean winter soil temperature and coldest daily soil temperature (P>0.05). The temperature range of growth was

significantly related to the amplitude of the temperature soil temperature (Linear regression; Adj. R?= 0.3, P= <0.05).

We computed the optimal growth temperature of soil bacterial communities across the Arctic based on combining the Soil

Temp database (Lembrechts et al., 2021) with our estimates of the relationship between soil temperature (MaxFSTmax) and

Topt (Figure 4).

3.2 Bacterial community composition

After filtering for singletons, we retrieved a total of 967,146 reads across the samples, belonging to 12692 ASVs.
PERMANOVA analyses showed bacterial community composition to be significantly influenced by pH and MAST of

the sampling sites (Table 23, Figure 5), but showed no significant correlation with maximum nor minimum daily soil

temperature (P >0.05; Supplementary Table 2 and 3) . The bacterial community composition was not significantly related
with the Topt of the bacterial communities (P= 0.124). Proteobacteria (25.9%), Acidobacteriota (21.9%),
Actinobacteriota (18.4%), Verrucomicrobiota (7%), Bacteroidota (6.7%), Chloroflexi (5.2%), Planctomycetota (5.1%),

and Myxococcota (2.1%) were the most abundant phyla across all samples (Figure 3).

We found 118 ASVs and 32 ASVs that were observed in 2 or 3 soils with a relative abundance greater than 0.001 %.

Additionally, We-we observed only 12 ASVs that occurred at relative abundance greater than 0.001_% in four or more
sites (Table 43). The common ASV datasets differing in cut-offs showed similar RMSE-values for predicting Topt of

the bacterial community (Supplementary Table 4). We therefore focussed on the dataset ASVs that occurred in at least

4 soils for further analysis, as these ASVs are most likely useful in soil types outside this study. Both regression tree and

random forest analyses based on the relative abundance of these common ASVs in at least 4 soils showed the relative

9



abundance of ASV11 was the best predictor of the corresponding community Topt (Suppl. Figure 1), in which it
differentiated of ASV11 absence from the community and relative abundance > 0.055%. The pruned regression tree

260 showed RMSE lower than the full tree on the validation dataset (Suppl. Figure 2; Suppl. Table 14). The linear regression
model based on the MaxT STmax as dependent variable showed larger predictive power of Topt than the pruned
regression tree and random forest, since summarized across the 220 possible training sets, the median RMSE of fer-the
linear model was lower than that median RMSE of the pruned tree and random forest_for common ASVs found in at
least 4 soil types (2.17, 4.14 and 3.51, respectively; Suppl. Figure 3).
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4. Discussion
4.1 Temperature adaptation across the Arctic

In this study we have-explored the role of soil thermal parameters on the temperature adaptation of soil bacterial communities
in the Arctic. The cardinal points estimated from bacterial communities sampled at 12 Arctic locations were comparable to
other bacterial communities from polar soils and showed a large variety between sites and soil types. We found Tmin to vary
between -11.1 and -5.5 °C, which is comparable to soils sampled from sub arctic soils (Cruz-Paredes et al., 2021; Rinnan et
al., 2011; Weedon et al., 2023). Tmin was lowest at the low arctic site @sterlien, which is lower than any the Tmin of previously
described for Arctic soil bacterial community, but fits within the range of Tmin of bacterial communities previously described
in Antarctic soils (Rinnan et al., 2009). In contrast to Tmin, Topt is hypothesized to vary less between thermal environments
(Rinnan et al., 2009). At the Toolik Lake Moist Acidic Tundra site, estimated Topt was 23.5 °C, which is so far the lowest
Topt described for a soil bacterial community in the Arctic (Rinnan et al., 2011; Weedon et al., 2023; Cruz-Paredes et al.,
2021) and is also comparable to soil bacterial communities from Antarctica (Donhauser et al., 2020; Rinnan et al., 2009, 2011,
van Gestel et al., 2020). This site was characterized by relative low summer temperatures and moderate annual mean
temperatures, compared to the other sites (Table 1, Figure 1).

