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Abstract 21 

Using statistical methods that not directly representing the causality between variables to attribute climate and 22 

plant traits to control ecosystem function may producelead to biased perceptions. We revisitrevisited this issue 23 

using a causal graphical model, the Bayesian network (BN), capable of quantifying causality by conditional 24 

probability tables. Based on expert knowledge and climate, vegetation, and ecosystem function data from the 25 

FLUXNET flux stations, we constructed a BN containingrepresenting the causal relationship of 'climate-plant 26 

trait-ecosystem function'. Based on the sensitivity analysis function of the BN, we attributed the controls of 27 

climate and plant traits to ecosystem function and compared the results with those based on Random forests and 28 

correlation analysis. The main conclusions of this study include: BN can be used for the quantification of causal 29 

relationships between complex ecosystems in response to climate change and enables the analysis of indirect 30 

effects among variables. The causality reflected in the BN is as good as the expert knowledge of the causal links. 31 

Compared to BN, the feature importance difference between ‘mean vapor pressure deficit and cumulative soil 32 

water index’ and ‘maximum leaf area index and maximum vegetation height’ reported by Random forests is 33 

higher and can be overestimated. With the causality relation between correlated variables constructed, BN-based 34 

sensitivity analysis can reduce the uncertainty in quantifying the importance of correlated variables. The 35 

understanding of the mechanism of indirect effects of climate variables on ecosystem function through plant 36 

traits can be deepened by the chain casuality quantification in BNs.  37 

1 Introduction 38 

Ecosystem function is the capacity of natural processes and components to provide goods and services that 39 

satisfy human needs, either directly or indirectly (de Groot et al., 2002). Ecosystem functions include the 40 

physicochemical and biological processes within the ecosystem to maintain terrestrial life. Terrestrial 41 

ecosystems have provided a variety of important ecosystem functions for our society (Manning et al., 2018). 42 

Plant traits’ role as important determinants of ecosystem functions has been widely recognized (Chapin Iii et al., 43 

2000), and various trait syndromes can result in distinct broad differences in ecosystem functions (Reichstein et 44 

al., 2014). In the context of global climate change, it is also essential to understand the potential changes in 45 

ecosystem functions (Grimm et al., 2013). The response of terrestrial ecosystem function to changes in climate, 46 

plant traits, and the corresponding mechanisms, are complex due to enormous spatial and temporal variations 47 

across ecosystems, climate zones, and also space-time scales (Diaz and Cabido, 1997; Madani et al., 2018; 48 

Myers-Smith et al., 2019). Given the enormous variations, on the global scale, these issues have not been 49 

clarified well.  50 

 51 

In the past decades, measurements of ecosystem functions arehave been increasingly available to support studies 52 

of the relations between ecosystem functions and climate variables. For example, eddy-covariance flux tower 53 

observations (Baldocchi, 2014) for carbon flux (i.e., net ecosystem exchange (NEE)) and water flux (i.e., 54 

evapotranspiration (ET)) have been widely used to investigate changes in ecosystem functions and their 55 

responses to climate change, vegetation condition changes, etc (Jung et al., 2020, 2010; Migliavacca et al., 2021; 56 

Peaucelle et al., 2019). With the increase in such observations, various statistical analysis methods such as 57 

emerging machine learning (Barnes et al., 2021; Migliavacca et al., 2021; Reichstein et al., 2019; Shi et al., 58 



 

3 

 

2022b, a, 2020b; Tramontana et al., 2016)With the increase in such observations, various statistical analysis 59 

approaches such as machine learning (Barnes et al., 2021; Migliavacca et al., 2021; Reichstein et al., 2019; Shi 60 

et al., 2022b, a; Tramontana et al., 2016) have been used to mine the hidden information on the effects of 61 

climate change and its induced changes in vegetation, etc. on ecosystem function variables such as carbon and 62 

water flux, which has not been understood in depth by process-based models (e.g., biogeochemistry models 63 

(Sakschewski et al., 2016)). For example, using Random forests (RF) and principal component analysis (PCA), 64 

a recent study (Migliavacca et al., 2021) quantified the three main axes of terrestrial ecosystem function and 65 

their drivers based on observations of carbon and water fluxes of FLUXNET stations (Pastorello et al., 2020) 66 

and various climate and plant trait variables. Generally, data-driven approaches have become increasingly 67 

important recently in this area (Reichstein et al., 2019).  68 

 69 

However, compared to the process-based models, most of these data-driven approaches lack representation of 70 

the causality and detailed processes in the relations between ecosystem function and climate, despite the widely 71 

recognized complex causal interactions ofbetween ecosystems withand climate systems (Reichstein et al., 2014). 72 

