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Abstract 19 

Using statistical methods that do not emphasize the systematic causality to attribute climate and plant traits to 20 

control ecosystem function may produce biased perceptions. We revisit this issue using a Bayesian network 21 

(BN) capable of quantifying causality. Based on expert knowledge and climate, vegetation, and ecosystem 22 

function data from the FLUXNET flux stations, we constructed a BN containing the causal relationship of 23 

'climate-plant trait-ecosystem function'. Based on the sensitivity analysis function of the BN, we attributed the 24 

control of climate and plant traits to ecosystem function and compared the results with those based on Random 25 

forests and correlation analysis. The main conclusions of this study include: BN can be used for the 26 

quantification of causal relationships between complex ecosystems and climatic and environmental systems, and 27 

enables the analysis of indirect effects among variables. The control of ecosystem function by climate variables 28 

(especially mean temperature and mean vapor pressure deficit) may have been underestimated previously, and 29 

the mechanism of indirect effects of climate variables on ecosystem function through plant traits should be 30 

emphasized in future studies. Further inclusion of temporal information in BN holds promise for improving the 31 

analysis of lagged effects and interactions and feedback effects between variables. 32 

1 Introduction 33 

Terrestrial ecosystems provide a variety of important ecosystem functions for our society (Manning et al., 34 

2018). It is essential to understand the potential changes in ecosystem functions in the context of global climate 35 

change (Grimm et al., 2013). The response of terrestrial ecosystem function to changes in climate change, plant 36 

traits, and environmental conditions, and the corresponding mechanisms, are complex due to enormous spatial 37 

and temporal variations across ecosystems, climate zones, and also space-time scales (Diaz and Cabido, 1997; 38 

Madani et al., 2018; Myers-Smith et al., 2019). Given the enormous variations, on the global scale, these issues 39 

have not been clarified well.  40 

 41 

In the past decades, measurements of ecosystem functions are increasingly available to support studies of the 42 

relations between ecosystem functions and climate and environmental systems. For example, eddy-covariance 43 

flux tower observations (Baldocchi, 2014) for carbon flux (i.e., net ecosystem exchange (NEE)) and water flux 44 

(i.e., evapotranspiration (ET)) have been widely used to investigate changes in ecosystem functions and their 45 

responses to climate change, vegetation condition changes, etc (Jung et al., 2020, 2010; Migliavacca et al., 2021; 46 

Peaucelle et al., 2019). With the increase in such observations, various statistical analysis methods such as 47 

emerging machine learning (Barnes et al., 2021; Migliavacca et al., 2021; Reichstein et al., 2019; Shi et al., 48 

2022b, a, 2020b; Tramontana et al., 2016) have been used to mine the hidden information on the effects of 49 

climate change and its induced changes in vegetation, etc. on ecosystem function variables such as carbon and 50 

water flux, which has not been understood in depth by process-based models (e.g., biogeochemistry models 51 

(Sakschewski et al., 2016)). For example, using Random forests (RF) and principal component analysis (PCA), 52 

a recent study (Migliavacca et al., 2021) quantified the three main axes of terrestrial ecosystem function and 53 

their drivers based on observations of carbon and water fluxes of FLUXNET (Pastorello et al., 2020) and 54 

various climate and plant trait variables. Generally, data-driven approaches have become increasingly important 55 

recently in this area (Reichstein et al., 2019).  56 
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 57 

However, compared to the process-based models, most of these data-driven approaches lack representation of 58 

the systematic causality and detailed processes in the relations between ecosystem function and climate and 59 

environments, despite the widely recognized complex causal interactions of ecosystems with climate and 60 

environmental systems (Reichstein et al., 2014). Conventional methods such as multiple linear regression have 61 

been questioned in attribution studies of the relationship between climate and the carbon cycle (Wang et al., 62 

2022). For example, the use of multiple linear regression may underestimate the direct effect of soil moisture 63 

possibly due to the covariance between variables (Wang et al., 2022). For machine learning techniques, although 64 

current common algorithms such as RF (Migliavacca et al., 2021) can report the importance of features (IMP) to 65 

measure their contributions to the prediction model, IMP-based attribution to the target variable can also be 66 

unreliable when we aim to explain systematic causality (Gregorutti et al., 2017). Therefore, it is commonly 67 

important to recognize the difference between correlation and causality in these approaches and emphasize the 68 

systematic causality in the systems and also detailed causal relations between features in a data-driven approach.  69 

 70 

Bayesian network (BN) is a causal model based on conditional probability representation (Friedman et al., 1997; 71 

Pearl, 1985) that characterizes the transmission of cause and effect through conditional probabilities between 72 

variables. Currently, BN has been used in modeling causal relationships in many fields and has demonstrated 73 

advantages in causal interpretation, including in the fields such as hydrology and ecology (Chan et al., 2010; 74 

Keshtkar et al., 2013; Milns et al., 2010; Pollino et al., 2007; Shi et al., 2021a, b; Trifonova et al., 2015). 75 

However, BN has rarely been used in the study of attribution of changes in ecosystem function. Therefore, this 76 

study used BN to attribute the controls of climate and plant traits on ecosystem function by quantifying the 77 

causal relationships involved. The data used are from a previous study (Migliavacca et al., 2021) which 78 

extracted ecosystem function, climate, and plant trait variables for FLUXNET flux stations. The construction of 79 

the causal structure of BN referred to the previous expert knowledge of this system (Reichstein et al., 2014). 80 

Further, by comparing BN-based attribution analysis, linear correlation analysis, and RF-based IMP reported by 81 

the previous study (Migliavacca et al., 2021), we investigated the adding-values of using BN for causal analysis 82 

and discussed its prospects in this paper. 83 

2 Methodology 84 

2.1 Data 85 

The used variables (Table 1) include the carbon and water fluxes of the FLUXNET flux tower sites and the 86 

ecosystem function variables derived from them, and information on the corresponding climatic variables as 87 

well as plant traits: 88 

a) Ecosystem function variables: underlying Water Use Efficiency (uWUE), maximum evapotranspiration 89 

