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Abstract 15 
Biochemical transformations of organic matter (OM) are a primary driver of river corridor biogeochemistry, thereby 16 
modulating ecosystem processes at local to global scales. OM transformations are driven by diverse biotic and 17 
abiotic processes, but we lack knowledge of how the diversity of those processes varies across river corridors and 18 
across surface and subsurface components of river corridors. To fill this gap we quantified the number of putative 19 
biotic and abiotic transformations of organic molecules across diverse river corridors using ultra-high resolution 20 
mass spectrometry. The number of unique transformations is used here as a proxy for the diversity of biochemical 21 
processes underlying observed profiles of organic molecules. For this, we use public data spanning the contiguous 22 
United States (ConUS) from the Worldwide Hydrobiogeochemical Observation Network for Dynamic River 23 
Systems (WHONDRS) consortium. Our results show that surface water OM had more biotic and abiotic 24 
transformations than OM from shallow hyporheic zone sediments (1-3cm depth). We observed substantially more 25 
biotic than abiotic transformations, and the number of biotic and abiotic transformations were highly correlated with 26 
each other. We found no relationship between the number of transformations in surface water and sediments, and no 27 
meaningful relationships with latitude, longitude, or climate. We also found that the composition of transformations 28 
in sediments was not linked with transformation composition in adjacent surface waters. We infer that OM 29 
transformations represented in surface water are an integrated signal of diverse processes occurring throughout the 30 
upstream catchment. In contrast, OM transformations in sediments likely reflect a narrower range of processes 31 
within the sampled volume. This indicates decoupling between the processes influencing surface water and sediment 32 
OM, despite the potential for hydrologic exchange to homogenize OM. We infer that the processes influencing OM 33 
transformations and the scales at which they operate diverge between surface water and sediments. 34 
  35 
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1 Introduction 36 
River corridors are an important component of the integrated Earth system that have large influences on the flux of 37 
materials and energy across local to global scales (Harvey and Gooseff, 2015; Schlünz and Schneider, 2000; 38 
Schlesinger and Melack, 1981). The biogeochemical function of river corridors (e.g., rates of contaminate 39 
transformations) are the outcome of both biotic and abiotic processes (e.g., He et al., 2016; Bowen et al., 2020). On 40 
the biological side, microbial communities in areas where groundwater and surface water mix (i.e., hyporheic zones) 41 
can, for example, contribute substantially to river corridor respiration rates (Jones Jr, 1995; Naegeli and Uehlinger, 42 
1997; Battin et al., 2003; Fischer et al., 2005; but see Ward et al., 2018). In these areas, microbial metabolism can be 43 
heavily modified by hydrologic mixing (e.g., McClain et al., 2003; Stegen et al., 2016, 2018). On the abiotic side, 44 
light-driven organic matter (OM) transformations, for example, can consume significant amounts of dissolved 45 
organic carbon in river systems (e.g., Amon and Benner, 1996) and heavily modify OM profiles (e.g., Holt et al., 46 
2021). The integration of biotic and abiotic processes ultimately lead to variation in water quality and ecosystem 47 
fluxes that are relevant to local communities and global fluxes. 48 
 49 
Within river corridors, OM serves as a primary energy source fueling aerobic and anaerobic heterotrophic 50 
respiration (Fisher and Likens, 1973; Wetzel, 1995; Cole et al., 2007; Creed et al., 2015). The chemistry of OM in 51 
river corridors is particularly important, with a multitude of influences over biogeochemical rates and ecosystem 52 
fluxes. For example, through field, lab, and mechanistic modeling, thermodynamic properties of OM have been 53 
shown to influence microbial respiration in both aerobic and anaerobic river corridor settings (Boye et al., 2017; 54 
Stegen et al., 2018; Graham et al., 2018; Garayburu-Caruso et al., 2020a; Song et al., 2020; Sengupta et al., 2021). 55 
This has also recently been shown in soil systems as well (Hough et al., 2021). Other attributes of OM chemistry, 56 
such as the carbon to nitrogen ratio, also have strong influences over river corridor rates/fluxes (Bauer et al., 2013; 57 