4.2 Temperature adaptation is influenced by mean daily maximum soil temperature

Of the soil thermal parameters we tested, only MaxTSTmax had a significant correlation with temperature-growth relationships
of Arctic bacterial communities (Figure 2). Temperatures above the optimum growth temperature can induce heat-related death
of bacterial cells, which results in a strong selective pressure by the maximum soil temperature on the bacterial community
(Barcenas-Moreno et al., 2009; Birgander et al., 2013; Donhauser et al., 2020). Consequently, the optimal growth temperature
of soil bacterial communities is always observed to greatly exceed the maximum soil temperatures at a given location
(Béarcenas-Moreno et al., 2009; Birgander et al., 2018; van Gestel et al., 2013; Rinnan et al., 2009). Our results show that even
in cold biome environments the maximum soil temperature is an important determinant of the temperature physiology of soil

bacterial communities. For two of our sites (Inuvik and Svalbard), soil temperatures were recorded at depths that differed from

the depth where the soil samples were taken (Table 1). Excluding these sites from our analysis, we still found the same

relationship between Topt and the maximum soil temperature with a slope coefficient and intercept differing by less than 2%

(Supplementary methods). While samples in this study were collected in summer, temperature-growth relationships are not

affected by seasonal dynamics (van Gestel et al., 2013; Birgander et al., 2018), making it likely that the MaxTSTmax is the
most important predictor of thermal adaptation amongst those we measured. All in all, the evidence collected in this study
provides further support for the idea that temperature adaptation of soil microbial communities is best explained by the
optimum-driven hypothesis (Alster et al., 2020). According to this hypothesis temperature-growth relationships are driven by

the maximum soil temperatures, and this was previously proposed as temperature adaptation could only be induced after

11
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exposure of communities to conditions above a certain threshold temperature (Barcenas-Moreno et al., 2009; Birgander et al.,
2013, 2018).

4.3 No evidence for influence of soil thermal parameters on Tmin or Tmax

In contrast to the clear relationship between MaxTSTmax and Topt, we found no evidence for a relationship between soil
thermal parameters and the minimum and maximum cardinal points, nor with the thermal breadth of the bacterial temperature-
growth relationships. This non significance could in principle be a result of statistical artefacts, since for the estimation of
Tmin and Tmax, both cardinal points are extrapolated beyond the assay temperatures, which could cause a large standard
deviation of the mean and increase the chance of type Il errors. Indeed, the mean of site-level standard deviations across sites
was relatively high for both Tmin and Tmax (respectively mean s.d. of 1.94 and 2.8). However, this variation was on the same
order as that observed for Topt estimates amongst the sampled soil bacterial communities (mean s.d. of 2.06), implying that
the lack of significance is most likely not due to limited power of the statistical analysis.

Given the importance of Tmin for determining activity at low temperatures, we expected that Tmin of communities would be
related to site MinFSTmin. However, we did not detect a significant influence of MinT on the Tmin of soil bacterial
communities. There is a general consensus that constantly frozen subsoils (permafrost) are an unlikely environment for
proliferation of soil microbial life (Abramov et al., 2021). Due to this limited growth, cold-adapted (low Tmin) species might
not necessarily thrive at subzero temperature but are likely to be better equipped to survive the winter conditions. Consequently,
winter temperatures might not pose an environmental filter for the community assembly. Soil temperatures above freezing
might have a larger influence on the temperature adaption of soil bacterial communities, when soil bacteria are most
metabolically active (van Gestel et al., 2020). Therefore, the high soil temperatures in summer might induce a large
environmental influence on the assembly of the bacterial communities. Additionally, strategies to survive subzero temperatures
might not necessarily be indicative of the optimal growth temperature, as many microbial species that can cope with subzero
temperature still grow best at relatively high temperature and are best described as psychro-tolerant rather than as true
psychrophiles (Cavicchioli, 2015). These factors might therefore be the reason why we are unable to make predictions of Tmin
based on the temperature parameters measured in this study.

Since MaxFSTmax influenced the Topt of the soil bacterial communities, we expected that this parameter would also correlate
with the Tmax value of the soil bacterial community. Tmax has been hypothesized to increase with higher soil temperatures
(Rinnan et al., 2009; Birgander et al., 2013), but to date this has not been directly tested. In our results, Tmax was not
influenced by any of the measured soil thermal parameters. As noted above, Topt was far above maximum soil temperatures,
which suggests that the measured growth rates of bacterial communities above Topt are rarely relevant in the soil environment.
Therefore, it is likely that Tmax is less relevant for the performance of soil bacterial species and consequently, not subject to
selection in sensu Vellend; (2010).
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4.4 What will happen in response to warming?

