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Abstract 21 

Using statistical methods that not directly representing the causality between variables to attribute climate and 22 

plant traits to control ecosystem function may lead to biased perceptions. We revisited this issue using a causal 23 

graphical model, the Bayesian network (BN), capable of quantifying causality by conditional probability tables. 24 

Based on expert knowledge and climate, vegetation, and ecosystem function data from the FLUXNET flux 25 

stations, we constructed a BN representing the causal relationship of 'climate-plant trait-ecosystem function'. 26 

Based on the sensitivity analysis function of the BN, we attributed the controls of climate and plant traits to 27 

ecosystem function and compared the results with those based on Random forests and correlation analysis. The 28 

main conclusions of this study include: BN can be used for the quantification of causal relationships between 29 

complex ecosystems in response to climate change and enables the analysis of indirect effects among variables. 30 

The causality reflected in the BN is as good as the expert knowledge of the causal links. Compared to BN, the 31 

feature importance difference between ‘mean vapor pressure deficit and cumulative soil water index’ and 32 

‘maximum leaf area index and maximum vegetation height’ reported by Random forests is higher and can be 33 

overestimated. With the causality relation between correlated variables constructed, BN-based sensitivity 34 

analysis can reduce the uncertainty in quantifying the importance of correlated variables. The understanding of 35 

the mechanism of indirect effects of climate variables on ecosystem function through plant traits can be 36 

deepened by the chain casuality quantification in BNs.  37 

1 Introduction 38 

Ecosystem function is the capacity of natural processes and components to provide goods and services that 39 

satisfy human needs, either directly or indirectly (de Groot et al., 2002). Ecosystem functions include the 40 

physicochemical and biological processes within the ecosystem to maintain terrestrial life. Terrestrial 41 

ecosystems have provided a variety of important ecosystem functions for our society (Manning et al., 2018). 42 

Plant traits’ role as important determinants of ecosystem functions has been widely recognized (Chapin Iii et al., 43 

2000), and various trait syndromes can result in distinct broad differences in ecosystem functions (Reichstein et 44 

al., 2014). In the context of global climate change, it is also essential to understand the potential changes in 45 

ecosystem functions (Grimm et al., 2013). The response of terrestrial ecosystem function to changes in climate, 46 

plant traits, and the corresponding mechanisms, are complex due to enormous spatial and temporal variations 47 

across ecosystems, climate zones, and also space-time scales (Diaz and Cabido, 1997; Madani et al., 2018; 48 

Myers-Smith et al., 2019). Given the enormous variations, on the global scale, these issues have not been 49 

clarified well.  50 

 51 

In the past decades, measurements of ecosystem functions have been increasingly available to support studies of 52 

the relations between ecosystem functions and climate variables. For example, eddy-covariance flux tower 53 

observations (Baldocchi, 2014) for carbon flux (i.e., net ecosystem exchange (NEE)) and water flux (i.e., 54 

evapotranspiration (ET)) have been widely used to investigate changes in ecosystem functions and their 55 

responses to climate change, vegetation condition changes, etc (Jung et al., 2020, 2010; Migliavacca et al., 2021; 56 

Peaucelle et al., 2019). With the increase in such observations, various statistical analysis approaches such as 57 

machine learning (Barnes et al., 2021; Migliavacca et al., 2021; Reichstein et al., 2019; Shi et al., 2022b, a; 58 
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Tramontana et al., 2016) have been used to mine the hidden information on the effects of climate change and its 59 

induced changes in vegetation, etc. on ecosystem function variables such as carbon and water flux, which has 60 

not been understood in depth by process-based models (e.g., biogeochemistry models (Sakschewski et al., 61 

2016)). For example, using Random forests (RF) and principal component analysis (PCA), a recent study 62 

(Migliavacca et al., 2021) quantified the three main axes of terrestrial ecosystem function and their drivers based 63 

on observations of carbon and water fluxes of FLUXNET stations (Pastorello et al., 2020) and various climate 64 

and plant trait variables. Generally, data-driven approaches have become increasingly important recently in this 65 

area (Reichstein et al., 2019).  66 

 67 

However, compared to the process-based models, most of these data-driven approaches lack representation of 68 

the causality and detailed processes in the relations between ecosystem function and climate, despite the widely 69 

recognized complex causal interactions between ecosystems and climate systems (Reichstein et al., 2014). 70 

Conventional methods such as multiple linear regression have been questioned in attribution studies of the 71 

relationship between climate and the carbon cycle (Wang et al., 2022). For example, the use of multiple linear 72 

regression may underestimate the direct effect of soil moisture possibly due to the covariance between variables 73 