Liu et al., 2020). As is the case for nearly all attributes of river corridors, the spatial variation in and temporal 58 
dynamics of OM chemistry emerge through the integration of biotic and abiotic processes.  59 
 60 
Biotic and abiotic processes influence river corridor OM chemistry by modifying rates of production, 61 
transformation, sorption/desorption, and/or spatial movement (Danczak et al., 2020). All these factors have been 62 
studied to some degree in river corridors, and advances in cheminformatics techniques can provide further insights 63 
specifically into the biotic and abiotic components of OM transformations. More specifically, Fudyma et al. (2021) 64 
used the ultra-high mass resolution of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) 65 
data (Marshall et al., 1998; Bahureksa et al., 2021) to infer putative abiotic and abiotic transformations of OM in a 66 
river corridor system. This extended previously-developed cheminformatics techniques (e.g., Breitling et al., 2006; 67 
Stegen et al., 2018; Danczak et al., 2020, 2021) to include abiotic transformations. Fudyma et al. (2021) found that 68 
abiotic OM transformations, such as those driven by sunlight and photooxidation, may alter bioavailability of OM in 69 
groundwater and surface water. These observations were collected across different subsurface hydrologic mixing 70 
conditions and suggest that changes in the bioavailability of OM lead to enhanced microbial activity in subsurface 71 
domains like the hyporheic zone. This emphasizes the need to consider abiotic OM transformations as a key 72 
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complement to biotic OM transformations in river corridors (Amon and Benner, 1996; Bowen et al., 2020; Holt et 73 
al., 2021; Hu et al., 2021). 74 
 75 
While both biotic and abiotic OM transformations are important in river corridors, we lack broad cross-system 76 
understanding of how these two classes of transformations relate to each other and how they vary between hyporheic 77 
zone sediments and surface water. Resolving these knowledge gaps is useful from a number of perspectives; for 78 
example, it was recently proposed that surface water chemistry can be used as a mirror to understand subsurface 79 
chemistry and associated processes (Stewart et al., 2021). With that idea in mind, if transformation numbers or 80 
profiles in surface water are statistically associated with transformation numbers or profiles in sediments, we could 81 
use surface water data (easier to generate) to infer properties/processes in the subsurface (much harder to study). In 82 
addition, such correspondence would indicate that surface-subsurface hydrologic exchange in river corridors is 83 
sufficient to overcome localized processes, thereby at least partially homogenizing OM across river corridor 84 
compartments. On the other hand, lack of correspondence between surface water and sediment OM transformations 85 
would indicate that deterministic processes (sensu Danczak et al., 2020) in the subsurface overwhelm transport 86 
mechanisms in governing OM chemistry. Either outcome is highly informative for fundamental understanding and 87 
for mechanistic modeling efforts that couple surface-subsurface hydrology and biogeochemistry (e.g., 88 
hyporheicFoam Li et al., 2020).  89 
 90 
Here we aim to help fill knowledge gaps associated with OM transformation counts and composition across surface 91 
and subsurface components of river corridors distributed across the contiguous United States (ConUS). We 92 
specifically compare the numbers of biotic and abiotic OM transformations in sediments and surface waters, and 93 
evaluate the potential for continental-scale spatial patterns in biochemical transformation counts and composition. 94 
To do so, we use publicly available FTICR-MS data provided by the Worldwide Hydrobiogeochemistry Observation 95 
Network for Dynamic River Systems (WHONDRS) consortium (Stegen and Goldman, 2018). One key outcome of 96 
our analyses is that OM transformations in sediments are not related to OM transformations in adjacent surface 97 
water, which suggests divergent governing processes despite hydrologic connectivity between these river corridor 98 
sub-systems. 99 
 100 
2 Methods 101 
Data Generation  102 
The samples used for data generation were collected and processed in 2019 as part of the WHONDRS consortium 103 
(Stegen and Goldman, 2018), and the data were retrieved from publicly available data packages (Toyoda et al., 104 
2020; Goldman et al., 2020). Full details on sample and metadata collection are provided in Garayburu-Caruso et al. 105 
