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Abstract. An adequate supply of bioavailable nitrogen (N) is critical to soil microbial communities and plants. Over the last 

decades, research efforts have rarely considered the importance of reactive iron (Fe) minerals in the processes that produce or 

consume bioavailable N in soils, compared to other factors such as soil texture, pH, and organic matter (OM). However, Fe is 

involved in both enzymatic and non-enzymatic reactions that influence the N cycle. More broadly, reactive Fe minerals restrict 

soil organic matter (SOM) cycling through sorption processes, but also promote SOM decomposition and denitrification in 15 

anoxic conditions. By synthesizing available research, we show that Fe plays diverse roles in N bioavailability. Fe affects N 

bioavailability directly by acting as a sorbent, catalyst, and electron transfer agent, or indirectly by promoting certain soil 

features, such as aggregate formation and stability, which affect N turnover processes. These roles can lead to different 

outcomes on N bioavailability, depending on environmental conditions such as soil redox shifts during wet-dry cycles. We 

provide examples of Fe-N interactions and discuss the possible underlying mechanisms, which can be abiotic or microbially 20 

meditated. We also discuss how Fe participates in three complex phenomena that influence N bioavailability: priming, the 

Birch effect, and freeze-thaw cycle. Furthermore, we highlight how Fe-N bioavailability interactions are influenced by global 

change and identify methodological constraints that hinder the development of mechanistic understanding of Fe in controlling 

N bioavailability and highlight the areas of needed research. 
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1 Introduction  

Nitrogen (N) bioavailability is a critical limiting factor for terrestrial ecosystem productivity (Vitousek and Howarth, 1991). 

The largest pool of N in these ecosystems is found in soils which contain 133–140 Pg of total N globally within the first top 

100 cm of soil (Batjes, 1996). A clear description of the factors controlling N bioavailability in soils is needed to design 35 

agricultural practices that meet crop demand and mitigate N loss to the environment. A large literature exists on the effects of 

soil texture, organic matter (OM), mineral N inputs, pH, moisture, and microbial communities on N mineralization. However, 

emerging theories on soil organic matter (SOM) dynamics are increasingly emphasizing the role of soil mineralogy (Cotrufo 

et al., 2013; Lehmann and Kleber, 2015; Blankinship et al., 2018; Daly et al., 2021; Whalen et al., 2022). While these reviews 

have largely focused on carbon (C) cycling, the role of minerals is rarely considered in N cycling (Jilling et al., 2018). Since 40 

C and N cycles are interconnected in soils (Gärdenäs et al., 2011; Feng et al., 2019), they should be regulated by the same 

factors, including mineralogy type (Wade et al., 2018). Increasing evidence shows that Fe specifically represents a major 

control over N biological transformations, including mineralization (Wade et al., 2018), nitrification (Huang, X. et al., 2016; 

Han et al., 2018) and denitrification (Wang et al., 2016; Zhu et al., 2014), as well as their abiotic analogous reactions, such as 

chemo-denitrification (Burger and Venterea, 2011) and Fe-mediated hydroxylamine (NH2OH) oxidation to nitrous oxide 45 

(N2O) (Bremner et al., 1980).  These reactions and others Fig.1, are likely to operate ubiquitously in soils, due to the close 

proximity between Fe minerals and SOM since most of the latter is contained in association with the former (Wagai and Mayer, 

2007; Lalonde et al., 2012).  

The characteristic properties of individual Fe minerals and N compounds and how these properties are influenced by the soil 

environment likely drive the aforementioned reactions as well. First, Fe exists in a variety of polymorphs (Navrotsky et al., 50 

2008) and is a redox-sensitive element that cycles between Fe(II) and Fe(III) states as controlled by soil Eh and pH. While 

Fe(III) promotes N stabilization within mineral associations, Fe(III) mobilization when it is reduced to Fe(II) can release N 

into solution. Fe reactivity is also driven by the amount and sign of surface charge, surface topography, particle size, 

crystallinity (Petridis et al., 2014; Li et al., 2015a) and the presence and the type of organic matter (OM) coverage (Kaiser and 

Zech, 2000a; Kleber et al., 2007; Boland et al., 2014; Henneberry et al., 2016; Daugherty et al., 2017; Gao et al., 2018; 55 

Poggenburg et al., 2018). Second, soil N exists predominantly in organic forms (ON); mostly as protein and peptides, and to a 

lesser extent as amino-sugars and nucleic acids (Schulten and Schnitzer, 1997; Kögel-Knabner, 2006; Knicker, 2011). Proteins 

are intrinsically reactive towards soil minerals, due to a number of properties, including hydrophobicity, surface charge 

distribution, surface area, number and type of functional groups, conformation, and size (Lützow et al., 2006). N from these 

compounds is generally not directly bioavailable due to molecular size constraints on microbial cell uptake (Schimel and 60 

Bennett, 2004). Depolymerization reactions, carried out by the activity of extracellular enzymes, such as peptidases, transform 

these polymers into soluble, low molecular weight (MW) organic monomers (e.g., short oligopeptides, amino acids (AAs)). 

Recent research shows that the size of AAs available for mineralization is controlled by peptidase activity, but more so by 
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protein availability, both of which are affected by the interactions with Fe minerals. Therefore, Fe may drive gross AA 

production in soils (Noll et al., 2019). 65 
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Figure 1: Schematic representation depicting the different stages of the N cycle in which iron plays a role. Adapted 

from (Zhu-Barker et al. 2016). 

 

Therefore, the impact of Fe on N cycling can be significant and should be considered. This review aims to understand the role 80 

of Fe in controlling N bioavailability. To do so, we categorize the processes by which Fe affects OM dynamics into four 

different categories/roles (Fig.2). In the sorbent role, OM interacts with Fe(III) through adsorption, coprecipitation or surface 

coatings (Eusterhues et al., 2005; Wagai and Mayer, 2007; Lalonde et al., 2012). These associations increase OM storage by 

decreasing its availability to extracellular enzymes and decomposition processes (Lalonde et al., 2012). In fact, the content of 

Fe minerals is a major predictor of soil sorptive capacity (Mayes et al., 2012). In the structural role, Fe minerals participate 85 

in the formation of soil aggregates (Zhang, X. et al., 2016) and increase soil structural stability (Barral et al., 1998; Xue et al., 

2019). Aggregates can increase OM stability and retention in soils by protecting it from the decomposer community and their 

enzymes (Van Veen and Kuikman, 1990; Kleber et al., 2021). Moreover, Fe(III) can facilitate the formation of large polymers 

of OM that promote its stability. Thirdly, Fe’s electron transfer role depends on its oxidation state. Fe(III) serves as a sink of 

electrons, while  Fe(II) functions as a source of electrons. During anoxic periods, dissimilatory Fe(III) reduction can be coupled 90 

with the oxidation of OM, which accounts for significant amount of C loss under anoxic conditions (Roden and Wetzel, 1996; 

Dubinsky et al., 2010). This process can release previously adsorbed or coprecipitated C, thereby increasing its susceptibility 
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to degradation. Finally, Fe has a catalysis role, whereby Fe acts as a catalyst for the production of reactive oxygen species 

(ROS), which are potent oxidants of OM. This happens through Fenton reactions that are prevalent in various soils such as 

cultivated soils (Hall and Silver, 2013; Chen et al., 2020), arctic soils (Trusiak et al., 2018) and desert soils (Hall et al., 2012; 95 

Georgiou et al., 2015). These reactions are an overlooked but potentially important pathway for OM transformation in soils 

and sediments and N bioavailability (Lipson et al., 2010; Wang et al., 2017; Trusiak et al., 2018; Merino et al., 2020; Kleber 

et al., 2021).  

