Dear Biogeosciences editor,

Thank you for handling and thanks to the reviewers for their constructive suggestions. We have
completed a round of major revision.

Most comments were asking for clarifications and further exploration of data. We have made effort
to improve clarity in the manuscript. We have run cross-validation experiments and have provided
additional visualizations including plots for different PFTs as requested by the reviewers.
Regarding the seasonality of the model, while it is not the focus of this paper, we can comment
that the model seasonal behavior should be comparable to what we expect out of the other Farquhar
models (photosynthesis only), because here we only estimated static parameters. For a few R2’s
questions, there is already content in the original manuscript discussing those topics so we pointed
out where the content is and added more emphasis if needed.

There are many questions. To facilitate your processing, we pasted the modifications in the
manuscript to the respective response to questions. We also provided in this document, the line
numbers from the clean manuscript version (uploaded as “diffecosys_paperV3.0_revised_clean”)
that correspond to text modified or added. In the following, brown text is from reviewers while
black text is our response.

Anonymous Referee #1

This paper presents a nice example of combining theory based models and machine learning to
efficiently identify parameters of an ecosystem model, exploiting observation data recorded at
multiple sites. The approach is valid and the results are interesting. However, the documentation
of data and methods is currently deficient on a level that makes it hard to grasp the main messages
and interpret the results. Section 2 of the paper does in my yes require a thorough revision,
including new explanatory figures, restructuring and replacement of text blocks. For this reason |
recommend a major revision or rejection with an invitation to resubmit.

Thank you for your evaluation!
Major comments

1. I assume a key point of the developed framework is that it enables to directly backpropagate
from the outputs through the model equations to the neural networks. This is not clear from
the paper at all. Much of the framework description seems like you feed NN predictions of
parameters through a black box physics-based model, which is a standard approach. | suggest
a dedicated subsection, possibly including a figure, to clarify this detail.

Yes, the differentiability which supports gradient-based optimization is the soul of the proposed
work. We have discussed this in the paper (Abstract: “programmatically differentiable (meaning
gradients of outputs to variables used in the model can be obtained efficiently and accurately)...”,
lines 146 (in the previous manuscript version) “In order to train the physical equations and neural
networks together using gradient descent, the above equations were implemented on differentiable



platforms to support backpropagation”). To further emphasize it, we added a paragraph {lines
112: 123} at the beginning of section 2.1 (General overview) to emphasize it. Also Figure 1 was
modified to represent both the forward run (blue arrows) and the backpropagation (black arrows)
and thus better represent the framework (shown below).

“Our general framework trains connected neural networks to provide parameters (and later
process representations) to process-based models (PBM), in this case the photosynthesis module
of the FATES ecosystem model, on all the training data points simultaneously (Figure 1a). The
neural networks map from some raw inputs to some tuneable physical parameters (6) (later
extensible to processes) required for the PBM. The predicted physical parameters are then fed into
the differentiable PBM along with other required forcing variables (F) and untuned constant
attributes (6c) to compute the simulated target variable (ysim) which is compared with observations
to compute a loss function. The forward run starts from the neural network inputs and ends at the
loss function (following the blue arrows in Figure 1a). We then backpropagate the errors (shown
by black arrows in Figure 1a) through the PBM equations back to the neural networks so we can
train them using gradient descent. To support gradient-based training, the entire framework must
be differentiable (Shen et al., 2023) and neither the neural network nor the process-based model
is a black box --- they both allow explicit inspection and modification of the internal structures.
Thus, the photosynthesis module of FATES had to be reimplemented on differentiable platforms.”

(a) Generic Workflow
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Figure 1. Diagram showing the differentiable parameter learning (dPL) framework which is a hybrid of neural networks and
the photosynthesis module in the FATES ecosystem model written on a differentiable platform. (a) The generic workflow: Some
raw information is mapped into physical parameters via a neural network. These parameters are sent into a process-based model
(PBM), which then outputs variable Y that is compared with observations. Direct supervision for the physical parameters is not
required -- we do not need ground truth for these parameters. The loss function is “global” in that it involves all training data
points, rather than being computed site-by-site as done in traditional calibration. (b) The workflow for the computational
example described in this work. We estimate either Vcmaxes or the parameter B, or both of them at the same time, using neural
networks. The parameters are then fed into the differentiable photosynthesis module in FATES, which then outputs the net
photosynthesis rate, Angim), that is compared with Anebs). When they were not estimated from data, default values from the
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literature were used. Blue arrows show running the neural networks with the PBM in a forward mode (“prediction” mode),
while black arrows indicate backpropagation from the loss function back through the differentiable model equations to the
neural networks to update their weights, which is only done during initial NN training.

