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Abstract

Using statistical methods that not directly representing the causality between variables to attribute climate and
plant traits to control ecosystem function may lead to biased perceptions. We revisited this issue using a causal
graphical model, the Bayesian network (BN), capable of quantifying causality by conditional probability tables.
Based on expert knowledge and climate, vegetation, and ecosystem function data from the FLUXNET flux
stations, we constructed a BN representing the causal relationship of 'climate-plant trait-ecosystem function'.
Based on the sensitivity analysis function of the BN, we attributed the controls of climate and plant traits to
ecosystem function and compared the results with those based on Random forests and correlation analysis. The
main conclusions of this study include: BN can be used for the quantification of causal relationships between
complex ecosystems in response to climate change and enables the analysis of indirect effects among variables.
The causality reflected in the BN is as good as the expert knowledge of the causal links. Compared to BN, the
feature importance difference between ‘mean vapor pressure deficit and cumulative soil water index’ and
‘maximum leaf area index and maximum vegetation height’ reported by Random forests is higher and can be
overestimated. With the causality relation between correlated variables constructed, BN-based sensitivity
analysis can reduce the uncertainty in quantifying the importance of correlated variables. The understanding of
the mechanism of indirect effects of climate variables on ecosystem function through plant traits can be

deepened by the chain casuality quantification in BNs.

1 Introduction

Ecosystem function is the capacity of natural processes and components to provide goods and services that
satisfy human needs, either directly or indirectly (de Groot et al., 2002). Ecosystem functions include the
physicochemical and biological processes within the ecosystem to maintain terrestrial life. Terrestrial
ecosystems have provided a variety of important ecosystem functions for our society (Manning et al., 2018).
Plant traits’ role as important determinants of ecosystem functions has been widely recognized (Chapin lii et al.,
2000), and various trait syndromes can result in distinct broad differences in ecosystem functions (Reichstein et
al., 2014). In the context of global climate change, it is also essential to understand the potential changes in
ecosystem functions (Grimm et al., 2013). The response of terrestrial ecosystem function to changes in climate,
plant traits, and the corresponding mechanisms, are complex due to enormous spatial and temporal variations
across ecosystems, climate zones, and also space-time scales (Diaz and Cabido, 1997; Madani et al., 2018;
Myers-Smith et al., 2019). Given the enormous variations, on the global scale, these issues have not been

clarified well.

In the past decades, measurements of ecosystem functions have been increasingly available to support studies of
the relations between ecosystem functions and climate variables. For example, eddy-covariance flux tower
observations (Baldocchi, 2014) for carbon flux (i.e., net ecosystem exchange (NEE)) and water flux (i.e.,
evapotranspiration (ET)) have been widely used to investigate changes in ecosystem functions and their
responses to climate change, vegetation condition changes, etc (Jung et al., 2020, 2010; Migliavacca et al., 2021;
Peaucelle et al., 2019). With the increase in such observations, various statistical analysis approaches such as

machine learning (Barnes et al., 2021; Migliavacca et al., 2021; Reichstein et al., 2019; Shi et al., 2022b, a;
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Tramontana et al., 2016) have been used to mine the hidden information on the effects of climate change and its
induced changes in vegetation, etc. on ecosystem function variables such as carbon and water flux, which has
not been understood in depth by process-based models (e.g., biogeochemistry models (Sakschewski et al.,
2016)). For example, using Random forests (RF) and principal component analysis (PCA), a recent study
(Migliavacca et al., 2021) quantified the three main axes of terrestrial ecosystem function and their drivers based
on observations of carbon and water fluxes of FLUXNET stations (Pastorello et al., 2020) and various climate
and plant trait variables. Generally, data-driven approaches have become increasingly important recently in this

area (Reichstein et al., 2019).