(ETmax), maximum surface conductance (GSmax), maximum net CO2 uptake of the ecosystem 90 

(NEPmax), Gross Primary Productivity at light saturation (GPPsat), Mean basal ecosystem respiration at a 91 

reference temperature of 15 °C (Rb).  92 

b) Plant trait variables: ecosystem scale foliar nitrogen concentration (Nmass), Maximum Leaf Area Index 93 

(LAImax), Maximum vegetation height (Hc), Aboveground Biomass (AGB). 94 
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c) Mean incoming shortwave radiation (SWin), Mean temperature (Tair), Mean Vapor Pressure Deficit 95 

(VPD), Mean annual precipitation (P), and cumulative soil water index (CSWI). 96 

 97 

These data have different producing processes, including those calculated from flux data, site records, extracted 98 

from remote sensing data, etc. The specific calculation methods can be found in the previous study (Migliavacca 99 

et al., 2021).  100 

 101 

Table 1. The variables used and the discretization of their values in BN. 102 

Variable 

node 

Definition and units  Type Approach (Migliavacca et al., 

2021) 

Discretization in 

BN (thresholds for 

classifications) 

uWUE underlying Water Use 

Efficiency [gC kPa^0.5 

kgH2O-1] 

Ecosystem 

function 

calculated from GPP, VPD, ET 0.0, 2.5, 3.5, 5.5 

ETmax maximum 

evapotranspiration in 

the growing season 

[mm] 

Ecosystem 

function 

computed as the 95th percentile 

of ET in the growing season 

0.05, 0.15, 0.30, 

0.45 

GSmax maximum surface 

conductance [m s-1] 

Ecosystem 

function 

computed by inverting the 

Penman-Monteith equation 

after calculating the 

aerodynamic conductance 

0, 0.01, 0.02, 0.06 

NEPmax maximum net CO2 

uptake of the ecosystem 

[umol CO2 m-2 s-1] 

Ecosystem 

function 

computed as the 90th percentile 

of the half-hourly net 

ecosystem production in the 

growing season 

0, 15, 30, 45 

GPPsat Gross Primary 

Productivity at light 

saturation [umol CO2 m-

2 s-1] 

Ecosystem 

function 

computed as the 90th percentile 

estimated from half-hourly data 

by fitting the hyperbolic light 

response curves  

0, 15, 30, 50 

Rb Mean basal ecosystem 

respiration at a 

reference temperature of 

15 °C [umol CO2 m-2 s-

1] 

Ecosystem 

function 

derived from night-time NEE 

measurements 

0, 2, 4, 12 

Nmass ecosystem scale foliar 

nitrogen concentration 

[gN 100 g-1] 

Plant trait computed as the community 

weighted average of foliar N% 

of the major species at the site 

sampled at the peak of the 

growing season or gathered 

0.5, 1.25, 2.0, 4.5 
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from the literature (Musavi et 

al., 2016, 2015; Fleischer et al., 

2015; Flechard et al., 2020) 

LAImax Maximum Leaf Area 

Index [m2 m-2] 

Plant trait collected from the literature 

(Migliavacca et al., 2011; 

Flechard et al., 2020), the 

FLUXNET Biological 

Ancillary Data Management 

(BADM) product, and/or site 

principal investigators 

0, 3, 6, 13 

Hc Maximum vegetation 

height [m] 

Plant trait collected from the literature 

(Migliavacca et al., 2011; 

Flechard et al., 2020), the 

BADM product, and/or site 

principal investigators 

0, 5, 20, 80 

AGB Aboveground Biomass 

derived from the 

Globbiomass project [t 

DM ha-1] 

Plant trait extracted from the satellite-

based GlobBiomass dataset 

(Santoro et al., 2021) 

0, 50, 150, 350 

SWin Mean incoming 

shortwave radiation [W 

m-2] 

Climate from FLUXNET data 50, 125, 200, 275 

Tair Mean temperature 

[degree C] 

Climate from FLUXNET data -12, 5, 15, 30 

VPD Mean Vapor Pressure 

Deficit [hPa] 

Climate from FLUXNET data 0, 4, 8, 27 

P Mean annual 

precipitation [cm/year] 

Climate from FLUXNET data 0, 40, 80, 260 

CSWI cumulative soil water 

index 

Climate-

related soil 

water 

availability 

computed as a measure of 

water availability (Nelson et 

al., 2018) 

-100, -20, 0, 5 

 103 

2.2 BN for analyzing causal relations 104 

2.2.1 BN structures 105 

Based on expert knowledge (Reichstein et al., 2014), we constructed the structure of BN containing the causal 106 

relationships between plant traits and ecosystem function variables: 'BN_plant_trait'. The causal links between 107 

the variables were referred to the relationship diagram in the upper part of Figure 1. Further, we added the 108 
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climate variables and the corresponding causal relationships, expanding 'BN_plant_trait' to 109 

'BN_plant_trait+climate', which further incorporates the climate variables and their impacts on the system. 110 

 111 

Each node is discretized for the BN compiling by the software Netica, while the selection of the thresholds for 112 

classifications (Table 1) is based on the distribution of the values of each node (Figure 2) and also the meanings 113 

of the thresholds. In this step, the three-level discretization (the distribution of a node is divided into three 114 

levels) for each node is applied given the limitation of the amount of training data.  115 

 116 

 117 
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Figure 1. The structure of two Bayesian networks (BNs) for attribution of variations in ecosystem functions. 118 