2. The datasets used for training and testing are not properly documented. We don't know how
many datapoints are included over which time periods. The random holdout suddenly appears
in the results, and in general we don't know how training/validation/testing splits are defined.

We apologize for this oversight. The following paragraph {lines 371: 380} was added to section
2.5 (Synthetic data and real data experiments) to explain more about the tests held as well as
how the data were split.

“Two different tests were performed with respect to data splitting: temporal holdout and
randomized cross-validation --- the former test stresses the models’ ability to project into the
future while the latter is the typical experiment run in the literature. Due to the irregularity of
measurement dates at each location (as mentioned previously in section 2.4.1), the temporal
periods for the training and testing datasets varied by location. In the temporal holdout test, for
each PFT in each location, the available dates of measurements were recorded. The oldest 80%
of these dates were used for training and the remaining more recent 20% were used for testing.
The temporal holdout test was run for both synthetic and real data experiments. For the
randomized cross-validation test, as the name implies, the dataset was randomly split into 5 folds
(groups) and each time the model was trained on 4 folds (80% of the datapoints) and tested on the
5™ fold (20% of the data points). This was done a total of 5 rounds, so that all of the data points
were used for testing once. The cross-validation test was run only for the real data experiments..”

3. CLMA4.5 standard parameters play a central role in the results, but we know nothing about
where they come from / how they are defined and if, for example, all or a subset of values are
used for comparison.

Reference for CLM4.5:
https://opensky.ucar.edu/islandora/object/technotes%3A515/datastream/PDF/view

CLMA4.5 documentation presents the standard values of the parameters and the equations that we
used in this study as a benchmark and a detailed discussion of these choices is outside the scope
of this work. We already did provide some of the basic parameter values (model values for V¢ maxzs)
from CLM4.5 and other similar models in Table 3 and provided references (in the text). We also
added a subsection {lines 295: 301} to section 2.4 (Input and observation datasets) to better
clarify as shown below.

“2.4.3 CLMA4.5 default parameters

CLM4.5 documentation (Oleson et al., 2013) provide reference values for comparison and
equations for both target parameters Vc maxes and B. For Ve maxes, default values corresponding to
each PFT (shown in Table 3) are well documented in CLM4.5 (chapter 8; table 8.1). Similarly,
for parameters B and £, their default equations (shown in this work in Appendix B) are provided
in the documentation of CLM4.5 as well. We also used other PFT photosynthetic parameters
required for S computations, such as the soil matric potentials for closed stomata, wc, and open
stomata, wo, (See Equations 8,10,12), and the plant root distribution parameters (see Equation 9).”


https://opensky.ucar.edu/islandora/object/technotes%3A515/datastream/PDF/view

4. The explanation of the ecosystem model suffers from a clear struggle between trying not to
include the entire set of equations in the paper, while providing sufficient detail. For me the
level of detail provided in the paper was actually confusing, because it required constant
looking up in the appendix to understand the context, distracting from the main messages. |
think a way out could be to include a figure that summarizes the main blocks of the model
(including what parts correspond to f1 and f2), include only the changed equations in the paper,
and otherwise keep the full model description in the appendix. On a sidenote: is f2 not the same
as an observation equation, that is commonly used in state space models?

We added the figure below which shows the block equations corresponding to equations f1 and f2
which we have renamed f and h, respectively. Yes, f2 (h) is the observation equation. f and h may
share common components, but they are mathematically different: f is a system constraint while h
is a “observation equation”. In this example, f'is solved for the unknown Cjwhile h connects C; to
the observation An.
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Figure 2. Model equations corresponding to f and h in equation 1. Blue boxes indicate equations corresponding to f. Yellow
boxes indicate equations corresponding to h. First, we obtain a solution for Ci (intercellular leaf CO2 pressure) by solving
the nonlinear system (f equations) as illustrated in the last blue box. Then, we forward h equations to compute An (net
photosynthesis rate) using Ac, Aj, and Ap as discussed in section 2.2. Details about different variables and parameters
included in f and h equations are provided in Appendix A.



