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Anonymous Referee #2 
The authors of the manuscript ‘A differentiable ecosystem modeling framework for large-scale 
inverse problems: demonstration with photosynthesis simulations’ describe the application of the 
‘differentiable parameter learning’(dPL) framework to the photosynthesis module of FATES 
model. The framework, and concept, overcomes extrapolation limitations from site-by-site 
calibration approaches and allows leveraging information content in large-scale datasets towards 
a global parameterization of photosynthesis models. Neither the concept (Tsai et al., Nature 
Communications, https://www.nature.com/articles/s41467-021-26107-z, 2021; Bao et al., 
Authorea, https://www.authorea.com/doi/full/10.1002/essoar.10512186.3, 2022) nor the dPL 
framework (Tsai et al., 2021; Feng et al., 2022ab) are new. However, the framework is used in the 
FATES model for the first time and the results would be of interest for further model development, 
but also to the scientific community at large. 
At this point, the experiment focuses on inverting two parameters, Vcmax25 and B, resulting in that 
the accuracy of the simulated net photosynthesis rate being slightly improved. The main concerns 
at this stage relate to apparently incorrect formulations of some key equations, to issues about the 
validation strategy, to the fact that the forcing data and the experiments are not described 
sufficiently, challenging the acceptance of the study, while hampering any reproducibility efforts. 
Please see below for details. 
 

We thank your detailed comments! Wow, this ends up being a 24-page response. As a summary, 
it seems most of the questions seek clarifications and details about the model. Thank you, and 
these comments should help us elucidate the model better. We did not find major comments that 
require computational experiments or major reorganization. There is a question about cross 
validation, which we have already run. It shows expected and essentially similar results. 
Moreover, some metrics were requested and we calculated them and reported them in the 
responses. 

We indeed followed our previous differentiable parameter learning paradigm which was first 
applied in hydrology (Tsai et al., 2021; Feng et al., 2022), as noted in the manuscript, but this is a 
novel use in the large domain of ecosystem modeling, which is a very large field of study. The 
system is also different as here we have a nonlinear system of equations while in hydrologic 
cases we have ordinary differential equations. The mathematical treatment was different. The 
Julia software solves the system using adjoint solvers, although it is a relatively minor point as 
we mainly used the PyTorch version for its high parallel efficiency. 

We could not have noticed Bao et al., 2022 as it went online after our manuscript did and seems 
to be undergoing review. Upon some examination, we believe the basic modules are very 
different. They are using a light-use-efficiency approach and predicted GPP, while our paper 
focused on photosynthesis using a Farquhar-type model. Hence we don’t think there is much 
overlap between the two. 

 
 
Major comments: 

1. Two key equations are incorrect in the paper: 
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1) line 140: equation 5, Ci=Ca-An*Patm*(1.4gs+1.6gb)/(gs+gb);  
2) line 505: equation A1, Ac=Vcmax*(Ci-Γ*)/(Ci+Kc*(1+Ko/Oi)). 
According to the user guide of the FATES model (https://fates-users-
guide.readthedocs.io/projects/tech-doc/en/latest/fates_tech_note.html#fundamental 
photosynthetic-physiology-theory), the equations should be: 
1) Ci=Ca-An*Patm*(1.4gs+1.6gb)/(gs*gb);  
2) Ac=Vcmax*(Ci-Γ*)/(Ci+Kc*(1+Oi/Ko)). 
Since the FATES model is reimplemented in Julia and PyTorch by the authors, the codes might be 
also wrong. If so, the unit of Ci will be incorrect, leading to errors in the inversion of Vcmax25 and 
B. The wrong computation of the effective Michaelis-Menten coefficient (=Kc*(1+Oi/Ko)) might 
only have a slight effect if the temperature is close to 25°C, but should be concerned if the 
temperature is too low or high (and I do see some points with low leaf temperature in the ‘Lin15’ 
database). Thus, I have doubts about the current results and relevant analysis. 
 
Regarding the equations --- we were cautious to adhere to the original FATES equations before 
implementing it on PyTorch or Julia. Unfortunately, we realized there were some typos in the 
manuscript in line 140 and line 505 in the paper which will then be modified. However, we used 
the correct equations in our differentiable model as the following: 
Ci=Ca-An*Patm*(1.4gs+1.6gb)/(gs*gb);  
Ac=Vcmax*(Ci-Γ*)/(Ci+Kc*(1+Oi/Ko)). 
 
No results need to be changed. The code was correct as we compared carefully against the Fortran 
code in these subroutines as we developed the differentiable versions of the code. We will be 
publishing the code as the paper gets closer to acceptance so this can be examined in the code. 
Again, we apologize for the errors in the manuscript. 
 
1. As all the results are validated only once using the temporal holdout data or the random holdout 

data, the generalizability of the dPL (or NNB+NNv) is not clear. If the N-fold or leave-one-out 
cross-validation can be adopted, the statistical metrics can be more justifiable to reflect the 
model performance. 