However, compared to the process-based models, most of these data-driven approaches lack representation of
the causality and detailed processes in the relations between ecosystem function and climate, despite the widely
recognized complex causal interactions between ecosystems and climate systems (Reichstein et al., 2014).
Conventional methods such as multiple linear regression have been questioned in attribution studies of the
relationship between climate and the carbon cycle (Wang et al., 2022). For example, the use of multiple linear
regression may underestimate the direct effect of soil moisture possibly due to the covariance between variables
(Wang et al., 2022). For machine learning techniques, current common algorithms such as RF (Migliavacca et
al., 2021) can report the importance of features (IMP) to measure their contributions to the prediction model.
However, IMP-based attribution to the target variable can also be unreliable if considerable confounders and
correlations between predictor variables exist (Strobl et al., 2008; Tolosi and Lengauer, 2011). The less relevant
predictors can replace the predictive predictors (due to correlation) and thus receive undeserved high feature
importance (Strobl et al., 2008). Correlations between predictors can lead to biased IMP-based findings. It is
thus important to recognize the difference between correlation and causality in these approaches and represent
detailed causal relations between features, rather than the unreliable IMP rankings generated from correlated

features.

Bayesian network (BN) is a causal graphical model based on conditional probability representation (Friedman et
al., 1997; Pearl, 1985) that characterizes the transmission of cause and effect through conditional probabilities
between variables. Currently, BN has been used in modeling causal relationships in many fields and has
demonstrated advantages in causal interpretation, including in the fields such as hydrology and ecology (Chan et
al., 2010; Keshtkar et al., 2013; Milns et al., 2010; Pollino et al., 2007; Shi et al., 2021a, b; Trifonova et al.,
2015). However, BN has rarely been used in the study of the attribution of changes in ecosystem function.
Therefore, this study used BN to attribute the controls of climate and plant traits to ecosystem function by
quantifying the causal relationships involved. The data used was from a previous study (Migliavacca et al.,
2021) which extracted ecosystem function, climate, and plant trait variables for FLUXNET flux stations. The
construction of the causal structure of BN referred to the previous expert knowledge of this system (Reichstein
et al., 2014). Further, by comparing BN-based attribution analysis, linear correlation analysis, and RF-based
IMP reported by the previous study (Migliavacca et al., 2021), we investigated the adding-values of using BN

for causal analysis and discussed its prospects in this paper.



97 2 Methodology
98 2.1 Data

99 The used variables (Table 1) include the carbon and water fluxes of the FLUXNET flux tower sites and the
100 ecosystem function variables derived from them, and information on the corresponding climate variables as well
101  as plant traits:

102 a) Ecosystem function variables: underlying Water Use Efficiency (uWWUE), maximum evapotranspiration

103 (ETmax), maximum surface conductance (GSmax), maximum net CO, uptake of the ecosystem
104 (NEPmax), Gross Primary Productivity at light saturation (GPPsat), Mean basal ecosystem respiration at a
105 reference temperature of 15 °C (Rb), and apparent carbon-use efficiency (aCUE).

106 b)  Plant trait variables: ecosystem scale foliar nitrogen concentration (Nmass), Maximum Leaf Area Index

107 (LAImax), Maximum vegetation height (Hc). Of the total 202 sites (Migliavacca and Musavi, 2021), 101
108 sites have Nmass data, 153 sites have LAImax data, and 199 sites have Hc data. Only 98 have data on all
109 these three plant trait variables.

110 c) Climate variables: mean incoming shortwave radiation (SWin), Mean temperature (Tair), Mean Vapor
111 Pressure Deficit (VPD), Mean annual precipitation (P), and cumulative soil water index (CSWI).

112

113 These data have different producing processes, including those calculated from flux data, site records, extracted
114 from remote sensing data, etc. The detailed calculation methods can be found in Migliavacca et al., 2021.

115

116  Table 1. The variables used and the discretization of their values in BN.

Variable | Definition and Type Approach (Migliavacca et al., 2021) Discretization in BN
node units (equal quantile
thresholds: 0%,
33.33%, 66.67%, and
100% percentile
values)
uWUE underlying Water Ecosystem | It was calculated from GPP, VPD, and ET 0.068, 2.51, 3.18,
. . (Zhou et al., 2014). The median of the half-
Use Efficiency [gC | function hourly retained uWUE values was used for 3:332
kPa"0.5 kgH>0'] each site. It was further filtered by the
following conditions: (i) SWin > 200 W m™2;
(i) no precipitation event for the last 24 hours,
when precipitation data are available; and (iii)
during the growing season: daily GPP > 30% of
its seasonal amplitude.
ETmax maximum Ecosystem | ETmax was computed as the 95th percentile of | 0.059, 0.17, 0.23,
evapotranspiration | function ET in the growing season. It was also filtered 0423
P P by the same filtering applied to the uWUE '
in the growing calculation.
season [mm]
GSmax maximum surface Ecosystem | GSmax was computed by inverting the 0.0013, 0.0077,
B . Penman-Monteith equation after calculating the
1
conductance [ms7] | function aerodynamic conductance. The 90th percentile 0.0123, 0.0566
of the half-hourly GS of each site was
calculated and used as the GSmax of each site.




