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Abstract 20 

Using statistical methods that not directly representing the causality between variables to attribute climate and 21 

plant traits to control ecosystem function may produce biased perceptions. We revisit this issue using a causal 22 

graphical model, Bayesian network (BN), capable of quantifying causality by conditional probability tables. 23 

Based on expert knowledge and climate, vegetation, and ecosystem function data from the FLUXNET flux 24 

stations, we constructed a BN containing the causal relationship of 'climate-plant trait-ecosystem function'. 25 

Based on the sensitivity analysis function of the BN, we attributed the controls of climate and plant traits to 26 

ecosystem function and compared the results with those based on Random forests and correlation analysis. The 27 

main conclusions of this study include: BN can be used for the quantification of causal relationships between 28 

complex ecosystems in response to climate change and enables the analysis of indirect effects among variables. 29 

Compared to BN, the feature importance difference between ‘mean vapor pressure deficit and cumulative soil 30 

water index’ and ‘maximum leaf area index and maximum vegetation height’ reported by Random forests is 31 

higher and can be overestimated. With the causality relation between correlated variables constructed, BN-based 32 

sensitivity analysis can reduce the uncertainty in quantifying the importance of correlated variables. The 33 

understanding of the mechanism of indirect effects of climate variables on ecosystem function through plant 34 

traits can be deepened by the chain casuality quantification in BNs. 35 

1 Introduction 36 

Ecosystem function is the capacity of natural processes and components to provide goods and services that 37 

satisfy human needs, either directly or indirectly (de Groot et al., 2002). Ecosystem functions include the 38 

physicochemical and biological processes within the ecosystem to maintain terrestrial life. Terrestrial 39 

ecosystems have provided a variety of important ecosystem functions for our society (Manning et al., 2018). 40 

Plant traits’ role as important determinants of ecosystem functions has been widely recognized (Chapin Iii et al., 41 

2000), and various trait syndromes can result in distinct broad differences in ecosystem functions (Reichstein et 42 

al., 2014). In the context of global climate change, it is also essential to understand the potential changes in 43 

ecosystem functions (Grimm et al., 2013). The response of terrestrial ecosystem function to changes in climate, 44 

plant traits, and the corresponding mechanisms, are complex due to enormous spatial and temporal variations 45 

across ecosystems, climate zones, and also space-time scales (Diaz and Cabido, 1997; Madani et al., 2018; 46 

Myers-Smith et al., 2019). Given the enormous variations, on the global scale, these issues have not been 47 

clarified well.  48 

 49 

In the past decades, measurements of ecosystem functions are increasingly available to support studies of the 50 

relations between ecosystem functions and climate variables. For example, eddy-covariance flux tower 51 

observations (Baldocchi, 2014) for carbon flux (i.e., net ecosystem exchange (NEE)) and water flux (i.e., 52 

evapotranspiration (ET)) have been widely used to investigate changes in ecosystem functions and their 53 

responses to climate change, vegetation condition changes, etc (Jung et al., 2020, 2010; Migliavacca et al., 2021; 54 

Peaucelle et al., 2019). With the increase in such observations, various statistical analysis methods such as 55 

emerging machine learning (Barnes et al., 2021; Migliavacca et al., 2021; Reichstein et al., 2019; Shi et al., 56 

2022b, a, 2020b; Tramontana et al., 2016) have been used to mine the hidden information on the effects of 57 
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climate change and its induced changes in vegetation, etc. on ecosystem function variables such as carbon and 58 

water flux, which has not been understood in depth by process-based models (e.g., biogeochemistry models 59 

(Sakschewski et al., 2016)). For example, using Random forests (RF) and principal component analysis (PCA), 60 

a recent study (Migliavacca et al., 2021) quantified the three main axes of terrestrial ecosystem function and 61 

their drivers based on observations of carbon and water fluxes of FLUXNET (Pastorello et al., 2020) and 62 

various climate and plant trait variables. Generally, data-driven approaches have become increasingly important 63 

recently in this area (Reichstein et al., 2019).  64 

 65 

However, compared to the process-based models, most of these data-driven approaches lack representation of 66 

the causality and detailed processes in the relations between ecosystem function and climate, despite the widely 67 

recognized complex causal interactions of ecosystems with climate systems (Reichstein et al., 2014). 68 

Conventional methods such as multiple linear regression have been questioned in attribution studies of the 69 

relationship between climate and the carbon cycle (Wang et al., 2022). For example, the use of multiple linear 70 

regression may underestimate the direct effect of soil moisture possibly due to the covariance between variables 71 