While these roles of Fe in controlling C cycling have been studied extensively, their effects on N bioavailability are not well 

explored. This review seeks to underpin these suggested relationships and provide mechanistic descriptions of how Fe controls 100 

N bioavailability in soils. Moreover, we detail how Fe participates in three complex phenomena that influence N 

bioavailability: priming, the Birch effect, and freeze-thaw cycle. And finally, we explore how Fe-N bioavailability interactions 

are influenced by global change. This information is needed to construct reliable models with improved predictive power of 

N cycling in terrestrial ecosystems (Wade et al., 2018), and will offer new possibilities for land management.  
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Figure 2: Roles of Fe in N bioavailability.  

2 Roles of Fe in controlling N bioavailability 

2.1 Sorbent role  
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This section aims to elucidate how Fe as a sorbent interacts with both inorganic N (ammonium: NH4
+ and nitrate: NO3

-) and 125 

ON and how these interactions modulate N bioavailability. The opposite process of sorption, known as desorption, can affect 

N bioavailability since sorbed N can be released back into soil solution. By comprehending the dynamics of both sorption onto 

and desorption of N from Fe minerals, we can gain more insights into mechanisms affecting its bioavailability in soils.  

2.1.1 ON bioavailability 

Soil microbes rely heavily on their ability to access ON and the effectiveness of their extracellular enzymes (EE) in breaking 130 

it down into assimilable forms. In fact, increased N-acquiring enzyme activities correlate positively with N mineralization. Fe 

minerals can modulate N bioavailability by controlling both ON accessibility and EE activity through sorption. Nevertheless, 

the outcomes on N bioavailability are variable and depend on several factors, including soil conditions, the interplay between 

ON, EE, and Fe mineral surfaces, and the potential for desorption to occur. Here, we discuss these intricate interactions which 

can result in distinct patterns of N bioavailability across soils.  135 

2.1.1.1 Does extracellular enzymes sorption to Fe oxides affect their participation in N mineralization?  

Soil microbes produce various types of EE, including substrate-specific enzymes (e.g., proteases and aminopeptidases) and 

non-specific oxidative enzymes (e.g., laccase and peroxidase) to acquire N (Caldwell, 2005; Sinsabaugh et al., 2009; Hassan 

et al., 2013). While the latter enzymes are typically associated with C cycle, their importance for N mineralization has also 

been demonstrated (Zhu et al., 2014; Kieloaho et al., 2016). Many of these enzymes become adsorbed to Fe minerals when 140 

released in soil. The effect of such immobilization on enzyme activities and consequent N bioavailability remains uncertain 

due to conflicting reports in the literature. Numerous studies have documented a decrease in enzyme activity combined with 

increased persistence in soil and resistance to proteolysis (Sarkar and Burns, 1984; Gianfreda et al., 1995; Bayan and Eivazi, 

1999; Rani et al., 2000; Tietjen and Wetzel, 2003; Kelleher et al., 2004; Yan et al., 2010; Schimel et al., 2017; Li et al., 2020), 

while others have reported opposing effects (Quiquampoix and Ratcliffe, 1992; Quiquampoix et al., 1995; Servagent-Noinville 145 

et al., 2000). For instance, Fe adsorption reduced the activity of urease (Gianfreda et al., 1995; Bayan and Eivazi, 1999; Li et 

al., 2020), but increased the activity of N acetyl-glucosaminidase (NAG) (Allison, 2006; Olagoke et al., 2020). These 

contradicting effects can have multiple explanations. First, enzyme active sites can become occluded upon adsorption, which 

limits the diffusion of ON towards the binding sites and lower ON decomposition. Site occlusion can be caused by 

conformational changes in the enzyme structure (Datta et al., 2017), Fe-induced aggregation (Olagoke et al., 2020) or 150 

unfavourable attachment orientation on mineral surfaces (Baron et al., 1999; Yang et al., 2019). Second, Fe oxides can inhibit 

the activity of EE by constraining ON availability. Along a 120-kyr-old chronosequence, Turner et al., (2014) found that Fe 

oxides inhibited the activities of urease and proteases more strongly than aminopeptidases, possibly due to the preferential 

adsorption of urea and proteins over peptides (Turner et al., 2014). Third, enzyme activity may be influenced by soil mineral 

content, as observed by (Olagoke et al., 2020). In mineral-poor soils, enzymes may have higher and more persistent activity 155 

due to limited adsorption sites, potentially leading to improved microbial C and N use efficiencies by allowing microbes to 



6 

 

invest in biomass production instead of enzyme production. Finally, a new mechanism was proposed by Chacon et al., (2019) 

where Fe minerals, specifically goethite, can induce abiotic protein fragmentation with subsequent loss of activity (Chacon et 

al., 2019), but further investigation is needed to determine its occurrence in soil and its implications for enzyme activity and 

N bioavailability. Beyond sorption, reduced metals, which are prevalent in waterlogged soil, have been found to exert an 160 

inhibitory or stimulating effects on enzyme activity. Specifically, Fe(II) stimulated the activity of oxidative enzymes (Van 

Bodegom et al., 2005; Sinsabaugh, 2010), but strongly inhibited that of urease (Gotoh and Patrick Jr, 1974; Tabatabai, 1977; 

Pulford and Tabatabai, 1988; Gu et al., 2019). Amidase activity, on the other hand, appeared to be unaffected by waterlogging 

(Pulford and Tabatabai, 1988). In the light of the current state of knowledge, there is a need for more research to comprehend 

how the intricate relationships between Fe minerals and enzymes regulate N bioavailability in soils. 165 

2.1.1.2 Does the sorption of ON to Fe oxides affect their bioavailability? 

Many studies have demonstrated that poorly crystalline Fe minerals, such as ferrihydrite, control the sorption of ON in soils 