5. Details on hyperparameters (neural network # of layers, activation functions, learning rates
etc.) are not provided at all. Some key information should be provided in the paper, and a
reference to supporting information or the code should be provided for details.

We apologize for this oversight. We added a paragraph {lines 356: 369} to section 2.5 (Synthetic
data and real data experiments) which states some details about the hyperparameters:

“The MLPs employed had three layers: an input layer, one hidden layer, and an output layer. To
ensure an output value between 0 and 1 for both Vcmaxes and B parameterizations, sigmoid
activation functions were used for both hidden and output layers. V¢ maxes Was then rescaled to be
within a pre-defined range based on literature values of 20 to 150 pmol m? s*. For the i-th soil
layer, Bi values were kept between 0 and 1, so with S; ranging between 0.01 and 1 (see Appendix
B), the term Si®' then had a range of I to 100. This ensured that the value of yiranges from yc to
wo (see Equation 10).

The quantity of available data posed a limitation and did not permit an extensive hyperparameter
tuning experiment with a train/validation/test split. Hence, we employed a “lazy ” trial and error
process with hyperparameters (learning rates and hidden size) using 70% of the data as training
data and 30% as a validation set, just to ensure we had a roughly performing hyperparameter set
(see Appendix C). We selected a learning rate of 0.045 and a hidden size equal to the number of
inputs (9 for the NNv and 8 for the NNgi). We kept these same hyperparameters when we ran 5-
fold cross validation with an 80%:20% train:test ratio. In addition, we found that moderately
perturbing the hyperparameters resulted in very little change in the performance. This design was
necessary considering the practical limits of the available data, even though this study already
represents a large-sample study in the domain of ecosystem modeling.”

The table below (added in Appendix C in the revised manuscript) shows that moderate changes to
the hidden size do not matter too much. Thus, due to data limitation, we did not tune
hyperparameter extensively. We simply used a hidden size equal to the number of inputs. Should
there be more data available in the future, we could certainly use a train/validation/test split and
run more hyperparameter tuning.

Table C1 V+B model formulation performance for different sizes of NNgi with 80%:20% train: test split ratio

RMSE Bias
Corr (umol m-2 s-1) | (pmol m-2 s-1) NSE

Train Test Train Test Train Test Train Test

0.7862 0.7712 4.3188 4.2920 0.0898 | -0.2339 | 0.6175 0.5904 | NNgi[8,6,1]

0.7863 0.7713 4.3178 4.2912 0.0866 | -0.2395 | 0.6177 0.5905 | NNgi [8,7,1]

V+B | 0.7862 | 0.7706 | 4.3190 | 4.2957 | 0.1023 | -0.2261 | 0.6174 | 05897 |NNg [8.8,1]

0.7858 | 07700 | 4.3222 | 43018 | 0.0711 | -0.2653 | 0.6169 | 05885 |NNg [8,9,1]

0.7855 0.7720 4.3275 4.2864 0.1049 | -0.2182 | 0.6159 0.5914  |NNg; [8,8,8,1]

Detailed comments



1. line 61: nonuniqueness is also going to be a problem if we employ newer frameworks like
PINNs or dPL

We agree that non-uniqueness will still remain an issue and will need to be tested/controlled, but
it should be better with dPL than with previous site-by-site calibration approach, because one
neural network is constrained by all data points. There is an implicit spatial constraint. This effect
was demonstrated in fine detail in Tsai et al., 2021. As shown in that paper, as we turn parameter
calibration into parameter learning, the framework can generalize better in space and in
uncalibrated variables. It’s obviously a tricky issue between the available data we have, the amount
of structure we specify, and the tradeoff between variance and bias. What we hope to achieve is to
maximally leverage the available information.

2. line 110: it might be worthwhile to start with a reference to figure 1 and a down to earth
explanation of the objective of your work, i.e. to calibrate model parameters across many sites,
to capture the variation of parameters using neural networks, and to employ differentiable
programming to speed up the identification process

As mentioned above in our response to major question 1, we added a new first paragraph {lines
125: 127} in Section 2.1, General overview, about the overall framework and cited Figure 1. That
paragraph is followed by:

“In this case, the process-based model is the photosynthesis module in FATES, which can be
written as a nonlinear system of equations, and its solution is implicit. The system can be written
as:...”