(Wang et al., 2022). For machine learning techniques, current common algorithms such as RF (Migliavacca et 72 

al., 2021) can report the importance of features (IMP) to measure their contributions to the prediction model. 73 

However, IMP-based attribution to the target variable can also be unreliable if considerable confounders and 74 

correlations between predictor variables exist (Strobl et al., 2008; Toloşi and Lengauer, 2011). The less relevant 75 

predictors can replace the predictive predictors (due to correlation) and thus receive undeserved high feature 76 

importance (Strobl et al., 2008). Correlations between predictors can lead to biased feature-importance-based 77 

findings. It is thus important to recognize the difference between correlation and causality in these approaches, 78 

represent detailed causal relations between features, rather than the unreliable feature importance rankings 79 

generated from correlated features.  80 

 81 

Bayesian network (BN) is a causal graphical model based on conditional probability representation (Friedman et 82 

al., 1997; Pearl, 1985) that characterizes the transmission of cause and effect through conditional probabilities 83 

between variables. Currently, BN has been used in modeling causal relationships in many fields and has 84 

demonstrated advantages in causal interpretation, including in the fields such as hydrology and ecology (Chan et 85 

al., 2010; Keshtkar et al., 2013; Milns et al., 2010; Pollino et al., 2007; Shi et al., 2021a, b; Trifonova et al., 86 

2015). However, BN has rarely been used in the study of the attribution of changes in ecosystem function. 87 

Therefore, this study used BN to attribute the controls of climate and plant traits to ecosystem function by 88 

quantifying the causal relationships involved. The data used are from a previous study (Migliavacca et al., 2021) 89 

which extracted ecosystem function, climate, and plant trait variables for FLUXNET flux stations. The 90 

construction of the causal structure of BN referred to the previous expert knowledge of this system (Reichstein 91 

et al., 2014). Further, by comparing BN-based attribution analysis, linear correlation analysis, and RF-based 92 

IMP reported by the previous study (Migliavacca et al., 2021), we investigated the adding-values of using BN 93 

for causal analysis and discussed its prospects in this paper. 94 
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2 Methodology 95 

2.1 Data 96 

The used variables (Table 1) include the carbon and water fluxes of the FLUXNET flux tower sites and the 97 

ecosystem function variables derived from them, and information on the corresponding climate variables as well 98 

as plant traits: 99 

a) Ecosystem function variables: underlying Water Use Efficiency (uWUE), maximum evapotranspiration 100 

(ETmax), maximum surface conductance (GSmax), maximum net CO2 uptake of the ecosystem 101 

(NEPmax), Gross Primary Productivity at light saturation (GPPsat), Mean basal ecosystem respiration at a 102 

reference temperature of 15 °C (Rb), and apparent carbon-use efficiency (aCUE).  103 

b) Plant trait variables: ecosystem scale foliar nitrogen concentration (Nmass), Maximum Leaf Area Index 104 

(LAImax), Maximum vegetation height (Hc). Of the total 202 sites (Migliavacca and Musavi, 2021), 101 105 

sites have Nmass data, 153 sites have LAImax data, and 199 sites have Hc data. Only 98 have data on all 106 

these three plant trait variables. 107 

c) Climate variables: mean incoming shortwave radiation (SWin), Mean temperature (Tair), Mean Vapor 108 

Pressure Deficit (VPD), Mean annual precipitation (P), and cumulative soil water index (CSWI). 109 

 110 

These data have different producing processes, including those calculated from flux data, site records, extracted 111 

from remote sensing data, etc. The detailed calculation methods can be found in the ref. (Migliavacca et al., 112 

2021).  113 

 114 

Table 1. The variables used and the discretization of their values in BN. 115 

Variable 

node 

Definition and 

units  

Type Approach (Migliavacca et al., 2021) Discretization in BN 

(equal quantile 

thresholds: 0%, 

33.33%, 66.67%, and 

100% percentile 

values) 

uWUE underlying Water 

Use Efficiency [gC 

kPa^0.5 kgH2O-1] 

Ecosystem 

function 

It was calculated from GPP, VPD, and ET 

(Zhou et al., 2014). The median of the half-

hourly retained uWUE values was used for 

each site. It was further filtered by the 

following conditions: (i) SWin > 200 W m−2; 

(ii) no precipitation event for the last 24 hours, 

when precipitation data are available; and (iii) 

during the growing season: daily GPP > 30% of 

its seasonal amplitude. 