NEPmax | maximum net CO2 | Ecosystem | NEPmax was computed as the 90th percentile 1.953,15.3, 24 .4,
akeothe | fncion | g1 oty et comtempucions |3
ecosystem [umol of the GPP amplitude).

CO2m? s

GPPsat Gross Primary Ecosystem | GPPsat was computed as the 90th percentile 3.042,17.49,27.74,
Prueiviyar | fnedon | el om oty dan by it
light saturation percentile from the GPPsat estimates of each
[umol CO» m? s°1] site was extracted.

Rb Mean basal Ecosystem | Rb was derived from night-time NEE 0.144,2.07,3.12,
ccosystem function me?asurements. For each site, the mean of the 10.67

daily Rb value was computed.
respiration at a
reference
temperature of
15 °C [umol CO2
m?s]

aCUE apparent carbon- Ecosystem | aCUE was calculated by aCUE = 1- (Rb/GPP) -1.19,0.4,0.74, 1
use efficiency function and the median value of daily aCUE is used.

Nmass ecosystem scale Plant trait | Nmass was computed as the community- 0.65, 1.15, 1.76, 4.44
foliar nitrogen weighted average of foliar N% of the major
concentration [gN species at the site sampled at the peak of the
100 g™ growing season or gathered from the literature

(Musavi et al., 2016, 2015; Fleischer et al.,
2015; Flechard et al., 2020).

LAImax | Maximum Leaf Plant trait LAImax was collected from the literature 0.17,2.27,4.5,12.9
Area Index [m? m (Migliavacca et al., 2011; Flechard et al., 2020),

2] the FLUXNET Biological Ancillary Data
Management (BADM) product, and/or site
principal investigators.

Hc Maximum Plant trait | Hc was collected from the literature 0.04, 1.7, 16.0, 80.1
vegetation height (Migliavacca et al., 2011; Flechard et al., 2020),

[m] the BADM product, and/or site principal
investigators.

SWin Mean incoming Climate SWin was from FLUXNET data. 5443, 134.18,
shortwave radiation 182.44,266.04
[Wm?]

Tair Mean temperature Climate Tair was from FLUXNET data. -10.45, 6.62, 14.73,
[degree C] 28.1

VPD Mean Vapor Climate VPD was from FLUXNET data. 0.62, 3.38, 5.76,
Pressure Deficit 26.08
[hPa]

P Mean annual Climate P was from FLUXNET data. 5.51,45.28,79.29,

precipitation

[cm/year]

256.61




CSWI cumulative soil Climate- CSWI was computed as a measure of water -93.49, -1.24,2.01,
water index related soil | availability (Nelson et al., 2018). 4.47
water
availability

117

118 2.2 BN for analyzing causal relations

119  2.2.1 BN structures

120  Based on expert knowledge (Reichstein et al., 2014), we constructed the structure of BN containing the causal
121 relationships between plant traits and ecosystem function variables: 'BN plant trait'. The causal links between
122 the variables were referred to the relationship diagram in the upper part of Figure 1. Further, we added the
123 climate variables and the corresponding causal relationships, expanding 'BN plant_trait' to

124 'BN plant_trait climate', which further incorporates the climate variables and their impacts on the system
125  (Figure 1). The explanation of added causal links was shown in Table 2.

126
127 Each node is discretized for the BN compiling by the software Netica. The equal quantile (Nojavan A. et al.,

128 2017) three-level discretization (the distribution of nodes (Figure S1) is divided into three levels) for each node
129 is applied by the discretization thresholds of 0%, 33.33%,66.67%, and 100% percentile values of the data
130  distribution (Table 1) given the limitation of the amount of training data.
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Figure 1. The structure of two Bayesian networks (BNs) for attribution of variations in ecosystem functions.