Conventional methods such as multiple linear regression have been questioned in attribution studies of the 73 

relationship between climate and the carbon cycle (Wang et al., 2022). For example, the use of multiple linear 74 

regression may underestimate the direct effect of soil moisture possibly due to the covariance between variables 75 

(Wang et al., 2022). For machine learning techniques, current common algorithms such as RF (Migliavacca et 76 

al., 2021) can report the importance of features (IMP) to measure their contributions to the prediction model. 77 

However, IMP-based attribution to the target variable can also be unreliable if considerable confounders and 78 

correlations between predictor variables exist (Strobl et al., 2008; Toloşi and Lengauer, 2011). The less relevant 79 

predictors can replace the predictive predictors (due to correlation) and thus receive undeserved high feature 80 

importance (Strobl et al., 2008). Correlations between predictors can lead to biased feature-importanceIMP-81 

based findings. It is thus important to recognize the difference between correlation and causality in these 82 

approaches, and represent detailed causal relations between features, rather than the unreliable feature 83 

importanceIMP rankings generated from correlated features.  84 

 85 

Bayesian network (BN) is a causal graphical model based on conditional probability representation (Friedman et 86 

al., 1997; Pearl, 1985) that characterizes the transmission of cause and effect through conditional probabilities 87 

between variables. Currently, BN has been used in modeling causal relationships in many fields and has 88 

demonstrated advantages in causal interpretation, including in the fields such as hydrology and ecology (Chan et 89 

al., 2010; Keshtkar et al., 2013; Milns et al., 2010; Pollino et al., 2007; Shi et al., 2021a, b; Trifonova et al., 90 

2015)(Chan et al., 2010; Keshtkar et al., 2013; Milns et al., 2010; Pollino et al., 2007; Shi et al., 2021a, b; 91 

Trifonova et al., 2015). However, BN has rarely been used in the study of the attribution of changes in 92 

ecosystem function. Therefore, this study used BN to attribute the controls of climate and plant traits to 93 

ecosystem function by quantifying the causal relationships involved. The data used arewas from a previous 94 

study (Migliavacca et al., 2021) which extracted ecosystem function, climate, and plant trait variables for 95 

FLUXNET flux stations. The construction of the causal structure of BN referred to the previous expert 96 

knowledge of this system (Reichstein et al., 2014). Further, by comparing BN-based attribution analysis, linear 97 



 

4 

 

correlation analysis, and RF-based IMP reported by the previous study (Migliavacca et al., 2021), we 98 

investigated the adding-values of using BN for causal analysis and discussed its prospects in this paper. 99 

2 Methodology 100 

2.1 Data 101 

The used variables (Table 1) include the carbon and water fluxes of the FLUXNET flux tower sites and the 102 

ecosystem function variables derived from them, and information on the corresponding climate variables as well 103 

as plant traits: 104 

a) Ecosystem function variables: underlying Water Use Efficiency (uWUE), maximum evapotranspiration 105 

(ETmax), maximum surface conductance (GSmax), maximum net CO2 uptake of the ecosystem 106 

(NEPmax), Gross Primary Productivity at light saturation (GPPsat), Mean basal ecosystem respiration at a 107 

reference temperature of 15 °C (Rb), and apparent carbon-use efficiency (aCUE).  108 

b) Plant trait variables: ecosystem scale foliar nitrogen concentration (Nmass), Maximum Leaf Area Index 109 

(LAImax), Maximum vegetation height (Hc). Of the total 202 sites (Migliavacca and Musavi, 2021), 101 110 

sites have Nmass data, 153 sites have LAImax data, and 199 sites have Hc data. Only 98 have data on all 111 

these three plant trait variables. 112 

c) Climate variables: mean incoming shortwave radiation (SWin), Mean temperature (Tair), Mean Vapor 113 

Pressure Deficit (VPD), Mean annual precipitation (P), and cumulative soil water index (CSWI). 114 

 115 

These data have different producing processes, including those calculated from flux data, site records, extracted 116 

from remote sensing data, etc. The detailed calculation methods can be found in the ref. (Migliavacca et al., 117 

2021).Migliavacca et al., 2021.  118 

 119 

Table 1. The variables used and the discretization of their values in BN. 120 

Variable 

node 

Definition and 

units  

Type Approach (Migliavacca et al., 2021) Discretization in BN 

(equal quantile 

thresholds: 0%, 

33.33%, 66.67%, and 

100% percentile 

values) 

uWUE underlying Water 

Use Efficiency [gC 

kPa^0.5 kgH2O-1] 

Ecosystem 

function 

It was calculated from GPP, VPD, and ET 

(Zhou et al., 2014). The median of the half-

hourly retained uWUE values was used for 

each site. It was further filtered by the 

following conditions: (i) SWin > 200 W m−2; 

(ii) no precipitation event for the last 24 hours, 

when precipitation data are available; and (iii) 

during the growing season: daily GPP > 30% of 

its seasonal amplitude. 

