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Abstract.

Wetlands are the largest natural source of methane. The ability to model the emissions of methane from natural wetlands

accurately is critical to our understanding of the global methane budget and how it may change under future climate scenarios.

The simulation of wetland methane emissions involves a complicated system of meteorological drivers coupled to hydrological

and biogeochemical processes. The Joint UK Land Environment Simulator (JULES) is a process-based land surface model that5

underpins the UK Earth System Model and is capable of generating estimates of wetland methane emissions.

In this study we use GOSAT satellite observations of atmospheric methane along with the TOMCAT global 3-D chemistry

transport model to evaluate the performance of JULES in reproducing the seasonal cycle of methane over a wide range of trop-

ical wetlands. By using an ensemble of JULES simulations with differing input data and process configurations, we investigate

the relative importance of the meteorological driving data, the vegetation, the temperature dependency of wetland methane10

production and the wetland extent. We find that JULES typically performs well in replicating the observed methane seasonal

cycle. We calculate correlation coefficients to the observed seasonal cycle of between 0.58 to 0.88 for most regions, however

the seasonal cycle amplitude is typically underestimated (by between 1.8 ppb and 19.5 ppb). This level of performance is

comparable to that typically provided by state-of-the-art data-driven wetland CH4 emission inventories. The meteorological

driving data is found to be the most significant factor in determining the ensemble performance, with temperature dependency15

and vegetation having moderate effects. We find that neither wetland extent configuration out-performs the other but this does

lead to poor performance in some regions.
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We focus in detail on three African wetland regions (Sudd, Southern Africa and Congo) where we find the performance of

JULES to be poor and explore the reasons for this in detail. We find that neither wetland extent configuration used is sufficient

in representing the wetland distribution in these regions (underestimating the wetland seasonal cycle amplitude by 11.1 ppb,20

19.5 ppb and 10.1 ppb respectively, with correlation coefficients of 0.23, 0.01 and 0.31). We employ the CaMa-Flood model

to explicitly represent river and floodplain water dynamics and find these JULES-CaMa-Flood simulations are capable of

providing wetland extent more consistent with observations in this regions, highlighting this as an important area for future

model development.

1 Introduction25

Methane (CH4) is a significant greenhouse gas, with a global warming potential (GWP) many times greater than that of CO2

(Etminan et al. (2016), 100-year GWP = 28). According to IPCC et al. (2021), methane accounts for approximately 20% of

the increase in radiative forcing from pre-industrial to present-day. The relatively short atmospheric lifetime of methane (∼9

years, Prather et al. (2012)) means that reductions provide significant potential for mitigation of climate change to help address

the goals of the Paris Agreement (O’Connor et al., 2010; Ganesan et al., 2019). However, the global methane budget is highly30

complex with a range of natural and anthropogenic sources (Saunois et al., 2020), many of which are still poorly-constrained

and possess large uncertainties (Dlugokencky et al., 2009; Nisbet et al., 2014).

Wetlands are the largest natural methane source and are comparable (or larger) in magnitude than emissions from agricul-

ture/waste and fossil fuels (Saunois et al., 2020). Natural wetlands are inundated ecosystems with water-saturated soil or peat

and include permanent or seasonal floodplains, swamps, marshes and peatlands where the anaerobic conditions lead to CH435

production via methanogenic bacteria. Importantly, the uncertainty in CH4 emissions from wetlands remains one of the most

significant challenges for understanding the global CH4 budget. Not only are there large uncertainties on processes and mech-

anisms related to the CH4 emission itself (Melton et al., 2013), but the wetland extent is highly uncertain (Bloom et al., 2010;

Kirschke et al., 2013; Stocker et al., 2014) as is the response to meteorological drivers (Poulter et al., 2017; Parker et al., 2018)

One important step in better understanding the global CH4 budget is reconciling the bottom-up estimates of CH4 emissions40

(e.g. from land surface models) with top-down estimates based on atmospheric observations. The latest assessment of the

global CH4 budget (Saunois et al., 2020) has a bottom-up estimate of wetland CH4 emissions of 149 Tg CH4 yr−1 (range 102

- 182) compared to a top-down estimate of 181 Tg CH4 yr−1 (range 159 - 200) for 2008-2017. Recent work (Folberth et al.,

2022) has coupled wetland CH4 emissions from the Joint UK Land Environment Simulator (JULES) into the UK Earth System

Model (UKESM) for the first time, allowing interactive wetland emissions from JULES to be used in climate simulations. To45

fully exploit this new capability, it is vital that the performance of the JULES wetland CH4 scheme is well-characterised and

evaluated against present-day observations.

In this study we perform an evaluation of the wetland CH4 emissions from the JULES land surface model using satellite

observations of atmospheric CH4 columns in order to both assess the utility of the model in providing emission estimates
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as well as to diagnose any discrepancies against observations that may lead to future model improvements and increased50

understanding of the relevant processes.

The objectives of this study are:

• To provide an evaluation of the performance of JULES wetland CH4 simulations across the tropics using satellite remote

sensing data.

• To evaluate and characterise the differences in performance across an ensemble of JULES simulations with different55

configurations and identify the best-performing configuration(s) with the most suitable input data.

• To explain the underlying reasons for poorly-performing regions, relating these to the processes within JULES and

provide guidance on potential improvements.

In Section 2 we introduce the JULES land surface model, explain how wetland methane emissions are calculated and describe

the ensemble of simulations that we have produced. Section 3 details the datasets and tools used to directly compare the JULES60

CH4 emissions to observations. In Section 4 we perform an evaluation of the seasonal cycle of JULES CH4 emissions over a

range of wetland regions and in Section 5 we focus in more detail on the challenging African regions. We conclude the study

in Section 6.

2 JULES Wetland CH4 Emissions

The Joint UK Land Environment Simulator, JULES (Best et al., 2011; Clark et al., 2011), is a process-based land surface model65

that both underpins the UK Earth System Model (Sellar et al., 2019) and acts as a standalone model capable of simulating many

processes related to the land surface by describing the carbon, water and energy exchanges. We use JULES version 5.1 in this

study.

2.1 Generation of Wetlands within JULES

TOPMODEL (TOPography-based hydrological MODEL) is a rainfall-runoff model where estimates of surface and subsurface70

runoff are produced taking into account the topography of the land surface (Beven, 2012). This is defined through the topo-

graphic index, which is related to the relative propensity for soil saturation in that it incorporates both slope and upstream area.

TOPMODEL was originally applied at the scale of small catchments, using pixels smaller than 50 m x 50 m in extent, but

this framework has since been extended to global applications at a much wider range of spatial scales (Marthews et al., 2015;

Gedney et al., 2019). TOPMODEL remains one of the most popular and widely-used runoff production models (Beven et al.,75

2021) and has been implemented within the framework of the JULES model for many years (Best et al., 2011).

TOPMODEL is implemented in JULES as part of the large-scale hydrology scheme (Gedney and Cox, 2003; Best et al.,

2011). A deep layer of restrictive water flow, added to the bottom of the standard soil column at a 3m depth, results in the

production of a saturated soil zone and a water table. The water table moves vertically when the soil moisture changes. Within
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each grid box the statistical distribution of topographic index (Marthews et al., 2015) is combined with the mean water table80

depth. This enables the simulation of a sub-grid water table distribution and therefore the extent of wetland in the grid box.

2.2 JULES Wetland CH4 Emissions

The JULES land surface model calculates methane wetland emissions FCH4
, from three key factors, namely the amount of

available substrate carbon, the temperature and the inundated area below the water table (Gedney et al., 2004; Clark et al.,

2011):85

FCH4
= kCH4

· fw
nCs pools∑

i=1

κi ·
z=3m∑
z=0m

e−γz ·Csi,z ·Q10(Tsoil)
0.1(Tsoil−T0) (1)

kCH4 is a dimensionless scaling constant (7.41x10−12) for wetland CH4 emissions when soil carbon is taken as the substrate

for CH4 emissions. The wetland fraction (i.e. the proportion of a grid cell where the water table is at/above the surface, and

below a threshold indicative of significant flow (Gedney et al., 2004)) is denoted by fw. z is the depth of soil column (in m),

i is the soil carbon pool, κi (s-1) is the specific respiration rate of each pool (Table 8 of Clark et al. (2011)), Cs (kg m−2) is90

soil carbon and Tsoil (K) is the soil temperature, averaged over the soil layers in the top 1 m of soil. The decay constant γ

(= 0.4 m-1) describes the reduced contribution of CH4 emission at deeper soil layers due to inhibited transport and increased

oxidation through overlaying soil layers. This representation of inhibition is a simplification. However, previous work which

explicitly represented these processes showed little to no improvement when compared with in-situ observations (McNorton

et al., 2016). We do not model CH4 emissions from freshwater lakes.95

2.3 JULES Ensemble Experimental Setup

As outlined in Equation 1, there are a variety of options within JULES and choices of input data which affect the calculation

of CH4 from wetlands, which we call a ‘configuration’. In this study, we produce an ensemble of JULES simulations that

span a range of configurations. Different configurations allow adjustment of factors that have all been identified as key sources

of uncertainty in previous wetland methane modelling efforts. We identify which is/are the optimal configuration(s) through100

comparison of model outputs against observations. The JULES ensemble that we produce comprises: 2 different sets of me-

teorological driving data (ERA-Interim and WFDEI, Sect. 2.3.1), 3 different vegetation configurations (prescribed phenology,

dynamic vegetation with and without competition, Sect. 2.3.2), 2 different temperature dependencies (Q10 = 3.7 and Q10 =

5.0, Sect. 2.3.3) and 2 different wetland extent parameterisations (the default from JULES and a version masked via the Sur-

face WAter Microwave Product Series (SWAMPS) wetland extent, Sect. 2.3.4). This results in an ensemble with 24 members105

(2x3x2x2). In order to identify ensemble members, we assign to each member a 4-digit ID as shown in Figure 1. Thus the

ensemble member using WFDEI meteorology data (2), using dynamic vegetation (3), with the lower temperature dependency

(1) and with the original JULES wetland extent (1) is ensemble member 2311.
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In a post-processing step, the time series of annual wetland emissions of each ensemble member, regardless of whether they

have been further constrained with a wetland mask or not, is separately scaled to give annual emissions of 180 Tg CH4 yr−1 for110

the year 2000 (Saunois et al., 2016), as described in Comyn-Platt et al. (2018). The scaling is most important when applied to

the SWAMPS-based ensemble members as the geographic masking of the JULES wetland area with the SWAMPS data would

otherwise result in reduced global emissions, below a level consistent with Saunois et al. (2016).

Maps of the CH4 emissions for each ensemble member are presented in Figure 2 for August 2011. Clear differences are ob-

served relating to the different ensemble configurations, including: substantial differences between ERA-Interim and WFDEI-115

based ensemble members with the magnitude of the emissions in the WFDEI members visibly smaller; and large spatial

differences based on the Default vs SWAMPS wetland extent masking, with SWAMPS significantly reducing the wetland

areas and concentrating the emissions, particularly removing the widespread but low emissions found more generally in the

Default members.

Figure 1. Description of the 24 JULES ensemble members used in this study, comprising of 2 x Meteorological Driving Data, 3 x Vegetation

configurations, 2 x Temperature Dependencies and 2 x Wetland Extent configurations. The 4-digit code (ABCD) is used to identify the

individual ensemble members.