 
Thanks for being rigorous. We believe the randomly selected points were representative, but we 
already conducted a cross validation (CV) and show the results, as this is trivial. The results are as 
follows: 

(a) Temporal holdout test for the following system (80% train: 20% test) 

Runs 
Corr RMSE Bias NSE 

Train Test Train Test Train Test Train Test 

 
Corr RMSE  

(μmol m-2 s-1) 
Bias  

(μmol m-2 s-1) NSE 

Train Test Train Test Train Test Train Test 

Vdef+Bdef 0.565 6.780 1.476 0.041 

Vdef+B 0.632 0.581 6.315 6.088 1.488 0.890 0.182 0.177 

V+Bdef 0.758 0.567 4.599 6.148 -0.166 -1.630 0.566 0.161 

https://fates-users-guide.readthedocs.io/projects/tech-doc/en/latest/fates_tech_note.html#fundamental
https://fates-users-guide.readthedocs.io/projects/tech-doc/en/latest/fates_tech_note.html#fundamental
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V+B 0.788 0.766 4.302 4.343 0.104 -0.247 0.62 0.581 

 
 
 
 
 

(b) Cross Validation (5-fold) test for the following system 

Runs 

Corr RMSE Bias NSE 

Train Test Train Test Train Test Train Test  

Corr 
RMSE  

(μmol m-2 s-1) 
Bias  

(μmol m-2 s-1) NSE 

Train Test Train Test Train Test Train Test 

Vdef+Bdef 0.565 6.780 1.476 0.041 

Vdef+B 0.620 0.618 6.283 6.305 1.456 1.447 0.175 0.171 

V+Bdef 0.714 0.707 4.963 5.018 -0.416 -0.407 0.485 0.475 

V+B 0.783 0.772 4.308 4.409 0.083 0.094 0.612 0.595 
 
We also provide the metrics for each fold: 

Folds COR_test RMS_test BIAS_test NSE_test 

V+B 

1 0.726 4.835 0.959 0.495 
2 0.834 3.962 -0.228 0.683 
3 0.787 4.512 -0.355 0.617 
4 0.804 4.335 0.027 0.646 
5 0.729 4.318 -0.025 0.509 

 
This is exactly as we expected in our initial reply posted a few days earlier --- the 5-fold CV results 
are similar to the previous random results and better than the temporal test results. In addition, we 
show the train/test An values for some random folds:  
 
FOLD1 (solid circle indicate test): 
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Fold 2: 

 
Fold 3: 
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Fold 4: 

 
Fold 5: 
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We believe a spatial test, though, would belong to a different paper as the paper is already getting 
long. There are many techniques to improve spatial generalization and larger dataset from remote 
sensing which, if combined with the present content, would just be too much for a first paper. We 
plan to clarify this point in the paper. 
 
2. The forcing variables and parameters are not clearly differentiated in the paper. For example, 

is the leaf layer boundary conductance, gb, a constant parameter across sites or a temporally 
changing variable? If it is a forcing variable for FATES, where is gb from? is θice a forcing 
variable or a parameter correlated with temperature and θliq? Is the Ca a constant value or 
variable? The model would be different if the spatial and temporal variability of all these 
factors are considered. If all these are parameters (i.e., scalars), what are the values? 

 
The Lin15 dataset included different forcing variables that we used in our model including: 

RH Relative humidity 
T Air temperature 
Tv Leaf temperature 
Patm Atmospheric pressure 
PAR (φ) Photosynthetic active radiation 
gb Boundary layer conductance 

 
Concerning (gb, θice and Ca), here are details about how they were considered in the model: 

• gb, the boundary layer conductance values were already available in Lin15 dataset. 
However, it has some missing values which we then computed using the inverse 
relationship between gb and the boundary layer resistance rb. rb  was approximated by the 
following equation as documented in CLM5.0 (Lawrence et al., 2019) in section 5.1: 
 

rb =
1

Cv
∗  �

dleaf
Uav

   

Where Cv and dleaf are both constants (0.01 ms-1/2 and 0.04 m respectively), while Uav is the 
wind velocity.  
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• θice, the volumetric ice content values were ignored (considered as zero) since both the air 
and leaf temperatures in our dataset were above the freezing temperature (0 °C or 273.15 
K) by at least 5 degrees. 
 

• Ca, the CO2 partial pressure near the leaf surface values were variable spatially and 
temporally and they were taken as 0.039% of the atmospheric pressure 
 

We will add the following explanations in the revised manuscript “We refer to this dataset as Lin15 
throughout the rest of this work with 43 sites chosen whose dates and times of measurements were 
available. Lin15 covered nine different PFT categories including the following: rainfed crop 
“Crop R”, Broadleaf Evergreen Tree Tropical “BET Tropical”, Broadleaf Evergreen Tree 
Temperate “BET Temperate”, C3 grass, C4 grass, Needleleaf Evergreen Tree Boreal “NET 
Boreal”, Needleleaf Evergreen Tree Temperate “NET Temperate”, Broadleaf Deciduous Tree 
Temperate “BDT Temperate”, and Broadleaf Deciduous Shrub Temperate “BDS Temperate”. 
Measurements were taken on sub-hourly scale but not necessarily on a continuous daily interval. 
That’s why for almost all the sites, data were available on some random days (not necessarily 
continuous) in one or a few years.  
 
Lin15 also contained meteorological forcing variables, including air temperature, leaf 
temperature, atmospheric pressure, relative humidity, radiation and boundary layer conductance. 
Moreover, we used ERA5 to fill in for any missing forcing variables in Lin15. Both Patm and gb in 
equation 4 were used directly from the dataset while Ca is computed as 0.039% of Patm. θice in 
equation 9 was ignored since both the air and leaf temperatures in our dataset were greatly above 
the freezing temperature” 
 
3. Line 216-218: the reason for replacing saturated soil matric potential (Ψsat) with soil matric 

potential for closed stomata (Ψc) is not explained. Equation 10 shows that the Ψsat is replaced 
with soil matric potential for open stomata(Ψo), not Ψc. Furthermore, the Ψi was still 
calculated using Ψsat in Appendix A (equations A16-A18). I’m confused about which variable 
was used to calculate Ψi. 