 

0.068, 2.51, 3.18, 

5.332 

ETmax maximum 

evapotranspiration 

in the growing 

season [mm] 

Ecosystem 

function 

ETmax was computed as the 95th percentile of 

ET in the growing season. It was also filtered 

by the same filtering applied to the uWUE 

calculation. 

 

0.059, 0.17, 0.23, 

0.423 
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GSmax maximum surface 

conductance [m s-1] 

Ecosystem 

function 

GSmax was computed by inverting the 

Penman-Monteith equation after calculating the 

aerodynamic conductance. The 90th percentile 

of the half-hourly GS of each site was 

calculated and used as the GSmax of each site. 

 

0.0013, 0.0077, 

0.0123, 0.0566 

NEPmax maximum net CO2 

uptake of the 

ecosystem [umol 

CO2 m-2 s-1] 

Ecosystem 

function 

NEPmax was computed as the 90th percentile 

of the half-hourly net ecosystem production in 

the growing season (when daily GPP is > 30% 

of the GPP amplitude). 

1.953, 15.3, 24.4, 

42.82 

GPPsat Gross Primary 

Productivity at 

light saturation 

[umol CO2 m-2 s-1] 

Ecosystem 

function 

GPPsat was computed as the 90th percentile 

estimated from half-hourly data by fitting the 

hyperbolic light response curves. The 90th 

percentile from the GPPsat estimates of each 

site was extracted. 

 

3.042, 17.49, 27.74, 

47.6 

Rb Mean basal 

ecosystem 

respiration at a 

reference 

temperature of 

15 °C [umol CO2 

m-2 s-1] 

Ecosystem 

function 

Rb was derived from night-time NEE 

measurements. For each site, the mean of the 

daily Rb value was computed.  

 

0.144, 2.07, 3.12, 

10.67 

aCUE apparent carbon-

use efficiency 

Ecosystem 

function 

aCUE was calculated by aCUE = 1- (Rb/GPP) 

and the median value of daily aCUE is used. 

-1.19, 0.4, 0.74, 1 

Nmass ecosystem scale 

foliar nitrogen 

concentration [gN 

100 g-1] 

Plant trait Nmass was computed as the community-

weighted average of foliar N% of the major 

species at the site sampled at the peak of the 

growing season or gathered from the literature 

(Musavi et al., 2016, 2015; Fleischer et al., 

2015; Flechard et al., 2020). 

0.65, 1.15, 1.76, 4.44 

LAImax Maximum Leaf 

Area Index [m2 m-

2] 

Plant trait LAImax was collected from the literature 

(Migliavacca et al., 2011; Flechard et al., 2020), 

the FLUXNET Biological Ancillary Data 

Management (BADM) product, and/or site 

principal investigators.  

0.17, 2.27, 4.5, 12.9 

Hc Maximum 

vegetation height 

[m] 

Plant trait Hc was collected from the literature 

(Migliavacca et al., 2011; Flechard et al., 2020), 

the BADM product, and/or site principal 

investigators. 

0.04, 1.7, 16.0, 80.1 

SWin Mean incoming 

shortwave radiation 

[W m-2] 

Climate SWin was from FLUXNET data. 54.43, 134.18, 

182.44, 266.04 

Tair Mean temperature 

[degree C] 

Climate Tair was from FLUXNET data. -10.45, 6.62, 14.73, 

28.1 
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VPD Mean Vapor 

Pressure Deficit 

[hPa] 

Climate VPD was from FLUXNET data. 0.62, 3.38, 5.76, 

26.08 

P Mean annual 

precipitation 

[cm/year] 

Climate P was from FLUXNET data. 5.51, 45.28, 79.29, 

256.61 

CSWI cumulative soil 

water index 

Climate-

related soil 

water 

availability 

CSWI was computed as a measure of water 

availability (Nelson et al., 2018). 