2.3.1 Driving Data: ERA-Interim vs WFDEI120

Meteorological forcing data is used to drive the JULES land surface model. The meteorological parameters used in this study

are: air temperature, surface pressure, precipitation, short and long-wave radiation, relative humidity and wind speed. In the

ensemble we use two sources for the meteorological data, ERA-Interim and WFDEI.
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Figure 2. Example (August 2011) of wetland CH4 emissions generated from each JULES ensemble members used in this study. The ensemble

comprises of 2 x Meteorological Driving Data configurations, 2 x Wetland Extent configurations, 2 x Temperature Dependency configurations

and 3 x Vegetation configurations. Each panel is labelled with the details of its configuration, following the format of the key (bottom-left).

The ERA-Interim Reanalysis (Dee et al., 2011) is a widely used global atmospheric reanalysis product produced by the

European Centre for Medium-Range Weather Forecasts (ECMWF). The WATCH Forcing Data ERA-Interim (WFDEI) is125

based on the ERA-Interim Reanalysis data but includes the modifications as outlined in Weedon et al. (2014). These include

interpolation to a 0.5◦ x 0.5◦ resolution, a sequential elevation correction and a monthly bias correction based on observations.

2.3.2 Vegetation

Vegetation is represented by nine plant functional types (PFTs): broadleaf deciduous trees, tropical broadleaf evergreen trees,

temperate broadleaf evergreen trees, needle-leaf deciduous trees, needle-leaf evergreen trees, C3 and C4 grasses, deciduous130
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and evergreen shrubs (Harper et al., 2016). Depending on the options chosen, these PFTs can be in competition for space,

based on the TRIFFID (Top-down Representation of Interactive Foliage and Flora Including Dynamics) dynamic vegetation

module within JULES (Clark et al., 2011). There are also four non-vegetated surface types: urban, water, bare soil and ice.

The ensemble uses three different JULES configurations to describe the vegetation behaviour (Clark et al., 2011): a config-

uration based on calculating leaf-level phenology and two configurations based on the TRIFFID dynamic vegetation module135

in JULES, with and without vegetation competition (i.e. allowing for changes in surface coverage by different plant functional

types or not, respectively). The calculation of leaf phenology is independent of the calculation of the evolution of vegetation

coverage and is available even when the TRIFFID dynamic vegetation module is not used.

The number of carbon pools used in Equation 1 depends on the soil biogeochemistry model (soil_bgc_model) and vegetation

options selected. For the leaf phenology vegetation option, soil_bgc_model = 1 and a single (fixed) soil carbon pool is used.140

For the vegetation configurations using the TRIFFID dynamic vegetation model, soil_bgc_model = 2 and four carbon pools

are used based on the Roth-C model (Clark et al., 2011).

2.3.3 Temperature Dependence: Q10 = 3.7 vs 5.0

As indicated in Equation 1, the CH4 emission is strongly dependent on the temperature of the soil. This temperature dependency

of methanogenesis is generally parameterised using a Q10 value that approximates the Arrhenius equation. As discussed in145

Gedney et al. (2004), the approach that JULES takes due to applying this approximation globally over a wide temperature

range is to use an effective or generalised Q10 that fits the form of the Arrhenius equation exactly (Equation 2).

Q10(T ) =Q10(T0)T0/T (2)

We chose Q10 values of 3.7 and 5, based on the work of Gedney et al. (2019) who tested values of 3, 3.7 and 4.7 as

low/middle/upper estimates, themselves based on Turetsky et al. (2014) values for poor and rich fens, and bogs.150

2.3.4 Wetland Extent: JULES vs JULES with SWAMPS mask

JULES generates wetland extent following the TOPMODEL approach as outlined in Section 2.1. As accurate wetland extent

is one of the largest challenges in relation to modelling wetland emissions of methane (Saunois et al., 2020), the ensemble also

provides an alternative observationally-constrained wetland extent. In this instance, the JULES wetland area is simply masked

by the SWAMPS dataset (Schroeder et al., 2015), meaning that any wetland extent that is inconsistent with the SWAMPS155

observations is disregarded.
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3 Datasets Used for Comparing JULES CH4 Emissions to Atmospheric Observations

3.1 GOSAT CH4 Observations

The primary observational dataset that we use for evaluation of the JULES CH4 is the University of Leicester GOSAT Proxy

XCH4 (Parker et al., 2011, 2020a). The GOSAT satellite, launched in 2009 by the Japanese Space Agency, was the first160

dedicated greenhouse gas observing satellite (Kuze et al., 2009). This data was recently used (Parker et al., 2020b) to evaluate

the WetCHARTs CH4 emission database (Bloom et al., 2017a) and has previously been used for many wetland-related studies

including Parker et al. (2015); Berchet et al. (2015); McNorton et al. (2016); Lunt et al. (2019); Saunois et al. (2020); Wilson

et al. (2021); Maasakkers et al. (2021); Lunt et al. (2021).

GOSAT measures the signal of reflected sunlight in the shortwave infrared (SWIR) and as such is capable of providing165

measurements over land and also over the ocean in cases where sun-glint reflection allows. The GOSAT Proxy XCH4 retrieval

provides around 15k-25k observations over land each month and, after changes to the sun-glint sampling in 2015, a comparable

number over the ocean. For a full description of the data, including evaluation and validation, see Parker et al. (2020a).

3.2 TOMCAT Atmospheric CH4 Simulations

In order to link surface CH4 emissions as generated by JULES with atmospheric observations as measured by GOSAT, it is170

necessary to run the emissions through a global chemistry transport model.

In this study, we use the TOMCAT 3-D model (Chipperfield, 2006), ran globally between 2009 and 2017 at 1.125◦ horizontal

resolution and 60 vertical levels up to 0.1 hPa. The model setup is consistent with that in Parker et al. (2020b). In short, non-

wetland CH4 fluxes are taken from the EDGAR v4.2 database for anthropogenic emissions and the GFED v4.1s dataset for

biomass burning emissions. Annually repeating rice paddy emissions are used from Yan et al. (2009), with ocean and termite175

sources used following Patra et al. (2011). The atmospheric (OH, O(1D) and stratospheric Cl) and soil sinks are as described

in McNorton et al. (2016).

For the wetland CH4 fluxes, the emissions generated for each of the 24 JULES ensemble members (Section 2.3) are assigned

to individual tracers. These tracers each contain the wetland and non-wetland CH4 fluxes and therefore an additional tracer

containing no wetland emissions is used as a reference to remove the non-wetland effects.180

The model was initialised using the same method as Parker et al. (2018) and Parker et al. (2020b), which in turn was based

on simulations from McNorton et al. (2016). The model tracers were initialised in 1977 and ran up to 2004 at coarser resolution

(2.8◦) than the main simulation. At this point the tracers were scaled to match the overall observed surface concentration for

CH4. The period 2004 - 2009 was then run at the 1.125◦ resolution, before the analysis begins in 2009.

4 Evaluation of JULES Wetland CH4 Seasonal Cycle185

In this section we evaluate the seasonal cycle of the wetland CH4 emissions generated from the ensemble of JULES simulations

against atmospheric satellite observations. We perform the same analysis on the JULES wetland emission datasets as was used

8



for the evaluation of the WetCHARTs emission dataset (Parker et al., 2020b), thereby enabling comparison of results and

conclusions.

The evaluation is performed over 7 large-scale areas (Global, Northern Hemisphere, Southern Hemisphere, 60◦S-60◦N,190

Tropics, North Tropics, South Tropics) as well as 16 specific wetland areas as indicated in Figure 3.

Figure 3. Map showing the locations of the 16 wetland regions considered in this study. A representative month (August 2011) of the JULES

wetland fraction is shown as the basemap.

To calculate the XCH4 seasonal cycle, we apply the NOAA CurveFitting routine (Thoning et al., 1989; NOAA) to the

GOSAT CH4 observations as well as the TOMCAT model simulations for each of the JULES wetland emission ensemble

members. To determine the wetland-specific signal, we apply the same technique to the TOMCAT tracer that contained no

wetland emissions and subtract that signal. This method does make the assumption that the uncertainties in the inter-annual195

variability of non-wetland XCH4 sources (such as biomass burning) are much smaller than the uncertainty in wetland methane

emissions. This assumption has previously been tested (e.g. Parker et al. (2020b); Wilson et al. (2021)) and inversion results

suggest that whilst it is possible for fire emissions to interfere with our analysis to a small degree, this is largely not the case

with flux changes in fire-affected regions generally remaining consistent with the prior (see Appendix B for more details). In

future work, CO inversions, currently under development, will allow us to better represent the XCH4 flux from biomass burning200

and separate any effect more explicitly.

The above method results in a wetland XCH4 seasonal cycle for each region from GOSAT and from each of the model

ensemble members (Figure 4). The observed (GOSAT) seasonal cycle magnitude varies significantly between regions (e.g.

contrast the Pantanal to East Amazon) and can also be seen to vary strongly between years for the same region (e.g. contrast

S.E. Asia for 2010 to 2017). Qualitatively, the ensemble of JULES-based simulations are not dissimilar to the observations,205

however the simulated seasonal cycles are typically weaker in magnitude than the observations. Although the ensemble spread

can be large in some regions (e.g. Indo-Gangetic), the regions with a strong observed seasonal cycle typically exhibit a strong

seasonal cycle in the JULES ensemble, albeit typically with a smaller magnitude. This suggests, overall, JULES is generally

capable of reproducing the region-to-region and month-to-month wetland emissions that we see from observations but details

for specific regions can fail to match the observations.210
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Figure 4. Time series showing the GOSAT (red) and JULES ensemble (blue, min/max envelope) wetland CH4 seasonal cycles (in ppb) for 7

large-scale areas and 16 specific wetland regions. The wetland seasonal cycle is calculated by subtracting the TOMCAT model simulations

that do not contain any wetland emissions. For each time series, the dashed horizontal lines indicate the [-25, 0, 25] levels as indicated in the

bottom panel.
10



Figure 5. Boxplot showing the distribution of the difference in the wetland CH4 seasonal-cycle amplitude between the JULES ensemble and

GOSAT observations for all years (2009 - 2017). A box-and-whisker (box: quartiles, whiskers: min/max) is calculated for each of the regions

(7 large-scale areas and 16 specific wetland areas) and is coloured by the mean value of the correlation coefficient between the modelled and

observed wetland CH4 seasonal cycle.

11



A more rigorous quantitative evaluation of the seasonal cycle phase and magnitude is shown in Figure 5. In this analysis we

produce a box-and-whisker plot for the distribution of the model-GOSAT wetland XCH4 seasonal cycle amplitude differences

(∆A), combining all ensemble members and all years for each region. Further, the box is coloured according to the mean

value of the correlation coefficient (Rcycle) between the GOSAT and model seasonal cycles. In this way, we attempt to portray

two separate aspects of the model performance. The box-and-whisker plot indicates the difference in the amplitude of the215

seasonal cycle for each year, while the colours indicate the correlation coefficient of the time series. It is entirely possible to

have highly-correlated time series where the amplitude of the signal is different (e.g. two perfectly in-sync seasonal cycles but

one with a very different amplitude to the other). This is the case for e.g. the Pantanal, where the seasonality between JULES

and GOSAT matches well, but the amplitude of the seasonal cycle is much larger in GOSAT than JULES (see Pantanal panel

in Figure 4). Conversely, there are regions where the maximum amplitude difference is small but the seasonally cycles are out220

of phase leading to a poor correlation, e.g. (see Indonesia panel in Figure 4).

The lower-limit of the colour scale in Figure 5 is capped at 0, although it should be noted that one region (N. Australia) has

a negative correlation of -0.16. However, the seasonal cycle over this region is very small (<5 ppb) and hence the correlation

is not particularly meaningful.