‘BN_plant_trait’ in the median part incorporated the causal effects of plant traits (box in slight green) on

ecosystem functions (box in white) from expert knowledge as the relation diagram on the upper part (Reichstein

et al., 2014). ‘BN plant_trait_climate’ in the lower part further incorporated the causal impacts of climate

variables (box in light blue).

Table 2. Explanation of the added causal links between climate variable nodes, plant trait nodes, and ecosystem

function variable nodes in the BNs.

Casual links

Parent

node

Child

node

Explanation

References




140

VPD uWUE uWUE= GPP- VPD%5/ET (Zhou et al., 2014)
VPD GSmax stomatal and surface conductance declines (Grossiord et al., 2020; Wever et al.,
under an increase in VPD 2002)
VPD GPPsat leaf and canopy photosynthetic rates decline (Yuan et al., 2019; Konings et al.,
when atmospheric VPD increases due to 2017)
stomatal closure
VPD CSWI CSWI declines under an increase in VPD (Nelson et al., 2018)
Tair VPD higher air temperature corresponds to higher (Yuan et al., 2019)
saturated water vapor pressure and can drive an
increase in VPD
Tair Hc the temperature limitation on canopy height (Moles et al., 2009)
variation
Tair Nmass increase in air temperature may decrease plant | (Weih and Karlsson, 2001; Reich
nitrogen concentration and leaf nitrogen and Oleksyn, 2004)
content.
Tair Rb temperature strongly influences Rb through the | (Davidson and Janssens, 2006;
laws of thermodynamics Enquist et al., 2003; Brown et al.,
2004)
SWin LAImax | solar radiation affects vegetation conditions (Ginter et al., 2008; Liu et al.,
and phenology 2016; Borchert et al., 2015; Wagner
etal., 2017)
SWin Hce solar radiation affects the distribution and (Borchert et al., 2015; Guisan and
composition of ecosystems through Zimmermann, 2000; Piedallu and
photosynthesis and the water cycle Gé&pout, 2007)
SWin GPPsat solar radiation affects ecosystem productivity (Monteith, 1972; Borchert et al.,
and plant growth 2015; Guisan and Zimmermann,
2000)
P Hc the hydraulic limitation hypothesis on canopy (Moles et al., 2009; Ryan and
height variation Yoder, 1997; Koch et al., 2004)
P Nmass leaf nitrogen concentration per unit mass may (Santiago and Mulkey, 2005;
decrease with increasing precipitation Wright and Westoby, 2002)
P CSWI CSWI declines under a decrease in P (Nelson et al., 2018)
CSWI | LAImax | soil moisture affects vegetation conditions (Patan& 2011)
CSWI Rb soil moisture affects the temperature (Xu et al., 2004; Flanagan and
dependence of ecosystem respiration Johnson, 2005; Wen et al., 2006)
CSWI GPPsat soil moisture can reduce GPP through (Green et al., 2019)

ecosystem water stress
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2.2.2 BN evaluation and node sensitivity analysis
Based on the Bayesian network (BN), the joint impacts of multiple variables and their causal relations are
analyzed. A BN can be represented by nodes X, X», X3 to X, and the joint distribution (Pearl, 1985):

Pa(X) = Pa(Xy, Xz, ., Xn) = [TiL; Pa(X;|pa(X))) oY)
where pa(X) is the probability of the parent node X;. Expectation-maximization (Moon, 1996) is used to address

the data with missing values and then compile the BN.

We used k-fold cross-validation to verify the reliability of the BN. The k-fold approach has been widely used in
previous studies for the validation of BNs (Marcot, 2012). In this study, k is set as 10 as commonly used
(Marcot and Hanea, 2021). We choose ETmax, GPPsat, and NEPmax for cross-validation of accuracy, and the
predicted status (status with the highest probability bar value) of the nodes will be compared with the actual
status and the classification accuracy will be calculated. These three nodes are the main terminal nodes and
primary objectives of the BN and represent the main water and carbon-related ecosystem functions, respectively.

The accuracy of these three variables can largely reflect the overall performance of BN.