 
Line (216 – 218), we stated the actual equations that we used in for computing ψi (in which ψsat 
was replaced with ψo). 
 
In Appendix A, we kept all the original equations the same whether those related to FATES or to 
computing the soil water stress function (ꞵt).  
 

Actual equation used in this study (Line 216 – 218)  Original equation (Appendix A) 
Ѱi = Ѱo ×  Si

−𝐵𝐵𝑖𝑖 ≥ Ѱc Ѱi  = Ѱsat,i ×  Si
−𝐵𝐵𝑖𝑖 ≥ Ѱc 

 
Reasons for this replacement: 
  
In the original CLM4.5 equations, ψsat is based on empirical functions, percentage of sand 
(%sand), and fraction of organic matter (Fom) (Equations A17 – A18). Using the original Equation 
7 for computing ψi results in a plant wilting factor wi equals to one for more than 90% of the data 
points across different soil layers. 
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To give the model more flexibility in the computation of ψi and thus allow more variability in wi 
values, ψsat was replaced with ψo. However, to ensure having wi values less than or equal 1 as in 
the original equation 9, we tried to create equation 10 in a way that satisfies this condition using 
ψo. For parameter B (outputted from NNB), it was restricted to be within the range 0 and 1 to satisfy 
the same condition as well. Applying those changes, we were able to get ψi values within the range 
of ψo and ψc while showing more variability in the computed wi.  
  
Also, we propose adding this paragraph to the (Model changes) section for clarification: 
 
“These changes were implemented to give more flexibility in the computation of the soil matric 
potential ψi. Using the original Equation 7 for computing ψi results in a plant wilting factor wi 
equals to one for more than 90% of the datapoints across different soil layers. Thus, changing 
Equation 7 to the form shown in Equation 10 helped to express more variability in wi and 
eventually in the computed soil water stress function (ꞵt). 
 
 
The default equations in the Community Land model V4.5 (CLM4.5) for computations of B 
(Appendix A) show that the parameter B depends on two attributes, %clay and Fom, which is why 
they were used in NNB. To account for the dependence of ψsat on %sand (Appendix A) and its 
replacement by ψo (see equations 7 and 10), %sand was also added to NNB. We also added PFT 
to NNB inputs because vegetation may interact with soil moisture constraint and we want to allow 
relevant factors to be included, rather than restricting the list of inputs to what was previously 
used in the literature. Since in NNB, we use quantitative inputs (%sand, %clay, Fom) along with 
categorical inputs (PFT), ), we used a one-hot embedding layer in PyTorch” 
 
Here, the point is to calculate photosynthesis. We can see clearly the modified model works very 
well for photosynthesis. The differentiable modeling approach was specifically designed to enable 
inspection of various modules and assumptions in the model to update the formula, so more 
modifications will definitely happen more in the future. 
 
4. Line 218-220: is NNB used to predict Bi or Ψi? B depends on only %clay and Fom according to 

equations A22-A23, while the authors add %sand, which is related to Ψsat and, therefore, Ψi. I 
didn’t find a direct relationship between Bi and %sand according to the original equations in 
the FATES model. If NNB is used to predict Ψi, I think the equation can be  
Ψi=θliq*NNB(%sand,%clay,PFT,Fom,T), where T represents the factors controlling θice, e.g., 
temperature. 

 
NNB is used to predict Bi. Indeed, Bi in the original equations depends only on %clay and Fom, 
however due to the changes we implemented to equation 7 (replacement of ψsat with ψo), the %sand 
was also added to the NNB. We also added PFT to NNB inputs because vegetation may interact 
with soil moisture constraint and we want to allow relevant factors to be included, rather than 
restricting the list of inputs to what was previously used in the literature. Yes, this is precisely the 
point of replacing existing equations with NNs --- we can be freed from previous restrictive 
assumptions that may be faulty. We discussed the incentives for these changes in the previous 
response 
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In addition, here, the point is to calculate photosynthesis. We can see clearly the modified model 
works very well for photosynthesis. The differentiable modeling approach was specifically 
designed to enable inspection of various modules and assumptions in the model to update the 
formula, so more modifications will definitely happen more in the future. 
 
Concerning this formula, Ψi=θliq*NNB(%sand, %clay,PFT,Fom,T), we would like to thank you for 
this suggestion and in this regard we can evaluate the model using this formula and the one we 
suggested and compare the results. 
 
5. I think the neural networks (NNB and NNv) need constraints on Vcmax25 and Ψi. Although the 

authors declared that the predicted Vcmax25 without any constraints is within a rational range 
similar to the literature and measurement, the range of the predicted B is not discussed. If the 
predicted Bi is very large at some point, Ψi can be much higher than Ψo, leading to wi being 
higher than 1 (i.e., exceeding the range defined in equation A15). Besides, the Vcmax25 is possibly 
to be inappropriate without any physical constraints at sites not considered in this study. 

 
We did impose some constraints of both NNB and NNv in predicting Vc,max25 and B.  
For Vc,max25: 
 
We constrained the output of NNv to be between 0 and 1 using a sigmoid activation function for 
the output layer in the NN. We then rescaled the output to be within a pre-defined range based on 
literature of minimum value of 20 umol m-2 s-1 to a maximum value of 150 umol m-2 s-1.  
 