BN_pure in the lower left part assumes that all variables of plant traits (box in slight green) and climate (box in 119 

slight blue) directly affect the ecosystem function variables (box in white). ‘BN_plant_trait’ in the median part 120 

incorporated the causal effects of plant traits (box in slight green) on ecosystem functions (box in white) from 121 

expert knowledge as the relation diagram on the upper part (Reichstein et al., 2014). ‘BN_plant_trait+climate’ in 122 

the lower part further incorporated the causal impacts of climate variables (box in light blue). 123 

 124 

Figure 2. Distributions of values of ecosystem functions and climate and plant trait variables. The vertical axis 125 

indicates the number of flux stations. 126 
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2.2.2 Sensitivity analysis based on BN 127 

Based on the Bayesian network (BN), the joint impacts of multiple variables and their causal relations are 128 

analyzed. A BN can be represented by nodes X1, X2, X3 to Xn and the joint distribution (Pearl, 1985): 129 

Pa(X) = Pa(X1, X2 , … , Xn) = ∏ Pa(Xi|pa(Xi))n
i=1 (1)  130 

where pa(Xi) is the probability of the parent node Xi. Expectation-maximization (Moon, 1996) is used to address 131 

the data with missing values and then compile the BN.  132 

 133 

Sensitivity analysis is used for the evaluation of the strength of the causal relations between nodes based on 134 

mutual information (MI). MI is calculated as the entropy reduction of the child node resulting from changes 135 

found at the parent node (Shi et al., 2020a): 136 

MI = H(Q)-H(Q|F)= ∑ ∑ P(q, f) log
2

(
P(q,f)

P(q)P(f)
) fq (2)  137 

where H represents the entropy, Q represents the target node, F represents the set of other nodes and q and f 138 

represent the status of Q and F. 139 

 140 

In this study, we assessed the sensitivity of ecosystem function variables to climate and plant trait variables. 141 

Further, to clarify the adding-values of considering causality in the attribution analysis of controls on ecosystem 142 

functions, the results of the BN-based sensitivity analysis were compared with the results of additional linear 143 

correlation analysis and the previous study using RF (Migliavacca et al., 2021) without considering the causality 144 

by comparing the ranking of MI, IMP (the feature importance metric of RF), and Pearson correlation 145 

coefficients (the metric of linear correlation analysis) of climate and plant trait variables and their differences in 146 

the results of the three methods. Although six ecosystem function variables were directly used in this study, the 147 

target variables of the RF-based approach were the first three principal components (PC): PC1, PC2, and PC3 148 

(Migliavacca et al., 2021) of the 12 ecosystem variables (including the six variables selected in this study), the 149 

connotations of the target variables were relatively consistent between them. 150 

3 Results 151 

3.1 Correlation analysis 152 

Linear correlation analysis of the variables (Figure 3) showed significant (P < 0.05) linear correlations between 153 

the ecosystem function variables and some of the climate and plant trait variables. SWin, VPD, and showed 154 

negative correlations with these ecosystem function variables. In addition, the majority of the ecosystem 155 

function variables showed significant (P < 0.05) positive correlations with each other. 156 
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 157 

Figure 3. Correlation coefficient matrix of ecosystem service functions and climate and plant trait variables for 158 

FLUXNET sites. Only correlation coefficients with p-values less than 0.05 level of significance are shown. 159 

3.2 BN-based analysis 160 

We compiled two different BNs (i.e., BN_plant_trait and BN_plant_trait_climate) (Figure 4) and found that the 161 

probability distributions of the values of the common nodes (ecosystem function and plant trait variable nodes) 162 

differed little between the two BNs. This indicates that the compilation was successful and that the inclusion of 163 

climate variables in BN_plant_trait_climate did not alter the fit of the local networks of ecosystem function and 164 

plant trait variables of BN_plant_trait. 165 

 166 
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  167 

Figure 4.The compiled two BNs (‘BN_plant_trait’ and ‘BN_plant_trait_climate’). The bars of each node 168 

represent its probability distribution. At the bottom part of each node, the left and right side values of the '?' are 169 

the mean and standard deviation of the distribution, respectively. 170 

 171 

We performed sensitivity analyses (Figure 5) on the ecosystem function variables in both BNs to assess their 172 

sensitivity to various climate and plant trait variables. We also calculated the difference in sensitivity MI 173 

between the two BNs (Figure 5) to compare the change in sensitivity of ecosystem function to each variable 174 

after adding further climate variables to the plant trait variables only.  175 

 176 
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The sensitivity of different ecosystem function variables to plant traits and climate variables was highly variable 177 

in both BNs (except for the similar pattern between GPPsat and NEPmax). The magnitude of sensitivity of 178 

ecosystem functional nodes to plant traits and climate variables was related to whether these plant traits and 179 

climate variables were set as their parent nodes. In BN_plant_trait, for the carbon fluxes GPPsat and NEPmax, 180 

Nmass had a higher sensitivity due to Nmass being set as their parent node. For the water flux ETmax, it does 181 

not have high sensitivity to plant trait variables such as LAImax, Hc, and AGB, although these plant trait 182 

variables are set as the parent nodes of ETmax. This indicates the difference in the strength of the control effects 183 

of plant traits on carbon and water fluxes.  184 

 185 

In the sensitivity analysis of BN_plant_trait_climate, the sensitivity patterns of the ecosystem function variables 186 

changed as a result of the inclusion of climate variables and the change in causality they introduced. The 187 

sensitivity of the ecosystem function variables (except GSmax and Rb) to climate variables was significantly 188 

increased (especially for Tair and VPD). Their sensitivity to plant trait variables (e.g., Nmass and LAImax) 189 

decreased. Among the controls for ETmax and uWUE, climate variables showed a role beyond plant traits, 190 

while among the controls for GPPsat and NEPmax, the climate variable Tair also showed a significant role at a 191 

similar level to Nmass. The control of plant traits on ecosystem function in BN_plant_trait is also partially 192 

transformed into an indirect effect of climate variables by first controlling plant trait variables and then 193 

controlling ecosystem function. For example, in BN_plant_trait_climate, for ETmax, a decrease in the 194 

sensitivity of ETmax to LAImax and an increase in the sensitivity to Tair was observed after the loop of Tair 195 

controlling LAImax and then ETmax was set. This can be explained by the fact that higher temperatures 196 

promote vegetation growth and thus may increase LAImax, which then indirectly contributes to the increase in 197 