(Wang et al., 2022). For machine learning techniques, current common algorithms such as RF (Migliavacca et 74 

al., 2021) can report the importance of features (IMP) to measure their contributions to the prediction model. 75 

However, IMP-based attribution to the target variable can also be unreliable if considerable confounders and 76 

correlations between predictor variables exist (Strobl et al., 2008; Toloşi and Lengauer, 2011). The less relevant 77 

predictors can replace the predictive predictors (due to correlation) and thus receive undeserved high feature 78 

importance (Strobl et al., 2008). Correlations between predictors can lead to biased IMP-based findings. It is 79 

thus important to recognize the difference between correlation and causality in these approaches and represent 80 

detailed causal relations between features, rather than the unreliable IMP rankings generated from correlated 81 

features.  82 

 83 

Bayesian network (BN) is a causal graphical model based on conditional probability representation (Friedman et 84 

al., 1997; Pearl, 1985) that characterizes the transmission of cause and effect through conditional probabilities 85 

between variables. Currently, BN has been used in modeling causal relationships in many fields and has 86 

demonstrated advantages in causal interpretation, including in the fields such as hydrology and ecology (Chan et 87 

al., 2010; Keshtkar et al., 2013; Milns et al., 2010; Pollino et al., 2007; Shi et al., 2021a, b; Trifonova et al., 88 

2015). However, BN has rarely been used in the study of the attribution of changes in ecosystem function. 89 

Therefore, this study used BN to attribute the controls of climate and plant traits to ecosystem function by 90 

quantifying the causal relationships involved. The data used was from a previous study (Migliavacca et al., 91 

2021) which extracted ecosystem function, climate, and plant trait variables for FLUXNET flux stations. The 92 

construction of the causal structure of BN referred to the previous expert knowledge of this system (Reichstein 93 

et al., 2014). Further, by comparing BN-based attribution analysis, linear correlation analysis, and RF-based 94 

IMP reported by the previous study (Migliavacca et al., 2021), we investigated the adding-values of using BN 95 

for causal analysis and discussed its prospects in this paper. 96 
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2 Methodology 97 

2.1 Data 98 

The used variables (Table 1) include the carbon and water fluxes of the FLUXNET flux tower sites and the 99 

ecosystem function variables derived from them, and information on the corresponding climate variables as well 100 

as plant traits: 101 

a) Ecosystem function variables: underlying Water Use Efficiency (uWUE), maximum evapotranspiration 102 

(ETmax), maximum surface conductance (GSmax), maximum net CO2 uptake of the ecosystem 103 

(NEPmax), Gross Primary Productivity at light saturation (GPPsat), Mean basal ecosystem respiration at a 104 

reference temperature of 15 °C (Rb), and apparent carbon-use efficiency (aCUE).  105 

b) Plant trait variables: ecosystem scale foliar nitrogen concentration (Nmass), Maximum Leaf Area Index 106 

(LAImax), Maximum vegetation height (Hc). Of the total 202 sites (Migliavacca and Musavi, 2021), 101 107 

sites have Nmass data, 153 sites have LAImax data, and 199 sites have Hc data. Only 98 have data on all 108 

these three plant trait variables. 109 

c) Climate variables: mean incoming shortwave radiation (SWin), Mean temperature (Tair), Mean Vapor 110 

Pressure Deficit (VPD), Mean annual precipitation (P), and cumulative soil water index (CSWI). 111 

 112 

These data have different producing processes, including those calculated from flux data, site records, extracted 113 

from remote sensing data, etc. The detailed calculation methods can be found in Migliavacca et al., 2021.  114 

 115 

Table 1. The variables used and the discretization of their values in BN. 116 

Variable 

node 

Definition and 

units  

Type Approach (Migliavacca et al., 2021) Discretization in BN 

(equal quantile 

thresholds: 0%, 

33.33%, 66.67%, and 

100% percentile 

values) 

uWUE underlying Water 

Use Efficiency [gC 

kPa^0.5 kgH2O-1] 

Ecosystem 

function 

It was calculated from GPP, VPD, and ET 

(Zhou et al., 2014). The median of the half-

hourly retained uWUE values was used for 

each site. It was further filtered by the 

following conditions: (i) SWin > 200 W m−2; 

(ii) no precipitation event for the last 24 hours, 

when precipitation data are available; and (iii) 

during the growing season: daily GPP > 30% of 

its seasonal amplitude. 