For B: 
We constrained the output of NNB to be between [0 , 1] using a sigmoid activation function for the 
output layer in the NN. Given that the soil wetness Si (in equation 7 and 10) ranges between 
[0.01,1] as defined in the original CLM4.5 equations, therefore the term Si

-Bi
 can have a range of 

[1, 100] which when multiplied by ψo ensures having ψi values with a maximum limit of ψo, while 
the condition of ψi >= ψc was conserved in equation 10 (same as equation 7) for ensuring a 
minimum limit of ψc. Thus, we ensured that ψi computed using equation 10 is within the range of 
ψo and ψc which resulted in wi values less than or equal to 1. 
 
This paragraph will be added to section (Synthetic data and real data experiments) which states 
some details in this regard: 
  
“The MLPs employed were very simple with only three layers; input layer, one hidden layer, and 
an output layer. To ensure an output value between 0 to 1 for both Vc,max25 and B parameterizations, 
sigmoid activation functions were used for both hidden and output layers. Vc,max25 was then 
rescaled to be within a pre-defined range based on literature of [20,150] umol m-2 s-1. B values 
were kept between [0,1] and with Si ranging between [0.01, 1] (see Appendix A), the term Si

-Bi then 
has a range of [1,100]. This ensured of ψo  to be the maximum limit of ψi, while the condition for 
a minimum limit of ψc was conserved (see equation 10)” 
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6. Line 235-236: ‘we tested retrieving both Vcmax25 and B, the latter of which varies spatially and 
temporally.’ If B varies temporally, it should be clarified how the training data is partitioned 
and how the ‘random holdout test’ is done. For example, is B changing per year or every N 
years? how many years/points per site are used to estimate B? Do the training points have to 
be in sequence or not? 

 
In line 235 – 236: we refer to the synthetic case and since for this case the values for the parameter 
B were synthesized using the following equation B = 0.1 * Fom + 0.45 * (%sand + %clay), so B 
only varies spatially (different static attributes). We will modify this sentence in the next version 
to be “we tested retrieving both Vcmax25 and B, the latter of which varies spatially for different static 
attributes”.  
 
Moreover, this paragraph will be modified in the section (Synthetic data and real data 
experiments) to explain more about the temporal and the random holdout tests as well as data 
splitting.   
 
“For training and testing our candidate models, two different tests were performed with respect to 
data splitting: random holdout test and temporal holdout test, the latter of which stresses the 
models’ ability to project into the future. In the temporal holdout test, for each PFT in each 
location, the available dates of measurements were counted where data points measured at the 
older 80% of these dates were used for training and the other more recent 20% were used for 
testing. Due to the irregularity of measurement dates at each location (as mentioned previously in 
section 2.4.1), the temporal periods for the training and testing datasets vary by location. The 
temporal holdout test was used for both synthetic and real data experiments.  For the random 
holdout test, as the name implies, 80% of the datapoints were randomly selected for training from 
the available PFT measurements in each location while the rest were used for testing. This test 
was run only for the real case experiments. We also report results from a 5-fold cross validation 
where each fold takes turns to be the test fold.”    
 
7. Line 238-239: ‘For simplicity, the computations of B, Ψi, wi, βt were performed for the top soil 

layer only.’ In the synthetic experiment, only the top soil layer is considered. However, ‘B, Ψi, 
wi‘ for the other layers are not clarified (=zero or default values in CLM?). Are the other soil 
layers considered in the real data experiment? If yes, how many ‘B’ was estimated (i.e., how 
many soil layers and how many temporally changing Bi)? If not, wi can only represent the 
water availability at the top layer. The βt is equal to wi and the root distribution, ri, at the top 
layer. What is ri at the top layer (soil depth=0cm according to line 306)? 

 
 
We will add further explanation for the synthetic case in the Synthetic data and real data 
experiments section as the following: 
 
“In the second synthetic case, “Vc,max - B”, we tested retrieving both Vc,max25 and B , the latter of 
which varies spatially for different static attributes. To generate the synthetic data, we assumed B 
= 0.1 * Fom + 0.45 * (%sand + %clay), and then the soil matric potential (ψi) was calculated using 
equation 10. The plant wilting factor (wi) and the soil water stress function (ꞵt) were calculated 
using the default equations 9 and 8 respectively. For simplicity, the computations of B, ψi, wi, ꞵt 
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were performed for the topsoil layer only and the other soil layers were ignored. Based on these 
simplifications, w1 was equal to ꞵt  with a root distribution value for the top soil layer of one (r1 = 
1). To retrieve B, we used NNB (see equation 11) but excluded the PFT term.” 
 
For the real experiments: 
Five soil layers were considered in these experiments with the exact depths described in the (Input 
and observation datasets) section. NNB used static attributes (Fom, %sand, and %clay) from all soil 
layers and predicted B values for each layer. So according to B = NNB (%clay, %sand, PFT, Fom), 
B varies horizontally as well as vertically (static attributes per location), for each soil layer and for 
each PFT. For better clarification, B equation in the next version could be written as Bi = NNBi 
(%clayi, %sandi, PFT, Fomi) 
 
We will add further explanation for the real case in the Synthetic data and real data experiments 
section as the following: 
 
“For both experiments in which B was learnt; Vdef+B and V+B, the five soil layers (as described 
in section 2.5.2) were used to estimate B based on the static attributes corresponding to each 
specific layer. Thus, B varied both horizontally and vertically for each PFT.” 
 