ETmax. In previous studies based on statistical methods that did not consider the systematic causality, this 198 

indirect control on ETmax from Tair may have been included in the contribution of LAImax to ETmax.  199 
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 200 

Figure 5. Sensitivity of ecosystem function variables to other variables in different networks based on mutual 201 

information (MI). The left column is the sensitivity analysis of BN_plant_trait, the middle column is the 202 

sensitivity analysis of BN_plant_trait_climate, and the right column is the difference between the reported 203 

sensitivity of BN_plant_trait_climate and the sensitivity of BN_plant_trait. For BN_plant_trait, the MI values of 204 

climate variables to ecosystem function variables are all 0 because they do not contain climate variables. For 205 

each ecosystem function in these two BNs, its sensitivity to its child node is not shown (set as 0) because child 206 

nodes are not considered causal variables and thus are not evaluated in the attribution. 207 

 208 
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3.3 Comparing results from RF-based, BN-based analysis, and correlation analysis 209 

To compare the differences between cause-based and non-cause-based attribution or contribution analyses, we 210 

compared the importance ranking of variables based on the RF-based IMP in the study of Migliavacca et al., the 211 

absolute values of the correlation coefficients from the correlation analysis in this study, and the values of MI 212 

from the BN-based sensitivity analysis. 213 

 214 

Since plant traits such as LAImax, Hc, and AGB were not set as parent nodes of carbon fluxes such as NEPmax 215 

and GPPsat in BN in this study, the effects of LAImax, Hc, and AGB on carbon flux-related variables in 216 

ecosystem function were weaker in the BN-based sensitivity analysis than in the RF-based and correlation 217 

analyses. However, AGB did not show a significant linear correlation with GSmax in the correlation analysis, 218 

suggesting that its control effect on GSmax may be nonlinear but detected by both RF and BN-based attribution 219 

analyses. Of the meteorological variables, Tair showed stronger control over ecosystem function variables in the 220 

BN-based attribution (compared to other climate and plant trait variables), implying that the RF-based 221 

imputation of IMP may have underestimated the role of Tair. 222 

 223 

Figure 6. Comparisons of relationships of ecosystem functional variables to plant traits and climate variables in 224 

different analyses. Method RF_imp is Random forest variable importance (Migliavacca et al., 2021). Method 225 

linear_corr is Linear correlation analysis with the absolute values of Pearson correlation coefficients. Method 226 

BN_sens is a BN-based sensitivity analysis with sensitivity values MI reported. PC1, PC2, and PC3 are the first 227 

three major axes of ecosystem function reported in the study by Migliavacca et al. (Migliavacca et al., 2021) 228 

obtained from principal component analysis of 12 ecosystem function variables which including the six 229 

variables uWUE, ETmax, GSmax, NEPmax, GPPsat, and Rb used in this study (Method BN_sens and 230 

linear_corr in the lower part). The first axis (PC1) explains 39.3% of the variance and is dominated by 231 

maximum ecosystem productivity properties, as indicated by the loadings of GPPsat and NEPmax, and 232 

maximum evapotranspiration (ETmax). The second axis (PC2) explains 21.4% of the variance and refers to 233 

water-use strategies as shown by the loadings of water-use efficiency metrics, evaporative fraction, and GSmax. 234 

The third axis (PC3) explains 11.1% of the variance and includes key attributes that reflect the carbon-use 235 

efficiency of ecosystems. PC3 is dominated by apparent carbon-use efficiency, basal ecosystem respiration 236 
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(Rb), and the amplitude of evaporative fraction (Migliavacca et al., 2021). The values in each row are in red for 237 

high values and in blue for low values, for rows with very few values, the color-based indication is not reliable 238 

in ranking the control effects of plant traits and climate variables. 239 

4 Discussions 240 

Previous studies of ‘climate-plant trait-ecosystem function’ relationships have predominantly used only non-241 

causal statistical methods such as RF (Migliavacca et al., 2021). Based on BN, this study investigates the 242 

prospect of using causal networks to revisit and attribute the control of climate and plant trait changes to 243 

ecosystem function. Compared to traditional correlation analysis and machine learning methods, BN can 244 

uncover the effects of causal relationships between variables. This causality discovery can improve on previous 245 

findings for studies of ecosystem-climate interactions. 246 

 247 

Because of the inclusion of the constraints provided by expert knowledge (Reichstein et al., 2014), BN-based 248 

attribution analysis is relatively reliable and can update our knowledge of the contribution of some 249 

teleconnection variables through causal chains. However, since the structure of the expert knowledge graph did 250 

not connect LAImax, Hc, and AGB to GPP (Figure 1), LAImax, Hc, and AGB are not set as parent nodes of 251 

GPPsat in our BN, and thus the sensitivity of carbon fluxes to LAImax, Hc, AGB, etc. is 0 or close to 0. 252 

