Preprints
https://doi.org/10.5194/bg-2022-205
https://doi.org/10.5194/bg-2022-205
02 Nov 2022
 | 02 Nov 2022
Status: a revised version of this preprint is currently under review for the journal BG.

Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway

Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas

Abstract. The weathering rate of carbonate minerals is several orders of magnitude higher than for silicate minerals. Therefore, small amounts of carbonate minerals have the potential to control the dissolved weathering loads in silicate-dominated catchments. Both weathering processes produce alkalinity under the consumption of CO2. Given that only alkalinity generation from silicate weathering is thought to be a long-term sink for CO2, a misattributed weathering source could lead to incorrect conclusions about long- and short-term CO2 fixation. In this study, we aimed to identify the weathering sources responsible for alkalinity generation and CO2 fixation across watershed scales in a degrading permafrost landscape in northern Norway, 68.7–70.5° N, and on a temporal scale, in a subarctic headwater catchment on the mountainside of Iskorasfjellet, characterized by sporadic permafrost and underlain mainly by silicates as the alkalinity-bearing lithology. By analysing total alkalinity (AT) and dissolved inorganic carbon (DIC) concentrations, as well as the stable isotope signature of the latter (δ13C-DIC) in conjunction with dissolved cation and anion loads, we found that AT was almost entirely derived from weathering of the sparse carbonate minerals. We propose that in the headwater catchment, the riparian zone is a hotspot area of AT generation and release due to its enhanced hydrological connectivity, and that the weathering load contribution from the uphill catchment is limited by insufficient contact time of weathering agent and weatherable material. By using stable water isotopes, it was possible to explain temporal variations in AT concentrations following a precipitation event due to surface runoff. In addition to carbonic acid, sulphuric acid, probably originating from pyrite oxidation, is shown to be a potential corrosive reactant. An increased proportion of sulphuric acid as a potential weathering agent may have resulted in a decrease in AT. Therefore, carbonate weathering in the studied area should be considered not only as a short-term CO2 sink, but also as a potential CO2 source. Finally, we found that AT increased with decreasing permafrost probability, and attributed this relation to an increased water storage capacity associated with increasing contact of weathering agent and rock surfaces, and enhanced microbial activity. As both soil respiration and permafrost thaw are expected to increase with climate change, increasing the availability of weathering agent in the form of CO2 and water storage capacity, respectively, we suggest that future weathering rates and alkalinity generation will increase concomitantly in the study area.

Nele Lehmann et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on bg-2022-205', Anonymous Referee #1, 07 Dec 2022
    • AC1: 'Reply on RC1', Nele Lehmann, 01 Mar 2023
  • RC2: 'Comment on bg-2022-205', Anonymous Referee #2, 08 Feb 2023
    • AC2: 'Reply on RC2', Nele Lehmann, 01 Mar 2023

Nele Lehmann et al.

Nele Lehmann et al.

Viewed

Total article views: 459 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
325 121 13 459 4 8
  • HTML: 325
  • PDF: 121
  • XML: 13
  • Total: 459
  • BibTeX: 4
  • EndNote: 8
Views and downloads (calculated since 02 Nov 2022)
Cumulative views and downloads (calculated since 02 Nov 2022)

Viewed (geographical distribution)

Total article views: 456 (including HTML, PDF, and XML) Thereof 456 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 27 Mar 2023
Download
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agent and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Altmetrics