Sensitivity analysis is used for the evaluation of the strength of the causal relations between nodes based on
mutual information (MI). MI is calculated as the entropy reduction of the child node resulting from changes

found at the parent node (Shi et al., 2020):

MI = H(Q)-H(Q|F)=X, X¢P(q, f) log, (P?J?P?e) @

where H represents the entropy, Q represents the target node, F represents the set of other nodes and q and f
represent the status of Q and F. In this study, we assessed the sensitivity of ecosystem function variables to

climate and plant trait variables.

2.2.3 Comparing different approaches used for attribution analysis

Further, to clarify the adding-values of considering causality in the attribution analysis of controls on ecosystem
functions, the results of the BN-based sensitivity analysis (BN_sens) were compared with the other two
approaches. They are the results of the absolute values of additional linear correlation analysis (linear_corr) in
this study and the findings in Migliavacca et al., 2021 using RF feature importance (RF_imp). BN _sens and
linear_corr directly measure the effects of plant traits and climate variables on ecosystem function variables,
while RF_imp measures their effects on the three principal components (PC1, PC2, and PC3) of ecosystem
function variables, which were reported as the three major axes of ecosystem function by Migliavacca et al.,
2021. It was obtained from principal component analysis of 12 ecosystem function variables which included the
six variables uWUE, ETmax, GSmax, NEPmax, GPPsat, and Rb used in the methods BN_sens and linear_corr.
The first axis (PC1) explains 39.3% of the variance and is dominated by maximum ecosystem productivity
properties, as indicated by the loadings of GPPsat and NEPmax, and maximum evapotranspiration (ETmax).
The second axis (PC2) explains 21.4% of the variance and refers to water-use strategies as shown by the
loadings of water-use efficiency metrics, evaporative fraction, and GSmax. The third axis (PC3) explains 11.1%
of the variance and includes key attributes that reflect the carbon-use efficiency of ecosystems. PC3 is
dominated by apparent carbon-use efficiency, basal ecosystem respiration (Rb), and the amplitude of

evaporative fraction (Migliavacca et al., 2021).
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3 Results

3.1 Correlation analysis

Linear correlation analysis of the variables (Figure 2) showed significant (P < 0.05) linear correlations between
the ecosystem function variables and some of the climate and plant trait variables. SWin and VPD showed
negative correlations with these ecosystem function variables. LAImax/ He showed significant positive
relationships with most of the ecosystem function variables and significant negative relationships with SWin and
VPD. Nmass only showed a positive relationship with ETmax. In addition, the majority of the ecosystem

function variables showed significant (P < 0.05) positive correlations with each other.

UWUE
1.00
ETmax -

1

GSmax -

r~

o 0 o
L P-value < 0.05

025

0.75

aCUE -

Nmass - 0.44 -0.00
amox Jods. 033 ﬂ
F =0.25
SWin - -0.15 -0.13 -0.21 -0.22 1
Tair - 0.71 1 R _0.50
veD - 028 02 013 033 036 M
-0.75
P- 047 0.28 0.48 0.48 043 0.38 1

CsWi - 03 20,51 -0.39 -0.42
| -1.00
Hc - 0.47 0.46 | Je5-1-8 0.52 -0.11 -0.15
- (v
b= 4

aCUE -
CSwiI -

LAImax -
SWin -
Tair -
VPD -

uWUE -
ETmax -
GSmax -
GPPsat -
Nmass -

Figure 2. Correlation coefficient matrix of ecosystem functions and climate and plant trait variables for

FLUXNET sites. Only correlation coefficients with p-values less than 0.05 level of significance is shown.

3.2 BN-based analysis

We compiled two different BNs (i.e., BN _plant trait and BN plant trait climate) (Figure 3) and found that the
probability distributions of the values of the common nodes (ecosystem function and plant trait variable nodes)
differed a little (e.g., in the probability distribution of LAImax, He, and Nmass) between the two BNs.
Compared to BN plant trait, in BN plant trait climate, the climate variables of sites with missing plant trait

data forced the changes in the probability distributions of LAImax, He, and Nmass. In the EM algorithm, for

10
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sites with missing plant trait data, existing relationships (obtained from observations from other sites) between

plant trait variables and climate variables are used in the data interpolation of plant trait variables. In

BN plant_trait climate, the added linkages of climate variables to plant trait variables resulted in higher

probability values of the low-value status of the plant trait variables.