Globally we find that the JULES ensembles underestimate the XCH4 wetland seasonal cycle amplitude by approximately225

6.6 ppb (quartiles: 5.6 ppb - 7.9 ppb) with a correlation coefficient of 0.85. When considering the northern and southern

hemispheres we see somewhat different behaviour, with ∆A of -9.2 ppb and -0.4 ppb respectively. This north-south difference

is exaggerated further when contrasting the North Tropics (∆A = -11.5 ppb, Rcycle = 0.73) and the South Tropics (∆A = -1.0

ppb, Rcycle = 0.0).

When focusing on specific wetland regions, we find that the evaluation is varied and performance is very region-dependent.230

For example, althoughRcycle = 0.83 for the Pantanal region, suggesting that the phase of the seasonal cycle is reasonably well-

captured, the seasonal cycle amplitude is significantly underestimated (∆A = -19.5 ppb) and furthermore, this underestimation

has a very large spread between ensemble members and years (ranging from -42.4 ppb to -5.7 ppb). In contrast, the Paraná

region has a slightly poorer Rcycle (0.70) and slightly better ∆A (-15.3 ppb) but with significantly smaller spread between

ensemble members (-21.8 ppb to -7.9 ppb).235

For the majority of wetland regions (East US, Yucatan, West Amazon, Pantanal, Paraná, Indo-Gangetic, China, Papua)

Rcycle shows a reasonable correlation of between 0.58 to 0.88. However, several regions stand out as having a particularly

poorRcycle value (East Amazon, Sudd, Congo, Southern Africa, Indonesia, N. Australia, S.E. Australia). This poor correlation

coefficient is easily explained for some regions (especially the Australian regions) where the seasonal cycle itself is very small

(Figure 4). However, of particular note are the three African regions (Sudd, Congo and Southern Africa) where the seasonal240

cycle itself can be relatively strong but timing is in poor agreement between the JULES ensemble and the observations (Rcycle

values: 0.23, 0.31, 0.01 respectively). We revisit these regions in Section 5 and perform a more detailed evaluation in order to

explain the poor performance here.

Despite these few poorly-performing regions, JULES shows reasonable-to-good performance overall in representing the

observed seasonal cycle. It is informative here to judge the performance of JULES against the current state-of-the-art wetland245
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emission dataset, WetCHARTs. In Parker et al. (2020b) we evaluated the performance of WetCHARTs in the same way as we

evaluate JULES here so a direct comparison of the ability to model the observed seasonal cycle can be made. We reproduce

Figure 4 from Parker et al. (2020b) in the appendix to this work (Figure A1) and contrast it against Figure 5 from this study.

Overall the comparisons for the different wetland regions are largely in agreement, with a strikingly similar distribution in ∆A

between regions. Both WetCHARTs and JULES typically underestimate the wetland seasonal cycle magnitude with the largest250

∆A occurring in the same regions (Southern Africa, Indo-Gangetic, China, S.E. Asia). The largest discrepancies between the

JULES analysis and our previous WetCHARTs analysis are that: for WetCHARTs the ensemble spread (σA) in the Congo is far

larger than for JULES, whileRcycle is reasonable compared to poor for JULES; although the biases for Southern Africa are very

similar, Rcycle for WetCHARTs is reasonable, while again, it is poor for JULES. The above all suggests that the performance

of JULES is very comparable to that of the observation-driven WetCHARTs emissions, albeit with some differences in key255

regions.

4.1 Attribution of Performance to Specific Configuration Choices

A significant feature apparent in the analysis so far is that the spread in ∆A across the ensemble members is typically large,

often in excess of 20 ppb between the minimum/maximum ∆A values. Understanding which ensemble members perform

well (and poorly) is an important step towards identifying which parameters and processes are driving the discrepancies to260

observations. To investigate this, we calculate the change in two metrics: the correlation coefficient between the GOSAT and

modelled wetland seasonal cycle (Rcycle) and the standard deviation of the seasonal cycle amplitude(σA), above the minimum

value for that metric. We denote these changes as ∆Rcycle and ∆σA. We do this for the different ensemble parameter groupings

(meteorological driving data, vegetation, temperature dependency, wetland extent) individually and hold the other parameters

constant. To elaborate, out of the 24 ensemble members, the ensemble is split into (2x3x2x2) groupings (see Section 2.3 and265

Figure 1). Using the meteorological driving data as an example, there are 12 different configurations that use ERA-Interim

and 12 configurations that use WFDEI. We compare the statistics for the performance of these configurations for pairs of

configurations where the only difference is which meteorological driving data is used and calculate the change in the metric

between the highest and lowest values. We then do likewise for the other parameters (vegetation, temperature dependency

and wetland extent). Note that for vegetation there are 3 configuration possibilities (phenology, fixed-TRIFFID and dynamic-270

TRIFFID) and this results in triplets rather than pairs of members that are compared. For clarity, the values that we report are

the change above the minimum value for each pair/triplet and hence, by construction, this is a positive (or zero) value.

The results of this analysis are presented in Figure 6 with all regions collated into a single set of results. The ensemble

members driven by WFDEI consistently out-perform the ERA-Interim based members with both a significantly higher ∆Rcycle

(a median increase of 0.12 with quartile values of 0.02 and 0.24) and significantly lower ∆σA (a median decrease of 0.53 ppb).275

For the vegetation configurations, the results are more mixed without any single configuration being substantially better than

the rest but the phenology-based configurations do exhibit a slightly higher ∆Rcycle (0.03, 0.01 and 0.01 for Phenology,

TRIFFID-Fixed and TRIFFID-Dynamic) and lower ∆σA than the TRIFFID configurations suggesting that overall it performs

slightly better. However the significant overlapping spread here suggests that these results are much more region-dependent.
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For temperature dependency the lower Q10 value (3.7) performs better than the higher Q10 value (5.0) but again, the spread280

in both ∆Rcycle (e.g. 75th-percentile values of 0.15 and 0.09 for a Q10 of 3.7 and 5.0 respectively) and ∆σA (75th-percentile

values of 0.53 ppb and 0.72 ppb) are high, suggesting a large region-to-region variability (consistent with Turetsky et al. (2014)

who measured a wide range of Q10 values across different wetland types). Finally, the choice of wetland extent between

JULES and SWAMPS is found to make little difference with SWAMPS very slightly increasing the correlation and decreasing

the standard deviation over the original JULES. We discuss this aspect in more detail below.285

Overall we can conclude that the source of the meteorological driving data (ERA-Interim vs WFDEI) is the most significant

factor in how well JULES is able to reproduce the wetland seasonal cycle with WFDEI performing (almost) unanimously

better than ERA-Interim over the 16 wetland regions that we consider. In this context, an important factor is that WFDEI

precipitation is bias-corrected using the observed monthly mean (Weedon et al., 2014). This is likely the cause of the significant

improvement in wetland extent obtained by using WFDEI over ERA-Interim. The choice of the vegetation and temperature290

dependency configurations were found to improve (or worsen) the representation of the seasonal cycle depending on their

choice but this was found to be much more region-dependent with a greater spread. Perhaps surprisingly, the choice of wetland

extent configuration was found to have less of an effect when collating results across all regions. However, an important point

to make here is that we are solely comparing the performance between two extent configurations and find that neither is

significantly better than the other. This does not preclude extent itself from being important. It should also be remembered295

here that for the majority of regions, Rcycle already shows a good correlation to observations for the majority of ensemble

members (see Figure 5), implying that the extent is already sufficiently well-reproduced in these regions. In the following

section we focus on case studies over the 3 poorly-performing African wetland regions and demonstrate the significance of

poorly reproducing wetland extent in these regions.
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Figure 6. The change in correlation coefficient (top panel) and standard deviation (bottom panel) between the JULES ensemble and GOSAT

wetland CH4 seasonal cycle when controlling for the remaining ensemble parameters. The change is the difference above the minimum

value for each set of ensemble members. An increased correlation coefficient should be considered an improvement, whereas an increased

standard deviation should be considered a worsening. The changes are calculated for all 16 wetland regions in this study and presented as a

box-and-whisker plot (box: quartiles, whiskers: min/max).
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5 Evaluation of JULES Ensemble Over Africa Wetland Regions300

We now investigate three significant African wetland regions (the Sudd, the Congo and Southern Africa) in detail and evaluate

the performance of the JULES wetland methane emission estimates in these regions. These regions were selected as they were

found to exhibit particularly poor correlation coefficients between GOSAT and JULES, suggesting issues with the timing of

the seasonal cycle, as well as large differences in seasonal cycle amplitude.

Figure 7 presents the same analysis as performed in Figure 6 but broken down individually for the three African wetland305

regions. Overall, the same general pattern that we find for all regions persists individually for these regions but with some

interesting exceptions.

For the meteorological data, the WFDEI ensemble members show improved ∆Rcycle (0.26, 0.12 and 0.46 medians for Sudd,

Congo and Southern Africa respectively) with ERA-Interim worsening the ∆σA value (by 0.60 ppb, 0.50 ppb and 1.35 ppb

respectively). As a reminder here, a value of 0 (as is the case for the change in ERA-Interim), indicates that the selection310

consistently performs the same (be that the lowest correlation coefficient or the smallest standard deviation) in relation to the

other possible selection(s).

For the vegetation configuration, as found across all regions combined, there is not a distinctly better configuration. The

phenology-based ensemble members perform best for the Sudd, with the highest ∆Rcycle (0.12) and lowest ∆σA (0.0 ppb,

indicating that it consistently out-performs the other configurations). However, for the Congo region there seems to be very315

little improvement, or indeed variability, between the 3 different vegetation options. This is largely expected due to low vari-

ability/seasonality in the tropical broadleaf vegetation. For the Southern Africa region, the dynamic TRIFFID configuration

performs slightly worse than the others (∆σA increasing by 0.28 ppb) but the performance of phenology and fixed-TRIFFID

is hard to differentiate.

The temperature dependency exhibits very strong regional behaviour. For example, for Southern Africa the temperature320

dependency can improve ∆Rcycle by 0.75 for the lower Q10 value versus the higher value and at the same time, the higher

Q10 value can worsen the ∆σA by over 1.6 ppb. In contrast, for the Congo the higher Q10 value improves ∆Rcycle by 0.32

with the lower Q10 value worsening ∆σA by over 0.6 ppb. While this does not leave us with a clear indication that one Q10

value is universally better than the other, it does highlight the potential for significantly improving the ∆Rcycle by selection of

appropriate region-specific values. It should be noted that while some studies (e.g. Turetsky et al. (2014)) have measured a wide325

variability in Q10 values across different wetland types (e.g. bog, fen, swamps), these have typically focused on subtropical,

temperate and northern high-latitude regions. Further observations and constraints on the temperature dependency of tropical

wetlands would be useful in this context.