Since MaxFSTmax was found to be most important predictor, it follows that changes to summer temperatures are likely to be
the most important factor determining temperature-growth relationships of bacterial communities in Arctic soils under a
changing climate. Arctic summer air temperatures are predicted to increase less than the mean annual and winter temperature
(Karjalainen et al., 2018). While it has been estimated that mean annual soil temperature will rise ~ 2 - 4 °C around the Arctic
by 2100 under RCP 4.5 (Aalto et al., 2018), accurate predictions of summer soil temperature in the Arctic are complicated by
a variety of environmental factors that influence soil temperatures. At the local scale, soil temperatures are largely influenced
by air temperature, solar radiation and precipitation (Karjalainen et al., 2018), leading to > 5 °C variation on the microscale
(Aalto et al., 2013; Karjalainen et al., 2018). Increasing air temperatures in the Arctic can also lead to changes in vegetation
height and shrub expansion (Mekonnen et al., 2021), which moderate increasing soil temperature by shading during the
summer season (Paradis et al., 2016; Blok et al., 2011). Furthermore, it is likely that the Arctic terrestrial region will experience
more frequent and extreme heatwaves, which could induce rapid change in the temperature-growth relationships if soil
temperatures exceed historical maximum soil temperatures and/or the Topt of the soil bacterial communities (Barcenas-
Moreno et al., 2009; Birgander et al., 2013; Donhauser et al., 2020). These complicated local scale effects imply that more
microclimatic data will be needed for more accurate assessments of temperature adaptation of soil bacterial communities in
the Arctic.

feigure43_Our study covered a large portion of the range of maximum soil temperature within the Arctic region, as these

temperatures currently vary between -0.4 and 20.6 °C (Lembrechts et al., 2021). Figure 4 shows that the Topt of Arctic soil
bacterial communities likely varies between 22 and 35 °C. A combination of this pan-arctic projection, predicted future
summer (soil) temperatures, and other spatial databases such as soil C maps, could be useful to identify locations where soil
bacterial communities will be sensitive to future warming, where potential shifts in the temperature-growth relations can occur,
and where these may have disproportionate impacts on regional biogeochemistry. For example, by identifying regions where

local soil temperatures are expected to rise rapidly and soil organic stocks are large.

4.5 Can we use microbial community data for predicting temperature adaption?

Predicting temperature adaptation of soil bacterial communities across the Arctic might be limited by lack of long term soil
temperature data across the Arctic as most Arctic research has focused on only few research sites (Metcalfe et al., 2018). To
explore the potential use of microbial ‘bio-indicators’ for predicting the temperature-growth relationships of in situ soil
bacterial communities (Hicks et al., 2021), we evaluated whether microbial community data can reveal the temperature

adaptation of microbial communities. We found that regression tree analysis using bacterial ASVs as potential predictors
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(Suppl. Fig. 4) produced larger estimation errors on prediction of the Topt of soil bacterial communities when compared with
the linear regression against MaxFSTmax (Supplementary Table 4). This can be partially attributed to the low effective sample