(2020b); some additional sample data are used here that were not used in Garayburu-Caruso et al. (2020b), but all 106 
methods are consistent. In short, at each site (Fig. 1) three depositional zones within ~10 m of each other were 107 
sampled for shallow sediments (~1-3cm into the riverbed). Prior to sediment collection, surface water was collected 108 
at the most downstream sediment sampling location. The samples were shipped to the Pacific Northwest National 109 
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Laboratory (PNNL) campus in Richland, WA (USA) on blue ice within 24 hours of collection. Untargeted 110 
characterization of OM was done using ultrahigh resolution FTICR-MS. In preparation for FTICR-MS analysis, 111 
sediments were extracted with Milli-Q deionized (DI) water and the resulting supernatant was filtered prior to 112 
measurement of non-purgeable organic carbon (NPOC). NPOC concentrations were normalized to 1.5 mg C L-1 by 113 
adding Milli-Q DI water. To remove salts and minerals, 15 ml of each sample were then passed through PPL 114 
cartridges (Bond Elut). FTICR-MS analyses were performed at the Environmental Molecular Science Laboratory 115 
(EMSL) in Richland, WA using a 12 Tesla Bruker SolariX FTICR mass spectrometer (Bruker, SolariX, Billerica, 116 
MA, USA) in negative ionization mode. FTICR-MS spectra were processed to assign molecular formulae as 117 
described in Garayburu-Caruso et al. (2020b).  Briefly, to convert raw FTICR-MS spectra into a list of mass-to-118 
charge ratios (i.e., m/z values) we used BrukerDaltonik Data Analysis (version 4.2). We specifically applied the 119 
FTMS peak picker module with a signal-to-noise ratio (S/N) threshold of 7 and absolute intensity threshold of 100. 120 
We then used Formularity (Tolić et al., 2017) to align peaks with a 0.5 ppm threshold and assign chemical formulas. 121 
Within Formularity we specifically used the Compound Identification Algorithm with S/N > 7 and mass 122 
measurement error of  <0.5 ppm. The Compound Identification Algorithm algorithm allows for C, H, O, N, S, and P 123 
within the assigned formula, while excluding other elements. 124 
 125 
FTICR-MS data were used as presence-absence due to peak intensities providing unreliable estimates of absolute or 126 
relative concentrations, which is a limitation inherent to FTICR-MS analysis. While FTICR-MS provides the most 127 
comprehensive OM chemistry characterization currently available, it has constraints such as not being quantitative 128 
and missing low molecular weight compounds ( ~ <200 Da) that need to be taken into consideration. FTICR-MS 129 
nonetheless provides a robust approach for conducting untargeted characterization of environmental OM. 130 
 131 
In addition to the FTICR-MS data, we used a suite of environmental variables in an attempt to explain variation in 132 
OM transformation counts. These variables included actual evapotranspiration, mean annual precipitation, mean 133 
annual temperature, and potential evapotranspiration. Global datasets for these variables were acquired from two 134 
sources as geospatial raster datasets: The historical mean annual temperature and mean annual precipitation were 135 
downloaded from worldclim.org (Fick and Hijmans, 2017) and the evapotranspiration and potential 136 
evapotranspiration were available as geospatial rasters from the MOD16 Global Evapotranspiration Product 137 
database (Running et al., 2017). The environmental variable values were associated with each sample location using 138 
ArcGIS function Extract Values to Points. The output was a table of climate and evapotranspiration values for each 139 
sample location. 140 

 141 
Biochemical transformation analyses and statistics 142 
Biochemical transformations of OM were inferred as in Fudyma et al. (2021), and full details of the method can be 143 
found in that publication. In brief, we used a list of common biochemical transformations (see file ‘Biotic-abiotic-144 
transfromation-classification.csv’ in the Stegen et al. (2021) data package) to putatively infer the identity (e.g., 145 
hydrogenation, loss/gain of an alanine, etc.) and number of occurrences of each transformation in each sample. A 146 
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given transformation was inferred each time we observed the corresponding mass shift between a pair of peaks, 147 
within each sample. This analysis does not provide direct information about where or when a given transformation 148 
may have occurred, and it is likely that they occurred prior to the sample being taken and outside of the sampled 149 