Therefore, in our BN, the causal controls of LAImax, Hc, and AGB on GPPsat are not shown although they are 253 

commonly thought to strongly influence GPPsat and NEPmax. This also demonstrates from another perspective 254 

the importance of a reasonable parent node in the attribution analysis using BN, where if a variable cannot be 255 

connected to the target variable through a causal loop, the sensitivity of the target variable to it may be low, and 256 

this will therefore affect the assessment of the strength of causality. If we want to explicitly measure the 257 

response of the target variable to the causality of a variable, it is indeed necessary to set up a causal link between 258 

them in BN.  259 

 260 

In this study, it was found that the indirect impacts of some meteorological variables such as Tair may be 261 

underestimated in the attribution of ecosystem function when using a non-causal approach. This suggests the 262 

feasibility of quantifying indirect causal effects among various variables to help us gain a more systematic 263 

understanding. The effective implementation of BN-based causal analysis may depend on the reliability of the 264 

causal relationships provided by expert knowledge (directional links between variables). We can establish the 265 

connection relationships and network structures between variables from expert knowledge and assign the 266 

specific quantification of the connection relationships (conditional probability tables) to the observations and 267 

data (Shi et al., 2021a). In the future, we can revisit the linkages of ecosystem functions with climate and 268 

environmental systems using BN-based causal analysis to understand the strength and mechanisms of the 269 

relationships between direct, indirect, and remotely related effects of variables. Such a data-driven causal 270 

analysis framework provides more structured information about climate, plant traits, and ecosystem systems, 271 

thus making the data-driven approach more transparent and interpretable (compared to previous black-box 272 

models (Rudin, 2019)). If further combined with findings from process-based models, it is promising to 273 

significantly improve our understanding of the complex ‘climate-plant trait-ecosystem function’ relationships by 274 

comparing detailed relationships and structural influences between variables. 275 
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 276 

Besides, the BN in this study was mainly based on data averaged over multiple years, thus possibly partially 277 

underestimating the effect of temporal variations in the relationships between variables. Another limitation of 278 

the BN proposed above is that the causal relationships between variables are unidirectional, while it is difficult 279 

to represent interactions and feedback between variables (Marcot and Penman, 2019). In future studies, to 280 

address these two issues, BN based on temporal dynamics can be promising (Figure 7). By refining the 281 

interaction of temporal lags between variables, it is possible to incorporate not only temporal variation but also 282 

control factors that attribute interactions and feedback between variables. For example, the interaction and 283 

feedback mechanisms of VPD, soil moisture, and ET with lag effects (Figure 7) and their impacts on ecosystems 284 

have attracted extensive interest from researchers (Anderegg et al., 2019; Humphrey et al., 2021; Lansu et al., 285 

2020; Liu et al., 2020; Xu et al., 2022; Zhou et al., 2019), but conventional statistical methods have been 286 

ineffective in analyzing such relationships with both interactive causality and temporal lags. In contrast, the BN 287 

proposed here, which incorporates feedback effects and lagged effects that were common in climate-ecosystem 288 

relations (Lin et al., 2019), is potentially able to address this issue from a data-driven approach. When further 289 

combined with the findings of process-based models, our understanding of climate and ecosystem interactions 290 

and feedback and their mechanisms in time is hopefully deepened. 291 

 292 

 293 

Figure 7. The future BNs with the temporal causality further considered addressing the causality of the 294 

interaction between variables. The VPD-CSWI-ET relationship is used here as an example. t, t-1, and t-2 denote 295 

the current period, the last period, and the period before the last period, respectively. The network on the left 296 

only considers the effect of VPD on CSWI without considering the feedback of CSWI on the VPD. The network 297 

on the right characterizes the VPD-CSWI interaction with the feedback from CSWI at period t-1 to VPD at 298 

period t.  299 

5 Conclusion 300 

By emphasizing causality, based on BN, we revisited and attributed the contribution of climate and plant traits 301 

to global terrestrial ecosystem function. The major conclusions of this study include:  302 

1. BN can be used for the quantification of causal relationships between complex ecosystems and climatic 303 

and environmental systems and enables the analysis of indirect effects among variables.  304 
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2. The control of ecosystem function by climate variables (especially Tair and VPD) may have been 305 

underestimated in the past, and the mechanism of indirect effects of climate variables on ecosystem 306 

function through plant traits should be emphasized in future studies. 307 

3. Further inclusion of temporal information in BN holds promise for improving the analysis of lagged effects 308 

and interactions and feedback effects between variables.  309 

 310 

  311 

https://doi.org/10.5194/bg-2022-191
Preprint. Discussion started: 13 September 2022
c© Author(s) 2022. CC BY 4.0 License.



17 

 

Financial support 312 

This research was supported by the National Natural Science Foundation of China (Grant No. U1803243), the 313 

Key projects of the Natural Science Foundation of Xinjiang Autonomous Region (Grant No. 2022D01D01), the 314 

Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20060302), and 315 

High-End Foreign Experts Project. 316 

Author Contributions 317 

HS and GL initiated this research and were responsible for the integrity of the work as a whole. HS performed 318 

formal analysis and calculations and drafted the manuscript. HS were responsible for the data collection and 319 

analysis. GL, PDM, TVdV, OH, and AK contributed resources and financial support.  320 

Competing interests  321 

The authors declare that they have no conflict of interest.  322 

Code availability 323 

The codes that were used for all analyses are available from the first author (shihaiyang16@mails.ucas.ac.cn) 324 

upon request. 325 

Data availability 326 

The data used in this study can be accessed by contacting the first author (shihaiyang16@mails.ucas.ac.cn) upon 327 

request.  328 

 329 

 330 

  331 

https://doi.org/10.5194/bg-2022-191
Preprint. Discussion started: 13 September 2022
c© Author(s) 2022. CC BY 4.0 License.