(Kaiser and Zech, 2000b; Dümig et al., 2012; Keiluweit et al., 2012; Dippold et al., 2014). Indeed, Fe minerals interact with a 

wide range of N-containing moieties via adsorption or coprecipitation processes; the latter process incorporates N into organo-

mineral associations (MAOM), which are essential for OM stabilization (Leinweber and Schulten, 2000; Keiluweit et al., 2012; 170 

Swenson et al., 2015; Heckman et al., 2018; Zhao et al., 2020). During these processes, Fe can form strong chemical bonds 

with N-containing moieties; for instance, goethite forms stronger bond with the SOM functional group  ammonia (NH3
+) than 

with carboxylate, phosphate, or methyl groups (Newcomb et al., 2017). The bond strength between N and mineral surfaces 

varies considerably across different environments due to differences in binding mechanisms, mineral and N properties, soil 

properties such as pH and ion strength, and the presence of antecedent SOM on mineral surfaces (Lützow et al., 2006). 175 

However, protein may adsorb irreversibly to mineral surfaces over a wide range of solution pH and resist desorption (Hlady 

and Buijs, 1996; Yu et al., 2013); desorption is perceived to be a necessary step for EE to proceed with N mineralization. 

Similarly, nucleic acid molecules persist for a long time on clay minerals (Yu et al., 2013) and are shielded from degradation.  

Advances in spectroscopic techniques have generated new conceptual models of organo-mineral associations, such as “the 

zonal structure model of organo-mineral associations”, which postulates that organic compounds self-organize on mineral 180 

particle surfaces (Kleber et al., 2007). In this model, amphiphilic SOM compounds with N-bearing and oxidized functional 

groups directly interact with mineral surfaces to form “the contact zone”, whereas hydrophobic groups face outwards creating 

a region of high hydrophobicity, “the hydrophobic zone”. Additional organic molecules attach to this zone, forming an outer 

layer termed “the kinetic zone”. Multiple recent observations support this model, including (1) the preferential enrichment of 

N-containing moieties on Fe mineral surfaces (Kopittke et al., 2018; Possinger et al., 2020), (2) the preferential adsorption of 185 

N compounds over other organic compound classes on Fe mineral surfaces (Gao et al., 2017) and (3) the partial sorption of 

some organic compounds, including AAs, to Fe minerals (Amelung et al., 2002; Dippold et al., 2014). This model has 

implications for N bioavailability, because, in contrast to the contact zone, the weakly sorbed N in the kinetic zone likely 

exchanges with soil solution and is more available. Recent research on the chemical composition of C and N at the organo-
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organic and organo-mineral interfaces of the model found that alkyl C and less N occurred at the former, whereas oxidized C 190 

and more N occurred at the latter (Possinger et al., 2020). The authors of this study hypothesized that the processes stabilizing 

C and N at these interfaces are different, considering that the association between SOM rich in O/N-alkyl C and Fe oxides 

explained the stabilization of O/N-alkyl C in soils (Schöning et al., 2005). In addition to protecting a fraction of bioavailable 

N, Vogel et al., (2014, 2015) found that sorption can retard the movement of N in soils, thereby increasing N retention by 

decreasing its accessibility to degradation mechanisms. More insight is needed to advance the understanding of ON 195 

bioavailability from organo-mineral associations. 

2.1.1.3 Desorption of ON from Fe minerals  

The desorption of ON from Fe-organic associations occurs due to several destabilization mechanisms, including surface 

displacement by competitive sorption, oxidative and reductive dissolution of Fe minerals (Kleber et al., 2015) and local 

disequilibrium in soil chemistry. Once released, ON may become accessible to microbial degradation or diffuse into microbial 200 

cells. The following is a discussion of the different destabilization mechanisms of Fe-organic associations in soils and factors 

influencing them: 

(a) ON desorption by oxidation and reductive dissolution of Fe minerals  

The oxidation and the reduction of Fe minerals, in response to variations in soil pH and redox conditions, can significantly 

compromise the stability of Fe-organo associations and release Fe and OM into soil solution as a consequence. In fact, Fe 205 

reduction can decrease mineral sorption capacity and releases Fe ions, which can lower soil pH, and promote the solubilization 

of Fe-mineral associations. However, the extent of OM mobilized remains unpredictable due to knowledge gaps related to 

mineral resistance mechanisms to reduction and their controlling factors in soils. For instance, short-range order (SRO) Fe 

oxides can resist both chemical and microbial reduction, due to coprecipitation of Fe with SRO aluminosilicates or physical 

protection within microaggregates (Henneberry et al., 2012; Shimizu et al., 2013; Eusterhues et al., 2014; Filimonova et al., 210 

2016; Suda and Makino, 2016; Coward et al., 2018; Tamrat et al., 2019). Conversely, Fe oxidation can also solubilize Fe-

organo associations by decreasing pH or generating hydroxyl radicals through Fenton chemistry, which oxidize OM 

abiotically. In addition to these effects, redox alterations to mineral properties can also affect OM cycling. For instance, the 

transformation of amorphous Fe minerals to more crystalline forms can promote long-term OM stabilization and decrease its 

turnover rates (Hall et al., 2018), since crystalline forms are more resistant to reduction. Chen et al (2020) also found that 215 

crystalline forms were not associated with C release from Fe associations (Chen et al., 2020).  

(b) N desorption by local disequilibrium in soil chemistry  

OM in soils can be desorbed from mineral surfaces due to the establishment of local disequilibrium conditions. Such conditions 

result from depletion of DOM in the soil solution, due to microbial uptake, for example, promote the release of OM from 

MAOM until DOM concentrations in the soil solution are in equilibrium with sorbed OM. This process is likely affected by 220 

the strength of bonds between N and Fe minerals; in fact, interaction forces vary considerably: strong interactions are favored 

by polyvalent cation bridges and ligand exchange whereas weak interactions occur by hydrogen bonds or van der Waals 
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(Kleber et al., 2015). While the relationship between particular binding mechanism and N desorption from minerals has not 

yet been established in real soil conditions, multiple studies in model systems demonstrated that OM bound by ligand exchange 

was more resistant to desorption than other mechanisms (Wang and Lee, 1993; Gu et al., 1994; Gu et al., 1995; Mikutta et al., 225 

2007). Therefore, it will be likely less affected by the dynamic equilibria principle and less N will be made available (Kleber 

et al., 2015).  

(c) N desorption by surface displacement via competitive sorption 

ON associated with Fe can be displaced by the input of highly sorptive organic compounds. For instance, Scott and Rothstein 

(2014) observed that weakly bound, N-rich hydrophilic compounds were easily displaced by stronger binding compounds (e.g. 230 

hydrophobic compounds), leading to the downward migration of N to subsurface and mineral horizons. 

(d) Is desorption of N from organo-mineral associations a prerequisite to N mineralization?  