volume. For example, surface water acts as an integrator whereby transformations inferred in surface water samples 150 
likely occurred throughout the upstream catchment. What is observed in surface water samples is therefore the 151 
cumulative result of processes throughout the upstream catchment. Similarly, biochemical transformations inferred 152 
from sediment samples may have occurred along subsurface flow paths beyond the sampled volume.  153 
 154 
In each sample, we counted the number of times each transformation was inferred to have occurred. We then 155 
designated each transformation as biotic, abiotic, or both reflecting the potential chemical reaction sources as in 156 
Fudyma et al. (2021). Next, the samples were parsed into sediment or surface water categories. Then we compared 157 
the total number of transformations, the number of abiotic transformations, the number of biotic transformations, 158 
and the ratio of abiotic to biotic transformation numbers for each sample. Distributions based on the number of 159 
transformations or their ratio were compared between surface water and sediments using Wilcox signed rank tests. 160 
Transformation numbers and their ratio were related to each other and to spatial and environmental variables using 161 
ordinary least squares regression. Spatial and environmental variables included latitude, longitude, and the 162 
environmental variables listed above.  163 
 164 
In addition to studying transformation numbers, we examined the composition of transformations and related these 165 
compositional profiles between surface water and sediments. The purpose of this analysis was to evaluate the degree 166 
to which hydrologic exchange homogenizes OM between sediments and physically adjacent surface water. The 167 
compositional profile for each sample was characterized by the number of times each transformation was inferred. 168 
For each site, the three surface water samples were combined by adding together the number of observations for 169 
each transformation and then computing the relative abundance of each transformation. The same process was done 170 
for the three sediment samples within each site. Doing this across all sites provided the equivalent of an ecological 171 
‘species-by-site’ matrix, but with transformations as ‘species’ and samples as ‘sites’ and the entries as the site-level 172 
relative abundance of each transformation in each sample. In turn, we calculated Bray-Curtis dissimilarity among all 173 
sediment samples and, separately, among all surface water samples. The relationship between surface water and 174 
sediment Bray-Curtis dissimilarities was then evaluated using distance-matrix regression and a Mantel test to 175 
account for non-independence of the pairwise comparisons. For this, the Bray-Curtis values from surface water from 176 
a given site were linked with the Bray-Curtis values for the sediment data from the same site. Each data point used 177 
in the regression is therefore based on surface water and sediment from the same site compared to data from a 178 
different, but common, site. For example, in the case of three sites (A, B, and C), a single data point in the regression 179 
would be based on water from A compared to water from B and sediments from A compared to sediments from B. 180 
Another data point would be water from A compared to water from C and sediments from A compared to sediments 181 
from C, and so on. If hydrologic transport between surface water and sediments homogenizes organic molecules 182 
between water and sediments, water Bray-Curtis should increase with sediment Bray-Curtis. The stronger the 183 
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homogenization, the stronger the Bray-Curtis relationship should be. If hydrologic transport does not homogenize 184 
OM between sediments and the physically adjacent surface water, no relationship will be observed between surface 185 
water and sediment Bray-Curtis values.   186 
 187 
3 Results and Discussion 188 
Examining ConUS-scale distributions for the number of putative biotic and abiotic transformations showed that 189 
surface water OM had significantly more biotic (W = 12360, p << 0.0001, Fig. 2A) and abiotic (W = 12978, p << 190 
0.0001, Fig. 2B) transformations than sediment OM. In addition, there were many fewer abiotic transformations 191 
(~50-800 per sample) than biotic transformations (~5000 to 80000) within the ConUS-scale distributions (cf., Fig. 192 
2A,B). On a per-sample basis the abiotic to biotic ratio ranged from ~0.01 to 0.02, and sediments had a significantly 193 