 

0.068, 2.51, 3.18, 

5.332 

ETmax maximum 

evapotranspiration 

in the growing 

season [mm] 

Ecosystem 

function 

ETmax was computed as the 95th percentile of 

ET in the growing season. It was also filtered 

by the same filtering applied to the uWUE 

calculation. 

 

0.059, 0.17, 0.23, 

0.423 

GSmax maximum surface 

conductance [m s-1] 

Ecosystem 

function 

GSmax was computed by inverting the 

Penman-Monteith equation after calculating the 

aerodynamic conductance. The 90th percentile 

of the half-hourly GS of each site was 

calculated and used as the GSmax of each site. 

0.0013, 0.0077, 

0.0123, 0.0566 
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NEPmax maximum net CO2 

uptake of the 

ecosystem [umol 

CO2 m-2 s-1] 

Ecosystem 

function 

NEPmax was computed as the 90th percentile 

of the half-hourly net ecosystem production in 

the growing season (when daily GPP is > 30% 

of the GPP amplitude). 

1.953, 15.3, 24.4, 

42.82 

GPPsat Gross Primary 

Productivity at 

light saturation 

[umol CO2 m-2 s-1] 

Ecosystem 

function 

GPPsat was computed as the 90th percentile 

estimated from half-hourly data by fitting the 

hyperbolic light response curves. The 90th 

percentile from the GPPsat estimates of each 

site was extracted. 

 

3.042, 17.49, 27.74, 

47.6 

Rb Mean basal 

ecosystem 

respiration at a 

reference 

temperature of 

15 °C [umol CO2 

m-2 s-1] 

Ecosystem 

function 

Rb was derived from night-time NEE 

measurements. For each site, the mean of the 

daily Rb value was computed.  

 

0.144, 2.07, 3.12, 

10.67 

aCUE apparent carbon-

use efficiency 

Ecosystem 

function 

aCUE was calculated by aCUE = 1- (Rb/GPP) 

and the median value of daily aCUE is used. 

-1.19, 0.4, 0.74, 1 

Nmass ecosystem scale 

foliar nitrogen 

concentration [gN 

100 g-1] 

Plant trait Nmass was computed as the community-

weighted average of foliar N% of the major 

species at the site sampled at the peak of the 

growing season or gathered from the literature 

(Musavi et al., 2016, 2015; Fleischer et al., 

2015; Flechard et al., 2020). 

0.65, 1.15, 1.76, 4.44 

LAImax Maximum Leaf 

Area Index [m2 m-

2] 

Plant trait LAImax was collected from the literature 

(Migliavacca et al., 2011; Flechard et al., 2020), 

the FLUXNET Biological Ancillary Data 

Management (BADM) product, and/or site 

principal investigators.  

0.17, 2.27, 4.5, 12.9 

Hc Maximum 

vegetation height 

[m] 

Plant trait Hc was collected from the literature 

(Migliavacca et al., 2011; Flechard et al., 2020), 

the BADM product, and/or site principal 

investigators. 

0.04, 1.7, 16.0, 80.1 

SWin Mean incoming 

shortwave radiation 

[W m-2] 

Climate SWin was from FLUXNET data. 54.43, 134.18, 

182.44, 266.04 

Tair Mean temperature 

[degree C] 

Climate Tair was from FLUXNET data. -10.45, 6.62, 14.73, 

28.1 

VPD Mean Vapor 

Pressure Deficit 

[hPa] 

Climate VPD was from FLUXNET data. 0.62, 3.38, 5.76, 

26.08 

P Mean annual 

precipitation 

[cm/year] 

Climate P was from FLUXNET data. 5.51, 45.28, 79.29, 

256.61 
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CSWI cumulative soil 

water index 

Climate-

related soil 

water 

availability 

CSWI was computed as a measure of water 

availability (Nelson et al., 2018). 