-93.49, -1.24, 2.01, 

4.47 

 121 

2.2 BN for analyzing causal relations 122 

2.2.1 BN structures 123 

Based on expert knowledge (Reichstein et al., 2014), we constructed the structure of BN containing the causal 124 

relationships between plant traits and ecosystem function variables: 'BN_plant_trait'. The causal links between 125 

the variables were referred to the relationship diagram in the upper part of Figure 1. Further, we added the 126 

climate variables and the corresponding causal relationships, expanding 'BN_plant_trait' to 127 

'BN_plant_trait_climate', which further incorporates the climate variables and their impacts on the system 128 

(Figure 1). The explanation of added causal links was shown in Table 2.  129 

 130 

Each node is discretized for the BN compiling by the software Netica. The equal quantile (Nojavan A. et al., 131 

2017) three-level discretization (the distribution of nodes (Figure S1) is divided into three levels) for each node 132 

is applied by the discretization thresholds of 0%, 33.33%,66.67%, and 100% percentile values of the data 133 

distribution (Table 1) given the limitation of the amount of training data. 134 
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 135 

Figure 1. The structure of two Bayesian networks (BNs) for attribution of variations in ecosystem functions. 136 

‘BN_plant_trait’ in the median part incorporated the causal effects of plant traits (box in slight green) on 137 

ecosystem functions (box in white) from expert knowledge as the relation diagram on the upper part (Reichstein 138 

et al., 2014). ‘BN_plant_trait_climate’ in the lower part further incorporated the causal impacts of climate 139 

variables (box in light blue). 140 

 141 

Table 2. Explanation of the added causal links between climate variable nodes, plant trait nodes, and ecosystem 142 

function variable nodes in the BNs. 143 

Casual links Explanation References 

Parent 

node 

Child 

node 
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VPD uWUE uWUE= GPP· VPD0. 5/ET (Zhou et al., 2014) 

VPD GSmax stomatal and surface conductance declines 

under an increase in VPD 

(Grossiord et al., 2020; Wever et al., 

2002) 

VPD GPPsat leaf and canopy photosynthetic rates decline 

when atmospheric VPD increases due to 

stomatal closure 

(Yuan et al., 2019; Konings et al., 

2017) 

VPD CSWI CSWI declines under an increase in VPD (Nelson et al., 2018) 

Tair VPD higher air temperature corresponds to higher 

saturated water vapor pressure and can drive an 

increase in VPD 

(Yuan et al., 2019) 

Tair Hc the temperature limitation on canopy height 

variation 

(Moles et al., 2009) 

Tair Nmass increase in air temperature may decrease plant 

nitrogen concentration and leaf nitrogen 

content. 

(Weih and Karlsson, 2001; Reich 

and Oleksyn, 2004) 

Tair Rb temperature strongly influences Rb through the 

laws of thermodynamics 

(Davidson and Janssens, 2006; 

Enquist et al., 2003; Brown et al., 

2004) 

SWin LAImax solar radiation affects vegetation conditions 

and phenology 

(Günter et al., 2008; Liu et al., 

2016; Borchert et al., 2015; Wagner 

et al., 2017) 

SWin Hc solar radiation affects the distribution and 

composition of ecosystems through 

photosynthesis and the water cycle 

(Borchert et al., 2015; Guisan and 

Zimmermann, 2000; Piedallu and 

Gégout, 2007) 

SWin GPPsat solar radiation affects ecosystem productivity 

and plant growth 

(Monteith, 1972; Borchert et al., 

2015; Guisan and Zimmermann, 

2000) 

P Hc the hydraulic limitation hypothesis on canopy 

height variation 

(Moles et al., 2009; Ryan and 

Yoder, 1997; Koch et al., 2004) 

P Nmass leaf nitrogen concentration per unit mass may 

decrease with increasing precipitation 

(Santiago and Mulkey, 2005; 

Wright and Westoby, 2002) 

P CSWI CSWI declines under a decrease in P (Nelson et al., 2018) 

CSWI LAImax soil moisture affects vegetation conditions (Patanè, 2011) 

CSWI Rb soil moisture affects the temperature 

dependence of ecosystem respiration 

(Xu et al., 2004; Flanagan and 

Johnson, 2005; Wen et al., 2006) 

CSWI GPPsat soil moisture can reduce GPP through 

ecosystem water stress 

(Green et al., 2019) 

 144 
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2.2.2 BN evaluation and node sensitivity analysis 145 

Based on the Bayesian network (BN), the joint impacts of multiple variables and their causal relations are 146 

analyzed. A BN can be represented by nodes X1, X2, X3 to Xn and the joint distribution (Pearl, 1985): 147 

Pa(X) = Pa(X1, X2 , … , Xn) = ∏ Pa(Xi|pa(Xi))n
i=1 (1)  148 

where pa(Xi) is the probability of the parent node Xi. Expectation-maximization (Moon, 1996) is used to address 149 

the data with missing values and then compile the BN.  150 

 151 

We used k-fold cross-validation to verify the reliability of the BN. The k-fold approach has been widely used in 152 

previous studies for the validation of BNs (Marcot, 2012). In this study, k is set as 10 as commonly used 153 