3. line 118: please explain PFT again in this section

PFT was replaced with the full description of plant functional type and the whole text was modified
{lines 133: 135} to:

“Some of the tuneable parameters are typically formulated as being Plant Functional Type (PFT)-
dependent (e.g., the maximum carboxylation rate at 25°C, Vemaxes) Where each PFT includes
groups of plant species that share similar physical and phenological characteristics leading to
similar interactions with the environment....”

4. line 140: If you preserve eg. 4 and 5 in the paper, | think they should be presented in
reverse order (f1 first, f2 second)

These equations have been reversed to show f (formerly f1) before h (formerly f2).

5. line 146-164: please include only methodological descriptions that are relevant for the results.
of the julia implementation was not used, then it should not be described and discussed

Thanks for the point and we do understand where the reviewer is coming from. While Julia was
not the main tool for production here, we mention it because the SciML toolset, co-developed by
two of the coauthors, may be valuable to ecosystem modelers. Moreover, it is formulated very



differently in a novel symbolic format which is in fact quite interesting and could potentially lead
to an alternative path, and the package is evolving rapidly. Hence, we think preserving it has some
value. Removing it would also mean removing some coauthors, which we do not want to do
because their input was valuable for the development of this work and thus should be credited.

6. line 183: you don't describe anywhere in your data how many PFTs you consider. it is therefore
here also not clear how many dummy variables this model receives as input.

Our dataset included 9 different PFT categories. A paragraph {lines 273: 285} with more details
about the Lin15 dataset was added to subsection 2.4.1 (Forcing and Photosynthesis rates) stating
the number of PFTs considered plus the name of each PFT.

“We refer to this dataset as Linl5 throughout the rest of this work with 43 sites chosen whose
dates and times of measurements were available. Lin15 covered nine different PFT categories:
rainfed crop “Crop R”, Broadleaf Evergreen Tree Tropical “BET Tropical”, Broadleaf
Evergreen Tree Temperate “BET Temperate”, C3 grass, C4 grass, Needleleaf Evergreen Tree
Boreal “NET Boreal”, Needleleaf Evergreen Tree Temperate “NET Temperate”, Broadleaf
Deciduous Tree Temperate “BDT Temperate”, and Broadleaf Deciduous Shrub Temperate “BDS
Temperate”. Measurements were taken on a sub-hourly scale but not necessarily on a continuous
daily interval. That’s why for almost all the sites, data were available on some random days (not
necessarily continuous) in one or a few years.

Lin15 also contained forcing variables, including air temperature (T), leaf temperature (T.),
atmospheric pressure (Pam), relative humidity (RH), photosynthetic active radiation (¢) and
boundary layer conductance (g»). Moreover, we used ERAS5 to fill in for any missing forcing
variables in Lin15. In equation 4, Pamand gp were used directly from the dataset, while C, was
computed as 0.039% of Pam, and gs was calculated using the Medlyn conductance model (Medlyn
etal., 2011) as explained in Appendix A.”

7. line 190-205: I think this information is not needed to understand the main message

This information is important because it is referred to in different parts of the paper and briefly
shows how the soil water stress function (fy) is calculated.

Lines 190 — 195 (in the previous manuscript version) show equation 7 which we later refer to as
the equation to be replaced with equation 10 in the model changes section. Thus, we need to
mention both the default and the changed equations.

Lines 195 — 205 (in the previous manuscript version) show the equations for calculating the soil
water stress function (5t) and the plant wilting factor (wi), which we later refer to as part of the
equations used in the synthetic and real data experiments after retrieving or estimating the
parameter Bi. We also refer to the changed in wj computations (see Equation 12) in the Model
changes section in the revised manuscript.

8. eQ. 10: why is psi_max replaced by psi_0? (missing explanation)



In lines 216 — 218 (in the previous manuscript version), we stated the actual equations that we used
in for computing wi (in which wsat was replaced with o).

In Appendix A and B (added in the revised manuscript), we kept all the original equations the
same whether those related to FATES or to computing the soil water stress function ().