-93.49, -1.24, 2.01, 

4.47 

 116 

2.2 BN for analyzing causal relations 117 

2.2.1 BN structures 118 

Based on expert knowledge (Reichstein et al., 2014), we constructed the structure of BN containing the causal 119 

relationships between plant traits and ecosystem function variables: 'BN_plant_trait'. The causal links between 120 

the variables were referred to the relationship diagram in the upper part of Figure 1. Further, we added the 121 

climate variables and the corresponding causal relationships, expanding 'BN_plant_trait' to 122 

'BN_plant_trait_climate', which further incorporates the climate variables and their impacts on the system 123 

(Figure 1). 124 

 125 

Each node is discretized for the BN compiling by the software Netica. The equal quantile (Nojavan A. et al., 126 

2017) three-level discretization (the distribution of nodes (Figure S1) is divided into three levels) for each node 127 

is applied by the discretization thresholds of 0%, 33.33%,66.67%, and 100% percentile values of the data 128 

distribution (Table 1) given the limitation of the amount of training data. 129 
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 130 

Figure 1. The structure of two Bayesian networks (BNs) for attribution of variations in ecosystem functions. 131 

‘BN_plant_trait’ in the median part incorporated the causal effects of plant traits (box in slight green) on 132 

ecosystem functions (box in white) from expert knowledge as the relation diagram on the upper part (Reichstein 133 

et al., 2014). ‘BN_plant_trait_climate’ in the lower part further incorporated the causal impacts of climate 134 

variables (box in light blue). 135 

 136 

Table 2. Explanation of the added causal links between climate variable nodes, plant trait nodes, and ecosystem 137 

function variable nodes in the BNs. 138 

Casual links Explanation References 

Parent 

node 

Child 

node 
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VPD uWUE uWUE= GPP· VPD0. 5/ET (Zhou et al., 2014) 

VPD GSmax stomatal and surface conductance declines 

under an increase in VPD 

(Grossiord et al., 2020; Wever et al., 

2002) 

VPD GPPsat leaf and canopy photosynthetic rates decline 

when atmospheric VPD increases due to 

stomatal closure 

(Yuan et al., 2019; Konings et al., 

2017) 

Tair VPD higher air temperature corresponds to higher 

saturated water vapor pressure and can drive an 

increase in VPD 

(Yuan et al., 2019) 

Tair Hc the temperature limitation on canopy height 

variation 

(Moles et al., 2009) 

Tair Nmass increase in air temperature may decrease plant 

nitrogen concentration and leaf nitrogen 

content. 

(Weih and Karlsson, 2001; Reich 

and Oleksyn, 2004) 

Tair Rb temperature strongly influences Rb through the 

laws of thermodynamics 

(Davidson and Janssens, 2006; 

Enquist et al., 2003; Brown et al., 

2004) 

SWin LAImax solar radiation affects vegetation conditions 

and phenology 

(Günter et al., 2008; Liu et al., 

2016; Borchert et al., 2015; Wagner 

et al., 2017) 

SWin Hc solar radiation affects the distribution and 

composition of ecosystems through 

photosynthesis and the water cycle 

(Borchert et al., 2015; Guisan and 

Zimmermann, 2000; Piedallu and 

Gégout, 2007) 

SWin GPPsat solar radiation affects ecosystem productivity 

and plant growth 

(Monteith, 1972; Borchert et al., 

2015; Guisan and Zimmermann, 

2000) 

P Hc the hydraulic limitation hypothesis on canopy 

height variation 

(Moles et al., 2009; Ryan and 

Yoder, 1997; Koch et al., 2004) 

P Nmass leaf nitrogen concentration per unit mass may 

decrease with increasing precipitation 

(Santiago and Mulkey, 2005; 

Wright and Westoby, 2002) 

CSWI LAImax soil moisture affects vegetation conditions (Patanè, 2011) 

CSWI Rb soil moisture affects the temperature 

dependence of ecosystem respiration 

(Xu et al., 2004; Flanagan and 

Johnson, 2005; Wen et al., 2006) 

CSWI GPPsat soil moisture can reduce GPP through 

ecosystem water stress 

(Green et al., 2019) 

 139 

2.2.2 BN evaluation and node sensitivity analysis 140 

Based on the Bayesian network (BN), the joint impacts of multiple variables and their causal relations are 141 

analyzed. A BN can be represented by nodes X1, X2, X3 to Xn and the joint distribution (Pearl, 1985): 142 
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Pa(X) = Pa(X1, X2 , … , Xn) = ∏ Pa(Xi|pa(Xi))n
i=1 (1)  143 

where pa(Xi) is the probability of the parent node Xi. Expectation-maximization (Moon, 1996) is used to address 144 

the data with missing values and then compile the BN.  145 

 146 

We used k-fold cross-validation to verify the reliability of the BN. The k-fold approach has been widely used in 147 

previous studies for the validation of BNs (Marcot, 2012). In this study, k is set as 10 as commonly used 148 