(Marcot and Hanea, 2021). We choose ETmax, GPPsat, and NEPmax for cross-validation of accuracy, and the 154 

predicted status (status with the highest probability bar value) of the nodes will be compared with the actual 155 

status and the classification accuracy will be calculated. These three nodes are the main terminal nodes and 156 

primary objectives of the BN and represent the main water and carbon-related ecosystem functions, respectively. 157 

The accuracy of these three variables can largely reflect the overall performance of BN. 158 

 159 

Sensitivity analysis is used for the evaluation of the strength of the causal relations between nodes based on 160 

mutual information (MI). MI is calculated as the entropy reduction of the child node resulting from changes 161 

found at the parent node (Shi et al., 2020a): 162 

 163 

Sensitivity analysis is used for the evaluation of the strength of the causal relations between nodes based on 164 

mutual information (MI). MI is calculated as the entropy reduction of the child node resulting from changes 165 

found at the parent node (Shi et al., 2020): 166 

MI = H(Q)-H(Q|F)= ∑ ∑ P(q, f) log
2

(
P(q,f)

P(q)P(f)
) fq (2)  167 

where H represents the entropy, Q represents the target node, F represents the set of other nodes and q and f 168 

represent the status of Q and F. In this study, we assessed the sensitivity of ecosystem function variables to 169 

climate and plant trait variables. 170 

2.2.3 Comparing different approaches used for attribution analysis 171 

Further, to clarify the adding-values of considering causality in the attribution analysis of controls on ecosystem 172 

functions, the results of the BN-based sensitivity analysis (BN_sens) were compared with the other two 173 

approaches. They are the results of the absolute values of additional linear correlation analysis (linear_corr) in 174 

this study and the findings from the ref. (Migliavacca et al., 2021)in Migliavacca et al., 2021 using RF feature 175 

importance (RF_imp). BN_sens and linear_corr directly measure the effects of plant traits and climate variables 176 

on ecosystem function variables, while RF_imp measures their effects on the three principal components (PC1, 177 

PC2, and PC3) of ecosystem function variables, which were reported as the three major axes of ecosystem 178 

function by the ref. (Migliavacca et al., 2021).Migliavacca et al., 2021. It was obtained from principal 179 

component analysis of 12 ecosystem function variables which included the six variables uWUE, ETmax, 180 

GSmax, NEPmax, GPPsat, and Rb used in the methods BN_sens and linear_corr. The first axis (PC1) explains 181 

39.3% of the variance and is dominated by maximum ecosystem productivity properties, as indicated by the 182 

loadings of GPPsat and NEPmax, and maximum evapotranspiration (ETmax). The second axis (PC2) explains 183 
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21.4% of the variance and refers to water-use strategies as shown by the loadings of water-use efficiency 184 

metrics, evaporative fraction, and GSmax. The third axis (PC3) explains 11.1% of the variance and includes key 185 

attributes that reflect the carbon-use efficiency of ecosystems. PC3 is dominated by apparent carbon-use 186 

efficiency, basal ecosystem respiration (Rb), and the amplitude of evaporative fraction (Migliavacca et al., 187 

2021). 188 

 189 

3 Results 190 

3.1 Correlation analysis 191 

Linear correlation analysis of the variables (Figure 2) showed significant (P < 0.05) linear correlations between 192 

the ecosystem function variables and some of the climate and plant trait variables. SWin and VPD showed 193 

negative correlations with these ecosystem function variables. LAImax/ Hc showed significant positive 194 

relationships with most of the ecosystem function variables and significant negative relationships with SWin and 195 

VPD. Nmass only showed a positive relationship with ETmax. In addition, the majority of the ecosystem 196 

function variables showed significant (P < 0.05) positive correlations with each other.  197 

 198 

Figure 2. Correlation coefficient matrix of ecosystem functions and climate and plant trait variables for 199 

FLUXNET sites. Only correlation coefficients with p-values less than 0.05 level of significance is shown. 200 
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3.2 BN-based analysis 201 

We compiled two different BNs (i.e., BN_plant_trait and BN_plant_trait_climate) (Figure 3) and found that the 202 

probability distributions of the values of the common nodes (ecosystem function and plant trait variable nodes) 203 

differed a little (e.g., in the probability distribution of LAImax, Hc, and Nmass) between the two BNs. 204 

Compared to BN_plant_trait, in BN_plant_trait_climate, the climate variables of sites with missing plant trait 205 

data forced the changes in the probability distributions of LAImax, Hc, and Nmass. In the EM algorithm, for 206 

sites with missing plant trait data, existing relationships (obtained from observations from other sites) between 207 

plant trait variables and climate variables are used in the data interpolation of plant trait variables. In 208 