Proposed equation in this study (Equation 10) Original equation (Equation 7)
W, (PFT) = ¥, x S B1C0MPFD > g Wo=W X ST >,

Reasons for this replacement:

In the original CLM4.5 equations, wsat IS based on empirical functions, percentage of sand
(%sand), and fraction of organic matter (Fom) (See Equations B4 — B5 in Appendix B). Using the
original Equation 7 for computing wi results in a plant wilting factor w; equal to one for more than
90% of the data points across different soil layers.

To give the model more flexibility in the computation of i and thus allow more variability in wi
values, wsat was replaced with wo. However, to ensure having w; values less than or equal 1 as in
the original w;i (see Equation 8 in the revised manuscript), we tried to create equation 10 in a way
that satisfies this condition using wo. Parameter B; (output from NNgi) was restricted to be within
the range 0 and 1 to satisfy the same condition as well (see the added paragraph for NN structures
in section 2.5). Applying those changes, we were able to get i values within the range of v, and
wc While showing more variability in the computed wi.

Also, we added this paragraph {lines 252: 264} to section 2.3.1 (Model changes) for clarification:

“The default equations in the Community Land model V4.5 (CLMA4.5) for computations of B;
(Appendix B) show that the parameter Bi depends on two attributes, %clayi and Fom,i, which is why
they were used in NNg;. To account for the dependence of ysati on %sandi (Appendix B) and its
replacement by v, (see equations 7 and 10), %sand; was also added to NNgi. We also added PFT
to NNgi inputs because vegetation may interact with soil moisture constraint and we want to allow
relevant factors to be included, rather than restricting the list of inputs to what was previously
used in the literature. Since in NNgi, we use quantitative inputs (%sand;, %clayi, Fom,i) along with
categorical inputs (PFT), we used the embedding layer in PyTorch, which translates each category
to a vector of quantitative variables. This categorical data can then easily be combined with other
quantitative inputs we provide to our neural network.

Moreover, using the original Equation 7 for computing yi resulted in a plant wilting factor, wi,
equal to one for more than 90% of the datapoints across different soil layers. Changing Equation
7 to the form shown in Equation 10 helped to express more variability in w; and eventually in the
computed soil water stress function ().

Here, the point is to calculate photosynthesis. We can see clearly the modified model works very
well for photosynthesis. The differentiable modeling approach was specifically designed to enable
inspection of various modules and assumptions in the model to improve model performance. It is
possible that alternative formulations can also perform well, and we do not preclude that here.



9. eq.11: whatis F_om?

F_om is the fraction of organic matter. We explained it clearly right after the equation in the revised
manuscript {lines 247: 249}as the following:

“Biis a PFT- and soil-texture-dependent shape parameter (between 0 and 1) estimated as:

Bi = NNgi(%sand;, %clayi, Fom,i, PFT) (12)
where %sandi, %clayi, and Fim,i respectively represent the percentage of sand, the percentage of
clay, and the fraction of organic matter in soil layer i..”

10. line 232: the CLMA4.5 data points should be documented in a dedicated data section. In general,
| suggest they you separate the description of data and experiments

Our data are now described in Section 2.4, preceding the description of our experiments in Section
2.5. CLM4.5 documentation clearly presents the standard values of the parameters and the
equations that we used in this study, and a detailed discussion of them is outside the scope of this
work. We already did provide some of the basic parameter values (model values for V¢ maxzs) from
CLMA4.5 and other similar models in Table 3 and provided references (in the text). We also added
a subsection (shown below) to section 2.4 (Input and observation datasets) to better clarify. A
subsection (shown in the response to major question 3, above) was also added to Section 2.4 (Input
and observation datasets).

11. line 239: were all calculations performed only for the topsoil layer in all experiments?

This is valid for the synthetic case only whose purpose was just to test the whole framework, while
for the real case all the five soil layers (mentioned in Static attributes subsection) were used to
estimate the parameter B; for each soil layer. For better clarification we added these paragraphs to
section 2.5 (Synthetic data and real experiments):

For the synthetic case {lines 314: 320}:

“In the second synthetic case, “Vemax— B”, we tested simultaneously retrieving both V¢ maxes and
B, the latter of which varies spatially for different static attributes. For simplicity, we used only
the topsoil layer for this case and excluded the influence of the PFT term; therefore we assumed
B: = 0.1 * Fom1 + 0.45 * (%sand: + %clay:) to generate the synthetic data. The plant wilting
factor (w1) was then calculated using equation 12 and was fed into equation 9 to compute the soil
water stress function (f). Since we were using only the topsoil layer, g was simplified to (f: =
wary) with a root distribution value for the topsoil layer (r1 = 1). To retrieve By, we used NNgi (see
Equation 11) but excluded the PFT term since it was not used in synthesizing B: values.”