(Marcot and Hanea, 2021). We choose ETmax, GPPsat, and NEPmax for cross-validation of accuracy, and the 149 

predicted status (status with the highest probability bar value) of the nodes will be compared with the actual 150 

status and the classification accuracy will be calculated. 151 

 152 

Sensitivity analysis is used for the evaluation of the strength of the causal relations between nodes based on 153 

mutual information (MI). MI is calculated as the entropy reduction of the child node resulting from changes 154 

found at the parent node (Shi et al., 2020a): 155 

MI = H(Q)-H(Q|F)= ∑ ∑ P(q, f) log
2

(
P(q,f)

P(q)P(f)
) fq (2)  156 

where H represents the entropy, Q represents the target node, F represents the set of other nodes and q and f 157 

represent the status of Q and F. In this study, we assessed the sensitivity of ecosystem function variables to 158 

climate and plant trait variables. 159 

2.2.3 Comparing different approaches used for attribution analysis 160 

Further, to clarify the adding-values of considering causality in the attribution analysis of controls on ecosystem 161 

functions, the results of the BN-based sensitivity analysis (BN_sens) were compared with the other two 162 

approaches. They are the results of the absolute values of additional linear correlation analysis (linear_corr) in 163 

this study and the findings from the ref. (Migliavacca et al., 2021) using RF feature importance (RF_imp). 164 

BN_sens and linear_corr directly measure the effects of plant traits and climate variables on ecosystem function 165 

variables, while RF_imp measures their effects on the three principal components (PC1, PC2, and PC3) of 166 

ecosystem function variables, which were reported as the three major axes of ecosystem function by the ref. 167 

(Migliavacca et al., 2021). It was obtained from principal component analysis of 12 ecosystem function 168 

variables which included the six variables uWUE, ETmax, GSmax, NEPmax, GPPsat, and Rb used in the 169 

methods BN_sens and linear_corr. The first axis (PC1) explains 39.3% of the variance and is dominated by 170 

maximum ecosystem productivity properties, as indicated by the loadings of GPPsat and NEPmax, and 171 

maximum evapotranspiration (ETmax). The second axis (PC2) explains 21.4% of the variance and refers to 172 

water-use strategies as shown by the loadings of water-use efficiency metrics, evaporative fraction, and GSmax. 173 

The third axis (PC3) explains 11.1% of the variance and includes key attributes that reflect the carbon-use 174 

efficiency of ecosystems. PC3 is dominated by apparent carbon-use efficiency, basal ecosystem respiration (Rb), 175 

and the amplitude of evaporative fraction (Migliavacca et al., 2021). 176 

 177 
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3 Results 178 

3.1 Correlation analysis 179 

Linear correlation analysis of the variables (Figure 2) showed significant (P < 0.05) linear correlations between 180 

the ecosystem function variables and some of the climate and plant trait variables. SWin and VPD showed 181 

negative correlations with these ecosystem function variables. LAImax/ Hc showed significant positive 182 

relationships with most of the ecosystem function variables and significant negative relationships with SWin and 183 

VPD. Nmass only showed a positive relationship with ETmax. In addition, the majority of the ecosystem 184 

function variables showed significant (P < 0.05) positive correlations with each other.  185 

 186 

Figure 2. Correlation coefficient matrix of ecosystem functions and climate and plant trait variables for 187 

FLUXNET sites. Only correlation coefficients with p-values less than 0.05 level of significance is shown. 188 

3.2 BN-based analysis 189 

We compiled two different BNs (i.e., BN_plant_trait and BN_plant_trait_climate) (Figure 3) and found that the 190 

probability distributions of the values of the common nodes (ecosystem function and plant trait variable nodes) 191 

differed a little (e.g., in the probability distribution of LAImax, Hc, and Nmass) between the two BNs. 192 

Compared to BN_plant_trait, in BN_plant_trait_climate, the climate variables of sites with missing plant trait 193 

data forced the changes in the probability distributions of LAImax, Hc, and Nmass. In the EM algorithm, for 194 

sites with missing plant trait data, existing relationships (obtained from observations from other sites) between 195 

plant trait variables and climate variables are used in the data interpolation of plant trait variables. In 196 
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BN_plant_trait_climate, the added linkages of climate variables to plant trait variables resulted in higher 197 

probability values of the low-value status of the plant trait variables.  198 

 199 

The 10-fold cross-validation of the nodes ETmax, GPPsat, and NEPmax showed relatively high accuracy. The 200 

classification accuracy (Table S1) of the status of ETmax was 60.9%, the classification accuracy of the status of 201 