The 10-fold cross-validation of the nodes ETmax, GPPsat, and NEPmax showed relatively high accuracy. The

classification accuracy (Table S1) of the status of ETmax was 60.9%, the classification accuracy of the status of

NEPmax was 84.2% and the classification accuracy of the status of GPPsat was 75.2%.
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Figure 3. The compiled two BNs (‘BN_plant trait’ and ‘BN _plant trait climate’). The bars of each node

represent its probability distribution. At the bottom part of each node, the left and right side values of the '+' are

the mean and standard deviation of the distribution, respectively.
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We performed sensitivity analyses (Figure 4) on the ecosystem function variables in both BNs to assess their
sensitivity to various climate and plant trait variables. We also calculated the difference in sensitivity MI
between the two BNs (Figure 4) to compare the change in sensitivity of ecosystem function to each variable
after adding further climate variables to the plant trait variables only. The sensitivity of different ecosystem
function variables to plant traits and climate variables was highly variable in both BNs. The magnitude of
sensitivity of ecosystem function nodes to plant traits and climate variables was related to whether these plant
traits and climate variables were set as their parent nodes. In BN plant trait, for the carbon fluxes GPPsat and
NEPmax, Nmass, and LAImax had higher sensitivity due to Nmass and LAI being set as their parent nodes. For
the water flux ETmax, it does not have high sensitivity to plant trait variables such as LAImax and Hc, although
these plant trait variables are set as the parent nodes of ETmax. This indicates the difference in the strength of

the control effects of plant traits on carbon and water fluxes.

In the sensitivity analysis of BN plant trait climate, the sensitivity patterns of the ecosystem function variables
changed as a result of the inclusion of climate variables and the change in causality they introduced. The
sensitivity of the ecosystem function variables to climate variables was significantly increased (especially for
Tair, VPD, and CSWI). The control of plant traits on ecosystem function in BN plant trait is also partially
transformed into an indirect effect of climate variables by first controlling plant trait variables and then
controlling ecosystem function. For example, in BN _plant_trait_climate, for GPPsat, a decrease in the
sensitivity of GPPsat to LAImax and an increase in the sensitivity to Tair was observed after the causal chain of
Tair influencing He, LAImax, and then GPPsat was set. This can be explained by the fact that higher
temperatures promote vegetation growth and thus may increase LAImax, which then indirectly alters the
probability distribution of the GPPsat node. In previous studies based on statistical methods that did not consider
the chain causality, this indirect control on GPPsat from Tair may have been included in the contribution of
LAImax to GPPsat. Similarly, a chain causality of P by first affecting Nmass and then indirectly GPPsat was
also found. However, the effect of P by first affecting Hc, LAImax, and then indirectly affecting ETmax and

GSmax appears to be not large.
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Figure 4. Sensitivity of ecosystem function variables to other variables in different networks based on mutual
information (MI). The left column is the sensitivity analysis of BN plant trait, the middle column is the
sensitivity analysis of BN plant trait climate, and the right column is the difference between the reported
sensitivity of BN plant trait climate and the sensitivity of BN plant trait. For BN plant trait, the MI values of
climate variables to ecosystem function variables are all 0 because they do not contain climate variables. For
each ecosystem function in these two BN, its sensitivity to its child node is not shown (set as 0) because child

nodes are not considered causal variables and thus are not evaluated in the attribution.

3.3 Comparing results from RF-based, BN-based analysis, and correlation analysis

All three methods show the importance of the plant trait variables in explaining the variation of various
ecosystem function variables (Figure 5). LAImax was the most important of the three methods in explaining the
variation of maximum ecosystem productivity properties (corresponding to PC1). In contrast to the results of the
other two methods, in linear corr, SWin and VPD were the least important, while P was more important.
Comparing RF_imp and BN_sens, the overall pattern of importance is similar, but there are differences. For
water-use strategies (corresponding to PC2), Hc is ranked first and LAI last in RF_imp, but in BN_sens, LAl is
slightly more important than He. In linear_corr, Hec and LAI are of similar importance. For PC3, VPD ranks first
and is more important than Tair in RF_imp. But in BN_sens, Tair is more important than VPD. Among the three
moisture-related climate variables (i.e., VPD, P, and CSWI), CSWI appears to be the least important in RF_imp
but is comparable to VPD in BN _sens.