For the real case {lines 348: 349}
“Representing a real case, Bi was estimated for the i-th soil layer based on the static attributes for

that layer in the four tested model formulations. Thus, B; varied both horizontally and vertically
for each PFT. ”
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12. Table 1: missing symbol explanations for means and standard deviations

For clarification, this line was added to the bottom of table 1

“g refers to the standard deviation, OBSrefers to the mean of the observed values, and SIMrefers to the
mean of the simulated values.”

13. line 383: please include time series for observations and model predictions

Time series are not the focus for several reasons. Measurements in Linl5 dataset were taken on
sub-hourly scale but not necessarily on a continuous daily interval. For almost all the sites, data
were available on some random days (not necessarily continuous) in one or a few years. In fact,
many of the measurement days are far from each other and we can barely find consecutive days
for producing sensible time series. Second, this model was not posed as a time-continuous
problem. In other words, there is no accumulated memory between different dates. Hence, we
think a time series plot would be somewhat misleading. We believe more effort, including a
vegetation growth module, is needed to simulate seasonality nearly optimally.

14. fig. 5: symbols in legend cannot be distinguished. are results shown for the test dataset?

These points belong to both training and testing datasets. We previously had a version that
distinguished between train and test, as pasted below. As you can see, there are no visual
differences between two types of points and such symbology does not really bring in new
information. Later, we wanted to use symbols to indicate PFTs, which seems more informative.
So, to avoid overcomplicating the figure, we removed the train/test differences. We also remind
the reviewer that we provide cross validation results in the revised manuscript, which shows
similar statistics to the random holdout.

We already ran the requested cross validation (5-fold). The figures below show train/test points
from the five folds. As one can see, there seems no systematic difference between train and test in
the cross-validation case.

Fold 1:

(a) Learning B with default V¢ maxs (b) Learning V¢ maxzs With varying B
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Fold 2:

(a) Learning B with default V¢, maxos

(b) Learning V¢, maxzs With varying B

@ Vdef+B |, train [ oy © 501 V+Bdef, train ,
70] @ vdefrs | test . © V+Bdef, test 7
® Vdef+Bdef, train ° ° ‘< ® V+B | train ‘/’
w0l @ Vdef+Bdef, test ® . 40| ® V4B L test e
-
—~ %
7 a
501 e
L 304 LY °
T 404
2 40 e
3
< 30 20 4
o
i
®
E 20 L]
& 10
10
0 04 #0 o®
0 0 20 30 4 50 6 70 0 10 20 30 40 50

Measured A, (umol m=2 s1)

(a) Learning B with default V¢, maxos

(b) Learning V¢, maxzs With varying B

70

60 1

Simulated A, (umol m=2 s71)

304

@ Vdef+B |, train [ oy © 501 V+Bdef, train =
@ Vdef+B | test © V+Bdef, test e
; . -
® Vdef+Bdef, train ° ° ‘< ® V+B | train 7
@ Vdef+Bdef, test ® . 40| ® V4B L test e

70

60 1

Simulated A, (umol m=2 s71)

o
20
10
0 o
0 0 20 30 4 50 6 70 0 10 20 30 40 50
Measured A, (umol m=2 s1)
(a) Learning B with default V¢, maxos (b) Learning V¢, maxzs With varying B
@ Vdef+B |, train [ g © 501 V+Bdef, train ,
@ Vdef+B | test . © V+Bdef, test o
® Vdef+Bdef, train - ° ° ‘< ® V+B | train ‘/’
@ Vdef+Bdef, test [ ] L 4] @ V+B test L
>
30
o
20
10
0 o
0 0 20 30 4 50 6 70 0 10 20 30 40 50

Measured A, (umol m=2 s1)