NEPmax was 84.2% and the classification accuracy of the status of GPPsat was 75.2%. 202 

 203 

  204 

Figure 3. The compiled two BNs (‘BN_plant_trait’ and ‘BN_plant_trait_climate’). The bars of each node 205 

represent its probability distribution. At the bottom part of each node, the left and right side values of the '±' are 206 

the mean and standard deviation of the distribution, respectively. 207 

 208 

We performed sensitivity analyses (Figure 4) on the ecosystem function variables in both BNs to assess their 209 

sensitivity to various climate and plant trait variables. We also calculated the difference in sensitivity MI 210 

between the two BNs (Figure 4) to compare the change in sensitivity of ecosystem function to each variable 211 
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after adding further climate variables to the plant trait variables only. The sensitivity of different ecosystem 212 

function variables to plant traits and climate variables was highly variable in both BNs. The magnitude of 213 

sensitivity of ecosystem function nodes to plant traits and climate variables was related to whether these plant 214 

traits and climate variables were set as their parent nodes. In BN_plant_trait, for the carbon fluxes GPPsat and 215 

NEPmax, Nmass, and LAImax had higher sensitivity due to Nmass and LAI being set as their parent nodes. For 216 

the water flux ETmax, it does not have high sensitivity to plant trait variables such as LAImax and Hc, although 217 

these plant trait variables are set as the parent nodes of ETmax. This indicates the difference in the strength of 218 

the control effects of plant traits on carbon and water fluxes. 219 

 220 

In the sensitivity analysis of BN_plant_trait_climate, the sensitivity patterns of the ecosystem function variables 221 

changed as a result of the inclusion of climate variables and the change in causality they introduced. The 222 

sensitivity of the ecosystem function variables to climate variables was significantly increased (especially for 223 

Tair, VPD, and CSWI). The control of plant traits on ecosystem function in BN_plant_trait is also partially 224 

transformed into an indirect effect of climate variables by first controlling plant trait variables and then 225 

controlling ecosystem function. For example, in BN_plant_trait_climate, for GPPsat, a decrease in the 226 

sensitivity of GPPsat to LAImax and an increase in the sensitivity to Tair was observed after the causal chain of 227 

Tair influencing Hc, LAImax, and then GPPsat was set. This can be explained by the fact that higher 228 

temperatures promote vegetation growth and thus may increase LAImax, which then indirectly alters the 229 

probability distribution of the GPPsat node. In previous studies based on statistical methods that did not consider 230 

the chain causality, this indirect control on GPPsat from Tair may have been included in the contribution of 231 

LAImax to GPPsat. Similarly, a chain causality of P by first affecting Nmass and then indirectly GPPsat was 232 

also found. However, the effect of P by first affecting Hc, LAImax, and then indirectly affecting ETmax and 233 

GSmax appears to be not large.  234 
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 235 
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Figure 4. Sensitivity of ecosystem function variables to other variables in different networks based on mutual 236 

information (MI). The left column is the sensitivity analysis of BN_plant_trait, the middle column is the 237 

sensitivity analysis of BN_plant_trait_climate, and the right column is the difference between the reported 238 

sensitivity of BN_plant_trait_climate and the sensitivity of BN_plant_trait. For BN_plant_trait, the MI values of 239 

climate variables to ecosystem function variables are all 0 because they do not contain climate variables. For 240 

each ecosystem function in these two BNs, its sensitivity to its child node is not shown (set as 0) because child 241 

nodes are not considered causal variables and thus are not evaluated in the attribution. 242 

3.3 Comparing results from RF-based, BN-based analysis, and correlation analysis 243 

All three methods show the importance of the plant trait variables in explaining the variation of various 244 

ecosystem function variables (Figure 5). LAImax was the most important of the three methods in explaining the 245 

variation of maximum ecosystem productivity properties (corresponding to PC1). In contrast to the results of the 246 

other two methods, in linear_corr, SWin and VPD were the least important, while P was more important. 247 