sizes resulting from the use of cross-validation methods to prune the regression trees, but likely also reflects a lack of consistent
signal in the bacterial composition data. Although this deesa’t-does not refute the potential for using compositional data to
predict community-broad temperature growth relationships (Hicks et al., 2021), it implies that such methods would need a
larger training dataset with more sample sites for proper validation, and more accurate predictions. The full regression tree
used a low number of ASVs (Supplementary Figure 2, Supplementary Table 52), which were not observed in all soil types,
which might indicate limited use for other datasets. This suggests that indicator species, if they exist, might be indicative of
the temperature adaptation of bacterial communities for only certain particular soil types or climatic regions. Despite these
caveats, it is notable that the pruned regression tree and random forest model both identified the abundance of ASV11 as
effective in predicting the Topt (Supplementary Figure 1). ASV11 matches 100% to ASV that is the most commonly observed
bacterial in arctic soils (Malard et al., 2019). The genus of Candidatus Udaeobacter, to which ASV11 matches, is commonly
found in soil environments globally (Brewer et al., 2016). It has been proposed to be a small oligotrophic and resilient soil
bacteria characterized by aerobic heterotrophic metabolism with small genome size (2.8-3.2 Mbp), large diversity of antibiotic
resistance genes and a preference for acidic soils (Brewer et al., 2016; Willms et al., 2020, 2021). However, so far no study
has successfully cultivated the any lineage of the genus ‘Candidatus Udaeobacter’ and traits related to temperature preferences
have not been recorded. In the pruned tree (Supplementary Figure 4) the presence or absence of ASV11 was indicative a Topt
of 26.3 or 31.4, respectively. As this taxon was absent in 7 out of 12 soils, the utility as an indicator of temperature adaption
is quite limited. In summary, although there is some potential utility in using community data to estimate and predict aspects
of soil bacterial temperature physiology, our results suggest that more accurate predictions can be made from soil temperature
records.

5. Conclusions

In this study, we showed a large variety in the temperature adaptation of soil bacterial communities from the sub to High Arctic
region. Due to the large influence of maximum soil temperatures, we predict that summer warming, to the extent that leads to
higher maximum soil temperatures, will lead to increasing community-level increase the Topt of these bacterial communities
under future climate conditions in the Arctic. The influence of shifting optimal growth temperature for soil bacterial
communities on soil carbon cycling will need further investigation to evaluate the contribution to the vulnerability of soil

carbon stock in the Artic under future climate conditions.
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Appendices

Supplementary Figure 1. Importance of variables for Random Forest Tree Regression Analysis

Supplementary Figure 2. Regression tree analysis for estimation of Topt of bacterial community based on the relative
abundance of the 12 common ASVS across all soil samples.

Supplementary Figure 3. Histograms of the performance of each model type by RMSE.

Supplementary Figure 4. Scatterplot the relationship between Topt of the soil bacterial community and relative abundance
of ASV 11 in the community composition. Lines indicate the predicted Topt values by the pruned regression tree indicate.
Supplementary Table 1. Characteristics of the soil types

Supplementary Table 2. PERMANOVA showing the influence of maximum daily soil temperature and other environmental

on bacterial community composition

Supplementary Table 3. PERMANOVA showing the influence of minimum daily soil temperature and other environmental

factors on on bacterial community composition

Supplementary Table 4. Comparison of the performance (RMSE) of regression tree, random forest model and linear model

to predict Topt of the bacterial community.

Supplementary Table 52. Taxonomy of ASVs commonly found in samples in study and previous work. N= indicates the
number of soil types the ASV was present in this study.

Supplementary methods Description and comparison of the additional linear regression test performed on the Topt ~

Warmest daily soil temperature relationship for 9 sites.
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Figure Captions

Figure 1. A) Map with polar projection showing the 12 sampling sites across the Arctic and B) the average values of soil
thermal regimes for each site including the maximum (red), mean (grey) and minimum (blue) soil temperature. Error bars

indicate the standard deviation across the years.

Figure 2. A) Estimated growth curves for each soil type depicted by the normalized leucine incorporation over incubation
temperature. Colors indicate the maximum soil temperature of each sampling site. B) Linear relationships between the optimal

growth temperature and maximum soil temperature, error bars indicate the standard error.

Figure 3. Bar plot showing the relative abundance (%) of top 10 most abundance phyla across all soil samples. Color shades
indicate the two most abundant Order for each of these phyla.

Figure 4. Map of the predicted Topt of soil bacterial communities across the Arctic based on the linear relationship between
maximum soil temperature (from SoilTemp database) and Topt.

Figure 5. Principal coordinate analysis of bacterial community composition (16s rRNA amplicon sequencing) based on

weighted Unifrac distances. Lines show the correlation of measured environmental factors with the axes of the ordination

space-

Table 1. Thermal regimes of the 12 soil types

Table 2. Description of abbreviations used to described temperature-growth relationships and soil thermal regimes

Table 32. Results of PERMANOVA showing the influence of soil parameters on the bacterial community composition

Table 43. Taxonomy of commonly observed bacterial ASVS. N indicates number of soils the ASV was observed in.
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Table 1. Thermal regimes of the 12 sampling sites in ° C. MaxT-STmax depicts the warmest day of the year, MAST the

mean annual temperature and Min-STmin the coldest day of the year. + indicate standard deviation of the mean value recorded

of the temperature record from the first year (Start) till the last year (End). Depth indicated the soil temperature logger depth

in centimeters.