 

0.068, 2.51, 3.18, 

5.332 

ETmax maximum 

evapotranspiration 

in the growing 

season [mm] 

Ecosystem 

function 

ETmax was computed as the 95th percentile of 

ET in the growing season. It was also filtered 

by the same filtering applied to the uWUE 

calculation. 

 

0.059, 0.17, 0.23, 

0.423 

GSmax maximum surface 

conductance [m s-1] 

Ecosystem 

function 

GSmax was computed by inverting the 

Penman-Monteith equation after calculating the 

aerodynamic conductance. The 90th percentile 

of the half-hourly GS of each site was 

calculated and used as the GSmax of each site. 

 

0.0013, 0.0077, 

0.0123, 0.0566 
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NEPmax maximum net CO2 

uptake of the 

ecosystem [umol 

CO2 m-2 s-1] 

Ecosystem 

function 

NEPmax was computed as the 90th percentile 

of the half-hourly net ecosystem production in 

the growing season (when daily GPP is > 30% 

of the GPP amplitude). 

1.953, 15.3, 24.4, 

42.82 

GPPsat Gross Primary 

Productivity at 

light saturation 

[umol CO2 m-2 s-1] 

Ecosystem 

function 

GPPsat was computed as the 90th percentile 

estimated from half-hourly data by fitting the 

hyperbolic light response curves. The 90th 

percentile from the GPPsat estimates of each 

site was extracted. 

 

3.042, 17.49, 27.74, 

47.6 

Rb Mean basal 

ecosystem 

respiration at a 

reference 

temperature of 

15 °C [umol CO2 

m-2 s-1] 

Ecosystem 

function 

Rb was derived from night-time NEE 

measurements. For each site, the mean of the 

daily Rb value was computed.  

 

0.144, 2.07, 3.12, 

10.67 

aCUE apparent carbon-

use efficiency 

Ecosystem 

function 

aCUE was calculated by aCUE = 1- (Rb/GPP) 

and the median value of daily aCUE is used. 

-1.19, 0.4, 0.74, 1 

Nmass ecosystem scale 

foliar nitrogen 

concentration [gN 

100 g-1] 

Plant trait Nmass was computed as the community-

weighted average of foliar N% of the major 

species at the site sampled at the peak of the 

growing season or gathered from the literature 

(Musavi et al., 2016, 2015; Fleischer et al., 

2015; Flechard et al., 2020). 

0.65, 1.15, 1.76, 4.44 

LAImax Maximum Leaf 

Area Index [m2 m-

2] 

Plant trait LAImax was collected from the literature 

(Migliavacca et al., 2011; Flechard et al., 2020), 

the FLUXNET Biological Ancillary Data 

Management (BADM) product, and/or site 

principal investigators.  

0.17, 2.27, 4.5, 12.9 

Hc Maximum 

vegetation height 

[m] 

Plant trait Hc was collected from the literature 

(Migliavacca et al., 2011; Flechard et al., 2020), 

the BADM product, and/or site principal 

investigators. 

0.04, 1.7, 16.0, 80.1 

SWin Mean incoming 

shortwave radiation 

[W m-2] 

Climate SWin was from FLUXNET data. 54.43, 134.18, 

182.44, 266.04 

Tair Mean temperature 

[degree C] 

Climate Tair was from FLUXNET data. -10.45, 6.62, 14.73, 

28.1 

VPD Mean Vapor 

Pressure Deficit 

[hPa] 

Climate VPD was from FLUXNET data. 0.62, 3.38, 5.76, 

26.08 

P Mean annual 

precipitation 

[cm/year] 

Climate P was from FLUXNET data. 5.51, 45.28, 79.29, 

256.61 
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CSWI cumulative soil 

water index 

Climate-

related soil 

water 

availability 

CSWI was computed as a measure of water 

availability (Nelson et al., 2018). 

-93.49, -1.24, 2.01, 

4.47 

 117 

2.2 BN for analyzing causal relations 118 

2.2.1 BN structures 119 

Based on expert knowledge (Reichstein et al., 2014), we constructed the structure of BN containing the causal 120 

relationships between plant traits and ecosystem function variables: 'BN_plant_trait'. The causal links between 121 

the variables were referred to the relationship diagram in the upper part of Figure 1. Further, we added the 122 

climate variables and the corresponding causal relationships, expanding 'BN_plant_trait' to 123 

'BN_plant_trait_climate', which further incorporates the climate variables and their impacts on the system 124 

(Figure 1). The explanation of added causal links was shown in Table 2.  125 

 126 

Each node is discretized for the BN compiling by the software Netica. The equal quantile (Nojavan A. et al., 127 