As mentioned earlier, desorption of protein from mineral surfaces is often perceived to be the primary pathway by which ON 

becomes accessible to microbial degradation (Schimel and Bennett, 2004). However, protein adsorption to Fe minerals is an 

irreversible process (Rabe et al., 2011), which restricts proteolytic activity. Recently, the direct proteolysis of protein at the 235 

mineral surface was investigated, as ferrihydrite- and goethite-adsorbed protein was found to be degraded without prior 

desorption (Tian et al., 2020). Substrate-enzyme complexes were formed directly at the surface of minerals. Together with the 

zonal structure of organo-mineral associations, this finding challenges the long-standing assumption that Fe minerals impair 

protein bioavailability through acting as a sorbent. The reader is referred to Keiluweit and Kuyper (2020) for a more expanded 

discussion of this mechanism (Keiluweit and Kuyper, 2020).  240 

2.1.2 Inorganic N bioavailability 

Fe plays a crucial role in regulating inorganic N bioavailability in soils, with Fe present in clay minerals being a prominent 

example of this interconnection. In fact, Fe present in clays accounts for 30-50% of total Fe in soils and sediments and can be 

located in both the octahedral and tetrahedral sheets of 1:1 and 2:1 clay mineral or exist as coating on their surfaces (Favre et 

al., 2006; Stucki, 2013). On one hand, the reduction of this Fe has been demonstrated to enable the abiotic fixation of NH4
+ ( 245 

Zhang and Scherer, 2000; Deroo et al., 2021). This occurs through increasing negative charge and cation exchange capacity 

of clays (Pentráková et al., 2013). In addition, the reductive dissolution of coated Fe on clay minerals promotes NH4
+ diffusion 

into or out of clay interlayers (Zhang and Scherer, 2000). After de-fixation, the fixed NH4
+ pool can serve as a source of 

bioavailable N (Deroo et al., 2021). On the other hand, the oxidation of clay’s Fe(II) can be involved in the processes that 

cause the loss of bioavailable N. For instance, Zhao et al., (2013) found that the oxidation of Fe(II) present in nontronite causes 250 

the loss of NO3
- as dinitrogen (N2) (Zhao et al., 2013). The potential importance of such processes in N bioavailability should 

be considered, especially in highly weathered soils with high clay content.  
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2.2 Structural role of Fe in controlling N bioavailability  

This section explores the structural role of Fe in regulating the availability of N. Two aspects are examined; the influence of 

structural Fe in aggregates on N bioavailability and the polymerization of ON induced by Fe.  255 

2.2.1 Fe, soil aggregates and N bioavailability 

Fe oxides play a critical role in the formation and the stability of microaggregate in soils, which ultimately affect N 

bioavailability. These oxides serve as nuclei for microaggregate formation and a binding agent forming bridges between them 

(Barral et al., 1998; Pronk et al., 2012; Peng et al., 2015; Wei et al., 2016). In fact, it was shown that the partial or complete 

removal of mineral-forming components, for example due to Fe reduction, can initiate aggregate turnover and destabilization 260 

(Michalet, 1993; Cornell and Schwertmann, 2003). The relative importance of Fe in aggregate stability depends on several 

properties, such as Fe mineral and SOM content, mineral identity and degree of crystallinity, and soil redox conditions, which 

are expected to affect N bioavailability. In particular, Fe promotes the formation and stability of aggregates in soils with low 

OM and high Fe content (Barral et al., 1998; Wu et al., 2016). Duiker et al., (2003) showed that poorly crystalline Fe minerals 

are more important than crystalline minerals for aggregate stabilization (Duiker et al., 2003).  265 

Many studies suggest that Fe mediated micro-aggregation may slow down or suppress N mineralization and stabilize OM. For 

example, Silva et al., (2015) reported that applying Fe-rich biosolids in a tropical soil chronosequence induced rapid formation 

of microaggregates and significantly increased SOC (Silva et al., 2015). Similarly, Bugeja and Castellano (2018) observed 

positive correlation between ammonium oxalate-extractable Fe (AmOx-F) and C and N in microaggregates, indicating that Fe 

and microaggregate stabilization are interconnected (Bugeja and Castellano, 2018). Mendes et al (1999) showed that readily 270 

mineralizable N levels correlate positively with increased aggregate size in soils  (Mendes et al., 1999). In addition, numerous 

studies reported the accumulation of N in microaggregates (Golchin et al., 1994; Rodionov et al., 2001). For instance, Wagai 

et al., (2020) observed joint accumulation of OM with low C:N ratio and pedogenic Fe and Al oxides in the meso-density 

fractions (1.8–2.4 g cm−3) of five soil orders collected from different climate zones. These observations are explained by the 

fact that microaggregate-N is relatively more persistent than macroaggregate-N because microaggregates’ turnover is relatively 275 

slow and not available to microbial degradation, which provides longer-term stabilization of OM (Cambardella and Elliott, 

1993; Six et al., 2002). We also hypothesize that there is another pathway by which Fe-promoted aggregation may decrease N 

mineralization, based on the information that aggregates of different sizes influence microbial community composition 

differently and therefore the activities of N mineralization enzymes (Muruganandam et al., 2009). Therefore, it will be useful 

to examine the distribution and the activities of these enzymes among soil aggregate size classes along a gradient of increasing 280 

Fe mineral content in soils.  
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Figure 3. Schematic representation of the effects of Fe-promoted aggregate formation and stability on N accessibility to microbial 295 
degradation. 

2.2.2 Does Fe-induced ON polymerization increase the recalcitrance of N? 

Little is known about Fe (mineral)-induced OM polymerization in soils. Some evidence exist that Fe oxides induce both C and 

N polymerization of SOM (Piccolo et al., 2011; Li, C. et al., 2012; Johnson et al., 2015; Zou et al., 2020) . In a long-term 

organic fertilization experiment, Yu et al., (2020) proposed that the Fe-catalyzed formation of reactive oxygen species (ROS) 300 

allows C monomers to recombine into large, recalcitrant C biopolymers through the formation of intramolecular bonds. A 

similar process was observed by Piccolo et al., (2011). Similarly, hydrohematite, maghemite, lepidocrocite and hematite can 

induce the oxidative polymerization of hydroquinone, with rates depending on the type of minerals (Huang, 1990). Synthetic 

ferrihydrite and goethite were demonstrated to induce peptide bond formation between aspartate chains (Matrajt and Blanot, 

2004), as well as the abiotic formation of AAs from simple organics such as pyruvate and glyoxylate (Barge et al., 2019). The 305 

environmental conditions in these experiments were similar to those occurring in natural systems such as in Fe-containing 

sediments (Barge et al., 2019). More studies of abiotic polymerization by minerals must be envisaged to understand its 

relevance to N bioavailability in soils.  