Finally, neither configuration of wetland extent is found to significantly out-perform the other for any of the 3 regions. For

the Congo and Southern Africa regions, there is very little difference and very little improvement from selecting one extent330

configuration over the other. For the Sudd region there is a slightly larger spread across the ensembles but that is true for both

the JULES and SWAMPS wetland extent configurations with neither significantly improving ∆Rcycle or worsening the ∆σA.
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Figure 7. The change in correlation coefficient (top panel) and standard deviation (bottom panel) between the JULES ensemble and GOSAT

wetland CH4 seasonal cycle when controlling for the remaining ensemble parameters. The change is the difference above the minimum value

for each set of ensemble members. An increased correlation coefficient should be considered an improvement, whereas an increased standard

deviation should be considered a worsening. The figure shows the changes for the 3 wetland regions we examine over Africa (Sudd, Congo

and Southern Africa) and are presented as box-and-whisker plots (box: quartiles, whiskers: min/max).
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5.1 Additional Datasets For African Case Study Analysis

We find that several additional datasets offer utility in further diagnosing the wetland CH4 behaviour. This section briefly

describes those datasets used in the case study analysis of African wetlands in Sections 5.2 - 5.4.335

5.1.1 Wetland Emissions Datasets

WetCHARTs (Bloom et al., 2017a) is a simple data-driven wetland model and one which has previously been extensively

evaluated against satellite observations (Parker et al., 2020b). WetCHARTs is also commonly used as a priori information

in atmospheric inversions of CH4 (Sheng et al., 2018; Lu et al., 2021; Palmer et al., 2021). As such, it can act as a useful

benchmark against which to compare the JULES wetland emission estimates.340

We also utilise emission estimates from a dedicated high-resolution (0.5◦×0.625◦) atmospheric inversion of GOSAT XCH4

(Lunt et al., 2021) using the GEOS-Chem model over sub-Saharan Africa. Emissions were estimated in a Bayesian inversion

framework between 2010 and 2016. Emission priors for wetlands were taken from the WetCHARTs model, EDGAR v4.3.2

database for anthropogenic emissions and the GFED v4.1s dataset for biomass burning emissions. Total CH4 emissions were

resolved in the inversion from basis functions representing individual countries and major river basins. Posterior wetland345

emissions were estimated based on the fraction of prior emissions from wetlands in each grid cell, scaled by the posterior total

CH4 emissions.

5.1.2 Wetland Extent Datasets

Wetland extent information can either be obtained from prognostic (model-based) or observation-based estimates.

We use the Wetland Area and Dynamics for Methane Modeling (WAD2M) wetland extent dataset (Zhang et al., 2021) which350

provides global 0.25◦ x 0.25◦ estimates of wetland fraction for inundated and non-inundated vegetated wetlands, derived from

microwave remote sensing. WAD2M is derived using a combination of surface inundation based on microwave remote sensing

data along with static datasets that identify inland waters, agricultural areas, shorelines, and non-inundated wetlands. Areas

containing permanent water bodies (such as lakes, rivers, etc), rice paddies and coastal wetlands are excluded. The resulting

dataset therefore represents the spatiotemporal patterns of inundated and non-inundated vegetated wetlands and is expected to355

improve estimates of wetland CH4 fluxes. In this study we use the updated version which spans 2000-2018.

The global flood simulation model CaMa-Flood v4.0 (Yamazaki et al., 2011; Zhou et al., 2021) was used to predict fluvial in-

undation extents, specifically simulations at 0.25◦ x 0.25◦ resolution driven by JULES runoff estimates from the eartH2Observe

project (Marthews et al., 2021).

Finally, we also use surface reflectance imagery (RGB) from the MODIS satellite, processed and visualised using Google360

Earth Engine. These data allow a visual inspection of the region and provides a useful indicator of potential inundation, albeit

not in the presence of dense vegetation canopy.
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5.1.3 Sentinel-5P TROPOMI XCH4

We use XCH4 from v1.5 of the University of Bremen TROPOMI WFMD retrieval (Schneising et al., 2019). Although the

TROPOMI data is relatively new (Sentinel 5-Precursor launched in October 2017) and algorithm development is still maturing,365

TROPOMI does offer an unprecedented capability for the mapping of CH4 over large regions at an enhanced (7 km) spatial

resolution and complements the long time series of GOSAT point-based measurements.

Figure 8. Time series showing the GOSAT (red) and JULES ensemble (grey) wetland CH4 seasonal cycles for the three African wetland

regions. The wetland seasonal cycle is calculated by subtracting the TOMCAT model simulations that do not contain any wetland emissions.

For each region, the best performing (highest Rcycle) ensemble members are shown for the JULES and JULES-SWAMPS wetland extent

configurations.

5.2 The Sudd

The first region we focus on is the Sudd wetlands in South Sudan. The Sudd is one of the world’s largest freshwater ecosystems

and the largest in the Nile Basin, draining much of Eastern Africa, including from Lake Victoria (Sutcliffe and Brown, 2018).370

This outflow from Lake Victoria leads to strong seasonal inundation, characterised by annual flood pulses (Rebelo et al., 2012),

which is further modified by local precipitation and evaporation (Mohamed and Savenije, 2014), leading to highly complex

and seasonal behaviour (Sosnowski et al., 2016). Previous work (Parker et al., 2020a; Lunt et al., 2021; Pandey et al., 2021) has
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Figure 9. Time series showing the mean fluvial inundation fraction generated by the CaMa-Flood model for the three African wetlands

regions between 2010 and 2015 compared to the standard JULES groundwater inundation. The annotations highlight the example month

chosen for each region that are subsequently presented in Figures 10, 12 and 13.

detailed the importance of understanding and characterising the CH4 emissions from the Sudd wetlands given their sensitivity

to large-scale climate drivers.375

As discussed in Section 5, we find for all three African regions that neither parameterisation of wetland extent (JULES

nor JULES masked with SWAMPS) outperforms the other and as shown in Figure 5, the correlation coefficient between the

ensemble members and observations is poor. Although the WFDEI driving data greatly improves the correlation coefficient

compared to ERA-Interim, the best performing ensemble members are only capable of achieving an Rcycle value of 0.61

(Figure A2). It is interesting to note here that for the Sudd, the ensemble members that perform best against observations380

(2121/2122: WFDEI, Phenology, high temperature dependency) are the exceptions from the ensemble. The majority of the

ensemble members correlate well to each other and poorly to the observations. Figure 8 (top) shows the wetland seasonal

cycle for the individual ensemble members and includes the observed seasonal cycle. The wetland seasonal cycle amplitude

(AJULES) even for the best performing ensemble member is significantly lower than the observed seasonal cycle (AGOSAT ),

as summarised in Figure 5, and the reason for the poorRcycle value is that JULES appears to be out of phase with observations.385

This all suggests a fundamental lack of variability is being generated by JULES, with wetland extent an obvious parameter to

evaluate in greater detail.

We compare in Figure 9 the JULES wetland fraction for these three regions against that generated using JULES-CaMa-Flood

simulations which are capable of explicitly representing river and floodplain water dynamics and hence incorporate fluvial

inundation. CaMa-Flood is the only open-source global river routing model that is based on the local inertial approximation of390
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the Saint-Venant equations, which takes into account the backwater and tide effects of downstream elements (viz. the possible

reversal of flow in particular reaches upstream from e.g. lakes, tributaries, estuaries) (Marthews et al., 2021).

For the Sudd we find that the wetland extent seasonal cycle and magnitude are very similar between JULES and JULES-

CaMa-Flood. However, applying the SWAMPS masking to JULES results in the JULES-SWAMPS configuration having a

drastically smaller seasonal cycle amplitude and a significantly different phase (almost completely out of phase). This suggests395

that simply applying the JULES-SWAMPS mask for the Sudd results in a decoupling of the seasonal cycle for the masked areas

from the wider region. For this reason, we evaluate the spatial distribution of both the CH4 emissions and the wetland extent.

Figure 10 focuses on September 2011, which is towards the peak of the inundation, as indicated by the JULES-CaMa-Flood

simulations (Figure 9). In Figure 10 we present CH4 emission maps over the Sudd from two of the JULES ensemble members

(one with the default wetland extent (Fig. 10a) and one with the additional SWAMPS mask (Fig. 10b)). Furthermore, we also400

show the CH4 emissions derived from a GEOS-Chem flux inversion (Fig. 10e) and from the WetCHARTs ensemble (Fig. 10f).

In addition to the CH4, we show the JULES wetland fraction (Fig. 10c), MODIS imagery (Fig. 10d), the JULES-CaMa-Flood

wetland fraction (Fig. 10g) and the WAD2M wetland fraction (Fig. 10h). By using this wide range of information we are able

to more confidently assess and evaluate the performance of JULES in this region and determine whether wetland area (and

subsequently CH4 emissions) are being generated in the correct locations.405

There is an obvious discrepancy between the area where JULES generates wetland area (and subsequently CH4 emission)

compared to the location indicated by all of the other datasets. JULES places the majority of wetlands in the region in western

Ethiopia (Fig. 10c) and fails to generate significant wetlands in South Sudan. All of the other data sources agree strongly where

the wetlands and emissions should be located (Figs. 10d-h), the majority over the Al-Sudd wetlands in central South Sudan

with additional wetlands in the Machar marshes on the border with Ethiopia (e.g. Fig. 10h). When using the SWAMPS masking410

of the JULES wetland extent, slightly more emissions are generated in the correct location due to the removal of the majority

of the spurious Ethiopian emissions but emissions remain significantly too small in both area and magnitude.

As further confirmation for where CH4 emissions should be present in this region, CH4 observations from TROPOMI are

used, allowing us to map CH4 in the region. Figure 11 (bottom) shows the enhancement in the TROPOMI data over the Sudd

region, calculated by subtraction of latitudinal means, between January - May for 2018-2020. This clearly shows a strong415

enhancement in the measured CH4 total column (in excess of 45 ppb) at the location consistent with our above interpretation,

directly over the Al-Sudd wetlands as well as an enhancement over the Machar marshes. Pandey et al. (2021) have previously

shown a similar enhancement from TROPOMI over this region, adding further weight to our conclusions.

The reason that JULES fails to produce these wetlands is largely due to the topography in this region. Rainfall here occurs

in the Ethiopian Highlands, flowing downhill to maintain the Sudd wetlands. Without the addition of a river routing and420

inundation mechanism within the JULES simulations, wetlands are instead created erroneously in the Ethiopian Highlands (as

indicated in Figure 10a).

It is important to highlight here that the JULES-CaMa-Flood simulations (Fig. 10g) are capable of producing wetlands in

the correct location and as such, future developments within JULES that incorporate some of the CaMa-Flood capabilities for
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river routing and fluvial inundation would be expected to significantly improve the ability of JULES to successful reproduce425

the correct temporal and spatial distribution of wetlands, and ultimately CH4 emissions, over the Sudd region.

Figure 10. Comparison over the Sudd wetland region showing the wetland CH4 emissions for September 2011 for a) JULES with the default

wetland extent, b) JULES with the SWAMPS masking for wetland extent, e) GEOS-Chem flux inversion of GOSAT XCH4 over Africa and

f) WetCHARTs ensemble mean. Also shown are the wetland fractions from c) JULES, g) JULES-CaMa-Flood and h) WAD2M along with

d) MODIS (RGB) surface reflectance. Both JULES simulations are the configurations that use the WFDEI meteorological driving, the lower

Q10 value and phenological vegetation as these were shown to provide the best result over this region (see Figure 7).

5.3 The Congo

The second region that we focus on is the Congo. The Congo Basin contains flooded forests and peatlands, known as the

Cuvette Centrale, which act as a major global store of carbon (Dargie et al., 2017) and source of CH4 emissions (Borges et al.,

2015). CH4 emissions from the Congo are still poorly constrained (Melton et al., 2013), with dense cloud-cover and forest430

canopies making observations of both wetland extent (Salovaara et al., 2005; Bwangoy et al., 2010; Becker et al., 2018) and

CH4 emissions challenging (Tathy et al., 1992; Lunt et al., 2019; Parker et al., 2020b). The complex hydrology (Lee et al., 2011)

in this region includes two wet seasons, in March and November (Haensler et al., 2013), making coupled climate simulations

of this region challenging (Crowhurst et al., 2021).
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Figure 11. Enhancement in TROPOMI XCH4 calculated by gridding the data into daily 0.1◦ x 0.1◦ bins and subtracting a baseline for

each latitude bin. The baseline is calculated as the 5th percentile of each latitude bin with a rolling 5-bin (i.e. 0.5◦ latitude) average used

to smooth out fluctuations. The enhancements are shown for the Southern Africa and Sudd regions, averaged over the months where the

wetland signal peaks as indicated in Figure 8. It should be noted for Southern Africa that the enhancement over the Etosha Pan in Namibia

(south-west corner of the domain) is likely overestimated due to particular spectral albedo variations within the fitting window used in the

satellite retrievals. Finally, there were not sufficient cloud-free observations for the Congo region.