8. Line 239: ‘To retrieve B, we used NNB but exclude the PFT term.’ 
I think it is not proper if the PFT is excluded from the training but included in the equation. If PFT 
is excluded, the term should be removed from equation 11. The sentence at line 222 ‘… along with 
categorical inputs (PFT), we used…’ should be rephrased. 
 
In Line 239, we refer to the synthetic case and as mentioned in the previous comment we 
synthesized the B parameter values using the following equation B = 0.1 * Fom + 0.45 * (%sand + 
%clay). So, we formulated the NNB for the synthetic case as B = NNB (%sand, %clay, Fom,).  
 
In equation 11, we show the equation used for the real case experiments which included the PFT 
term as well in NNB (discussed previously in comment no.3 in the major comments) 
 
9. Line 245: ‘The model passing the test of the synthetic case was then applied to a real dataset…’ 
The same NN was used for synthetic data and real data, but the NN information (layers, neurons 
activation functions) is not clear. As real data is much more complex, using a different NN 
structure from the synthetic test might have better performance. 
 
Concerning the NN formation, this paragraph will be added to section (Synthetic data and real 
data experiments) which states some details in this regard: 
 
“The MLPs employed had three layers; an input layer, one hidden layer, and an output layer. To 
ensure an output value between 0 to 1 for both Vc,max25 and B parameterizations, sigmoid activation 
functions were used for both hidden and output layers. Vc,max25 was then rescaled to be within a 
pre-defined range based on literature of [20,150] umol m-2 s-1. B values were kept between [0,1] 
and with Si ranging between [0.01, 1] (see Appendix A), the term Si

-Bi then has a range of [1,100]. 
This ensured a maximum limit of ψi equal to ψo, while the condition of a minimum limit wqual to 
ψc was conserved (see equation 10) 
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The quantity of available data posed a limitation and did not permit an extensive hyperparameter 
tuning experiment with a train/validation/test split. Hence, we employed a lazy trial and error with 
hyperparameters (learning rates and hidden size) using 70% of the data as training data and 30% 
as a validation set, just to ensure we had a roughly performing hyperparameter set. We selected a 
learning rate of 0.01 and a hidden size that is equal to the number of inputs (9 for the NNv and 8 
for the NNB). We kept the same hyperparameters in the reporting, where we ran 5-fold cross 
validation with an 80%:20% train: test ratio. In addition, we found that moderately perturbing the 
hyperparameters resulted in very little change in the performance. This design considered the 
practical limits of available data, even this study already represents a large-sample study in the 
domain of ecosystem modeling.” 
 
What we mean by “The model passing the test of the synthetic case was then applied to a real 
dataset…” is that we didn’t perform significant changes in the general differentiable model 
structure when running the synthetic and the real case.  
 
Indeed, it is true that the real case should be more complex than the synthetic case. However, for 
NNv we kept it the same for the both cases since in our reference models (CLM4.5, AVIM, 
BETHY) Vc,max25 is PFT-dependent parameter and for consistency we didn’t make any changes to 
NNv (in this paper, as a starting point). For NNB, we indeed made a slight change between the 
synthetic and the real case as: 
 

Synthetic Case (one soil layer) Real Case (five soil layers) 
B = NNB (%sand, %clay, Fom) B = NNB (%sand, %clay, PFT, Fom) 

 
We discussed the reasons for these NN formulations in comment no.3 in the major comments. 
 
Finally, we would like to mention that this study is one of first studies in this field so our purpose 
is to present the application of dPL framework without necessarily finding the best NNs for 
learning our target parameters. We can perform more improvements in the parameterization 
module in the future.   
 
10. Line 266-267: the loss function is very significant to evaluate the NN, but not explained in the 

paper. Without the equation of the loss function or the NN information, the dPL framework 
cannot be assessed by others, in other words, the experiment cannot be repeated. I think this 
doesn’t fulfil the requirement of Biogeosciences: ‘Is the description of experiments and 
calculations sufficiently complete and precise to allow their reproduction by fellow scientists 
(traceability of results)?’. 

 
Concerning the loss function, we discussed its structure in different sections in the manuscript.  

W =  argmin(L(δpsn(θ, θc, F), y∗)) =  argmin
W

(L�δpsn�gW(R),θc, F�, y∗�)   (3) 

In equation 3: we stated that the weights are minimized using the loss function between the 
simulated target variable y (see Equation 2) and the observed target variable y*. We then discussed 
how f1 and f2 equations are reflected on the photosynthesis module in FATES using equation 4 
and equation 5. In line 144, we highlighted that the y term is the An (the net photosynthesis rate) 
variable in our problem.  
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Moreover, figure 1b (new proposed version shown below) shows that the loss function is computed 
between the simulated and the observed An. We mentioned that for the dPL framework, we don’t 
need ground truth for the learnt parameters but for An.  
 
Concerning the NN formation, the paragraph we added in response to comment no.9 in the major 
comments on the last page would further clarify it. Further, our code will be shared upon paper 
acceptance and the results will be entirely reproducible.  
 