BN_plant_trait_climate, the added linkages of climate variables to plant trait variables resulted in higher 209 

probability values of the low-value status of the plant trait variables.  210 

 211 

The 10-fold cross-validation of the nodes ETmax, GPPsat, and NEPmax showed relatively high accuracy. The 212 

classification accuracy (Table S1) of the status of ETmax was 60.9%, the classification accuracy of the status of 213 

NEPmax was 84.2% and the classification accuracy of the status of GPPsat was 75.2%. 214 

 215 
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  216 

Figure 3. The compiled two BNs (‘BN_plant_trait’ and ‘BN_plant_trait_climate’). The bars of each node 217 

represent its probability distribution. At the bottom part of each node, the left and right side values of the '±' are 218 

the mean and standard deviation of the distribution, respectively. 219 

 220 

We performed sensitivity analyses (Figure 4) on the ecosystem function variables in both BNs to assess their 221 

sensitivity to various climate and plant trait variables. We also calculated the difference in sensitivity MI 222 

between the two BNs (Figure 4) to compare the change in sensitivity of ecosystem function to each variable 223 

after adding further climate variables to the plant trait variables only. The sensitivity of different ecosystem 224 

function variables to plant traits and climate variables was highly variable in both BNs. The magnitude of 225 

sensitivity of ecosystem function nodes to plant traits and climate variables was related to whether these plant 226 

traits and climate variables were set as their parent nodes. In BN_plant_trait, for the carbon fluxes GPPsat and 227 

NEPmax, Nmass, and LAImax had higher sensitivity due to Nmass and LAI being set as their parent nodes. For 228 

the water flux ETmax, it does not have high sensitivity to plant trait variables such as LAImax and Hc, although 229 
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these plant trait variables are set as the parent nodes of ETmax. This indicates the difference in the strength of 230 

the control effects of plant traits on carbon and water fluxes. 231 

 232 

In the sensitivity analysis of BN_plant_trait_climate, the sensitivity patterns of the ecosystem function variables 233 

changed as a result of the inclusion of climate variables and the change in causality they introduced. The 234 

sensitivity of the ecosystem function variables to climate variables was significantly increased (especially for 235 

Tair, VPD, and CSWI). The control of plant traits on ecosystem function in BN_plant_trait is also partially 236 

transformed into an indirect effect of climate variables by first controlling plant trait variables and then 237 

controlling ecosystem function. For example, in BN_plant_trait_climate, for GPPsat, a decrease in the 238 

sensitivity of GPPsat to LAImax and an increase in the sensitivity to Tair was observed after the causal chain of 239 

Tair influencing Hc, LAImax, and then GPPsat was set. This can be explained by the fact that higher 240 

temperatures promote vegetation growth and thus may increase LAImax, which then indirectly alters the 241 

probability distribution of the GPPsat node. In previous studies based on statistical methods that did not consider 242 

the chain causality, this indirect control on GPPsat from Tair may have been included in the contribution of 243 

LAImax to GPPsat. Similarly, a chain causality of P by first affecting Nmass and then indirectly GPPsat was 244 

also found. However, the effect of P by first affecting Hc, LAImax, and then indirectly affecting ETmax and 245 

GSmax appears to be not large.  246 
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 247 
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Figure 4. Sensitivity of ecosystem function variables to other variables in different networks based on mutual 248 

information (MI). The left column is the sensitivity analysis of BN_plant_trait, the middle column is the 249 

sensitivity analysis of BN_plant_trait_climate, and the right column is the difference between the reported 250 

sensitivity of BN_plant_trait_climate and the sensitivity of BN_plant_trait. For BN_plant_trait, the MI values of 251 

climate variables to ecosystem function variables are all 0 because they do not contain climate variables. For 252 

each ecosystem function in these two BNs, its sensitivity to its child node is not shown (set as 0) because child 253 

nodes are not considered causal variables and thus are not evaluated in the attribution. 254 

3.3 Comparing results from RF-based, BN-based analysis, and correlation analysis 255 

All three methods show the importance of the plant trait variables in explaining the variation of various 256 

ecosystem function variables (Figure 5). LAImax was the most important of the three methods in explaining the 257 

variation of maximum ecosystem productivity properties (corresponding to PC1). In contrast to the results of the 258 

other two methods, in linear_corr, SWin and VPD were the least important, while P was more important. 259 