18 

 

References 332 

Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G., and Tuttle, S. E.: Plant functional 333 

traits and climate influence drought intensification and land–atmosphere feedbacks, Proceedings of 334 

the National Academy of Sciences, 116, 14071–14076, 2019. 335 

Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–336 

the state and future of the eddy covariance method, Global change biology, 20, 3600–3609, 2014. 337 

Barnes, M. L., Farella, M. M., Scott, R. L., Moore, D. J. P., Ponce-Campos, G. E., Biederman, J. A., 338 

MacBean, N., Litvak, M. E., and Breshears, D. D.: Improved dryland carbon flux predictions with 339 

explicit consideration of water-carbon coupling, Commun Earth Environ, 2, 1–9, 340 

https://doi.org/10.1038/s43247-021-00308-2, 2021. 341 

Chan, T., Ross, H., Hoverman, S., and Powell, B.: Participatory development of a Bayesian network 342 

model for catchment-based water resource management, Water Resour. Res., 46, 343 

https://doi.org/10.1029/2009WR008848, 2010. 344 

Diaz, S. and Cabido, M.: Plant functional types and ecosystem function in relation to global change, 345 

Journal of Vegetation Science, 8, 463–474, https://doi.org/10.2307/3237198, 1997. 346 

Flechard, C. R., Ibrom, A., Skiba, U. M., de Vries, W., van Oijen, M., Cameron, D. R., Dise, N. B., 347 

Korhonen, J. F. J., Buchmann, N., Legout, A., Simpson, D., Sanz, M. J., Aubinet, M., Loustau, D., 348 

Montagnani, L., Neirynck, J., Janssens, I. A., Pihlatie, M., Kiese, R., Siemens, J., Francez, A.-J., 349 

Augustin, J., Varlagin, A., Olejnik, J., Juszczak, R., Aurela, M., Berveiller, D., Chojnicki, B. H., 350 

Dämmgen, U., Delpierre, N., Djuricic, V., Drewer, J., Dufrêne, E., Eugster, W., Fauvel, Y., Fowler, 351 

D., Frumau, A., Granier, A., Gross, P., Hamon, Y., Helfter, C., Hensen, A., Horváth, L., Kitzler, B., 352 

Kruijt, B., Kutsch, W. L., Lobo-do-Vale, R., Lohila, A., Longdoz, B., Marek, M. V., Matteucci, G., 353 

Mitosinkova, M., Moreaux, V., Neftel, A., Ourcival, J.-M., Pilegaard, K., Pita, G., Sanz, F., 354 

Schjoerring, J. K., Sebastià, M.-T., Tang, Y. S., Uggerud, H., Urbaniak, M., van Dijk, N., Vesala, T., 355 

Vidic, S., Vincke, C., Weidinger, T., Zechmeister-Boltenstern, S., Butterbach-Bahl, K., Nemitz, E., 356 

and Sutton, M. A.: Carbon–nitrogen interactions in European forests and semi-natural vegetation – 357 

Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and 358 

modelling, Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, 2020. 359 

Fleischer, K., Wårlind, D., Van der Molen, M. K., Rebel, K. T., Arneth, A., Erisman, J. W., Wassen, 360 

M. J., Smith, B., Gough, C. M., and Margolis, H. A.: Low historical nitrogen deposition effect on 361 

carbon sequestration in the boreal zone, Journal of Geophysical Research: Biogeosciences, 120, 362 

2542–2561, 2015. 363 

Friedman, N., Geiger, D., and Goldszmidt, M.: Bayesian network classifiers, Machine learning, 29, 364 

131–163, 1997. 365 

Gregorutti, B., Michel, B., and Saint-Pierre, P.: Correlation and variable importance in random 366 

forests, Statistics and Computing, 27, 659–678, 2017. 367 

Grimm, N. B., Chapin III, F. S., Bierwagen, B., Gonzalez, P., Groffman, P. M., Luo, Y., Melton, F., 368 

Nadelhoffer, K., Pairis, A., and Raymond, P. A.: The impacts of climate change on ecosystem 369 

structure and function, Frontiers in Ecology and the Environment, 11, 474–482, 2013. 370 

Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., Seneviratne, S. I., and 371 

Frankenberg, C.: Soil moisture–atmosphere feedback dominates land carbon uptake variability, 372 

Nature, 592, 65–69, https://doi.org/10.1038/s41586-021-03325-5, 2021. 373 

https://doi.org/10.5194/bg-2022-191
Preprint. Discussion started: 13 September 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

 

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., 374 

Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., 375 

Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., 376 

Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., 377 

Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the global land evapotranspiration trend due to 378 

limited moisture supply, Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010. 379 

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., 380 

Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., S Goll, D., Haverd, V., Köhler, 381 

P., Ichii, K., K Jain, A., Liu, J., Lombardozzi, D., E M S Nabel, J., A Nelson, J., O’Sullivan, M., 382 

Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, 383 

A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: 384 

Synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, 385 

https://doi.org/10.5194/bg-17-1343-2020, 2020. 386 

Keshtkar, A. R., Salajegheh, A., Sadoddin, A., and Allan, M. G.: Application of Bayesian networks 387 

for sustainability assessment in catchment modeling and management (Case study: The Hablehrood 388 

river catchment), Ecological Modelling, 268, 48–54, 2013. 389 

Lansu, E. M., van Heerwaarden, C., Stegehuis, A. I., and Teuling, A. J.: Atmospheric aridity and 390 

apparent soil moisture drought in European forest during heat waves, Geophysical Research Letters, 391 

47, e2020GL087091, 2020. 392 

Lin, C., Gentine, P., Frankenberg, C., Zhou, S., Kennedy, D., and Li, X.: Evaluation and mechanism 393 

exploration of the diurnal hysteresis of ecosystem fluxes, Agricultural and Forest Meteorology, 278, 394 

107642, https://doi.org/10.1016/j.agrformet.2019.107642, 2019. 395 

Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S. I.: Soil moisture dominates 396 

dryness stress on ecosystem production globally, Nature communications, 11, 1–9, 2020. 397 

Madani, N., Kimball, J. S., Ballantyne, A. P., Affleck, D. L. R., van Bodegom, P. M., Reich, P. B., 398 

Kattge, J., Sala, A., Nazeri, M., Jones, M. O., Zhao, M., and Running, S. W.: Future global 399 

productivity will be affected by plant trait response to climate, Sci Rep, 8, 2870, 400 

https://doi.org/10.1038/s41598-018-21172-9, 2018. 401 

Manning, P., Van Der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G., Whittingham, M. J., 402 

and Fischer, M.: Redefining ecosystem multifunctionality, Nature ecology & evolution, 2, 427–436, 403 