 
 
 
 

 
Figure 1. Diagram showing the differentiable parameter learning (dPL) framework which is a hybrid of neural networks and 
the photosynthesis module in the FATES ecosystem model written on a differentiable platform. (a) The generic workflow: Some 
raw information is mapped into physical parameters via a neural network. These parameters are sent into a process-based model 
(PBM), which then outputs variable Y that is compared with observations. Direct supervision for the physical parameters is not 
required -- we do not need ground truth for these parameters. The loss function is “global” in that it involves all training data 
points, rather than being computed site-by-site as done in traditional calibration. (b) The workflow for the computational 
example described in this work. We estimate either Vc,max25 or the parameter B using neural networks, or both of them at the 
same time. When they were not estimated from data, default values from the literature were used. Blue arrows show running 
the neural networks with the PBM in a forward mode, while black arrows indicate backpropagation from the loss function back 
through the differentiable model equations to the neural networks to update their weights. 

 
11. Line 268-272: the authors ‘hope to identify parameters that can generalize well in space’, so I 

think the readers would wonder if the parameters are estimated per site or per PFT. If 
parameters are estimated per site, how are they aggregated to parameters per PFT in figure 3a 
and 4a? If estimated per PFT, I’m afraid the spatial variability of the parameters is not fully 
captured by dPL. 
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Vc,max25 values were estimated per PFT since NNv(PFT) uses just the PFT as input without any 
static attributes specific to each site. Also, our reference values (used for comparison such as 
CLM4.5, AVIM, BETHY, and TRY) for Vc,max25 come for models that define Vc,max25 per PFT not 
per site. 
 
‘hope to identify parameters that can generalize well in space’, by this sentence we that the dPL, 
contrary to previous site by site calibration, is able to learn from data from all sites simultaneously 
since the structure of the framework enable it to be trained “globally” in that it involves all training 
data points, rather than being computed site-by-site as done in traditional calibration. In Tsai et al., 
2021 we have already established that casting the parameter problem as parameter learning 
improves spatial generalization. 
 
Further, we have run some preliminary spatial tests which showed only a small decline of 
performance when tested in an untrained site. While we obtained a temporal test NSE of 0.581 
(80%:20%) train: test ratio, the NSE of a spatial test for the current model is already 0.44, 
suggesting this model is reasonably well-generalized in space. Unfortunately, we could not 
identify spatial tests for benchmarking in the ecosystem modeling literature and would appreciate 
any suggestions with a comparable dataset. As we mentioned earlier, we are working on further 
improving the spatial generalization with some error mitigation approaches. This will add lots of 
content and should be for the scope of another paper. 
 
 
12. Line 292-302: the sources of the soil moisture, stomatal conductance, meteorological forcings 

and the soil properties are mentioned, but the sources of Ca, gb and Patm are not clear. 
Concerning Ca, gb and Patm here are their sources: 

• Patm , the atmospheric pressure near the leaf surface, is available in Lin15 dataset so we 
used them directly and we used ERA5 to fill in for any missing values 

• Ca, the CO2 partial pressure near the leaf surface, is taken as 0.039% of the atmospheric 
pressure Patm 

• gb, was replied to in comment no.2 in the major comments 
 

A paragraph will be added to explain this (see comment no.2 in the major comments). While these 
represent simplified treatments, our model’s performance suggest that their impacts may be 
limited. Such simplifications are necessary as we just get started with the different model, and the 
model can be made more sophisticated later. 
 
13. The data source of ‘Lin15’ was not specified. I found a database at Lin et al., 2015, bud didn’t 

find the dates information on lines 296-300. 
In the supplementary information Lin et al., 2015, page 6: 
 
“Supplementary Table 2: List of data source. The whole database is publicly available and can be 
downloaded from data repository 40 (https://bitbucket.org/gsglobal/leafgasexchange).” 
 
So, they direct the readers to the database (https://bitbucket.org/gsglobal/leafgasexchange) which 
have the full parameters list including dates, species, and other forcing variables.  
 

https://bitbucket.org/gsglobal/leafgasexchange)
https://bitbucket.org/gsglobal/leafgasexchange
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14. Line 304-305: the soil organic carbon content is collected, but the unit is not explained. Does 
the unit need to be transferred to get the soil organic matter fraction? 

 
Yes, we had to do some unit conversion. According to  
https://zenodo.org/record/2525553#.Y9Ida-zMKb0 the soil organic carbon is given in 5 g/kg so 
two conversions were done: 

1. Divide by 2 (to convert to %) then divide by 100 (to get a fraction) 
2. Multiply by the conventional factor “Van Bemmelen factor” 1.72 (soil organic matter = 

1.72 soil organic carbon)  
 
15. Line 410-411: the authors claim that the predicted Vcmax25 ‘were well correlated with’ 

literature values. However, the correlation coefficient or determination coefficient was never 
stated in the paper. Too few points are displayed in figure 6b, and the distribution pattern of 
only four PFT types (crop R, C3 grass, NET Boreal and BDS temperate) is similar to CLM. 

First, the point here is that the values we estimated make physical sense, are on the same order of 
magnitude, and are correlated with the literature values. We expect there to be some correlation 
but not that high. Higher correlation does not mean it’s better. Imagine the extreme case --- if the 
correlation was 1.0 and every value is the same as literature values, then it would mean the previous 
values were perfect, which would be surprising and unreasonable. Hence, the precisely correlation 
value here is not that important. We can calculate the correlation, which is 0.856 with CLM 
vcmax25, but find it not very relevant to report here. 
 
For Figure 6b, since one point is for a PFT for CLM4.5, and Vc,max25 is defined on a PFT level, 
there should be exactly the same number of points as there are PFTs. As a result, the number of 
data points seemed correct. In the figure below, we show more details about the correlations 
between the Vc,max25 learnt by V+B model versus TRY database and other default models. On the 
other point, we do expect differences from CLM4.5 values. 
 