Figure 8 (middle) shows the modelled ensemble seasonal cycle along with the observed seasonal cycle. Again, the highest435

correlation coefficient for an ensemble member is found to be poor (Rcycle = 0.52) with some ensemble members exhibiting

zero correlation to the observations. This again suggests a significant lack of seasonal variability in the JULES simulations.

Furthermore, the observed seasonality exhibits more complex behaviour with double-peaks in some (but not all) years, high-

lighting the complex hydrology in this region.

Figure 9 (middle) shows that the seasonality produced by JULES-CaMa-Flood is in good agreement with that from JULES440

but with significantly lower average inundation (∼ 0.02 vs ∼ 0.10). When applying the SWAMPS masking to JULES, the

average inundation is reduced (to ∼ 0.05) with the seasonality largely lost.
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By comparing against the additional datasets we see why the Congo remains a difficult area to model. The default JULES

simulations lead to groundwater inundation of the entire Congo Basin (Fig. 12c), leading to fairly low widespread emissions,

whereas the JULES simulations with the extent masked by SWAMPS produce significantly more emissions (Fig. 12b), more445

tightly constrained to the area in the vicinity of the river system, albeit still very widespread. These latter emissions with the

SWAMPS mask do appear to be in more reasonable agreement spatially with the CH4 emissions from both the GEOS-Chem in-

version (Fig. 12e) and from WetCHARTs (Fig. 12f). Some care needs to be taken here as WetCHARTs itself is used as the prior

for the GEOS-Chem flux inversion, so the two should not be considered fully independent, and the major difference between

them is reflected in the emissions magnitude. The fluvial inundation from the JULES-CaMa-Flood simulations over the Congo450

(Fig. 12g) produce wetland extent close to the river, which is largely missing from the standard JULES simulations. MODIS

imagery (Fig. 12d) agrees with the JULES-CaMa-Flood simulations and does not show clear signs of inundation over this area

except directly at the rivers. However, this may be misleading due to the dense tree canopy in this area. Indeed, wetlands (i.e.

swamps and flooded forest) in the Congo can exist in relatively hilly areas, not directly fed by river flooding, but more due to

local precipitation or groundwater. The pattern of wetland fraction from WAD2M (Fig. 12h), employing microwave observa-455

tions that can partially penetrate the canopy layer, does suggest that there is a combination of both groundwater inundation and

fluvial inundation. This does highlight the challenge in simulating such flooded forests where evaluation can be challenging and

observations lacking. Additionally, dense cloud-cover in this region results in very few successful CH4 retrievals from satellites

(both GOSAT and TROPOMI), again reducing our capability to accurately evaluate model performance in this region.

The Congo remains one of the most significant global wetland regions but equally remains one of the most challenging460

to simulate and evaluate, with a significant uncertainty in the CH4 emissions. Ongoing model development (Gedney et al.,

2019) related to inclusion of methane emissions from trees in flooded areas (Pangala et al., 2017; Gauci et al., 2022) as well as

improvements in the soil ancillary data to represent oxisol and ultisol soils in this area are expected to improve our ability to

more accurately model the CH4 emissions from the Congo in future work.

5.4 Southern Africa465

The final region that we evaluate is Southern Africa, primarily focusing on the Zambezi River Basin in Zambia and Angola but

also including parts of Namibia, Botswana, Zimbabwe, Mozambique and the Democratic Republic of Congo. Wetlands in this

region are primarily swampland and seasonally inundated savannah/grasslands (Zimba et al., 2018; Lowman et al., 2018). The

region also encompasses the Okavango Delta in northern Botswana (McCarthy, 2006; Wolski et al., 2012).

The values of Rcycle for this region are found to vary significantly, ranging from reasonable positive correlations (Rcycle =470

0.67) to similar large negative correlations (Rcycle = -0.68). This region is one in particular where the WFDEI-based ensemble

members perform much better than the ERA-Interim members as shown in Figure 7.

Figure 8 (bottom) shows that for the ensemble members with the largest Rcycle value, there is a reasonable correlation

(maximum of 0.67) to the observed cycle. However, this is countered by some ensemble members having a similarly negative

Rcycle value (of -0.68 in the worst case). All of the ERA-Interim based ensemble members have a low or negative Rcycle value475
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Figure 12. Comparison over the Congo wetland region showing the wetland CH4 emissions for November 2011 for a) JULES with the

default wetland extent, b) JULES with the SWAMPS masking for wetland extent, e) GEOS-Chem flux inversion of GOSAT XCH4 over

Africa and f) WetCHARTs ensemble mean. Also shown are the wetland fractions from c) JULES, g) JULES-CaMa-Flood and h) WAD2M

along with d) MODIS (RGB) surface reflectance. Both JULES simulations are the configurations that use the WFDEI meteorological driving,

the higher Q10 value and phenological vegetation as these were shown to provide the best result over this region (see Figure 7).

(-0.68 - 0.23) whereas the WFDEI ensemble members range from -0.23 - 0.67. This very wide spread in Rcycle (-0.68 - 0.67)

across the ensemble explains why the average correlation is found to be very poor (Fig. 5).

When comparing the wetland extent from the best performing ensemble members to that produced by JULES-CaMa-Flood

(Fig. 9 (bottom)) we find a good agreement in the seasonality between all three. However, in terms of the magnitude, the

average groundwater inundation for the default JULES configuration is augmented by approximately 50% in the simulation480

with JULES-CaMa-Flood, with the SWAMPS-masked inundation in contrast being far too low. Figure 13 clarifies that although

the seasonality is reasonable, the spatial distribution is again, incorrect. The default JULES wetland extent for this region

places wetlands in northern Zambia and southern Democratic Republic of Congo. In contrast, the SWAMPS masking places

the wetlands primarily along the Zambezi and Bangweulu wetlands in the west and north-east of Zambia, respectively. The

flux inversion results from GEOS-Chem suggest that emissions are observed over the Zambezi floodplain but also various485

other locations in the region including the Okavango Delta to the south, around Lake Kariba along the Zambia/Zimbabwe

border, the Cahora Bassa lake in Mozambique and the Bangweulu wetland system in north-east Zambia. The WAD2M wetland

fractions and the MODIS imagery both also indicate these as all being significantly inundated areas. Although the methane

enhancement signals (20-30 ppb) are not as large as identified for the Sudd region, the TROPOMI S5P CH4 enhancement (Fig.
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11) does indicate enhanced CH4 values over these areas giving further confidence that the inundated areas are being correctly490

identified along with their subsequent CH4 emission by the GEOS-Chem flux inversion. The wetland fraction calculated by the

JULES-CaMa-Flood simulation (Fig. 13g) is found to be in very good agreement with the WAD2M data (Fig. 13g) and hence

suggests that JULES CH4 emissions based on the JULES-CaMa-Flood derived wetlands would be in much closer agreement

to the observations.

Figure 13. Comparison over the Southern Africa wetland region showing the wetland CH4 emissions for March 2010 for a) JULES with

the default wetland extent, b) JULES with the SWAMPS masking for wetland extent, e) GEOS-Chem flux inversion of GOSAT XCH4 over

Africa and f) WetCHARTs ensemble mean. Also shown are the wetland fractions from c) JULES, g) JULES-CaMa-Flood and h) WAD2M

along with d) MODIS (RGB) surface reflectance. Both JULES simulations are the configurations that use the WFDEI meteorological driving,

the lower Q10 value and phenological vegetation as these were shown to provide the best result over this region (see Figure 7).

6 Conclusions495

Overall we find that existing configurations of JULES can simulate wetland CH4 emissions comparable in performance to

those generated via state-of-the-art data-driven emission inventories such as WetCHARTs.

The wetland methane seasonal cycle amplitude from JULES is typically underestimated compared to observations by be-

tween 1.8 ppb and 19.5 ppb across the different wetland regions examined. However, the correlation coefficient to the observed

seasonal cycle is typically reasonable-to-good for most wetland regions (r = 0.58 to 0.88) although several regions do exhibit500

a poor correlation (r < 0.31) and these are explored in more detail.
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Across the JULES ensemble, there are significant differences between ensemble members with the WFDEI driving data

giving universally better performance than ERA-Interim. This highlights the vital role that the meteorological driving input

data has on determining the wetland response within the model and emphasises the benefits of bias-correcting to observations

as done in the generation of the WFDEI data. We would expect our conclusions regarding the strong performance of WFDEI505

meteorology to also apply to the updated WFDE5 data (based on ERA-5), detailed in Cucchi et al. (2020). Future work will

assess simulations driven by these inputs.

We find that the specific vegetation configuration of the ensemble member has a small effect on the performance (with

Phenology typically performing better than either TRIFFID configuration) suggesting that there are potential improvements to

consider when using a dynamic vegetation model such as TRIFFID. The effect of the temperature dependency is moderate,510

with the lower value (Q10 = 3.7) generally performing best but there are some important regional differences where the effect is

much larger. We recommend further investigation into the variability in Q10 across different ecosystems and the consequences

that has for CH4 emissions.

Neither choice of wetland extent, either the original JULES as is or masked with SWAMPS data, tends to perform better

and both clearly have significant deficiencies. We find that a simple masking of the JULES wetland extent with the observed515

SWAMPS wetland mask is not sufficient to reproduce the wetland seasonal cycle in key areas and instead, fundamental changes

to the way the inundation is modelled are necessary in some regions, particularly those regions where fluvial inundation plays a

significant role in the hydrology. This is demonstrated by the significant improvement in the agreement to multiple observation-

based wetland and CH4 datasets when using the JULES-CaMa-Flood wetland extent, which incorporates fluvial inundation,

compared to the original (interfluvial) JULES data over key African wetland regions. Incorporating such fluvial inundation520

changes into JULES is expected to significantly improve the ability of JULES to better represent the wetland extent and

subsequently, produce more accurate CH4 emissions.

Despite our analysis pointing towards the potential for significant improvements in key regions, the Congo wetland region

in particular remains both challenging to model and to evaluate, highlighting the need for further study and additional ground-

based observations that are less affected by the extensive cloud coverage of the region. Improved mapping of the wetland extent525

(by both groundwater and fluvial inundation) as well as measurements of the temperature dependency of the CH4 emissions

would help in further constraining the CH4 emissions from this region.

Finally, ongoing developments within JULES, such as the chimney venting (i.e. aerenchymal transport) of CH4 by vegeta-

tion and the improved representation of soil properties, are expected to lead to additional improvements in the model. With

these additions coupled to an improved representation of wetland extent and variability through more advanced hydrological530

modelling, we greatly improve our capability to model the emission of CH4 from tropical wetlands both historically and under

a changing future climate.
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Code and data availability. For this study, we use version 5.1 of JULES (at revision 10836, released in February 2018). The source code is

available from the JULES code repository (see https://code.metoffice.gov.uk/trac/jules/log/main/trunk?rev=10836, user account required).