2.3 Catalytic role of Fe in controlling N bioavailability 

Emerging research has revealed that ROS derived from Fe-catalyzed Fenton reactions (Box 2) are implicated in N 310 

mineralization. These reactions may involve abiotic or coupled biotic-abiotic processes causing N to mineralize, as explained 

below. In  desert soils, the reaction of light with hematite generates ROS, which can oxidize AAs to nitrous oxide (N2O) 

(Georgiou et al., 2015) and N oxide gases (Hall et al., 2012). Compared to soil containing water, desert soils accumulate 
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photogenerated superoxides and peroxidases via complexation of O2
·− with surface transition metal oxides. When these soils 

are wetted, the accumulated ROS are subjected to dismutation and hydrolysis leading to the generation of HO• and subsequent 315 

OM oxidation. While this mechanism is strictly abiotic, soil microorganisms in diverse ecosystems were found to use Fe-

generated HO• to acquire organic C and N (Diaz et al., 2013; Shah et al., 2016; Zhang, J. et al., 2016; Op De Beeck et al., 

2018). For instance, a boreal forest fungus (Paxillus involutus) may use radical oxidation to stimulate N mineralization in 

various ways (Op De Beeck et al., 2018): (1) to liberate NH4
+ from amine groups of proteins, peptides, and amino acids 

according to mechanisms reviewed in Stadtman and Levine (2003), (2) to facilitate the accessibility of protein-N in SOM 320 

complexes to proteolytic degradation and (3) to enhance protein vulnerability to proteolysis and increase the activity of 

proteolytic enzymes (Zhang, J. et al., 2016).  

Despite their involvement in N liberation, ROS may promote the formation of stable and protective Fe-associated OM 

complexes. In a long-term fertilization experiment conducted by Yu et al., (2020), Fe mobilized by Fenton reactions formed 

new short-range order (SRO) Fe minerals, which promoted C and N storage. Moreover, ROS generated from catalytic reactions 325 

involving Fe can also cause enzyme oxidation and subsequent loss of activity (Huang et al., 2013).  

Box 1: Fe-catalyzed Fenton reactions 

Most Fe minerals, such as ferrihydrite, goethite, hematite, magnetite, and pyrite, can catalyze Fenton-like reactions (Kwan 

and Voelker, 2003; Garrido-Ramírez et al., 2010). Fe-catalyzed Fenton reactions are mainly driven by fluctuating redox 

conditions (Xu et al., 2013), oxygenation of FeII- bearing minerals (Tong et al., 2016) and photochemistry (Georgiou et al., 

2015). Despite having a short lifetime in soil (Apel and Hirt, 2004), ROS, such as HO• (Eo = 2.8 V), are non-selective and 

strong oxidants of OM (Gligorovski et al., 2015). 

Photoreduction of Fe(III)-ligand (L) complexes : Fe(III)-L + hv -> Fe(II) + L*   

Reactions of Fe meditated ROS generation:   

Fe(II) + H2O2 → Fe(III) + OH- + HO• 

Fe(II) + H+ + HO2
• →Fe(III) + H2O2 

Fe(II)+ O2 + H+→ Fe(III) + HO2
• 

2.4 Electron transfer role of Fe in N bioavailability 

Electron transfer to Fe(III) oxides, both biotically or abiotically, is a critical step in many processes favoring the gain or the 

loss of N from soils and sediments (Sahrawat, 2004; Ding et al., 2014). The ability of Fe(III) minerals to accept electrons, or 330 

their ‘reducibility’, varies greatly with crystallinity, particle size, solution pH, ambient Fe(II) concentration, the presence of 

adsorbates and aggregation level (Roden, 2004, 2006). Here, we explore relationships between mineral reducibility and 

anaerobic NH4
+ oxidation associated with Fe reduction (Feammox) and anaerobic OM oxidation to illustrate two examples of 

N processes that are involved in bioavailable N production and loss. Starting with Feammox, this process occurs mostly in 

acidic soils and has been estimated to metabolize 7.8−61 kg NH4
+ /ha/year in paddy soils, accounting for about 3.9 %−31 % 335 
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of N fertilizer loss (Ding et al., 2014). The terminal products of this process are either N2, NO2
- or NO3

- with N2 as the dominant 

product (Yang et al., 2012). Feammox rates are strongly positively correlated with the concentrations of microbially reducible 

Fe(III) (Ding et al., 2014; Li et al., 2015b; Ding et al., 2019; Ding et al., 2020). Moreover, Fe(III) enhances the activity, 

distribution and diversity of microbial communities involved in Feammox (Huang, S. et al., 2016; Ding et al., 2017). A series 

of incubation studies investigated the effects of different Fe sources on Feammox, and the results demonstrated that only 340 

ferrihydrite and goethite, not ferric chloride, lepidocrocite, hematite, or magnetite, served as electron acceptors for Feammox 

(Huang and Jaffé, 2015, 2018). These observations can be explained by a possible accumulation of free Fe(II), which halted 

Feammox, or due to the limited ability of Fe-reducers in reducing certain minerals (Huang et al., 2014). It is notable that 

chelates (Park et al., 2009) and electron shuttles (Zhou et al., 2016) can facilitate electron transfer to Fe(III) minerals (Fig. 3), 

which enhances their reduction rates and related N processes. For instance, the addition of electron shuttles increased potential 345 

N loss by Feammox by 17–340% compared to no addition (Zhou et al., 2016). Similar to Feammox, NH4
+ production rates in 

submerged soils and sediments were found to be strongly correlated with reducible Fe(II) production rates (Sahrawat and 

Narteh, 2001; Sahrawat, 2004). 

The electron-donating capacity of Fe minerals is also involved in N bioavailability. In fact, many Fe(II) species, including 

soluble Fe(II)- and Fe(III)-bearing minerals such as siderite and magnetite, can act as electron donors (Benz et al., 1998; 350 

Chaudhuri et al., 2001) for NO3
- reduction coupled with Fe oxidation, which promotes the loss of NO3

- as gases. For 

denitrification, it was found that N2O emissions from flooded soils with contrasting Fe(II) levels were regulated by Fe(II) 

electron donating capacity: the electrons donated reached 16.2% and 32.9% in soils with low and high Fe(II) content, 

respectively. Soil with high Fe(II) content emitted less N2O and more N2, suggesting an improved denitrification efficiency 

due to an electron flow which exceeded the demand for N2O production (Wang et al., 2016).      355 
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Figure 4. Electron shuttles enhance Fe reduction and NH4
+ oxidation (Feammox) rates. 