2017) three-level discretization (the distribution of nodes (Figure S1) is divided into three levels) for each node 128 

is applied by the discretization thresholds of 0%, 33.33%,66.67%, and 100% percentile values of the data 129 

distribution (Table 1) given the limitation of the amount of training data. 130 
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 131 

Figure 1. The structure of two Bayesian networks (BNs) for attribution of variations in ecosystem functions. 132 

‘BN_plant_trait’ in the median part incorporated the causal effects of plant traits (box in slight green) on 133 

ecosystem functions (box in white) from expert knowledge as the relation diagram on the upper part (Reichstein 134 

et al., 2014). ‘BN_plant_trait_climate’ in the lower part further incorporated the causal impacts of climate 135 

variables (box in light blue). 136 

 137 

Table 2. Explanation of the added causal links between climate variable nodes, plant trait nodes, and ecosystem 138 

function variable nodes in the BNs. 139 

Casual links Explanation References 

Parent 

node 

Child 

node 
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VPD uWUE uWUE= GPP· VPD0. 5/ET (Zhou et al., 2014) 

VPD GSmax stomatal and surface conductance declines 

under an increase in VPD 

(Grossiord et al., 2020; Wever et al., 

2002) 

VPD GPPsat leaf and canopy photosynthetic rates decline 

when atmospheric VPD increases due to 

stomatal closure 

(Yuan et al., 2019; Konings et al., 

2017) 

VPD CSWI CSWI declines under an increase in VPD (Nelson et al., 2018) 

Tair VPD higher air temperature corresponds to higher 

saturated water vapor pressure and can drive an 

increase in VPD 

(Yuan et al., 2019) 

Tair Hc the temperature limitation on canopy height 

variation 

(Moles et al., 2009) 

Tair Nmass increase in air temperature may decrease plant 

nitrogen concentration and leaf nitrogen 

content. 

(Weih and Karlsson, 2001; Reich 

and Oleksyn, 2004) 

Tair Rb temperature strongly influences Rb through the 

laws of thermodynamics 

(Davidson and Janssens, 2006; 

Enquist et al., 2003; Brown et al., 

2004) 

SWin LAImax solar radiation affects vegetation conditions 

and phenology 

(Günter et al., 2008; Liu et al., 

2016; Borchert et al., 2015; Wagner 

et al., 2017) 

SWin Hc solar radiation affects the distribution and 

composition of ecosystems through 

photosynthesis and the water cycle 

(Borchert et al., 2015; Guisan and 

Zimmermann, 2000; Piedallu and 

Gégout, 2007) 

SWin GPPsat solar radiation affects ecosystem productivity 

and plant growth 

(Monteith, 1972; Borchert et al., 

2015; Guisan and Zimmermann, 

2000) 

P Hc the hydraulic limitation hypothesis on canopy 

height variation 

(Moles et al., 2009; Ryan and 

Yoder, 1997; Koch et al., 2004) 

P Nmass leaf nitrogen concentration per unit mass may 

decrease with increasing precipitation 

(Santiago and Mulkey, 2005; 

Wright and Westoby, 2002) 

P CSWI CSWI declines under a decrease in P (Nelson et al., 2018) 

CSWI LAImax soil moisture affects vegetation conditions (Patanè, 2011) 

CSWI Rb soil moisture affects the temperature 

dependence of ecosystem respiration 

(Xu et al., 2004; Flanagan and 

Johnson, 2005; Wen et al., 2006) 

CSWI GPPsat soil moisture can reduce GPP through 

ecosystem water stress 

(Green et al., 2019) 

 140 
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2.2.2 BN evaluation and node sensitivity analysis 141 

Based on the Bayesian network (BN), the joint impacts of multiple variables and their causal relations are 142 

analyzed. A BN can be represented by nodes X1, X2, X3 to Xn and the joint distribution (Pearl, 1985): 143 

Pa(X) = Pa(X1, X2 , … , Xn) = ∏ Pa(Xi|pa(Xi))n
i=1 (1)  144 

where pa(Xi) is the probability of the parent node Xi. Expectation-maximization (Moon, 1996) is used to address 145 

the data with missing values and then compile the BN.  146 

 147 

We used k-fold cross-validation to verify the reliability of the BN. The k-fold approach has been widely used in 148 

previous studies for the validation of BNs (Marcot, 2012). In this study, k is set as 10 as commonly used 149 