Given the limitations of RF_imp in responding to the correlated variables (Strobl et al., 2008), the difference
between the significance of VPD and CSWI reported by RF_imp may be overestimated. For the ecosystem
functions related to water-use strategies, the difference between LAImax and Hc reported by BN _sens is also
much smaller than the difference reported by RF_imp. It implied that, with the causality relation between
correlated variables constructed, BN _sens reduced the uncertainty in quantifying the importance of correlated

variables.
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Figure 5. Comparisons of relationships of ecosystem functional variables to plant traits and climate variables in
different analyses. Method RF_imp is Random forest variable importance (Migliavacca et al., 2021) (see
Methodology section). Method linear _corr is Linear correlation analysis with the absolute values of Pearson
correlation coefficients (see Methodology section). Method BN _sens is a BN-based sensitivity analysis with
sensitivity values MI reported. The values in each method group are in red for high values and in blue for low

values. The color depth is dependent on values and the scale is the same in each row.

4 Discussions

Based on BN, this study investigates the prospect of using causal graphical models to revisit and attribute the
control of climate and plant trait variations to ecosystem functions. Because of the inclusion of the constraints
provided by expert knowledge (Reichstein et al., 2014) and other perceptions from many previous studies, BN-
based attribution analysis is relatively reliable in terms of the represented mechanisms of causal links. It can
update our knowledge of the contribution of some teleconnection variables through causal chains. The effective
implementation of BN-based causal analysis may depend on the reliability of the causal relationships provided
by expert knowledge (directional links between variables). We can establish the connection relationships and

network structures between variables from expert knowledge and assign the specific quantification of the
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connection relationships (conditional probability tables) to observations (Shi et al., 2021a). If further combined
with findings from process-based models, it is promising to significantly improve our understanding of the
complex ‘climate-plant trait-ecosystem function’ relationships by comparing detailed relationships and structural

influences between variables.

BN essentially factorized the joint probability distribution between various variables into a series of conditional
probability distributions (Ramazi et al., 2021), and the reliability of this approach relied on the setting of causal
control relationships between nodes. Expert knowledge was thus critical in the construction of BNs, especially
when modeling complex systems. In addition to the causal relationship between nodes, the meaning represented
by each node, the data source/ approach, and the spatial and temporal resolution may also have impacts on the
results. For example, in this study, for multiple water use efficiency-related variables in Migliavacca et al., 2021,
uWUE was chosen, and for Rb, the mean value of Rb was chosen. The results of BN-based analysis may vary if
different representations or meanings of nodes are selected. The way the data of each variable is observed/
produced, the spatial and temporal resolution of the data, etc. can also affect the understanding of the role of
these variables in the data-driven BN. Some variables may be very important in the attribution of actual
ecosystem function variation, but their importance may be underestimated due to limitations in the inherent
observational accuracy of their data, and differences in their spatial and temporal scales from other variables. In
addition, some variables such as soil moisture may be difficult to obtain due to the lack of continuous site-scale
long-term observations. Using the water balance method to calculate CSWI as a proxy may introduce errors.
Since the CSWI calculation method relies on P, etc., the obtained relationship between P, CSWI, and other nodes
may have contained empirical components. If the availability of measurements of some nodes is low, modelers
should be cautious about the empirical dependencies with other nodes that may be included in the alternative
data approaches. Thus, the alternative use of multiple derivatives of a variable and data generated by different
methods for the construction of different BNs can help us to recognize how the uncertainty in the nodes and data
can influence BN-based attribution findings. Different node discretization schemes may also affect the
conditional probability table between nodes as well as the sensitivity (Nojavan A. et al., 2017). Other alternative
discretization schemes with the commonly used three levels may also be effective, such as using ‘mean-std’
(mean minus 1 standard deviation) and ‘mean+std’ (mean plus 1 standard deviation) as discretization thresholds,
which will result in a change in the relationship between BN nodes. And further if extreme values such as 5th
and 95th pencentile are used in the node value discretization, it may be beneficial on quantifying the causal

control of extreme conditions of nodes on other nodes.