3 Involvement of Fe in soil phenomena that affect N bioavailability 

This section is concerned with the role of Fe in the three phenomena that affect N bioavailability in soils: priming, The Birch 375 

effect and freeze-thaw cycles. Priming occurs when new input of labile C influences (positive or negative) the decomposition 

of native SOM (Kuzyakov et al., 2000). The Birch effect is a short-term pulse in C and N mineralization caused by soil drying 

and rewetting. The freeze-thaw cycles refer to the alternation between freezing and thawing temperatures in a soil which can 

liberate decomposable OM and accelerate soil respiration. We offer this perspective to facilitate understanding of the 

mechanisms by which Fe affects N bioavailability through these three phenomena.  380 

3.1 Priming 

3.1.1 Fe- mediated priming in soils under oxidizing conditions 

Investigations of the patterns and drivers of priming across both local and broad geographical scales indicate that SOM 

stabilization mechanisms, including associations with Fe oxides, regulate priming and explain most of its variation (Chen et 

al., 2019; Jeewani et al., 2021). Positive priming, where new inputs increase SOM mineralization, is negatively related to 385 

MAOM concentration due to Fe constraining microbial access to sorbed organics to microbial degradation (Bruun et al., 2010; 

Porras et al., 2018). In the rhizosphere, plant and microbial exudates can disrupt Fe-organic associations by both chemical and 

biological mechanisms. Chemical mechanisms include stripping Fe from associations through surface complexation, 
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facilitating Fe reduction (Zinder et al., 1986; Keiluweit et al., 2015; Ding et al., 2021) and displacing sorbed organics into the 

soil solution (Zinder et al., 1986; Keiluweit et al., 2015; Ding et al., 2021). Biological mechanisms stimulate the production of 390 

N-acquiring enzymes as microbes are supplied with carbon and energy (Jilling et al., 2018; Yuan et al., 2018; Jiang et al., 

2021; Jilling et al., 2021). Such mechanisms enhance positive priming by increasing the accessibility of C and N to microbes 

and facilitating N mining. However, the susceptibility of Fe-organic associations to these mechanisms varies; for example, 

ferrihydrite associations are affected by both chemical and biological processes, while goethite associations are more 

susceptible to chemical processes (Li, H. et al., 2021). Therefore, the ability of microbes and plant communities to trigger 395 

specific destabilization mechanisms of the dominant mineral in their environment affects how much N can be made available 

from mineral associations (Jilling et al., 2018; Li, H. et al., 2021).  

Beyond SOM stabilization, Fe oxides may regulate priming by altering microbial community composition, soil C and N 

content (Heckman et al., 2009; Heckman et al., 2018); potentially by restricting nutrient availability and changing the structural 

properties of dissolved organic matter (DOM). For instance, the application of goethite to soil limits P and N bioavailability 400 

while increasing the aromatic content of water extractable organic matter (WEOM), which may lower the ratio of fungi to 

bacteria (Heckman et al., 2012). Fungi have low C use efficiency (CUE) (Silva-Sánchez et al., 2019) and are associated with 

efficient N cycling (Wardle et al., 2004).  

3.1.2 Fe-mediated priming in soils under reducing conditions 

Recently, Fe-mediated priming in soils under reducing conditions has received growing interest. Dunham-Cheatham (2020) 405 

found that glucose application to a soil under anoxic-oxic transition induced a novel type of priming by facilitating the reductive 

dissolution of FeIII-C associations under anoxic conditions followed by a dramatic increase of OC mineralization when oxic 

conditions were restored (Dunham-Cheatham et al., 2020). Li, H. et al., (2021) found that the roles of Fe in anaerobic OM 

mineralization can be shifted by microbial biomass C (MBC). In soil with low MBC, both ferrihydrite and goethite protected 

the added acetate from decomposition through sorption processes. In soil with high MBC, however, goethite acted as an 410 

electron acceptor and increased acetate decomposition, whereas ferrihydrite predominantly adsorbed the added substrate. 

Priming decreased in both low and high MBC soils, but more in low MBC soil (Li, H. et al., 2021). Lecomte et al., (2018) 

demonstrated that Fe(III)-reducing microorganisms have a competitive advantage of colonizing plant roots in the rhizosphere 

due to their capacity of providing Fe(II) for plant nutrition in exchange for C-rich exudates and performing denitrification 

(Lecomte et al., 2018). These exudates are probably used as a C source in the denitrification process or to destabilize Fe-415 

organic  associations and release sorbed C and N (Dunham-Cheatham et al., 2020). More research into Fe-mediated priming 

in strictly anoxic soils, or at the oxic-anoxic transition, is needed.  

3.2 Birch effect 

Although many studies have been done on N mineralization and nitrification (Birch, 1958, 1959, 1960, 1964; Wilson and 

Baldwin, 2008), the studies on the Birch effect have mainly focused on C. The Birch effect for N was described as a rapid 420 
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increase in N mineralization rates as an air-dried soil is rewetted. Soil moisture is accompanied by increased NO3
- production. 

This pattern is likely explained by multiple interacting mechanisms, including the dissolution of organo-mineral bonds, which 

increases the accessibility of substrates to microbial degradation. In addition, the highly dynamic nature of wet dry cycles can 

trigger rapid electron transfer from and to Fe oxides, known as cryptic Fe cycle, which can affect N bioavailability. During the 

wet period, Fe(III) oxides can be used as an electron acceptor and be reduced to Fe(II), which can abiotically react with NO3
- 425 

to form NH4
+, or with nitrite (NO2

-) to form N2O. This Fe(II) can be converted back to Fe(III) oxides during the dry period, 

which may sorb OM and protect it against further degradation or generate oxidative radicals through Fenton reactions that 

break down organics, including N compounds. Cryptic Fe cycle can also induce rapid redox-induced mineral transformations, 

such as the transformation of amorphous Fe oxides into more crystalline forms decreases soil sorption capacity and nutrient 

retention (Attygalla et al., 2016; Wilmoth et al., 2018; Chen et al., 2020). Therefore, this cryptic Fe cycle will have a varied 430 

effect on the role of Fe in controlling N bioavailability over short spatiotemporal scales, which may either increase or decrease 

bioavailable N. Further research is needed to detangle these interactions.  