(Marcot and Hanea, 2021). We choose ETmax, GPPsat, and NEPmax for cross-validation of accuracy, and the 150 

predicted status (status with the highest probability bar value) of the nodes will be compared with the actual 151 

status and the classification accuracy will be calculated. These three nodes are the main terminal nodes and 152 

primary objectives of the BN and represent the main water and carbon-related ecosystem functions, respectively. 153 

The accuracy of these three variables can largely reflect the overall performance of BN. 154 

 155 

Sensitivity analysis is used for the evaluation of the strength of the causal relations between nodes based on 156 

mutual information (MI). MI is calculated as the entropy reduction of the child node resulting from changes 157 

found at the parent node (Shi et al., 2020): 158 

MI = H(Q)-H(Q|F)= ∑ ∑ P(q, f) log
2

(
P(q,f)

P(q)P(f)
) fq (2)  159 

where H represents the entropy, Q represents the target node, F represents the set of other nodes and q and f 160 

represent the status of Q and F. In this study, we assessed the sensitivity of ecosystem function variables to 161 

climate and plant trait variables. 162 

2.2.3 Comparing different approaches used for attribution analysis 163 

Further, to clarify the adding-values of considering causality in the attribution analysis of controls on ecosystem 164 

functions, the results of the BN-based sensitivity analysis (BN_sens) were compared with the other two 165 

approaches. They are the results of the absolute values of additional linear correlation analysis (linear_corr) in 166 

this study and the findings in Migliavacca et al., 2021 using RF feature importance (RF_imp). BN_sens and 167 

linear_corr directly measure the effects of plant traits and climate variables on ecosystem function variables, 168 

while RF_imp measures their effects on the three principal components (PC1, PC2, and PC3) of ecosystem 169 

function variables, which were reported as the three major axes of ecosystem function by Migliavacca et al., 170 

2021. It was obtained from principal component analysis of 12 ecosystem function variables which included the 171 

six variables uWUE, ETmax, GSmax, NEPmax, GPPsat, and Rb used in the methods BN_sens and linear_corr. 172 

The first axis (PC1) explains 39.3% of the variance and is dominated by maximum ecosystem productivity 173 

properties, as indicated by the loadings of GPPsat and NEPmax, and maximum evapotranspiration (ETmax). 174 

The second axis (PC2) explains 21.4% of the variance and refers to water-use strategies as shown by the 175 

loadings of water-use efficiency metrics, evaporative fraction, and GSmax. The third axis (PC3) explains 11.1% 176 

of the variance and includes key attributes that reflect the carbon-use efficiency of ecosystems. PC3 is 177 

dominated by apparent carbon-use efficiency, basal ecosystem respiration (Rb), and the amplitude of 178 

evaporative fraction (Migliavacca et al., 2021). 179 
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 180 

3 Results 181 

3.1 Correlation analysis 182 

Linear correlation analysis of the variables (Figure 2) showed significant (P < 0.05) linear correlations between 183 

the ecosystem function variables and some of the climate and plant trait variables. SWin and VPD showed 184 

negative correlations with these ecosystem function variables. LAImax/ Hc showed significant positive 185 

relationships with most of the ecosystem function variables and significant negative relationships with SWin and 186 

VPD. Nmass only showed a positive relationship with ETmax. In addition, the majority of the ecosystem 187 

function variables showed significant (P < 0.05) positive correlations with each other.  188 

 189 

Figure 2. Correlation coefficient matrix of ecosystem functions and climate and plant trait variables for 190 

FLUXNET sites. Only correlation coefficients with p-values less than 0.05 level of significance is shown. 191 

3.2 BN-based analysis 192 

We compiled two different BNs (i.e., BN_plant_trait and BN_plant_trait_climate) (Figure 3) and found that the 193 

probability distributions of the values of the common nodes (ecosystem function and plant trait variable nodes) 194 

differed a little (e.g., in the probability distribution of LAImax, Hc, and Nmass) between the two BNs. 195 

Compared to BN_plant_trait, in BN_plant_trait_climate, the climate variables of sites with missing plant trait 196 

data forced the changes in the probability distributions of LAImax, Hc, and Nmass. In the EM algorithm, for 197 
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sites with missing plant trait data, existing relationships (obtained from observations from other sites) between 198 

plant trait variables and climate variables are used in the data interpolation of plant trait variables. In 199 

BN_plant_trait_climate, the added linkages of climate variables to plant trait variables resulted in higher 200 

probability values of the low-value status of the plant trait variables.  201 

 202 

The 10-fold cross-validation of the nodes ETmax, GPPsat, and NEPmax showed relatively high accuracy. The 203 

classification accuracy (Table S1) of the status of ETmax was 60.9%, the classification accuracy of the status of 204 