Comparing RF_imp and BN_sens, the overall pattern of importance is similar, but there are differences. For 260 

water-use strategies (corresponding to PC2), Hc is ranked first and LAI last in RF_imp, but in BN_sens, LAI is 261 

slightly more important than Hc. In linear_corr, Hc and LAI are of similar importance. For PC3, VPD ranks first 262 

and is more important than Tair in RF_imp. But in BN_sens, Tair is more important than VPD. Among the three 263 

moisture-related climate variables (i.e., VPD, P, and CSWI), CSWI appears to be the least important in RF_imp 264 

but is comparable to VPD in BN_sens. 265 

 266 

Given the limitations of RF_imp in responding to the correlated variables (Strobl et al., 2008), the difference 267 

between the significance of VPD and CSWI reported by RF_imp may be overestimated. For the ecosystem 268 

functions related to water-use strategies, the difference between LAImax and Hc reported by BN_sens is also 269 

much smaller than the difference reported by RF_imp. It implied that, with the causality relation between 270 

correlated variables constructed, BN_sens reduced the uncertainty in quantifying the importance of correlated 271 

variables. 272 
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 273 

Figure 5. Comparisons of relationships of ecosystem functional variables to plant traits and climate variables in 274 

different analyses. Method RF_imp is Random forest variable importance (Migliavacca et al., 2021) (see 275 

Methodology section). Method linear_corr is Linear correlation analysis with the absolute values of Pearson 276 

correlation coefficients (see Methodology section). Method BN_sens is a BN-based sensitivity analysis with 277 

sensitivity values MI reported. The values in each method group are in red for high values and in blue for low 278 

values. The color depth is dependent on values and the scale is the same in each row.  279 

4 Discussions 280 

Based on BN, this study investigates the prospect of using causal graphical models to revisit and attribute the 281 

control of climate and plant trait variations to ecosystem functions. Because of the inclusion of the constraints 282 

provided by expert knowledge (Reichstein et al., 2014) and other perceptions from many previous studies, BN-283 

based attribution analysis is relatively reliable andin terms of the represented mechanisms of causal links. It can 284 

update our knowledge of the contribution of some teleconnection variables through causal chains. The effective 285 

implementation of BN-based causal analysis may depend on the reliability of the causal relationships provided 286 

by expert knowledge (directional links between variables). We can establish the connection relationships and 287 

network structures between variables from expert knowledge and assign the specific quantification of the 288 
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connection relationships (conditional probability tables) to observations (Shi et al., 2021a)(Shi et al., 2021a). If 289 

further combined with findings from process-based models, it is promising to significantly improve our 290 

understanding of the complex ‘climate-plant trait-ecosystem function’ relationships by comparing detailed 291 

relationships and structural influences between variables. 292 

 293 

BN essentially factorizesfactorized the joint probability distribution among databetween various variables into a 294 

series of conditional probability distributions (Ramazi et al., 2021), and the reliability of this approach 295 

reliesrelied on the setting of causal control relationships amongbetween nodes. Expert knowledge iswas thus 296 

critical in the construction of BNs, especially when modeling complex systems. In addition to the causal 297 

relationship between nodes, the meaning represented by each node, the data source/ approach, and the spatial 298 

and temporal resolution may also have impacts on the results. For example, in this study, for multiple water use 299 

efficiency-related variables in the ref. (Migliavacca et al., 2021), we chosed uWUE, and for Rb, we chosed the 300 

mean value of Rb.Migliavacca et al., 2021, uWUE was chosen, and for Rb, the mean value of Rb was chosen. 301 

The results of BN-based analysis may vary if different representations or meanings of nodes are selected. The 302 

way the data of each variable is observed/ produced, the spatial and temporal resolution of the data, etc. can also 303 

affect the understanding of the role of these variables in the data-driven BN. Some variables may be very 304 

important in the attribution of actual ecosystem function variation, but their importance may be underestimated 305 

due to limitations in the inherent observational accuracy of their data, and differences in their spatial and 306 

temporal scales from other variables. In addition, some variables such as soil moisture may be difficult to obtain 307 

due to the lack of continuous site-scale long-term observations. Using the water balance method to calculate 308 

CSWI as a proxy may introduce errors. Since the CSWI calculation method relies on P, etc., the obtained 309 

relationship between P, CSWI, and other nodes may have contained empirical components. If the availability of 310 

measurements of some nodes is low, modelers should be cautious about the empirical dependencies with other 311 

nodes that may be included in the alternative data approaches. Thus, the alternative use of multiple derivatives 312 

of a variable and data generated by different methods for the construction of different BNs can help us to 313 

recognize how the uncertainty in the nodes and data can influence BN-based attribution findings. Different node 314 

discretization schemes may also affect the conditional probability table between nodes as well as the sensitivity 315 

(Nojavan A. et al., 2017). Other alternative discretization schemes with the commonly used three levels may 316 

also be effective, such as using ‘mean-std’ (mean minus 1 standard deviation) and ‘mean+std’ (mean plus 1 317 

standard deviation) as discretization thresholds, which will result in a change in the relationship between BN 318 

nodes. And further if extreme values such as 5th and 95th pencentile are used in the node value discretization, it 319 

may be beneficial on quantifying the causal control of extreme conditions of nodes on other nodes. 320 