3.3 Fe in the context of freeze-thaw cycles: the case of permafrost-affected soils 

Permafrost-affected soils store large amounts of OC and ON as a result of SOM stabilization due to freezing of SOM and 

cryoturbation. Along a permafrost soil chronosequence, Joss et al., (2022) found a high percentage of FeOM in cryoturbated 435 

horizons compared to organic or mineral horizons in soil. Cryoturbation also favors the accumulation of SOM with high C:N 

ratio at deeper soil depths (Treat et al., 2016a), which also may be present as associations with Fe minerals or in particulate 

organic matter. Upon thawing, this tremendous amount of SOC and total nitrogen (TN) facilitate high gross N turnover rates 

by heterotrophic processes. For instance, Treat et al.(2016b) observed increased N availability during long thaw seasons in 

tundra soils, whereas other authors reported higher N2O emissions from increased denitrification (Cui et al., 2016; Yang et al., 440 

2016; Yang et al., 2018). This is partly because SOC and SOM, previously trapped in FeOM associations, are released and 

exposed to microbial degradation (Harden et al., 2012; Gentsch et al., 2015; Mueller et al., 2015; Patzner et al., 2020). In fact, 

Patzner et al., (2020) found that along a thaw gradient, the amount of dissolved organic carbon (DOC) increased as well as the 

abundance of Fe(III)-reducing bacteria which use Fe(III) as terminal electron acceptor and oxidize OM. The importance of 

this mechanism in N destabilization likely depends on the extent to which Fe dissolution contributes to soil OM persistence in 445 

redox-dynamic permafrost (Patzner et al., 2020). More investigations of Fe control on N bioavailability in permafrost-affected 

soils are needed, especially with the recent development pointing out that mineral N cycling is as important as ON cycling in 

the active layers of these soils (Ramm et al., 2022).  
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4 Impact of global change on Fe-N bioavailability interactions 

Anticipated future climate scenarios indicate substantial fluctuations in precipitation and temperature patterns, accompanied 450 

by increasing levels of atmospheric CO2. These changes, along with alterations in land use, have the potential to significantly 

impact Fe-N bioavailability interactions in various ways, which are detailed below.  

 

4.1 Impact of variability in precipitation and temperature 

The extreme variation in precipitation can lead to increasing the occurrence of Birch effect and potential disruption of the 455 

dynamic of N availability in soils. Fe plays multiple roles in this process; in drier soils, Fe can protect ON from decomposition 

through the formation of stable Fe-organic associations. However, the reaction of Fe with light can induce Fenton reactions, 

leading to ON decomposition (Georgiou et al., 2015). In wetter soil, the destabilization of ON can increase as a result of 

fluctuations in redox conditions, potential occurrence of cryptic Fe cycling and modifications of mineral properties. In addition 

to precipitation, climate change is causing temperature to rise sharply leading to extensive thawing of permafrost soils. As a 460 

consequence, redox-meditated heterotrophic N turnover processes and the destabilization of Fe-organic associations are 

expected to increase ON loss from these soils. Furthermore, rising temperatures will increase microbial metabolism which will 

subsequently destabilize SOM.  

 

4.2 Impact of elevated atmospheric CO2  465 

The effects of rising atmospheric CO2 concentration (eCO2) levels on Fe-N bioavailability interactions are not well understood. 

Recent research showed that eCO2 stimulates root and microbial respiration, which can decrease soil redox potential causing 

Fe reduction to proceed (Cheng et al., 2010). The production of Fe(II), which increased by 64% under eCO2 treatment, caused 

substantial losses of NH4
+ via Feammox in a 15-year free-air CO2 enrichment (FACE) study in rice paddy systems. Feammox 

was meditated by autotrophic anaerobes that may use soil CO2 as C source to couple anaerobic ammonium oxidation and Fe 470 

reduction (Xu, C. et al., 2020). eCO2 can also increase the destabilization of MAON via priming, as, eCO2 increases root 

biomass and associated exudate production at deeper soil depths, enabling the liberation of large amount of deep soil N from 

these associations (Iversen, 2010). This increased turnover of N from MAOM would probably be substantial under future 

eCO2.  

 475 

4.3 Impact of land use change 

Land use change involving the conversion to agriculture can decrease SON (García-Oliva et al., 2006). We hypothesize that 

this decline in SON is influenced by the effects of land use change on Fe cycling. For example, it was observed that the 

crystallinity of Fe oxides increased when forests were converted to agricultural fields in the Southern Piedmont, USA (Li and 

Richter, 2012). Additionally, Tan et al., (2019) showed that land use change from fallow to paddy soils promoted Fe reduction 480 
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by decreasing soil pH and increasing the electron shuttling capacity of SOM (Tan et al., 2019), which may accelerate N 

turnover by processes such as Feammox. 

To conclude, global change affects the roles of Fe in N bioavailability which may in turn affect the balance between Fe-

meditated SON destabilization and protection 

5 Synthesis and outlook  485 

Attempts at understanding controls and drivers of N bioavailability, a fundamental soil ecosystem property, often omit the role 

of Fe minerals. However, the tendency of proteins to associate strongly with minerals, and the involvement of the latter in both 

enzymatic and non-enzymatic reactions that influence the N cycle has motivated this review, which specifically focuses on 

Fe-N bioavailability interactions (Fig. 4). Including Fe in current models of SOM is challenging because the mechanisms by 

which Fe controls N storage, stabilization, bioavailability, and loss are complex and remain incompletely understood. This is 490 

because the present knowledge is, on one hand, based on OM-mineral correlations, which is a simplistic approach since 

correlations tend to be specific for certain soil conditions and types (Wagai et al., 2020; Kleber et al., 2021), and on the other 

hand, knowledge is impeded by limitations in the analytical framework used to explore these interactions. In this section, we 

highlight challenges and opportunities for future research. 

 495 
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Figure 5. Fe affects N bioavailability in soils. This figure doesn’t specify soil conditions under which an Fe role may proceed. 

8.1 Sorbent role of Fe in controlling N bioavailability  

8.1.1 Organic nitrogen 

The sorbent role of Fe in controlling N bioavailability is multifaceted. Sorption can protect ON from decomposition by 535 

reducing the activity of enzymes and limiting the accessibility of ON to degradation mechanisms. However, a fraction of 

sorbed ON is bioavailable (Bird et al., 2002; Kleber et al., 2007), or can be made available by processes such as priming or 

displacement by competitive organics. Thus, the concept of “sorptive stabilization” of N substrates does not stand as a 

conclusive explanation for ON persistence in soils and should rather be revisited. In this context, sorption to Fe minerals may 
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impose spatial constraints on the accessibility of ON substances to microbes, as sorption can locate ON in physically isolated 540 

spaces such as micropores, microaggregates, or microdomains of densely arranged clays which slows down its decomposition 

and decreases its bioavailability (Kleber et al., 2021).  

Research on Fe-meditated ON depolymerization has mostly focused on proteins (Wanek et al., 2010; Noll et al., 2019; Reuter 

et al., 2020), since proteins alone constitute 60% or more of the N in plant and microbial cells (Fuchs, 1999) and are strongly 

sorbed to Fe surfaces. However, not all soil and mineral-associated N is protein. Rather, N exists in a variety of chemical forms 545 

including microbial cell wall compounds. Using Fourier transform infrared spectroscopy (FTIR) and isotope pool dilution 

(IPD), multiple studies have shown the importance of microbial cell wall depolymerization in the delivery of soil N (Hu et al., 

2017; Hu et al., 2018; Hu et al., 2020). In addition, depolymerization of membrane lipids and nucleic acids is not yet 

characterized despite the detection of their degradation products in soils (Warren, 2021). This leads to the following question: 

how important is the chemical form of Fe-associated N in determining soil N bioavailability? This is relevant since the 550 

molecular characteristic of different N forms influences the type and strength of bonding with minerals, which may affect N 

bioavailability. For instance, Fe oxyhydroxides binds amino sugars more strongly than proteins in boreal forests (Keiluweit 

and Kuyper, 2020), likely allowing less mineralization from the former compared to the latter  compounds.  