higher ratio than surface water (W = 46627, p << 0.0001, Fig. 2C). As a key methodological detail--as described in 194 
the Methods section--we note that all samples were normalized to a constant organic carbon concentration prior to 195 
FTICR-MS analysis such that comparisons can be made directly among all samples, including between surface 196 
water and sediments. 197 
 198 
The larger number of putative biotic and abiotic transformations in surface water is, at first, surprising given that 199 
hyporheic zone sediments are very biogeochemically active (Naegeli and Uehlinger, 1997; McClain et al., 2003), 200 
and are often considered as ecosystem control points within river corridors (Bernhardt et al., 2017). We might 201 
therefore expect there to be more OM transformations in hyporheic zone sediments. It is important to consider, 202 
however, that the number of transformations (as quantified here) is a reflection of transformation diversity, not the 203 
rate of OM transformations. For example, a system may experience a very high rate of OM transformation, but have 204 
a low number of unique types of transformations. Such a situation would result in a low transformation count due to 205 
the FTICR-MS data being used to indicate the presence or absence of organic molecules (i.e., there is no information 206 
on abundance). 207 
 208 
Given that the number of putative transformations does not indicate the rate of transformation, the larger number in 209 
surface water may result from surface water OM being an integrated signature of processes occurring across 210 
upstream catchments (Vannote et al., 1980; Xenopoulos et al., 2017). In comparison, sediment OM may reflect 211 
processes occurring within and/or much closer to the sampled volume. That is, a larger diversity of transformations 212 
may accumulate as surface water OM integrates processes and sources from across the stream network, which is 213 
conceptually consistent with previous work using the same data that found higher molecular richness in surface 214 
water than in sediment OM (Garayburu-Caruso et al., 2020b). This highlights that inferred transformations likely 215 
occurred prior to sampling and outside of the sampled volume (e.g., in the upstream catchment for surface water 216 
data and along subsurface flow paths for sediment data). Our interpretation furthermore sets up the emergent (i.e., 217 
post-hoc) hypothesis that the number of transformations may increase with catchment area. This hypothesis could be 218 
evaluated by combining the dataset analyzed here with quantification of upstream catchment areas. Furthermore, 219 
this points to a need to compare drivers of transformation counts with drivers of OM functional diversity. For 220 
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example, Kida et al. (2021) recently found OM functional diversity to increase, decrease, or stay steady moving 221 
down a stream network (i.e., as upstream catchment area increased). Those authors tied variability in the patterns to 222 
context dependencies in environmental characteristics. ConUS-scale consistency in the patterns observed here for 223 
OM transformation contrasts with the context dependencies observed for OM functional diversity in Kida et al. 224 
(2021). We therefore encourage future studies to elucidate relationships between OM transformations and functional 225 
diversity. 226 
 227 
While the number of abiotic transformations was far less than biotic transformations both locally (i.e., within each 228 
site) and at the ConUS-scale (Fig. 2), abiotic transformations nonetheless play an important role in river corridors 229 
(Judd et al., 2007; Ward et al., 2017). For example, Fudyma et al. (2021) examined biochemical transformations in 230 
the river corridor and found that abiotic transformations in surface water modified the chemistry of OM entering the 231 
hyporheic zone, with subsequent impacts to respiration rates. Soares et al. (2019) also recently found that abiotic 232 
transformations of OM can lead to increases in bioavailable OM as residence time of surface water increases. These 233 
demonstrations of the importance of abiotic transformations further emphasize that the number of transformations 234 
observed here is a quantification of transformation diversity, not functional importance. That is, small sets of 235 
transformations can serve vital functional roles and can connect sets or ‘modules’ of transformations together 236 
(Fudyma et al., 2021). 237 
 238 
As noted above, our results suggest that OM transformations in surface water may reflect processes occurring across 239 