NEPmax was 84.2% and the classification accuracy of the status of GPPsat was 75.2%. 205 

 206 

  207 

Figure 3. The compiled two BNs (‘BN_plant_trait’ and ‘BN_plant_trait_climate’). The bars of each node 208 

represent its probability distribution. At the bottom part of each node, the left and right side values of the '±' are 209 

the mean and standard deviation of the distribution, respectively. 210 

 211 
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We performed sensitivity analyses (Figure 4) on the ecosystem function variables in both BNs to assess their 212 

sensitivity to various climate and plant trait variables. We also calculated the difference in sensitivity MI 213 

between the two BNs (Figure 4) to compare the change in sensitivity of ecosystem function to each variable 214 

after adding further climate variables to the plant trait variables only. The sensitivity of different ecosystem 215 

function variables to plant traits and climate variables was highly variable in both BNs. The magnitude of 216 

sensitivity of ecosystem function nodes to plant traits and climate variables was related to whether these plant 217 

traits and climate variables were set as their parent nodes. In BN_plant_trait, for the carbon fluxes GPPsat and 218 

NEPmax, Nmass, and LAImax had higher sensitivity due to Nmass and LAI being set as their parent nodes. For 219 

the water flux ETmax, it does not have high sensitivity to plant trait variables such as LAImax and Hc, although 220 

these plant trait variables are set as the parent nodes of ETmax. This indicates the difference in the strength of 221 

the control effects of plant traits on carbon and water fluxes. 222 

 223 

In the sensitivity analysis of BN_plant_trait_climate, the sensitivity patterns of the ecosystem function variables 224 

changed as a result of the inclusion of climate variables and the change in causality they introduced. The 225 

sensitivity of the ecosystem function variables to climate variables was significantly increased (especially for 226 

Tair, VPD, and CSWI). The control of plant traits on ecosystem function in BN_plant_trait is also partially 227 

transformed into an indirect effect of climate variables by first controlling plant trait variables and then 228 

controlling ecosystem function. For example, in BN_plant_trait_climate, for GPPsat, a decrease in the 229 

sensitivity of GPPsat to LAImax and an increase in the sensitivity to Tair was observed after the causal chain of 230 

Tair influencing Hc, LAImax, and then GPPsat was set. This can be explained by the fact that higher 231 

temperatures promote vegetation growth and thus may increase LAImax, which then indirectly alters the 232 

probability distribution of the GPPsat node. In previous studies based on statistical methods that did not consider 233 

the chain causality, this indirect control on GPPsat from Tair may have been included in the contribution of 234 

LAImax to GPPsat. Similarly, a chain causality of P by first affecting Nmass and then indirectly GPPsat was 235 

also found. However, the effect of P by first affecting Hc, LAImax, and then indirectly affecting ETmax and 236 

GSmax appears to be not large.  237 
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 238 
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Figure 4. Sensitivity of ecosystem function variables to other variables in different networks based on mutual 239 

information (MI). The left column is the sensitivity analysis of BN_plant_trait, the middle column is the 240 

sensitivity analysis of BN_plant_trait_climate, and the right column is the difference between the reported 241 

sensitivity of BN_plant_trait_climate and the sensitivity of BN_plant_trait. For BN_plant_trait, the MI values of 242 

climate variables to ecosystem function variables are all 0 because they do not contain climate variables. For 243 

each ecosystem function in these two BNs, its sensitivity to its child node is not shown (set as 0) because child 244 

nodes are not considered causal variables and thus are not evaluated in the attribution. 245 

3.3 Comparing results from RF-based, BN-based analysis, and correlation analysis 246 

All three methods show the importance of the plant trait variables in explaining the variation of various 247 

ecosystem function variables (Figure 5). LAImax was the most important of the three methods in explaining the 248 

variation of maximum ecosystem productivity properties (corresponding to PC1). In contrast to the results of the 249 

other two methods, in linear_corr, SWin and VPD were the least important, while P was more important. 250 