 

8.1.2 Inorganic nitrogen 555 

Despite a small number of studies relating structural Fe in clays and aggregates to N bioavailability, the dynamics of these 

interactions and relevant mechanisms remain elusive. Several questions remain to be resolved, including: are the original 

structure and physico-chemical characteristics of clay minerals restored upon reoxidation of its structural Fe? If so, what are 

the implications for NH4
+ release and fixation and other processes that influence loss and gain of bioavailable N? 

8.2 Structural role of Fe in controlling N bioavailability 560 

Research is needed to comprehend the implications of Fe's structural role in controlling N bioavailability and its potential 

influence on soil dynamics and nutrient cycling processes. Specifically, it remains uncertain how significant is the loss of Fe, 

through solubilization and reduction, to microaggregate instability and N bioavailability in soils. Furthermore, the relevance 

and occurrence of Fe-induced carbon ON polymerization in soils still require confirmation, as observations of this phenomenon 

have thus far been limited to laboratory settings. 565 

8.3 The role of Fe as a catalyst in controlling N bioavailability 

Assessing the importance of Fe-meditated ROS generation in N bioavailability is a formidable challenge.  In fact, despite being 

common in soils, ROS have extremely short lifetimes and are highly reactive towards other soil constituents such as carbonates 

and bromide (Kleber et al., 2021), which complicate their detection in soils. They are produced by both abiotic and biotic 

pathways, and the contribution of each pathway to N bioavailability remains elusive. Additionally, rates and mechanisms of 570 

ROS production from these two pathways are still not known. Such information is particularly important to understand N 
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dynamics in environments conducive to ROS formation, such as oxic/anoxic zones, environments with intense solar radiation 

or in boreal forests where fungi use ROS based mechanisms to access Fe-sorbed N. In contrast to their decomposition role, Yu 

et al.(2020) found an important role of Fe-meditated ROS production in OM polymerization, which increases the recalcitrance 

of OM and its resistance to degradation mechanisms (Yu et al., 2020). This finding sheds light on other controls and pathways 575 

relevant to N bioavailability. For example, under what conditions can the role of Fe-mediated ROS generation on N 

bioavailability be shifted from decomposition to protection? And how will this evolve in a changing world where solar 

radiation is becoming more intense and the frequencies of extreme events (e.g., droughts, rain) is increasing?  

8.4 Electron transfer role of Fe in controlling N bioavailability 

The capacity of Fe to act as an electron acceptor and donor can affect bioavailable N loss from soils by processes such as 580 

Feammox and denitrification. To further understand these processes, more research is needed on cryptic Fe cycling and the 

controls over the oxidation-reduction dynamics of Fe in soil, since preservation of oxidized Fe promotes N stabilization within 

mineral associations. For instance, the effects of added electron shuttles on the extent and the rate of Fe(III) reduction and 

associated loss of N via Feammox have been investigated, however, the capacity of SOM and organo-Fe associations to transfer 

electrons has received less attention (Sposito, 2011; Xu, Z. et al., 2020). The characterization and mapping of spatiotemporal 585 

redox heterogeneity also deserves attention (Wilmoth, 2021). 

8.5 Varied analytical approach is needed to characterize Fe-N interactions 

To understand the roles of Fe in controlling N bioavailability, a varied analytical approach must be adopted to enable a more 

holistic and multidimensional view of these interactions, considering all the possible outcomes of Fe reactions on N as driven 

by the physico-chemical and biological characteristics of soil and management. This approach is essential to provide realistic 590 

turnover rates of N and decipher the underlying mechanisms of Fe-N reactions in soil, in contrast to controlled lab experiments 

which do not represent soil in its complexity and heterogeneity. This approach should also capture variations in the processes 

of interest within multiscale and time dimensions. Here, we present most common and powerful techniques that can be 

combined in the framework of this varied approach to understand Fe-N interactions. Note that an extensive list of techniques 

is out of the scope of this review.   595 

 

8.5.1 Imaging techniques 

Techniques such as Synchrotron XAS and Synchrotron X-ray allow the identification and the characterization of structural 

and chemical properties of minerals as well as their oxidation states. They can also be used to determine the speciation of SON 

and dissolved organic nitrogen (DON) as well as the structural characteristics of soil, such as pore size and pore connectivity. 600 

These information could help, for example, to characterize the fine-scale redox heterogeneity (Wilmoth, 2021) that affects Fe 

cycling and its interconnection with N bioavailability. In addition, these techniques are used to observe and investigate the 3D 

structure of organo-Fe minerals in soils. Kleber et al., (2021) called for using them in studies of enzyme activity because they 
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allow the investigation of the natural structure of organo-mineral associations without alteration (Kleber et al., 2021). However, 

while using advanced imaging techniques reveals information at fine scales, upscaling such data is challenging (Wagai et al., 605 

2020).  

 

8.5.2 Microbial techniques 

They provide information on the identity of microbial taxa regulating soil biogeochemical processes in question. They include 

techniques such as metatranscriptomics which can be used to distinguish the biological from the abiotic pathways used to 610 

direct redox reactions (Wilmoth, 2021), and metagenomics that were used recently to explore coupled nutrients interactions, 

including coupled Fe-N reactions (Ma et al., 2021). 

 

8.5.3 Isotope techniques 

Isotopes can be used to determine gross rates and the investigation of the pathways and mechanisms of the processes in 615 

question. They can also be used to determine OM pools with varying turnover rates. Stable isotope probing, which is a high-

resolution technique, can also be used to trace the microbial uptake of N as affected by Fe minerals as well as its fate in soil 

environments.  

 

8.5.4 Molecular characterization techniques 620 

These techniques, which include FTIR, allow the identification of different soil organic molecules and the analysis of their 

bonding mode and strength with minerals. 

8.6 Concluding Comment  

As a final commentary on Fe-N bioavailability interactions, we propose the following questions: how much N can be mobilized 

by Fe-related mechanisms? What are the controls on these interactions? And how important are certain mechanisms relative 625 

to others in securing N bioavailability in the context of global change? Do reactions observed in laboratory settings occur 

naturally in soils? We also urge the field to develop new methods and techniques, such as those capable of detecting low 

concentrations of ROS and their fate in soil environment, or the products of mineral-induced OM polymerization. 
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