Comparing RF_imp and BN_sens, the overall pattern of importance is similar, but there are differences. For 248 

water-use strategies (corresponding to PC2), Hc is ranked first and LAI last in RF_imp, but in BN_sens, LAI is 249 

slightly more important than Hc. In linear_corr, Hc and LAI are of similar importance. For PC3, VPD ranks first 250 

and is more important than Tair in RF_imp. But in BN_sens, Tair is more important than VPD. Among the three 251 

moisture-related climate variables (i.e., VPD, P, and CSWI), CSWI appears to be the least important in RF_imp 252 

but is comparable to VPD in BN_sens. 253 

 254 

Given the limitations of RF_imp in responding to the correlated variables (Strobl et al., 2008), the difference 255 

between the significance of VPD and CSWI reported by RF_imp may be overestimated. For the ecosystem 256 

functions related to water-use strategies, the difference between LAImax and Hc reported by BN_sens is also 257 

much smaller than the difference reported by RF_imp. It implied that, with the causality relation between 258 

correlated variables constructed, BN_sens reduced the uncertainty in quantifying the importance of correlated 259 

variables. 260 
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 261 

Figure 5. Comparisons of relationships of ecosystem functional variables to plant traits and climate variables in 262 

different analyses. Method RF_imp is Random forest variable importance (Migliavacca et al., 2021) (see 263 

Methodology section). Method linear_corr is Linear correlation analysis with the absolute values of Pearson 264 

correlation coefficients (see Methodology section). Method BN_sens is a BN-based sensitivity analysis with 265 

sensitivity values MI reported. The values in each method group are in red for high values and in blue for low 266 

values. 267 

4 Discussions 268 

Based on BN, this study investigates the prospect of using causal graphical models to revisit and attribute the 269 

control of climate and plant trait variations to ecosystem functions. Because of the inclusion of the constraints 270 

provided by expert knowledge (Reichstein et al., 2014) and other perceptions from many previous studies, BN-271 

based attribution analysis is relatively reliable and can update our knowledge of the contribution of some 272 

teleconnection variables through causal chains. The effective implementation of BN-based causal analysis may 273 

depend on the reliability of the causal relationships provided by expert knowledge (directional links between 274 

variables). We can establish the connection relationships and network structures between variables from expert 275 

knowledge and assign the specific quantification of the connection relationships (conditional probability tables) 276 
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to observations (Shi et al., 2021a). If further combined with findings from process-based models, it is promising 277 

to significantly improve our understanding of the complex ‘climate-plant trait-ecosystem function’ relationships 278 

by comparing detailed relationships and structural influences between variables. 279 

 280 

BN essentially factorizes the joint probability distribution among data variables into a series of conditional 281 

probability distributions (Ramazi et al., 2021), and the reliability of this approach relies on the setting of causal 282 

control relationships among nodes. Expert knowledge is thus critical in the construction of BNs, especially when 283 

modeling complex systems. In addition to the causal relationship between nodes, the meaning represented by 284 

each node, the data source/ approach, and the spatial and temporal resolution may also have impacts on the 285 

results. For example, in this study, for multiple water use efficiency-related variables in the ref. (Migliavacca et 286 

al., 2021), we chosed uWUE, and for Rb, we chosed the mean value of Rb. The results of BN-based analysis 287 

may vary if different representations or meanings of nodes are selected. The way the data of each variable is 288 

observed/ produced, the spatial and temporal resolution of the data, etc. can also affect the understanding of the 289 

role of these variables in the data-driven BN. Some variables may be very important in the attribution of actual 290 

ecosystem function variation, but their importance may be underestimated due to limitations in the inherent 291 

observational accuracy of their data, and differences in their spatial and temporal scales from other variables. In 292 

addition, some variables such as soil moisture may be difficult to obtain due to the lack of continuous site-scale 293 

long-term observations. Using the water balance method to calculate CSWI as a proxy may introduce errors. 294 

Since the CSWI calculation method relies on P, etc., the obtained relationship between P, CSWI, and other nodes 295 

may have contained empirical components. If the availability of measurements of some nodes is low, modelers 296 

should be cautious about the empirical dependencies with other nodes that may be included in the alternative 297 

data approaches. Thus, the alternative use of multiple derivatives of a variable and data generated by different 298 

methods for the construction of different BNs can help us to recognize how the uncertainty in the nodes and data 299 

can influence BN-based attribution findings. Different node discretization schemes may also affect the 300 

conditional probability table between nodes as well as the sensitivity (Nojavan A. et al., 2017). Other alternative 301 

discretization schemes with the commonly used three levels may also be effective, such as using ‘mean-std’ 302 