The rose suites used for the specific JULES runs are: u-ba800 (WFDEI+phenology), u-bh665 (WFDEI+TRIFFID no competition), u-535

ax384 (WFDEI+TRIFFID), u-be476 (ERA Interim+phenology), u-be478 (ERA Interim+TRIFFID no competition) and u-be517 (ERA In-

terim+TRIFFID). The rose suites can be found at https://code.metoffice.gov.uk/trac/roses-u/, (user account required). We run each rose suite

twice, using Q10 values of 3.7 and 5.0.

The latest version of the University of Leicester GOSAT Proxy v9.0 XCH4 data (Parker and Boesch, 2020) is available from the Centre

for Environmental Data Analysis data repository at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb. The version used in this540

study (v7.2) is available from the Copernicus C3S Climate Data Store at https://cds.climate.copernicus.eu. WetCHARTs v1.0 is available from

Bloom et al. (2017b). This study uses v1.2.1 which is available on request from A. Bloom. WAD2M is available from https://doi.org/10.5281/

zenodo.3998454. The MODIS Surface Reflectance 8-Day L3 data and MODIS Combined 16-Day NDWI data were visualised via the Google

EarthEngine software with the data provided courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC),

USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov). The University of545

Bremen TROPOMI/WFMD XCH4 data are available from https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/.

Requests for information about the code, data and parameterisations can be made to the corresponding author.
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This research used the ALICE High Performance Computing Facility at the University of Leicester for the GOSAT retrievals and analysis.

We undertook the JULES runs on the NERC’s JASMIN High Performance Computing Facility. The TOMCAT simulations were performed
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Appendix A

In the main text (Section 4) we refer to previous work (Parker et al., 2020b) which evaluates the WetCHARTs data-driven

emission inventory (Bloom et al., 2017a) using a similar methodology as used in this study. This common analysis methodology

allows a direct comparison between the performance of the JULES wetland CH4 emissions (this study) against the WetCHARTs575

performance (Parker et al., 2020b). Figure A1 reproduces Figure 5 from this study and compares to Figure 4 from Parker et al.

(2020b).

Figure A1. Comparison of Figure 5 from this study for JULES against Figure 4 from Parker et al. (2020b) for WetCHARTs.
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Figure A2 shows the correlation coefficient between the different ensemble members and the observed wetland CH4 seasonal

cycle for the Sudd region. The majority of the ensemble members correlate strongly to each other (r > 0.9) but poorly to the

observed seasonal cycle (r < 0.2). The set of ensemble members that correlate best to observations (members 2121 and 2122580

- WFDEI meteorology, Phenology vegetation and high Q10 value) correlates the least to the remaining ensemble members,

suggesting a significant difference in the characteristics of these few ensemble members. This is discussed in the main text in

Section 5.2.

Appendix B

We perform additional assessment on the assumptions made in our methodology when calculating the wetland seasonal cycle585

signal, specifically assumptions relating to the accuracy of non-wetland sources.

We have performed analysis over three non-wetland areas (as highlighted in red in Figure B1), namely West US, Arabian

Peninsula and Western Australia. These regions would not be expected to be dominated by wetland emissions and hence

evaluation of the simulated CH4 column against observations provides an assessment of how the non-wetland emissions in the

model are performing. The detrended methane seasonal cycle (note: total, not wetland-only) for the model is compared against590

GOSAT observations in Figure B2 and we find a very good agreement (with correlation coefficients of 0.89, 0.96 and 0.90,

respectively, for West US, Arabian Peninsula and Western Australia). This, along with previous work as outlined in Section

4 gives confidence that the current model setup and associated priors, provides a strong baseline against which to assess the

wetland-specific component of the observed/modelled signal.
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Figure A2. Correlation coefficient between the different ensemble members and the observed wetland CH4 seasonal cycle for the Sudd

wetland region.
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Figure B1. An adjusted version of Figure 3 showing the locations of the 16 wetland regions considered in this study plus three additional

non-wetland regions (in red). A representative month (August 2011) of the JULES wetland fraction is shown as the basemap.

Figure B2. Time series showing the methane seasonal cycle as determined from GOSAT (orange) and the JULES ensemble (blue) over the

three non-wetland regions indicated (red) in Figure B1.
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Dlugokencky, E. J., Fofonov, A. V., Galanin, A., Lavrič, J., Machida, T., Parker, R., Sasakawa, M., Spahni, R., Stocker, B. D., and600

Winderlich, J.: Natural and Anthropogenic Methane Fluxes in Eurasia: A Mesoscale Quantification by Generalized Atmospheric Inversion,

Biogeosciences, 12, 5393–5414, https://doi.org/10.5194/bg-12-5393-2015, 2015.

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney,

N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land En-

vironment Simulator (JULES), Model Description – Part 1: Energy and Water Fluxes, Geoscientific Model Development, 4, 677–699,605

https://doi.org/10.5194/gmd-4-677-2011, 2011.

Beven, K. J.: Rainfall-Runoff Modelling: The Primer, 2nd Edition | Wiley, 2012.

Beven, K. J., Kirkby, M. J., Freer, J. E., and Lamb, R.: A History of TOPMODEL, Hydrology and Earth System Sciences, 25, 527–549,

https://doi.org/10.5194/hess-25-527-2021, 2021.

Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-Scale Controls of Methanogenesis Inferred from Methane610

and Gravity Spaceborne Data, Science, 327, 322–325, https://doi.org/10.1126/science.1175176, 2010.

Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A

Global Wetland Methane Emissions and Uncertainty Dataset for Atmospheric Chemical Transport Models (WetCHARTs Version 1.0),

Geoscientific Model Development, 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017a.

Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R. J., Mcdonald, K. C.,615

and Jacob, D. J.: CMS: Global 0.5-Deg Wetland Methane Emissions and Uncertainty (WetCHARTs v1.0), ORNL DAAC,

https://doi.org/10.3334/ORNLDAAC/1502, 2017b.

Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., Omengo, F. O., Guérin, F., Lambert, T., Morana,

C., Okuku, E., and Bouillon, S.: Globally Significant Greenhouse-Gas Emissions from African Inland Waters, Nature Geoscience, 8,

637–642, https://doi.org/10.1038/ngeo2486, 2015.620

Bwangoy, J.-R. B., Hansen, M. C., Roy, D. P., Grandi, G. D., and Justice, C. O.: Wetland Mapping in the Congo Basin Us-

ing Optical and Radar Remotely Sensed Data and Derived Topographical Indices, Remote Sensing of Environment, 114, 73–86,

https://doi.org/10.1016/j.rse.2009.08.004, 2010.

Chipperfield, M. P.: New Version of the TOMCAT/SLIMCAT off-Line Chemical Transport Model: Intercomparison of Stratospheric Tracer

Experiments, Quarterly Journal of the Royal Meteorological Society, 132, 1179–1203, https://doi.org/10.1256/qj.05.51, 2006.625

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher,

O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), Model Description – Part 2:

Carbon Fluxes and Vegetation Dynamics, Geoscientific Model Development, 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.

Comyn-Platt, E., Hayman, G., Huntingford, C., Chadburn, S. E., Burke, E. J., Harper, A. B., Collins, W. J., Webber, C. P., Powell, T., Cox,

P. M., Gedney, N., and Sitch, S.: Carbon Budgets for 1.5 and 2 °C Targets Lowered by Natural Wetland and Permafrost Feedbacks, Nature630

Geoscience, 11, 568–573, https://doi.org/10.1038/s41561-018-0174-9, 2018.

33

https://doi.org/10.1016/j.jag.2017.11.015
https://doi.org/10.5194/bg-12-5393-2015
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.5194/hess-25-527-2021
https://doi.org/10.1126/science.1175176
https://doi.org/10.5194/gmd-10-2141-2017
https://doi.org/10.3334/ORNLDAAC/1502
https://doi.org/10.1038/ngeo2486
https://doi.org/10.1016/j.rse.2009.08.004
https://doi.org/10.1256/qj.05.51
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.1038/s41561-018-0174-9


Crowhurst, D., Dadson, S., Peng, J., and Washington, R.: Contrasting Controls on Congo Basin Evaporation at the Two Rainfall Peaks,

Climate Dynamics, 56, 1609–1624, https://doi.org/10.1007/s00382-020-05547-1, 2021.

Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted

ERA5 reanalysis data for impact studies, Earth System Science Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020.635

Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., and Ifo, S. A.: Age, Extent and Carbon Storage of

the Central Congo Basin Peatland Complex, Nature, 542, 86–90, https://doi.org/10.1038/nature21048, 2017.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer,

P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haim-

berger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz,640

B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim Reanalysis:

Configuration and Performance of the Data Assimilation System, Quarterly Journal of the Royal Meteorological Society, 137, 553–597,

https://doi.org/10.1002/qj.828, 2011.

Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell,

A. M., Miller, J. B., and Gatti, L. V.: Observational Constraints on Recent Increases in the Atmospheric CH4 Burden, Geophysical645

Research Letters, 36, https://doi.org/10.1029/2009GL039780, 2009.

Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative Forcing of Carbon Dioxide, Methane, and Nitrous Oxide: A Significant

Revision of the Methane Radiative Forcing, Geophysical Research Letters, 43, 12,614–12,623, https://doi.org/10.1002/2016GL071930,

2016.

Folberth, G. A., Staniaszek, Z., Archibald, A. T., Gedney, N., Griffiths, P. T., Jones, C. D., O’Connor, F. M., Parker, R. J., Sellar, A. A., and650

Wiltshire, A.: Description and Evaluation of an Emission-Driven and Fully Coupled Methane Cycle in UKESM1, Journal of Advances in

Modeling Earth Systems, 14, e2021MS002 982, https://doi.org/https://doi.org/10.1029/2021MS002982, 2022.

Ganesan, A. L., Schwietzke, S., Poulter, B., Arnold, T., Lan, X., Rigby, M., Vogel, F. R., van der Werf, G. R., Janssens-Maenhout,

G., Boesch, H., Pandey, S., Manning, A. J., Jackson, R. B., Nisbet, E. G., and Manning, M. R.: Advancing Scientific Un-

derstanding of the Global Methane Budget in Support of the Paris Agreement, Global Biogeochemical Cycles, 33, 1475–1512,655

https://doi.org/10.1029/2018GB006065, 2019.

Gauci, V., Figueiredo, V., Gedney, N., Pangala, S. R., Stauffer, T., Weedon, G. P., and Enrich-Prast, A.: Non-Flooded Riparian Amazon Trees

Are a Regionally Significant Methane Source, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 380, 20200 446, https://doi.org/10.1098/rsta.2020.0446, 2022.

Gedney, N. and Cox, P.: The Sensitivity of Global Climate Model Simulations to the Representation of Soil Moisture Heterogeneity, Journal660

of Hydrometeorology, 4, 1265 – 1275, https://doi.org/10.1175/1525-7541(2003)004<1265:TSOGCM>2.0.CO;2, 2003.

Gedney, N., Cox, P. M., and Huntingford, C.: Climate Feedback from Wetland Methane Emissions, Geophysical Research Letters, 31,

https://doi.org/10.1029/2004GL020919, 2004.

Gedney, N., Huntingford, C., Comyn-Platt, E., and Wiltshire, A.: Significant Feedbacks of Wetland Methane Release on Climate Change and

the Causes of Their Uncertainty, Environmental Research Letters, 14, https://doi.org/10.1088/1748-9326/ab2726, 2019.665

Haensler, A., Saeed, F., and Jacob, D.: Assessing the Robustness of Projected Precipitation Changes over Central Africa on the Basis of

a Multitude of Global and Regional Climate Projections, Climatic Change, 121, 349–363, https://doi.org/10.1007/s10584-013-0863-8,

2013.