Site Start End Depth MaxFSTmax MAST MinTFSTmin
Abisko 2015 2019 10 13.2+3.7 0.8+0.1 -9.8+5.3
Blaesedalen 2013 2020 10 105+1.3 -0.7+13 -145+4.8
Iceland Forest 2013 2019 10 11.8+0.3 51+0.3 003
Iceland Grassland 2013 2018 10 14.2+0.7 6.1+0.6 0.1+0.2
Inuvik 2002 2018 5 13.5+2.2 1.3+0.7 -6.1+3
Kobbefjord 2008 2019 10 12.3+0.8 1.9+0.5 -5.3+25
Svalbard 2008 2016 25 9+0.8 -3.5+0.5 -18.5+2.3
Svanhovd 2014 2021 10 15+0.7 3.610.6 -3.4+0.1
Toolik Lake Heath 2002 2019 10 1351 2212 -13.8+3.8
Toolik Lake MAT 2008 2021 10 2.7+04 -2.2+0.6 -8.1+2.2
Toolik Lake MNAT 2012 2021 10 4.7+0.8 -1.7+0.8 -8.2+29
Kilpisjarvi 2019 2019 10 16.3

21



620 Table 2. Description of abbreviations used to described temperature-growth relationships and soil thermal regimes

ABBREVIATION DESCRIPTION

CARDINAL POINTS OF | Tmin Theoretical minimum temperature of growth
TEMPERATURE-GROWTH
RELATIONSHIPS
Topt Optimal growth temperature
Tmax Theoretical maximum growth temperature
SOIL TEMPERATURES STmin Mean minimum daily soil temperature
MAST Mean annual soil temperature
STmax Mean maximum daily soil temperature

Table 3. PERMANOVA showing the association between mean annual soil temperature (MAST) and

other environmental (pH, water content, organic carbon and nitrogen) and community physiological

measures (Topt) and bacterial community composition calculated using the weighted UniFrac

distance betweenmetric based on 16 rRNA gene sequences across the 11 sampled sites (n =1 =3 per
site): Bold numbers indicate significance (P<0.05)

Df SumOfSqs R2 F Pr(> F)
MAST 1 0.013 0.061 3.136 0.037
pH 1 0.085 0.412 21.115 0.001
Water Content 1 0.008 0.037 1.882 0.115
Topt 1 0.008 0.037 1.919 0.124
Organic C 1 0.004 0.021 1.084 0.290
Organic N 1 0.008 0.040 2.068 0.095
Residual 20 0.081 0.391
Total 26 0.207 1
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Table 43. Taxonomy of commonly observed_(present in samples from 4 or more sites) bacterial ASVs. N indicates

number of soils the ASV was observed in.

FUASV  PHYLUM CLASS ORDER FAMILY GENUS SPECIES I
1 | Acidobacteriota Acidobacteriae Acidobacteriales Acidobacteriaceae Granulicella  Uncultured ‘
(Subgroup 1) soil
2 | Acidobacteriota Acidobacteriae Subgroup 2 Subgroup 2 Subgroup 2 Uncultured Yy
forest
3 | Acidobacteriota Acidobacteriae Subgroup 2 Subgroup 2 Subgroup 2 Uncultured (
eubacterium
4 | Actinobacteriota Thermoleophilia Solirubrobacterales Solirubrobacteraceae Conexibacter Yy
5 | Actinobacteriota Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium ,
6 | Actinobacteriota Actinobacteria Frankiales Acidothermaceae Acidothermus y
7 | Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae
8 | Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Bradyrhizobium !
9 | Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae (
10 | Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae )
11 | Verrucomicrobiota Verrucomicrobiae Chthoniobacterales Chthoniobacteraceae Candidatus Uncultured !
Udaeobacter soil
12 | Proteobacteria Gammaproteobacteria WD260 WD260 WD260 Uncultured y
eubacterium
625
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