When considering higher-order effects (Bairey et al., 2016), the relationships between plant traits, climate
variables, and ecosystem function variables can be very complex. One variable may affect the relationship
between two other variables rather than directly affecting these two variables (Bairey et al., 2016). BN may have
limitations in directly analyzing such higher-order effects because BN requires the modeler to explicitly set
direct causal relationships between nodes. To analyze the higher-order effects, we can add nodes that directly
represent the relationship between the variables. For example, the correlation coefficient of two variables can be

used as a node and this node is connected to other nodes in the BN so that the control effect of other nodes on
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this correlation coefficient can be explored. Such implements may be useful to deepen the impact of various

higher order effects.

Besides, the BN in this study was mainly based on data averaged over multiple years, thus possibly partially
underestimating the effect of temporal variations in the relationships between variables. Another limitation of
the BN proposed above is that the causal relationships between variables are unidirectional, while it is difficult
to represent interactions and feedback between variables (Marcot and Penman, 2019). In future studies, to
address these two issues, BN based on temporal dynamics can be promising (Figure 6). By refining the
interaction of temporal lags between variables, it is possible to incorporate not only temporal variation but also
control factors that attribute interactions and feedback between variables. For example, the interaction and
feedback mechanisms of VPD, soil moisture, and ET with lag effects (Figure 6) and their impacts on ecosystems
have attracted extensive interest from researchers (Anderegg et al., 2019; Humphrey et al., 2021; Lansu et al.,
2020; Liu et al., 2020; Xu et al., 2022; Zhou et al., 2019), but conventional statistical methods have been
ineffective in analyzing such relationships with both interactive causality and temporal lags. In contrast, the BN
proposed here, which incorporates feedback effects and lagged effects that were common in climate-ecosystem
relations (Lin et al., 2019), is potentially able to address this issue from a data-driven approach. In the practical
modeling, different periods of the same node may still be not independent. Therefore, the split scheme of such
periods may be critical. For example, a period between two precipitation events can be treated as one sample,
which can enhance independence between periods. Subsequently, a such period can be divided into smaller
periods such as t, t-1, t-2, etc. to aggregate the node values to appropriate time scales. Thus one sample can
represent the interaction relationship between variables with lags in this period. Finally, we can integrate records
of such periods between two precipitation events from sites across different climate zones and biomes to build
synthesis models for global analysis of such problems. Such research frameworks in BN-based modeling may
be difficult due to high computational costs given the large amount of data. Fortunately, recently proposed new
causal models have the potential to address this limitation, such as the introduction of causality into deep
learning frameworks (Luo et al., 2020; Cui and Athey, 2022). If further combined with the findings of process-
based models, our understanding of climate and ecosystem interactions and feedback and their mechanisms in

time is hopefully deepened.

VPD

-
=)

A
| Ccswi

v v v
ETmax | ET, |~ | ET |e—r

Figure 6. The future BNs with the temporal causality further considered addressing the causality of the

interaction between variables. The VPD-CSWI-ET relationship is used here as an example. t, t-1, and t-2 denote
the current period, the last period, and the period before the last period, respectively. The network on the left

only considers the effect of VPD on CSWI without considering the feedback of CSWI on the VPD. The network

17



353
354

355

356
357
358
359
360
361
362
363
364
365
366

on the right characterizes the VPD-CSWTI interaction with the feedback from CSWI at period t-1 to VPD at

period t.

5 Conclusion

Based on BN, we revisited and attributed the contribution of climate and plant traits to global terrestrial

ecosystem function. The major conclusions of this study include:

1. BN can be used for the quantification of causal relationships between complex ecosystems in response to
climate change and enables the analysis of indirect effects among variables.

2. Compared to BN, the feature importance difference between ‘VPD and CSWI’ and ‘LAlmax and Hc’
reported by Random forests is higher and can be overestimated.

3. With the causality relation between correlated variables constructed, BN _sens can reduce the uncertainty in
quantifying the importance of correlated variables.

4.  The understanding of the mechanism of indirect effects of climate variables on ecosystem function through

plant traits can be deepened by the chain casuality quantification in BNs.
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