the upstream catchment while OM transformations in sediment may reflect processes within the sampled volume. 240 
This inference was further supported by non-significant relationships between surface water and sediments in terms 241 
of transformation counts (Fig. 3). That is, the number of abiotic transformations in surface water was not related to 242 
the number of abiotic transformations in sediments. This analysis was done on paired samples, with data for surface 243 
water coming from the same stream reach as data for sediments. This allowed for regression-based analyses. The 244 
number of biotic transformations and the abiotic-to-biotic ratio were also uncorrelated between surface water and 245 
sediments. Extending the analyses to transformation composition further supports a disconnect between surface 246 
water and sediment OM transformation profiles. That is, we observed no meaningful relationship between surface 247 
water and sediment OM transformation compositional dissimilarity (Figs. 4, S1). As discussed in the Methods 248 
section, if hydrologic transport was overwhelming localized processes, we would have observed a clear positive 249 
relationship. Instead, a very weak relationship was observed (R2 = 0.04), indicating that influences of transport are 250 
very small relative to localized processes. This may be conceptualized similarly to the Damköhler number whereby 251 
the ratio of the reaction-influence to the transport-influence is very large. 252 
 253 
The lack of correlation between transformation counts and composition between surface water and sediment OM 254 
indicate at least a partial decoupling of the processes governing OM transformations in surface water and sediments. 255 
In this case, bi-directional exchanges (i.e., hyporheic exchange) (Harvey and Gooseff, 2015) of water and OM 256 
between surface water and the sediments are not strong enough to overwhelm processes occurring within each 257 
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subsystem. It was recently proposed that OM assemblages can be thought of in terms of ecological community 258 
assembly processes including stochastic dispersal and deterministic selection (Danczak et al., 2020, 2021). From this 259 
ecological perspective, our results indicate that the rate of dispersal (i.e., transport) of OM from surface water into 260 
sediments is not sufficient to overcome the influences of localized, deterministic processes that cause systematic 261 
differences (among molecules) in the rates of production and transformation. Here, OM production and 262 
transformation are analogous to organismal birth and death, respectively (Danczak et al., 2020). It is unclear, 263 
however, what factors and processes within the sediments impose deterministic selection over molecular production 264 
and transformation. We hypothesize that a suite of factors are at work, such as redox conditions and sediment 265 
mineralogy. For example, the profile of organic molecules can be influenced by sorption, desorption, and 266 
transformations associated with organo-mineral interactions (Mead and Goñi, 2008; Zhou and Broodbank, 2014; Le 267 
Gaudu et al., 2022). It is also plausible that lower OM diversity in sediments, relative to surface water (Garayburu-268 
Caruso et al., 2020b), could be due to organo-mineral interactions selecting for and against certain types of organic 269 
molecules (Aufdenkampe et al., 2007; Kleber et al., 2007, 2021). It is these kinds of localized interactions that we 270 
propose as overcoming strong coherence between surface water and sediment OM that may otherwise occur via 271 
transport and mixing. and mixing over effectively Spatial variation in mineralogy, redox, and other physicochemical 272 
properties may therefore help explain variation across sediments in the number of observed transformations. 273 
 274 
In contrast to the decoupling between OM transformations in surface water and sediments, we observed strong 275 
correlations between the number of biotic and abiotic transformations within surface water and within sediment 276 
(Figure 5). As discussed above, the number of transformations is best interpreted as a measure of transformation 277 
richness, as opposed to an indication of rates. The strong correlation between biotic and abiotic transformation 278 
counts therefore indicates that the diversity of biotic transformations tracks closely with the diversity of abiotic 279 
transformations. This suggests that systems in which a larger range of biochemical mechanisms contribute to OM 280 