We attached below a proposal for figure 8 showing the correlation between the Vc,max25 learnt by 
V+B model versus TRY database or other default models. As the figure shows, there is high 
correlation between the estimated Vc,max25 by V+B model versus CLM4.5 (0.856), BETHY (0.906), 
and TRY (0.716). However, low correlation exists between the estimated Vc,max25 by V+B model 
and AVIM model where the V+B has lower values for BET Temperate, BET Tropical, and BDT 
Temperate while it shows higher values for BDS Temperate, C3 grass and Crop R. It is difficult 
to comment which set is better without all models run on the same dataset.  

https://zenodo.org/record/2525553#.Y9IDa-zMKb0
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Figure 8. shows the correlation between the Vc,max25 values estimated by V+B model on y-axis versus Vc,max25 values from 
CLM4.5 (black markers), AVIM (cyan markers), BETHY (magenta markers), and TRY database (orange markers). Different 
markers shape represent different PFTs, while different colours represent different reference sources for Vc,max25 per PFT. For 
TRY database we don’t values for C3 grass and C4 grass due to the lack of overlap in species between TRY database and our 
dataset for the two PFTs.   
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16. Line 431-432: I cannot identify the C3 grass at the lower left corner of figure 5b. Maybe a 

violin plot per PFT can be helpful to show the difference between optimizing B or not for a 
specific plant type. The figures in the paper only show the net photosynthesis rate across all 
sites. However, the site-level comparison might be more meaningful to assess the four 
parameterization strategies: Vdef+B, Vdef+Bdef, V+Bdef, and V+B. 
 

Measurements in Lin15 dataset were taken on sub-hourly scale but not necessarily on a continuous 
daily interval. for almost all the sites, data were available on some random days (not necessarily 
continuous) in one or a few years. This means that the data distribution across sites is not balanced 
some sites have very low amount of data compared to other sites. For this reason, we didn’t assess 
the models using the site level-comparison however we computed the metrics for all sites 
combined.  
 
Site-level comparison makes more sense when each site has large amount of dataset and dataset 
amount is uniformly across sites.  
 
We attached the violin plot per PFT (shown below), with the 9 subplots representing the 9 PFTs, 
and different colors representing different models.  Each subplot shows the simulated An for all 
the sites (both training and testing simulations for the temporal test with 80:20 train:test split ratio) 
with a specific PFT. We will add some of these figures into the revised manuscript. 
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Violin plot per PFT. Different colors represent different models: Vdef+Bdef, Vdef+B, V+Bdef, and V+B.    
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Violin plot for two different sites. Different colors represent different models: Vdef+Bdef, Vdef+B, V+Bdef, and V+B. The left 
panel shows data for Tambopata rainforest in Peru with PFT (Broad leaf Evergreen Tropical). The right panel shows data for 
Konza Priarie grass ecosystem in USA.  We can clearly see different behaviors between V+B and other models. 
 
17. Line 445-450: I didn’t see any significant correlation between the estimated Vcmax25 and the 

PFT-mean from TRY database or other model default values. The authors should provide the 
scatter plots and the correlation coefficients between the Vcmax values to conclude that the 
dPL can get parameters correlated with literature values (line 490). 

Previously responded to in comment no.15 in the major comments 
 
Minor comments: 
 
1. Line 123: the right part looks very similar to the middle part in equation 3, but the subscript 

‘W’ beside ‘argmin’ is not explained. As I understand, the ‘argmin’ in the right part is the same 
as the ‘argmin’ in the middle part. 
 

The equation in the next version will be modified to (w below argmin not side subscript) 
 

W =  argmin(L(δpsn(θ, θc, F), y∗)) =  argmin
W

(L�δpsn�gW(R),θc, F�, y∗�)   (3) 

By this way, we express that our target is to find the weights of the neural network that minimize 
the loss function between the observed and the target variable which is the net photosynthesis rate 
here. So, W here refer to the neural network weights (NNV and NNB) in our problem. 
 
2. Line 142: The short name for CO2 partial pressure at the leaf surface is ‘Ca’, but is ‘Cs’ in the 

appendix. Please use a uniform short name across the paper. 
Cs and Ca refer to different variables, however, there definitions are close to each other.  
Cs : is the CO2 partial pressure at the leaf surface 
Ca : is the CO2 partial pressure near the leaf surface 
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They are correct in the way the equations are written inside the manuscript body or the appendix.  
At line 140, the definition of Ca will be modified to CO2 partial pressure near the leaf surface. 
 
3. Line 187: equation 11 is cited at line 187 for the first time, but the full equation is placed at 

line 218. The equation should appear close to the first citation. 
Line 187, the equation is written in a more general way as B = NNB(R), where R refers to the 
underlying attributes or the raw inputs as mentioned previously in equation 3. In line 218, we tend 
to show the actual equation that we used for the parameterization in our study. However, we can 
unify the equation in both appearances to avoid misunderstanding.  
 
4. Line 193: does ‘i’ represent the soil layer number? I didn’t see the explanation around the 

equation. 
Yes, the subscript i refers to the soil layer number. We will better clarify this in the next version.  
 
5. Line 197: ‘across different soil different layers’ should be ‘across different soil layers’. 
Will be modified. 
 
6. Line 203/equation 9: the second line should be Ti≤Tf-2 ‘or’ θliq≤0. 
Will be modified. 
 
7. Line 205: the short name for the physical parameter at the second blue area should be θ but not 

θc. 
Will be modified. 
 