 321 

When considering higher-order effects (Bairey et al., 2016), the relationships between plant traits, climate 322 

variables, and ecosystem function variables can be very complex. One variable may affect the relationship 323 

between two other variables rather than directly affecting these two variables (Bairey et al., 2016). BN may have 324 

limitations in directly analyzing such higher-order effects because BN requires the modeler to explicitly set 325 

direct causal relationships between nodes. To analyze the higher-order effects, we can add nodes that directly 326 

represent the relationship between the variables. For example, the correlation coefficient of two variables can be 327 

used as a node and this node is connected to other nodes in the BN so that the control effect of other nodes on 328 
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this correlation coefficient can be explored. Such implements may be useful to deepen the impact of various 329 

higher order effects. 330 

 331 

Besides, the BN in this study was mainly based on data averaged over multiple years, thus possibly partially 332 

underestimating the effect of temporal variations in the relationships between variables. Another limitation of 333 

the BN proposed above is that the causal relationships between variables are unidirectional, while it is difficult 334 

to represent interactions and feedback between variables (Marcot and Penman, 2019). In future studies, to 335 

address these two issues, BN based on temporal dynamics can be promising (Figure 6). By refining the 336 

interaction of temporal lags between variables, it is possible to incorporate not only temporal variation but also 337 

control factors that attribute interactions and feedback between variables. For example, the interaction and 338 

feedback mechanisms of VPD, soil moisture, and ET with lag effects (Figure 6) and their impacts on ecosystems 339 

have attracted extensive interest from researchers (Anderegg et al., 2019; Humphrey et al., 2021; Lansu et al., 340 

2020; Liu et al., 2020; Xu et al., 2022; Zhou et al., 2019), but conventional statistical methods have been 341 

ineffective in analyzing such relationships with both interactive causality and temporal lags. In contrast, the BN 342 

proposed here, which incorporates feedback effects and lagged effects that were common in climate-ecosystem 343 

relations (Lin et al., 2019), is potentially able to address this issue from a data-driven approach. In the practical 344 

modeling, different periods of the same node may still be not independent. Therefore, the split scheme of such 345 

periods may be critical. For example, a period between two precipitation events can be treated as one sample, 346 

which can enhance independence between periods. Subsequently, a such period can be divided into smaller 347 

periods such as t, t-1, t-2, etc. to aggregate the node values to appropriate time scales. Thus one sample can 348 

represent the interaction relationship between variables with lags in this period. Finally, we can integrate records 349 

of such periods between two precipitation events from sites across different climate zones and biomes to build 350 

synthesis models for global analysis of such problems. If further combined with the findings of process-based 351 

models, our understanding of climate and ecosystem interactions and feedback and their mechanisms in time is 352 

hopefully deepened.Such research frameworks in BN-based modeling may be difficult due to high 353 

computational costs given the large amount of data. Fortunately, recently proposed new causal models have the 354 

potential to address this limitation, such as the introduction of causality into deep learning frameworks (Luo et 355 

al., 2020; Cui and Athey, 2022). If further combined with the findings of process-based models, our 356 

understanding of climate and ecosystem interactions and feedback and their mechanisms in time is hopefully 357 

deepened. 358 

 359 

 360 

Figure 6. The future BNs with the temporal causality further considered addressing the causality of the 361 

interaction between variables. The VPD-CSWI-ET relationship is used here as an example. t, t-1, and t-2 denote 362 

the current period, the last period, and the period before the last period, respectively. The network on the left 363 
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only considers the effect of VPD on CSWI without considering the feedback of CSWI on the VPD. The network 364 

on the right characterizes the VPD-CSWI interaction with the feedback from CSWI at period t-1 to VPD at 365 

period t.  366 

5 Conclusion 367 

Based on BN, we revisited and attributed the contribution of climate and plant traits to global terrestrial 368 

ecosystem function. The major conclusions of this study include:  369 

1. BN can be used for the quantification of causal relationships between complex ecosystems in response to 370 

climate change and enables the analysis of indirect effects among variables.  371 

2. Compared to BN, the feature importance difference between ‘VPD and CSWI’ and ‘LAImax and Hc’ 372 

reported by Random forests is higher and can be overestimated.  373 

3. With the causality relation between correlated variables constructed, BN_sens can reduce the uncertainty in 374 

quantifying the importance of correlated variables. 375 

4. The understanding of the mechanism of indirect effects of climate variables on ecosystem function through 376 

plant traits can be deepened by the chain casuality quantification in BNs.  377 

  378 
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