Comparing RF_imp and BN_sens, the overall pattern of importance is similar, but there are differences. For 251 

water-use strategies (corresponding to PC2), Hc is ranked first and LAI last in RF_imp, but in BN_sens, LAI is 252 

slightly more important than Hc. In linear_corr, Hc and LAI are of similar importance. For PC3, VPD ranks first 253 

and is more important than Tair in RF_imp. But in BN_sens, Tair is more important than VPD. Among the three 254 

moisture-related climate variables (i.e., VPD, P, and CSWI), CSWI appears to be the least important in RF_imp 255 

but is comparable to VPD in BN_sens. 256 

 257 

Given the limitations of RF_imp in responding to the correlated variables (Strobl et al., 2008), the difference 258 

between the significance of VPD and CSWI reported by RF_imp may be overestimated. For the ecosystem 259 

functions related to water-use strategies, the difference between LAImax and Hc reported by BN_sens is also 260 

much smaller than the difference reported by RF_imp. It implied that, with the causality relation between 261 

correlated variables constructed, BN_sens reduced the uncertainty in quantifying the importance of correlated 262 

variables. 263 
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 264 

Figure 5. Comparisons of relationships of ecosystem functional variables to plant traits and climate variables in 265 

different analyses. Method RF_imp is Random forest variable importance (Migliavacca et al., 2021) (see 266 

Methodology section). Method linear_corr is Linear correlation analysis with the absolute values of Pearson 267 

correlation coefficients (see Methodology section). Method BN_sens is a BN-based sensitivity analysis with 268 

sensitivity values MI reported. The values in each method group are in red for high values and in blue for low 269 

values. The color depth is dependent on values and the scale is the same in each row.  270 

4 Discussions 271 

Based on BN, this study investigates the prospect of using causal graphical models to revisit and attribute the 272 

control of climate and plant trait variations to ecosystem functions. Because of the inclusion of the constraints 273 

provided by expert knowledge (Reichstein et al., 2014) and other perceptions from many previous studies, BN-274 

based attribution analysis is relatively reliable in terms of the represented mechanisms of causal links. It can 275 

update our knowledge of the contribution of some teleconnection variables through causal chains. The effective 276 

implementation of BN-based causal analysis may depend on the reliability of the causal relationships provided 277 

by expert knowledge (directional links between variables). We can establish the connection relationships and 278 

network structures between variables from expert knowledge and assign the specific quantification of the 279 
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connection relationships (conditional probability tables) to observations (Shi et al., 2021a). If further combined 280 

with findings from process-based models, it is promising to significantly improve our understanding of the 281 

complex ‘climate-plant trait-ecosystem function’ relationships by comparing detailed relationships and structural 282 

influences between variables. 283 

 284 

BN essentially factorized the joint probability distribution between various variables into a series of conditional 285 

probability distributions (Ramazi et al., 2021), and the reliability of this approach relied on the setting of causal 286 

control relationships between nodes. Expert knowledge was thus critical in the construction of BNs, especially 287 

when modeling complex systems. In addition to the causal relationship between nodes, the meaning represented 288 

by each node, the data source/ approach, and the spatial and temporal resolution may also have impacts on the 289 

results. For example, in this study, for multiple water use efficiency-related variables in Migliavacca et al., 2021, 290 

uWUE was chosen, and for Rb, the mean value of Rb was chosen. The results of BN-based analysis may vary if 291 

different representations or meanings of nodes are selected. The way the data of each variable is observed/ 292 

produced, the spatial and temporal resolution of the data, etc. can also affect the understanding of the role of 293 

these variables in the data-driven BN. Some variables may be very important in the attribution of actual 294 

ecosystem function variation, but their importance may be underestimated due to limitations in the inherent 295 

observational accuracy of their data, and differences in their spatial and temporal scales from other variables. In 296 

addition, some variables such as soil moisture may be difficult to obtain due to the lack of continuous site-scale 297 

long-term observations. Using the water balance method to calculate CSWI as a proxy may introduce errors. 298 

Since the CSWI calculation method relies on P, etc., the obtained relationship between P, CSWI, and other nodes 299 

may have contained empirical components. If the availability of measurements of some nodes is low, modelers 300 

should be cautious about the empirical dependencies with other nodes that may be included in the alternative 301 

data approaches. Thus, the alternative use of multiple derivatives of a variable and data generated by different 302 

methods for the construction of different BNs can help us to recognize how the uncertainty in the nodes and data 303 

can influence BN-based attribution findings. Different node discretization schemes may also affect the 304 

conditional probability table between nodes as well as the sensitivity (Nojavan A. et al., 2017). Other alternative 305 

discretization schemes with the commonly used three levels may also be effective, such as using ‘mean-std’ 306 