8. Line 218/equation 11: B and Fom should have a subscript, i.  

Bi=NNBi(%sand,%clay,PFT,Fom,i). 
Discussed in no.7 in the major comments. 
 
9. Line 222: the ‘one-hot embedding’ was already stated at line 183. The definition should be 

explained where it is mentioned for the first time. 
We will move the definition to the first mention of one-hot encoding (from line 222 to line 183) 
 
10. Line 228: the short name for ‘differentiable learning framework’ is defined but not used. 
In Line 228, ‘differentiable learning framework’ refers to the dPL “differentiable parameter 
learning framework”, we will unify it throughout the whole manuscript to be “differentiable 
parameter learning framework” 
 
11. Line 310/Figure 2: the full names of the land cover types (e.g., BET tropical) are not explained 

before or around the figure. 
 
Our dataset included 9 different PFTs categories, a paragraph (see comment no.2 in the major 
comments with more details about Lin15 dataset will be added to subsection (Forcing and 
Photosynthesis rates) stating the number of PFTs considered plus the full name of each PFT. 
 
12. Line 349: table 2 is mentioned for the first time, but the full table is placed after two pages. 
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Table 2 was placed two pages after its first mention since we had to place Figure 5 as well after its 
first mention. We can try to better rearrange the placement of Figure 5 and Table 2 in the next 
version.  
 
13. Line 384: the CO2 should be CO2(subscript). 
Will be modified. 
 
14. Line 390/figure 5: I cannot understand the titles of the subplots. What is the meaning of 

‘learning B’ and ‘learning Vcmax25’? The B is not optimized in figure 5a. 
Figure 5a subplot shows two models, Vdef+Bdef (red color) and Vdef + B (blue color). So both 
models agree in using the default Vc,max25 values corresponding to each PFT that’s why subplot (a) 
title includes “with default  Vc,max25”. “Learning B” is added to title “a” since B is learnt in Vdef 
+ B model.  
 
Figure 5b subplot shows two models, V+Bdef (yellow color) and V+B (green color). So both 
models agree in learning Vc,max25 values corresponding to each PFT that’s why subplot (b) title 
includes “Learning Vc,max25”. “Varying B” is added to title “b” since the parameter B is computed 
from the default equations in CLM4.5 for V+Bdef model, while it is learnt simultaneously with 
Vc,max25 for V+B model.  
 

 
Figure 5. Comparisons of photosynthesis model calibration: mean estimated value of default parameters vs. mean estimated 
value of best learned parameters vs. observed value for different candidate models. (a) Impact of learning B with default 
Vc,max25. (b) Impact of learning Vc,max25 with varying B. The colors represent the results from the four different models, the 
shapes indicate the plant functional type (PFT) groups, and the dotted line in each panel indicates the ideal 1:1 relationship.  

 
15. Line 514/equation A7: the Cs is not used. 
Cs which refers to the CO2 partial pressure at the leaf surface is used in the model block of 
equations corresponding to the stomatal conductance computations. Attached below a proposal for 
figure 2 to be added in the manuscript showing equations corresponding to f1 and f2. The box 
marked with red color shows the usage of Cs 
 



22 
 

 
Figure 2. showing the model block of equations corresponding to f1 and f2. Blue boxes refer to equations corresponding to f1. 
Orange boxes refer to equations corresponding to f2. Further details about the variables and parameters in these equations will 
be given in a separate table. Once we get the solution for Ci (intercellular leaf CO2 pressure) from f1 equations (nonlinear 
system), we can run f2 equations to get An (net photosynthesis rate) 
 
16. Line 520-530: the three functions, Φ1, Φ2, and Φ3, need to be clarified. 
Φ1, Φ2, and Φ3 refer to the equations or the subroutines that we used to prepare the inputs required 
to run the FATES photosynthesis module. To run the photosynthesis module, we had to run other 
correlated subroutine in FATES that provide some crucial inputs required to simulate the 
photosynthesis.  
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Φ1 corresponds to the set of equations in which we used factors from literature or from the 
Community Land Model (CLM) to map the maximum electron transport rate at 25 °C (Jmax25), the 
plant respiration rate at 25 °C (Rd25), the initial slope of CO2 response curve at 25 °C (Kp25) from  
Vc,max25 as shown below: 
 

Jmax25 = 1.67 Vc,max25  Medlyn et al., 2002 

Rd25    =  �
0.015 Vc,max25     , for C3 plants

0.025 Vc,max25         , for C4 plants    � 
Lawrence et al., 
2019 

Kp25   =  � 20000 Vc,max25      , for C4 plants    
   � 

 
Φ2 corresponds to the equations responsible for rescaling and adjusting the parameters Jmax25, Kp25, 
and Vc,max25 for the leaf temperature to output Jmax, Kp, and Vc,max 
 
Φ3 corresponds to the the equations responsible for rescaling and adjusting Rd25 for the leaf 
temperature to output Rd.  
 
All these equations are well documented in FATES code and in CLM5.0 (Lawrence et al., 2019) 
in chapter 9 section 9.4. 
 
We will add clarifications in the paper to make this clear. 
 
17. Appendix: the citations of equations are wrong (e.g, lines 503-504, 512, 520, 534…). The 

equations should be cited using A1-A23. 
The citations for all equations in the Appendix will be modified to A[no.] in the new version 
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