(mean minus 1 standard deviation) and ‘mean+std’ (mean plus 1 standard deviation) as discretization thresholds, 303 

which will result in a change in the relationship between BN nodes. And further if extreme values such as 5th 304 

and 95th pencentile are used in the node value discretization, it may be beneficial on quantifying the causal 305 

control of extreme conditions of nodes on other nodes. 306 

 307 

When considering higher-order effects (Bairey et al., 2016), the relationships between plant traits, climate 308 

variables, and ecosystem function variables can be very complex. One variable may affect the relationship 309 

between two other variables rather than directly affecting these two variables (Bairey et al., 2016). BN may have 310 

limitations in directly analyzing such higher-order effects because BN requires the modeler to explicitly set 311 

direct causal relationships between nodes. To analyze the higher-order effects, we can add nodes that directly 312 

represent the relationship between the variables. For example, the correlation coefficient of two variables can be 313 

used as a node and this node is connected to other nodes in the BN so that the control effect of other nodes on 314 

this correlation coefficient can be explored. Such implements may be useful to deepen the impact of various 315 

higher order effects. 316 
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 317 

Besides, the BN in this study was mainly based on data averaged over multiple years, thus possibly partially 318 

underestimating the effect of temporal variations in the relationships between variables. Another limitation of 319 

the BN proposed above is that the causal relationships between variables are unidirectional, while it is difficult 320 

to represent interactions and feedback between variables (Marcot and Penman, 2019). In future studies, to 321 

address these two issues, BN based on temporal dynamics can be promising (Figure 6). By refining the 322 

interaction of temporal lags between variables, it is possible to incorporate not only temporal variation but also 323 

control factors that attribute interactions and feedback between variables. For example, the interaction and 324 

feedback mechanisms of VPD, soil moisture, and ET with lag effects (Figure 6) and their impacts on ecosystems 325 

have attracted extensive interest from researchers (Anderegg et al., 2019; Humphrey et al., 2021; Lansu et al., 326 

2020; Liu et al., 2020; Xu et al., 2022; Zhou et al., 2019), but conventional statistical methods have been 327 

ineffective in analyzing such relationships with both interactive causality and temporal lags. In contrast, the BN 328 

proposed here, which incorporates feedback effects and lagged effects that were common in climate-ecosystem 329 

relations (Lin et al., 2019), is potentially able to address this issue from a data-driven approach. In the practical 330 

modeling, different periods of the same node may still be not independent. Therefore, the split scheme of such 331 

periods may be critical. For example, a period between two precipitation events can be treated as one sample, 332 

which can enhance independence between periods. Subsequently, a such period can be divided into smaller 333 

periods such as t, t-1, t-2, etc. to aggregate the node values to appropriate time scales. Thus one sample can 334 

represent the interaction relationship between variables with lags in this period. Finally, we can integrate records 335 

of such periods between two precipitation events from sites across different climate zones and biomes to build 336 

synthesis models for global analysis of such problems. If further combined with the findings of process-based 337 

models, our understanding of climate and ecosystem interactions and feedback and their mechanisms in time is 338 

hopefully deepened. 339 

 340 

 341 

Figure 6. The future BNs with the temporal causality further considered addressing the causality of the 342 

interaction between variables. The VPD-CSWI-ET relationship is used here as an example. t, t-1, and t-2 denote 343 

the current period, the last period, and the period before the last period, respectively. The network on the left 344 

only considers the effect of VPD on CSWI without considering the feedback of CSWI on the VPD. The network 345 

on the right characterizes the VPD-CSWI interaction with the feedback from CSWI at period t-1 to VPD at 346 

period t.  347 
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5 Conclusion 348 

Based on BN, we revisited and attributed the contribution of climate and plant traits to global terrestrial 349 

ecosystem function. The major conclusions of this study include:  350 

1. BN can be used for the quantification of causal relationships between complex ecosystems in response to 351 

climate change and enables the analysis of indirect effects among variables.  352 

2. Compared to BN, the feature importance difference between ‘VPD and CSWI’ and ‘LAImax and Hc’ 353 

reported by Random forests is higher and can be overestimated.  354 

3. With the causality relation between correlated variables constructed, BN_sens can reduce the uncertainty in 355 

quantifying the importance of correlated variables. 356 

4. The understanding of the mechanism of indirect effects of climate variables on ecosystem function through 357 

plant traits can be deepened by the chain casuality quantification in BNs.  358 

  359 
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