34

https://doi.org/10.1007/s00382-020-05547-1
https://doi.org/10.5194/essd-12-2097-2020
https://doi.org/10.1038/nature21048
https://doi.org/10.1002/qj.828
https://doi.org/10.1029/2009GL039780
https://doi.org/10.1002/2016GL071930
https://doi.org/https://doi.org/10.1029/2021MS002982
https://doi.org/10.1029/2018GB006065
https://doi.org/10.1098/rsta.2020.0446
https://doi.org/10.1175/1525-7541(2003)004%3C1265:TSOGCM%3E2.0.CO;2
https://doi.org/10.1029/2004GL020919
https://doi.org/10.1088/1748-9326/ab2726
https://doi.org/10.1007/s10584-013-0863-8


Harper, A. B., Cox, P. M., Friedlingstein, P., Wiltshire, A. J., Jones, C. D., Sitch, S., Mercado, L. M., Groenendijk, M., Robertson,

E., Kattge, J., Bönisch, G., Atkin, O. K., Bahn, M., Cornelissen, J., Niinemets, Ü., Onipchenko, V., Peñuelas, J., Poorter, L., Re-670

ich, P. B., Soudzilovskaia, N. A., and van Bodegom, P.: Improved Representation of Plant Functional Types and Physiology in the

Joint UK Land Environment Simulator (JULES v4.2) Using Plant Trait Information, Geoscientific Model Development, 9, 2415–2440,

https://doi.org/10.5194/gmd-9-2415-2016, 2016.

IPCC, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang,

M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Climate Change 2021:675

The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate

Change, Tech. rep., 2021.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,

L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,

Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V., O’Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter,680

B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A.,

Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three Decades of

Global Methane Sources and Sinks, Nature Geoscience, 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.

Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near Infrared Sensor for Carbon Observation Fourier-Transform

Spectrometer on the Greenhouse Gases Observing Satellite for Greenhouse Gases Monitoring, Applied Optics, 48, 6716–6733,685

https://doi.org/10.1364/AO.48.006716, 2009.

Lee, H., Beighley, R. E., Alsdorf, D., Jung, H. C., Shum, C. K., Duan, J., Guo, J., Yamazaki, D., and Andreadis, K.: Characterization of

Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry, Remote Sensing of Environment, 115,

3530–3538, https://doi.org/10.1016/j.rse.2011.08.015, 2011.

Lowman, L. E. L., Wei, T. M., and Barros, A. P.: Rainfall Variability, Wetland Persistence, and Water–Carbon Cycle Coupling in the Upper690

Zambezi River Basin in Southern Africa, Remote Sensing, 10, 692, https://doi.org/10.3390/rs10050692, 2018.

Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P., Shen, L., Qu, Z., Scarpelli, T. R., Nesser, H., Yantosca, R. M., Sheng,

J., Andrews, A., Parker, R. J., Boesch, H., Bloom, A. A., and Ma, S.: Global Methane Budget and Trend, 2010–2017: Complementarity

of Inverse Analyses Using in Situ (GLOBALVIEWplus CH4 ObsPack) and Satellite (GOSAT) Observations, Atmospheric Chemistry and

Physics, 21, 4637–4657, https://doi.org/10.5194/acp-21-4637-2021, 2021.695

Lunt, M. F., Palmer, P. I., Feng, L., Taylor, C. M., Boesch, H., and Parker, R. J.: An Increase in Methane Emissions from Tropical Africa be-

tween 2010 and 2016 Inferred from Satellite Data, Atmospheric Chemistry and Physics Discussions, pp. 1–30, https://doi.org/10.5194/acp-

2019-477, 2019.

Lunt, M. F., Palmer, P. I., Lorente, A., Borsdorff, T., Landgraf, J., Parker, R. J., and Boesch, H.: Rain-Fed Pulses of Methane from East Africa

during 2018–2019 Contributed to Atmospheric Growth Rate, 16, 024 021, https://doi.org/10.1088/1748-9326/abd8fa, 2021.700

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J., Zhang, Y., Lu, X., Bloom, A. A., Bowman,

K. W., Worden, J. R., and Parker, R. J.: 2010–2015 North American Methane Emissions, Sectoral Contributions, and Trends: A

High-Resolution Inversion of GOSAT Observations of Atmospheric Methane, Atmospheric Chemistry and Physics, 21, 4339–4356,

https://doi.org/10.5194/acp-21-4339-2021, 2021.

Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S., and Gedney, N.: High-Resolution Global Topographic Index Values for Use in Large-705

Scale Hydrological Modelling, Hydrology and Earth System Sciences, 19, 91–104, https://doi.org/10.5194/hess-19-91-2015, 2015.

35

https://doi.org/10.5194/gmd-9-2415-2016
https://doi.org/10.1038/ngeo1955
https://doi.org/10.1364/AO.48.006716
https://doi.org/10.1016/j.rse.2011.08.015
https://doi.org/10.3390/rs10050692
https://doi.org/10.5194/acp-21-4637-2021
https://doi.org/10.5194/acp-2019-477
https://doi.org/10.5194/acp-2019-477
https://doi.org/10.5194/acp-2019-477
https://doi.org/10.1088/1748-9326/abd8fa
https://doi.org/10.5194/acp-21-4339-2021
https://doi.org/10.5194/hess-19-91-2015


Marthews, T. R., Dadson, S. J., Clark, D. B., Blyth, E. M., Hayman, G., Yamazaki, D., Becher, O. R. E., Martínez-de la Torre, A., Prigent, C.,

and Jiménez, C.: Inundation Prediction in Tropical Wetlands from <em>JULES-CaMa-Flood</Em> Global Land Surface Simulations,

Hydrology and Earth System Sciences Discussions, pp. 1–31, https://doi.org/10.5194/hess-2021-109, 2021.

McCarthy, T. S.: Groundwater in the Wetlands of the Okavango Delta, Botswana, and Its Contribution to the Structure and Function of the710

Ecosystem, Journal of Hydrology, 320, 264–282, https://doi.org/10.1016/j.jhydrol.2005.07.045, 2006.

McNorton, J., Chipperfield, M. P., Gloor, M., Wilson, C., Feng, W., Hayman, G. D., Rigby, M., Krummel, P. B., O’Doherty, S., Prinn, R. G.,

Weiss, R. F., Young, D., Dlugokencky, E., and Montzka, S. A.: Role of OH Variability in the Stalling of the Global Atmospheric CH4

Growth Rate from 1999 to 2006, Atmospheric Chemistry and Physics, 16, 7943–7956, https://doi.org/10.5194/acp-16-7943-2016, 2016.

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G., Eliseev, A. V.,715

Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van

Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present State of Global Wetland Extent and Wetland Methane Modelling:

Conclusions from a Model Inter-Comparison Project (WETCHIMP), Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-

2013, 2013.

Mohamed, Y. and Savenije, H. H. G.: Impact of Climate Variability on the Hydrology of the Sudd Wetland: Signals Derived from Long Term720

(1900–2000) Water Balance Computations, Wetlands Ecology and Management, 22, 191–198, https://doi.org/10.1007/s11273-014-9337-

7, 2014.

Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the Rise—Again, Science, 343, 493–495,

https://doi.org/10.1126/science.1247828, 2014.

NOAA: Curve Fitting Methods Applied to Time Series in NOAA/ESRL/GMD.725

O’Connor, F. M., Boucher, O., Gedney, N., Jones, C. D., Folberth, G. A., Coppell, R., Friedlingstein, P., Collins, W. J., Chappellaz, J., Ridley,

J., and Johnson, C. E.: Possible Role of Wetlands, Permafrost, and Methane Hydrates in the Methane Cycle under Future Climate Change:

A Review, Reviews of Geophysics, 48, https://doi.org/10.1029/2010RG000326, 2010.

Palmer, P. I., Feng, L., Lunt, M. F., Parker, R. J., Bösch, H., Lan, X., Lorente, A., and Borsdorff, T.: The Added Value of Satellite Observations

of Methane Forunderstanding the Contemporary Methane Budget, Philosophical Transactions of the Royal Society A: Mathematical,730

Physical and Engineering Sciences, 379, 20210 106, https://doi.org/10.1098/rsta.2021.0106, 2021.

Pandey, S., Houweling, S., Lorente, A., Borsdorff, T., Tsivlidou, M., Bloom, A. A., Poulter, B., Zhang, Z., and Aben, I.: Using Satellite Data

to Identify the Methane Emission Controls of South Sudan’s Wetlands, Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-

2021, 2021.

Pangala, S. R., Enrich-Prast, A., Basso, L. S., Peixoto, R. B., Bastviken, D., Hornibrook, E. R. C., Gatti, L. V., Marotta, H., Calazans, L.735

S. B., Sakuragui, C. M., Bastos, W. R., Malm, O., Gloor, E., Miller, J. B., and Gauci, V.: Large Emissions from Floodplain Trees Close

the Amazon Methane Budget, Nature, 552, 230–234, https://doi.org/10.1038/nature24639, 2017.

Parker, R. and Boesch, H.: University of Leicester GOSAT Proxy XCH4 v9.0, https://doi.org/10.5285/18EF8247F52A4CB6A14013F8235CC1EB,

2020.

Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I., Messerschmidt, J., Deutscher, N., Griffith, D. W. T., Notholt, J.,740

Wennberg, P. O., and Wunch, D.: Methane Observations from the Greenhouse Gases Observing SATellite: Comparison to Ground-Based

TCCON Data and Model Calculations, Geophysical Research Letters, https://doi.org/10.1029/2011GL047871, 2011.

Parker, R. J., Boesch, H., Byckling, K., Webb, A. J., Palmer, P. I., Feng, L., Bergamaschi, P., Chevallier, F., Notholt, J., Deutscher, N.,

Warneke, T., Hase, F., Sussmann, R., Kawakami, S., Kivi, R., Griffith, D. W. T., and Velazco, V.: Assessing 5 Years of GOSAT Proxy

36

https://doi.org/10.5194/hess-2021-109
https://doi.org/10.1016/j.jhydrol.2005.07.045
https://doi.org/10.5194/acp-16-7943-2016
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.1007/s11273-014-9337-7
https://doi.org/10.1007/s11273-014-9337-7
https://doi.org/10.1007/s11273-014-9337-7
https://doi.org/10.1126/science.1247828
https://doi.org/10.1029/2010RG000326
https://doi.org/10.1098/rsta.2021.0106
https://doi.org/10.5194/bg-18-557-2021
https://doi.org/10.5194/bg-18-557-2021
https://doi.org/10.5194/bg-18-557-2021
https://doi.org/10.1038/nature24639
https://doi.org/10.5285/18EF8247F52A4CB6A14013F8235CC1EB
https://doi.org/10.1029/2011GL047871


XCH4 Data and Associated Uncertainties, Atmospheric Measurement Techniques, 8, 4785–4801, https://doi.org/10.5194/amt-8-4785-745

2015, 2015.

Parker, R. J., Boesch, H., McNorton, J., Comyn-Platt, E., Gloor, M., Wilson, C., Chipperfield, M. P., Hayman, G. D., and Bloom, A. A.:

Evaluating Year-to-Year Anomalies in Tropical Wetland Methane Emissions Using Satellite CH 4 Observations, Remote Sensing of

Environment, 211, 261–275, https://doi.org/10.1016/j.rse.2018.02.011, 2018.