2018. 404 

Marcot, B. G. and Penman, T. D.: Advances in Bayesian network modelling: Integration of modelling 405 

technologies, Environmental modelling & software, 111, 386–393, 2019. 406 

Migliavacca, M., Reichstein, M., Richardson, A. D., Colombo, R., Sutton, M. A., Lasslop, G., 407 

Tomelleri, E., Wohlfahrt, G., Carvalhais, N., and Cescatti, A.: Semiempirical modeling of abiotic and 408 

biotic factors controlling ecosystem respiration across eddy covariance sites, Global Change Biology, 409 

17, 390–409, 2011. 410 

Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J., Baldocchi, D. D., Perez-411 

Priego, O., Christiansen, R., Peters, J., Anderson, K., Bahn, M., Black, T. A., Blanken, P. D., Bonal, 412 

D., Buchmann, N., Caldararu, S., Carrara, A., Carvalhais, N., Cescatti, A., Chen, J., Cleverly, J., 413 

Cremonese, E., Desai, A. R., El-Madany, T. S., Farella, M. M., Fernández-Martínez, M., Filippa, G., 414 

Forkel, M., Galvagno, M., Gomarasca, U., Gough, C. M., Göckede, M., Ibrom, A., Ikawa, H., 415 

Janssens, I. A., Jung, M., Kattge, J., Keenan, T. F., Knohl, A., Kobayashi, H., Kraemer, G., Law, B. 416 

E., Liddell, M. J., Ma, X., Mammarella, I., Martini, D., Macfarlane, C., Matteucci, G., Montagnani, 417 

L., Pabon-Moreno, D. E., Panigada, C., Papale, D., Pendall, E., Penuelas, J., Phillips, R. P., Reich, P. 418 

https://doi.org/10.5194/bg-2022-191
Preprint. Discussion started: 13 September 2022
c© Author(s) 2022. CC BY 4.0 License.



20 

 

B., Rossini, M., Rotenberg, E., Scott, R. L., Stahl, C., Weber, U., Wohlfahrt, G., Wolf, S., Wright, I. 419 

J., Yakir, D., Zaehle, S., and Reichstein, M.: The three major axes of terrestrial ecosystem function, 420 

Nature, 598, 468–472, https://doi.org/10.1038/s41586-021-03939-9, 2021. 421 

Milns, I., Beale, C. M., and Smith, V. A.: Revealing ecological networks using Bayesian network 422 

inference algorithms, Ecology, 91, 1892–1899, https://doi.org/10.1890/09-0731.1, 2010. 423 

Moon, T. K.: The expectation-maximization algorithm, IEEE Signal processing magazine, 13, 47–60, 424 

1996. 425 

Musavi, T., Mahecha, M. D., Migliavacca, M., Reichstein, M., van de Weg, M. J., van Bodegom, P. 426 

M., Bahn, M., Wirth, C., Reich, P. B., and Schrodt, F.: The imprint of plants on ecosystem 427 

functioning: A data-driven approach, International Journal of Applied Earth Observation and 428 

Geoinformation, 43, 119–131, 2015. 429 

Musavi, T., Migliavacca, M., van de Weg, M. J., Kattge, J., Wohlfahrt, G., van Bodegom, P. M., 430 

Reichstein, M., Bahn, M., Carrara, A., and Domingues, T. F.: Potential and limitations of inferring 431 

ecosystem photosynthetic capacity from leaf functional traits, Ecology and evolution, 6, 7352–7366, 432 

2016. 433 

Myers-Smith, I. H., Thomas, H. J. D., and Bjorkman, A. D.: Plant traits inform predictions of tundra 434 

responses to global change, New Phytologist, 221, 1742–1748, https://doi.org/10.1111/nph.15592, 435 

2019. 436 

Nelson, J. A., Carvalhais, N., Migliavacca, M., Reichstein, M., and Jung, M.: Water-stress-induced 437 

breakdown of carbon–water relations: indicators from diurnal FLUXNET patterns, Biogeosciences, 438 

15, 2433–2447, 2018. 439 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, 440 

J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., 441 

Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., 442 

Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., 443 

Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., 444 

Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., 445 

Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., 446 

Cellier, P., Chen, S., Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., 447 

Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D’Andrea, E., da Rocha, H., Dai, X., Davis, K. 448 

J., Cinti, B. D., Grandcourt, A. de, Ligne, A. D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di 449 

Bella, C. M., Tommasi, P. di, Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., 450 

Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., 451 

Ewers, B., Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., 452 

Frank, J., Galvagno, M., et al.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for 453 

eddy covariance data, Sci Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020. 454 

Pearl, J.: Bayesian netwcrks: A model cf self-activated memory for evidential reasoning, in: 455 

Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, 456 

CA, USA, 15–17, 1985. 457 

Peaucelle, M., Bacour, C., Ciais, P., Vuichard, N., Kuppel, S., Peñuelas, J., Belelli Marchesini, L., 458 

Blanken, P. D., Buchmann, N., and Chen, J.: Covariations between plant functional traits emerge from 459 

constraining parameterization of a terrestrial biosphere model, Global ecology and biogeography, 28, 460 

1351–1365, 2019. 461 

https://doi.org/10.5194/bg-2022-191
Preprint. Discussion started: 13 September 2022
c© Author(s) 2022. CC BY 4.0 License.