production and transformation are also characterized by a larger range of abiotic mechanisms contributing to OM 281 
transformations. In considering this inference, it is important to recognize that the correlation between biotic and 282 
abiotic transformation counts may be influenced by among-sample variation in the number of observed molecules. 283 
However, among-sample variation in the number of observed molecules is not an artifact. This is because higher 284 
OM transformation richness should lead to a larger number of unique organic molecules. That is, the number of 285 
observed molecules and the level of OM transformation richness are mechanistically linked to each other whereby 286 
richness can beget more richness. This lends credence to our inferences above, but also emphasizes that additional 287 
insights can be gleaned by controlling for among-sample variation in the number of observed molecules.  288 
 289 
To control for among-sample variation in the number of observed molecules we quantified the within-site abiotic-to-290 
biotic ratio. This ratio was significantly higher in sediments than in surface water. The close spatial proximity 291 
between OM and mineral surfaces in sediments may contribute to relatively higher frequency of abiotic 292 
transformations in sediments. This may be associated, in part, with sorption/desorption processes (Kleber et al., 293 
2021), though OM compositional change associated with desorption in the hyporheic zone can be strongly linked to 294 

https://www.zotero.org/google-docs/?bw0Gh6
https://www.zotero.org/google-docs/?mEwO4B
https://www.zotero.org/google-docs/?KBlft3
https://www.zotero.org/google-docs/?KBlft3
https://www.zotero.org/google-docs/?aHjraK
https://www.zotero.org/google-docs/?aHjraK
https://www.zotero.org/google-docs/?euQEOM
https://www.zotero.org/google-docs/?118r8Q
https://www.zotero.org/google-docs/?118r8Q


9 

microbially-mediated transformations (Zhou et al., 2019). In addition, a larger diversity of redox conditions and thus 295 
more diverse redox species (Briggs et al., 2013; Boano et al., 2014; Lewandowski et al., 2019) in sediments could 296 
also contribute to the larger relative contribution of abiotic transformations in sediments. This does not discount the 297 
important role of abiotic transformations in surface water, such as those associated with photooxidation. Indeed, it is 298 
well known that abiotic transformations in surface water can strongly influence watershed carbon cycling fluxes  299 
(Ward et al., 2017; Bowen et al., 2020; Hu et al., 2021). 300 
 301 
In addition to comparing transformations across river corridor subsystems, we conducted a preliminary investigation 302 
of spatial and climate correlates (e.g., mean annual temperature) of transformation numbers. This revealed non-303 
significant (p > 0.05) or very weak (R2 < 0.1) relationships in all cases (see Supplementary Figures). We also 304 
performed multiple regression analyses and even models with 5 spatial and climate variables showed very low 305 
explanatory power (e.g., R2 < 0.08 for the model explaining variation in total transformations). Low explanatory 306 
power of space and climate is surprising given continental-scale variation in OM chemistry revealed in the same 307 
dataset used here. That is, Garayburu-Caruso et al. (2020b) found a significant increase in sediment mean nominal 308 
oxidation state of organic carbon (NOSC) in the eastern US, relative to the western US. The lack of relationships 309 
shown here indicates that large-scale drivers of OM chemistry are not the same factors that drive variation in the 310 
number of transformations or the abiotic-to-biotic transformation ratio. A major remaining challenge is, therefore, to 311 
elucidate what drives variation in the absolute and relative numbers of abiotic and biotic OM transformations, and 312 
understand relationships between transformations and functional diversity of attributes such as NOSC. 313 
 314 
5 Conclusions 315 
While it is unclear what drives variation in transformation numbers across river corridors, our ConUS-scale analyses 316 
provided insights that are likely applicable across all river corridors. In particular, processes governing OM 317 
transformations appear to be distinct between surface water and hyporheic zone sediments. This is unexpected given 318 
the bidirectional exchange of materials between surface water and sediments (Boano et al., 2014; Harvey and 319 
Gooseff, 2015). It also highlights that while hydrologically-driven mixing can stimulate biogeochemical processes in 320 