(mean minus 1 standard deviation) and ‘mean+std’ (mean plus 1 standard deviation) as discretization thresholds, 307 

which will result in a change in the relationship between BN nodes. And further if extreme values such as 5th 308 

and 95th pencentile are used in the node value discretization, it may be beneficial on quantifying the causal 309 

control of extreme conditions of nodes on other nodes. 310 

 311 

When considering higher-order effects (Bairey et al., 2016), the relationships between plant traits, climate 312 

variables, and ecosystem function variables can be very complex. One variable may affect the relationship 313 

between two other variables rather than directly affecting these two variables (Bairey et al., 2016). BN may have 314 

limitations in directly analyzing such higher-order effects because BN requires the modeler to explicitly set 315 

direct causal relationships between nodes. To analyze the higher-order effects, we can add nodes that directly 316 

represent the relationship between the variables. For example, the correlation coefficient of two variables can be 317 

used as a node and this node is connected to other nodes in the BN so that the control effect of other nodes on 318 
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this correlation coefficient can be explored. Such implements may be useful to deepen the impact of various 319 

higher order effects. 320 

 321 

Besides, the BN in this study was mainly based on data averaged over multiple years, thus possibly partially 322 

underestimating the effect of temporal variations in the relationships between variables. Another limitation of 323 

the BN proposed above is that the causal relationships between variables are unidirectional, while it is difficult 324 

to represent interactions and feedback between variables (Marcot and Penman, 2019). In future studies, to 325 

address these two issues, BN based on temporal dynamics can be promising (Figure 6). By refining the 326 

interaction of temporal lags between variables, it is possible to incorporate not only temporal variation but also 327 

control factors that attribute interactions and feedback between variables. For example, the interaction and 328 

feedback mechanisms of VPD, soil moisture, and ET with lag effects (Figure 6) and their impacts on ecosystems 329 

have attracted extensive interest from researchers (Anderegg et al., 2019; Humphrey et al., 2021; Lansu et al., 330 

2020; Liu et al., 2020; Xu et al., 2022; Zhou et al., 2019), but conventional statistical methods have been 331 

ineffective in analyzing such relationships with both interactive causality and temporal lags. In contrast, the BN 332 

proposed here, which incorporates feedback effects and lagged effects that were common in climate-ecosystem 333 

relations (Lin et al., 2019), is potentially able to address this issue from a data-driven approach. In the practical 334 

modeling, different periods of the same node may still be not independent. Therefore, the split scheme of such 335 

periods may be critical. For example, a period between two precipitation events can be treated as one sample, 336 

which can enhance independence between periods. Subsequently, a such period can be divided into smaller 337 

periods such as t, t-1, t-2, etc. to aggregate the node values to appropriate time scales. Thus one sample can 338 

represent the interaction relationship between variables with lags in this period. Finally, we can integrate records 339 

of such periods between two precipitation events from sites across different climate zones and biomes to build 340 

synthesis models for global analysis of such problems. Such research frameworks in BN-based modeling may 341 

be difficult due to high computational costs given the large amount of data. Fortunately, recently proposed new 342 

causal models have the potential to address this limitation, such as the introduction of causality into deep 343 

learning frameworks (Luo et al., 2020; Cui and Athey, 2022). If further combined with the findings of process-344 

based models, our understanding of climate and ecosystem interactions and feedback and their mechanisms in 345 

time is hopefully deepened. 346 

 347 

 348 

Figure 6. The future BNs with the temporal causality further considered addressing the causality of the 349 

interaction between variables. The VPD-CSWI-ET relationship is used here as an example. t, t-1, and t-2 denote 350 

the current period, the last period, and the period before the last period, respectively. The network on the left 351 

only considers the effect of VPD on CSWI without considering the feedback of CSWI on the VPD. The network 352 
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on the right characterizes the VPD-CSWI interaction with the feedback from CSWI at period t-1 to VPD at 353 

period t.  354 

5 Conclusion 355 

Based on BN, we revisited and attributed the contribution of climate and plant traits to global terrestrial 356 

ecosystem function. The major conclusions of this study include:  357 

1. BN can be used for the quantification of causal relationships between complex ecosystems in response to 358 

climate change and enables the analysis of indirect effects among variables.  359 

2. Compared to BN, the feature importance difference between ‘VPD and CSWI’ and ‘LAImax and Hc’ 360 

reported by Random forests is higher and can be overestimated.  361 

3. With the causality relation between correlated variables constructed, BN_sens can reduce the uncertainty in 362 

quantifying the importance of correlated variables. 363 

4. The understanding of the mechanism of indirect effects of climate variables on ecosystem function through 364 

plant traits can be deepened by the chain casuality quantification in BNs.  365 

  366 
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