21 

 

Pollino, C. A., Woodberry, O., Nicholson, A., Korb, K., and Hart, B. T.: Parameterisation and 462 

evaluation of a Bayesian network for use in an ecological risk assessment, Environmental Modelling 463 

& Software, 22, 1140–1152, https://doi.org/10.1016/j.envsoft.2006.03.006, 2007. 464 

Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.: Linking plant and 465 

ecosystem functional biogeography, Proceedings of the National Academy of Sciences, 111, 13697–466 

13702, https://doi.org/10.1073/pnas.1216065111, 2014. 467 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: 468 

Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, 469 

https://doi.org/10.1038/s41586-019-0912-1, 2019. 470 

Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use 471 

interpretable models instead, Nat Mach Intell, 1, 206–215, https://doi.org/10.1038/s42256-019-0048-472 

x, 2019. 473 

Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke, J., Joshi, J., and 474 

Thonicke, K.: Resilience of Amazon forests emerges from plant trait diversity, Nature Clim Change, 475 

6, 1032–1036, https://doi.org/10.1038/nclimate3109, 2016. 476 

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D. M. A., Avitabile, V., Araza, A., de Bruin, S., 477 

Herold, M., Quegan, S., Rodríguez-Veiga, P., Balzter, H., Carreiras, J., Schepaschenko, D., Korets, 478 

M., Shimada, M., Itoh, T., Moreno Martínez, Á., Cavlovic, J., Cazzolla Gatti, R., da Conceição Bispo, 479 

P., Dewnath, N., Labrière, N., Liang, J., Lindsell, J., Mitchard, E. T. A., Morel, A., Pacheco 480 

Pascagaza, A. M., Ryan, C. M., Slik, F., Vaglio Laurin, G., Verbeeck, H., Wijaya, A., and Willcock, 481 

S.: The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite 482 

observations, Earth System Science Data, 13, 3927–3950, https://doi.org/10.5194/essd-13-3927-2021, 483 

2021. 484 

Shi, H., Luo, G., Zheng, H., Chen, C., Bai, J., Liu, T., Ochege, F. U., and De Maeyer, P.: Coupling the 485 

water-energy-food-ecology nexus into a Bayesian network for water resources analysis and 486 

management in the Syr Darya River basin, Journal of Hydrology, 581, 124387, 487 

https://doi.org/10.1016/j.jhydrol.2019.124387, 2020a. 488 

Shi, H., Luo, G., Zheng, H., Chen, C., Hellwich, O., Bai, J., Liu, T., Liu, S., Xue, J., Cai, P., He, H., 489 

Ochege, F. U., Van de Voorde, T., and de Maeyer, P.: A novel causal structure-based framework for 490 

comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya 491 

and Syr Darya river basins, Hydrology and Earth System Sciences, 25, 901–925, 492 

https://doi.org/10.5194/hess-25-901-2021, 2021a. 493 

Shi, H., Pan, Q., Luo, G., Hellwich, O., Chen, C., Voorde, T. V. de, Kurban, A., De Maeyer, P., and 494 

Wu, S.: Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope 495 

of the Tienshan Mountains with Satellite Remote Sensing Data, Remote Sensing, 13, 4709, 496 

https://doi.org/10.3390/rs13224709, 2021b. 497 

Shi, H., Luo, G., Hellwich, O., Xie, M., Zhang, C., Zhang, Y., Wang, Y., Yuan, X., Ma, X., Zhang, 498 

W., Kurban, A., De Maeyer, P., and Van de Voorde, T.: Evaluation of water flux predictive models 499 

developed using eddy covariance observations and machine learning: a meta-analysis, Hydrology and 500 

Earth System Sciences Discussions, 1–21, https://doi.org/10.5194/hess-2022-90, 2022a. 501 

Shi, H., Luo, G., Hellwich, O., Xie, M., Zhang, C., Zhang, Y., Wang, Y., Yuan, X., Ma, X., Zhang, 502 

W., Kurban, A., De Maeyer, P., and Van de Voorde, T.: Variability and uncertainty in flux-site-scale 503 

net ecosystem exchange simulations based on machine learning and remote sensing: a systematic 504 

evaluation, Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, 2022b. 505 

https://doi.org/10.5194/bg-2022-191
Preprint. Discussion started: 13 September 2022
c© Author(s) 2022. CC BY 4.0 License.



22 

 

Shi, Y., Jin, N., Ma, X., Wu, B., He, Q., Yue, C., and Yu, Q.: Attribution of climate and human 506 

activities to vegetation change in China using machine learning techniques, Agricultural and Forest 507 

Meteorology, 294, 108146, https://doi.org/10.1016/j.agrformet.2020.108146, 2020b. 508 

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., 509 

Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, 510 

D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression 511 

algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016. 512 

Trifonova, N., Kenny, A., Maxwell, D., Duplisea, D., Fernandes, J., and Tucker, A.: Spatio-temporal 513 

Bayesian network models with latent variables for revealing trophic dynamics and functional 514 

networks in fisheries ecology, Ecological Informatics, 30, 142–158, 515 

https://doi.org/10.1016/j.ecoinf.2015.10.003, 2015. 516 

Wang, Z., Zhu, D., Wang, X., Zhang, Y., and Peng, S.: Regressions underestimate the direct effect of 517 

soil moisture on land carbon sink variability, Global Change Biology, 518 

https://doi.org/10.1111/gcb.16422, 2022. 519 

Xu, S., McVicar, T. R., Li, L., Yu, Z., Jiang, P., Zhang, Y., Ban, Z., Xing, W., Dong, N., Zhang, H., 520 

and Zhang, M.: Globally assessing the hysteresis between sub-diurnal actual evaporation and vapor 521 

pressure deficit at the ecosystem scale: Patterns and mechanisms, Agricultural and Forest 522 

Meteorology, 323, 109085, https://doi.org/10.1016/j.agrformet.2022.109085, 2022. 523 

Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S., Lorenz, R., 524 

Seneviratne, S. I., and Gentine, P.: Land–atmosphere feedbacks exacerbate concurrent soil drought 525 

and atmospheric aridity, Proceedings of the National Academy of Sciences, 116, 18848–18853, 2019. 526 

 527 

https://doi.org/10.5194/bg-2022-191
Preprint. Discussion started: 13 September 2022
c© Author(s) 2022. CC BY 4.0 License.