hyporheic zones (McClain et al., 2003; Stegen et al., 2016), it generally does not homogenize OM between surface 321 
water and sediments (Stegen et al., 2018; Fudyma et al., 2021). Instead, we propose that OM observed in each 322 
subsystem is the result of biochemical transformations mediated by distinct processes. We emphasize that this 323 
inference extends only to the analytical limits of the FTICR-MS data used here, which does not provide a 324 
comprehensive survey of all possible transformations. However, no analytical method can provide a comprehensive 325 
survey. Among currently available methods, FTICR-MS provides the highest resolving power to enable the most 326 
comprehensive non-targeted surveys of organic molecules in environmental samples (Bahureksa et al., 2021). As 327 
such, using additional methods (e.g., liquid chromatography-MS) will increase the number of putative 328 
transformations inferred in each sample, but the total number of transformations should be dominated by those 329 
inferred from FTICR-MS data. We encourage use of multiple complementary methods in future studies, as this can 330 
be a powerful approach (Kim et al., 2006; Hagel and Facchini, 2008; Wolfender et al., 2015; Wilson and Tfaily, 331 
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2018; Kamjunke et al., 2019; Tfaily et al., 2019). We hypothesize, however, that using multiple methods will not 332 
modify our primary inference. That is, surface OM transformation counts are likely influenced by upstream 333 
catchment processes while sediment OM is likely influenced by processes local to the sample volume. These 334 
observations further highlight the need to study and model river corridors through a multi-scale perspective. 335 
 336 
6 Code availability: Scripts to reproduce the primary results of this manuscript are available in Stegen et al. (2021). 337 
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Figures 576 
 577 
 578 

 579 
 580 
Figure 1. Map of sampling locations distributed across the contiguous United States (ConUS). Surface water and 581 
sediments were collected at each site using a crowdsourced approach via the WHONDRS consortium. Physical 582 
factors such as stream order were not constrained. Figure generated by Sophia McKever using QGIS. The base map 583 
is copyrighted: © OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database 584 
504 License (ODbL) v1.0.  585 
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 587 
 588 
Figure 2. Examining the ConUS-scale distributions of biotic and abiotic transformation numbers reveals more 589 
transformations in surface water than sediment organic matter. Kernel density functions for ConUS-scale biotic (A) 590 
and abiotic (B) transformations, and their ratio (C) in sediment (orange lines) and surface water (blue lines) organic 591 
matter. The median values of the distributions significantly diverge within each panel (see text for statistics). 592 
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 593 
Figure 3. Sediment (Sed.) and surface water (SW) transformation counts and are not related to each other. 594 
Regression analysis of the number of abiotic (A) and biotic (B) transformations and their ratio (C). Each open circle 595 
is from one sampling site in which surface water and sediments were both collected. Regression statistics are 596 
provided on each panel and the dashed line is the 1-to-1 line; no regressions were significant.  597 
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 598 
 599 
Figure 4. Transformation profiles of OM in sediments and surface water were weakly related to each other. Bray-600 
Curtis dissimilarities in surface water and sediments are plotted against each other, with their relationship evaluated 601 
via Mantel test to control for non-independence among data points (see Methods). The Pearson correlation 602 
coefficient and the Mantel-based p-value are provided on the panel. While significant, the relationship is extremely 603 
weak, suggesting lack of a meaningful relationship. One outlier sample was discovered and excluded from this 604 
analysis. Figure S1 includes the outlier, which does not change the interpretation, it only makes it harder to see the 605 
data. 606 
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 607 
 608 
Figure 5.  Strong correlations were observed between the number of biotic and abiotic organic matter 609 
transformations within surface water (SW) and within sediment (Sed.). Each circle represents one sampled site for 610 
surface water (A) and sediments (B). The solid black line is the regression model and statistics are provided on each 611 
panel. 612 