Parker, R. J., Webb, A., Boesch, H., Somkuti, P., Barrio Guillo, R., Di Noia, A., Kalaitzi, N., Anand, J. S., Bergamaschi, P., Cheval-750

lier, F., Palmer, P. I., Feng, L., Deutscher, N. M., Feist, D. G., Griffith, D. W., Hase, F., Kivi, R., Morino, I., Notholt, J., Oh, Y. S.,

Ohyama, H., Petri, C., Pollard, D. F., Roehl, C., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té, Y., Velazco, V. A., Warneke, T.,

Wennberg, P. O., and Wunch, D.: A Decade of GOSAT Proxy Satellite CH4 Observations, Earth System Science Data, 12, 3383–3412,

https://doi.org/10.5194/essd-12-3383-2020, 2020a.

Parker, R. J., Wilson, C., Bloom, A. A., Comyn-Platt, E., Hayman, G., McNorton, J., Boesch, H., and Chipperfield, M. P.: Exploring755

Constraints on a Wetland Methane Emission Ensemble (WetCHARTs) Using GOSAT Observations, Biogeosciences, 17, 5669–5691,

https://doi.org/10.5194/bg-17-5669-2020, 2020b.

Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Corbin,

K., Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P., Ito, A., Kawa, S. R., Law, R. M., Loh, Z., Maksyutov, S., Meng, L., Palmer,

P. I., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C.: TransCom Model Simulations of CH4 and Related Species: Linking Transport,760

Surface Flux and Chemical Loss with CH4 Variability in the Troposphere and Lower Stratosphere, Atmospheric Chemistry and Physics,

11, 12 813–12 837, https://doi.org/10.5194/acp-11-12813-2011, 2011.

Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Saunois, M., Arora, V. K., Beerling, D. J., Brovkin, V., Jones, C. D., Joos, F.,

Gedney, N., Ito, A., Kleinen, T., Koven, C. D., McDonald, K., Melton, J. R., Peng, C., Peng, S., Prigent, C., Schroeder, R., Riley, W. J.,

Saito, M., Spahni, R., Tian, H., Taylor, L., Viovy, N., Wilton, D., Wiltshire, A., Xu, X., Zhang, B., Zhang, Z., and Zhu, Q.: Global Wetland765

Contribution to 2000–2012 Atmospheric Methane Growth Rate Dynamics, 12, 094 013, https://doi.org/10.1088/1748-9326/aa8391, 2017.

Prather, M. J., Holmes, C. D., and Hsu, J.: Reactive Greenhouse Gas Scenarios: Systematic Exploration of Uncertainties and the Role of

Atmospheric Chemistry, Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL051440, 2012.

Rebelo, L.-M., Senay, G. B., and McCartney, M. P.: Flood Pulsing in the Sudd Wetland: Analysis of Seasonal Variations in Inundation and

Evaporation in South Sudan, Earth Interactions, 16, 1–19, https://doi.org/10.1175/2011EI382.1, 2012.770

Salovaara, K. J., Thessler, S., Malik, R. N., and Tuomisto, H.: Classification of Amazonian Primary Rain Forest Vegetation Using Landsat

ETM+ Satellite Imagery, Remote Sensing of Environment, 97, 39–51, https://doi.org/10.1016/j.rse.2005.04.013, 2005.

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S.,

Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R.,

Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C., Gedney, N., Höglund-Isaksson,775

L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T.,

Maksyutov, S., McDonald, K. C., Marshall, J., Melton, J. R., Morino, I., Naik, V., O’Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng,

C., Peng, S., Peters, G. P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J.,

Spahni, R., Steele, P., Takizawa, A., Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G. R.,

Weiss, R., Wiedinmyer, C., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., and Zhu, Q.:780

The Global Methane Budget 2000–2012, Earth System Science Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, 2016.

37

https://doi.org/10.5194/amt-8-4785-2015
https://doi.org/10.5194/amt-8-4785-2015
https://doi.org/10.5194/amt-8-4785-2015
https://doi.org/10.1016/j.rse.2018.02.011
https://doi.org/10.5194/essd-12-3383-2020
https://doi.org/10.5194/bg-17-5669-2020
https://doi.org/10.5194/acp-11-12813-2011
https://doi.org/10.1088/1748-9326/aa8391
https://doi.org/10.1029/2012GL051440
https://doi.org/10.1175/2011EI382.1
https://doi.org/10.1016/j.rse.2005.04.013
https://doi.org/10.5194/essd-8-697-2016


Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S.,

Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol,

M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin,

M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel,785

P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton,

J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P.,

Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P.,

Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf,

G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang,790

Q.: The Global Methane Budget 2000–2017, Earth System Science Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020,

2020.

Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J. P., Borsdorff, T., Deutscher, N. M., Feist, D. G., Griffith, D.

W. T., Hase, F., Hermans, C., Iraci, L. T., Kivi, R., Landgraf, J., Morino, I., Notholt, J., Petri, C., Pollard, D. F., Roche, S., Shiomi,

K., Strong, K., Sussmann, R., Velazco, V. A., Warneke, T., and Wunch, D.: A Scientific Algorithm to Simultaneously Retrieve Car-795

bon Monoxide and Methane from TROPOMI Onboard Sentinel-5 Precursor, Atmospheric Measurement Techniques, 12, 6771–6802,

https://doi.org/10.5194/amt-12-6771-2019, 2019.

Schroeder, R., McDonald, K. C., Chapman, B. D., Jensen, K., Podest, E., Tessler, Z. D., Bohn, T. J., and Zimmermann, R.: Development

and Evaluation of a Multi-Year Fractional Surface Water Data Set Derived from Active/Passive Microwave Remote Sensing Data, Remote

Sensing, 7, 16 688–16 732, https://doi.org/10.3390/rs71215843, 2015.800

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O’Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward,

S., de Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L., Andrews, M. B.,

Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N.,

Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern,

O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.:805

UKESM1: Description and Evaluation of the U.K. Earth System Model, Journal of Advances in Modeling Earth Systems, 11, 4513–4558,

https://doi.org/10.1029/2019MS001739, 2019.

Sheng, J.-X., Jacob, D. J., Turner, A. J., Maasakkers, J. D., Benmergui, J., Bloom, A. A., Arndt, C., Gautam, R., Zavala-Araiza, D., Boesch,

H., and Parker, R. J.: 2010–2016 Methane Trends over Canada, the United States, and Mexico Observed by the GOSAT Satellite: Contribu-

tions from Different Source Sectors, Atmospheric Chemistry and Physics, 18, 12 257–12 267, https://doi.org/10.5194/acp-18-12257-2018,810

2018.

Sosnowski, A., Ghoneim, E., Burke, J. J., Hines, E., and Halls, J.: Remote Regions, Remote Data: A Spatial Investigation

of Precipitation, Dynamic Land Covers, and Conflict in the Sudd Wetland of South Sudan, Applied Geography, 69, 51–64,

https://doi.org/10.1016/j.apgeog.2016.02.007, 2016.

Stocker, B. D., Spahni, R., and Joos, F.: DYPTOP: A Cost-Efficient TOPMODEL Implementation to Simulate Sub-Grid Spatio-Temporal815

Dynamics of Global Wetlands and Peatlands, Geoscientific Model Development, 7, 3089–3110, https://doi.org/10.5194/gmd-7-3089-

2014, 2014.

Sutcliffe, J. and Brown, E.: Water Losses from the Sudd, Hydrological Sciences Journal, 63, 527–541,

https://doi.org/10.1080/02626667.2018.1438612, 2018.

38

https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.5194/amt-12-6771-2019
https://doi.org/10.3390/rs71215843
https://doi.org/10.1029/2019MS001739
https://doi.org/10.5194/acp-18-12257-2018
https://doi.org/10.1016/j.apgeog.2016.02.007
https://doi.org/10.5194/gmd-7-3089-2014
https://doi.org/10.5194/gmd-7-3089-2014
https://doi.org/10.5194/gmd-7-3089-2014
https://doi.org/10.1080/02626667.2018.1438612


Tathy, J. P., Cros, B., Delmas, R. A., Marenco, A., Servant, J., and Labat, M.: Methane Emission from Flooded Forest in Central Africa,820

Journal of Geophysical Research: Atmospheres, 97, 6159–6168, https://doi.org/10.1029/90JD02555, 1992.

Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric Carbon Dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC

Data, 1974–1985, Journal of Geophysical Research: Atmospheres, 94, 8549–8565, https://doi.org/10.1029/JD094iD06p08549, 1989.

Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H.,

Nykänen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E.-S., Waddington, J. M., White, J. R., Wickland, K. P., and825

Wilmking, M.: A Synthesis of Methane Emissions from 71 Northern, Temperate, and Subtropical Wetlands, Global Change Biology, 20,

2183–2197, https://doi.org/10.1111/gcb.12580, 2014.

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI Meteorological Forcing Data

Set: WATCH Forcing Data Methodology Applied to ERA-Interim Reanalysis Data, Water Resources Research, 50, 7505–7514,

https://doi.org/10.1002/2014WR015638, 2014.830

Wilson, C., Chipperfield, M. P., Gloor, M., Parker, R. J., Boesch, H., McNorton, J., Gatti, L. V., Miller, J. B., Basso, L. S., and Monks, S. A.:

Large and Increasing Methane Emissions from Eastern Amazonia Derived from Satellite Data, 2010–2018, Atmospheric Chemistry and

Physics, 21, 10 643–10 669, https://doi.org/10.5194/acp-21-10643-2021, 2021.

Wolski, P., Todd, M. C., Murray-Hudson, M. A., and Tadross, M.: Multi-Decadal Oscillations in the Hydro-Climate of the Okavango River

System during the Past and under a Changing Climate, Journal of Hydrology, 475, 294–305, https://doi.org/10.1016/j.jhydrol.2012.10.018,835

2012.

Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A Physically Based Description of Floodplain Inundation Dynamics in a Global River Routing

Model, Water Resources Research, 47, https://doi.org/10.1029/2010WR009726, 2011.

Yan, X., Akiyama, H., Yagi, K., and Akimoto, H.: Global Estimations of the Inventory and Mitigation Potential of Methane Emissions from

Rice Cultivation Conducted Using the 2006 Intergovernmental Panel on Climate Change Guidelines, Global Biogeochemical Cycles, 23,840

https://doi.org/10.1029/2008GB003299, 2009.

Zhang, Z., Fluet-Chouinard, E., Jensen, K., McDonald, K., Hugelius, G., Gumbricht, T., Carroll, M., Prigent, C., Bartsch, A., and Poulter,

B.: Development of the Global Dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M), Earth System Science Data,

13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, 2021.

Zhou, X., Prigent, C., and Yamazaki, D.: Toward Improved Comparisons Between Land-Surface-Water-Area Estimates From a Global River845

Model and Satellite Observations, Water Resources Research, 57, e2020WR029 256, https://doi.org/10.1029/2020WR029256, 2021.

Zimba, H., Kawawa, B., Chabala, A., Phiri, W., Selsam, P., Meinhardt, M., and Nyambe, I.: Assessment of Trends in Inundation Extent in

the Barotse Floodplain, Upper Zambezi River Basin: A Remote Sensing-Based Approach, Journal of Hydrology: Regional Studies, 15,

149–170, https://doi.org/10.1016/j.ejrh.2018.01.002, 2018.

39

https://doi.org/10.1029/90JD02555
https://doi.org/10.1029/JD094iD06p08549
https://doi.org/10.1111/gcb.12580
https://doi.org/10.1002/2014WR015638
https://doi.org/10.5194/acp-21-10643-2021
https://doi.org/10.1016/j.jhydrol.2012.10.018
https://doi.org/10.1029/2010WR009726
https://doi.org/10.1029/2008GB003299
https://doi.org/10.5194/essd-13-2001-2021
https://doi.org/10.1029/2020WR029256
https://doi.org/10.1016/j.ejrh.2018.01.002