12



(a) Learning B with default V¢, maxzs (b) Learning Ve, maxzs With varying B
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In the revised manuscript, we used Figure 6 shown below since we believe that the figure with
different PFT types, delivers more useful information. To avoid confusion between whether
training or testing sets were used for plotting, we created this figure using the test points from the
5 folds in the cross-validation test (cross validated dataset).
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Figure 6. Comparisons of photosynthesis model calibration. Comparing impacts of default and learned parameters by
plotting observed vs. simulated An (net photosynthetic rate) values calculated using different candidate models (described
by which parameter definitions they use). (a) Impact of learning B with default V¢ maxes. (b) Impact of learning Ve maxzs with
varying B (either learned alongside V in V+B, or defined by the default equations in CLM4.5. The colors represent the
results from the four different models, the shapes indicate the plant functional type (PFT) groups, and the dotted line in
each panel indicates the ideal 1:1 relationship. Subscript “def” indicates that the variable was calculated using the default
definitions in CLM4.5, while lack of this subscript indicates that the parameter was learned using a NN. Scatter plots were
created using the test dataset from the 5 folds of the cross-validation test. For better illustration, only 3 PFTs are placed in
a panel, as indicated by the panel titles. Comparing symbols in the same panel gives insights about the role of estimating B,
while comparing left and right panels gives insights about the role of estimating Vcmaxzs.

15. line 426: i would add that you have identified parameter values that are optimized for the
considered set of model equations and forcings. both of these have limitations. Equations may
be wrong, ERAGS is rather uncertain, and measurement principles can vary between stations.
This is both a limitation and a strength of your framework. Parameter values will not be
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transferable to other inputs. On the other hand you can obtain optimized predictions for the
given set of forcings.

Good point. Just like any other model, the performance may be impacted when you change the
forcing datasets because these datasets may have certain biases. If the model is trained on a global
scale, we hope the various different kinds of forcings to be encountered can serve to limit
overfitting. We added the following sentences {lines 617: 620} to section 4 (Discussion).

“We would like to highlight that such parameterizations are suitable to the target and forcing
dataset used in training (which is still the most representative accessible dataset) and are related
to the process-based model employed. The dataset may have limitations related to the consistency
in the measurement approach, and there may be errors in the forcing data, or imperfections in
model structure. The model performance may also vary based on different forcing data and inputs
used.”
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Anonymous Referee #2

The authors of the manuscript ‘A differentiable ecosystem modeling framework for large-scale
inverse problems: demonstration with photosynthesis simulations’ describe the application of the
‘differentiable parameter learning’(dPL) framework to the photosynthesis module of FATES
model. The framework, and concept, overcomes extrapolation limitations from site-by-site
calibration approaches and allows leveraging information content in large-scale datasets towards
a global parameterization of photosynthesis models. Neither the concept (Tsai et al., Nature
Communications, https://www.nature.com/articles/s41467-021-26107-z, 2021; Bao et al.,
Authorea, https://www.authorea.com/doi/full/10.1002/essoar.10512186.3, 2022) nor the dPL
framework (Tsai et al., 2021; Feng et al., 2022ab) are new. However, the framework is used in the
FATES model for the first time and the results would be of interest for further model development,
but also to the scientific community at large.

At this point, the experiment focuses on inverting two parameters, Vemaxes and B, resulting in that
the accuracy of the simulated net photosynthesis rate being slightly improved. The main concerns
at this stage relate to apparently incorrect formulations of some key equations, to issues about the
validation strategy, to the fact that the forcing data and the experiments are not described
sufficiently, challenging the acceptance of the study, while hampering any reproducibility efforts.
Please see below for details.

We appreciate your detailed comments! As a summary, it seems most of the questions seek
clarifications and details about the model. Thank you — these comments should help us elucidate
the model better. We did not find major comments that require computational experiments or major
reorganization. There is a question about cross validation, which we have already run and shows
expected and essentially similar results. Moreover, some metrics were requested, and we
calculated them and reported them in the responses.

We indeed followed our previous differentiable parameter learning paradigm which was first
applied in hydrology (Tsai et al., 2021; Feng et al., 2022), as noted in the manuscript, but this is a
novel use in the large domain of ecosystem modeling, which is a very large field of study. The
system is also different as here we have a nonlinear system of equations while in hydrologic cases,
we have ordinary differential equations; thus the mathematical treatment is different. The Julia
software solves the system using adjoint solvers, although it is a relatively minor point as we
mainly used the PyTorch version for its high parallel efficiency.

We could not have noticed Bao et al., 2022 as it went online after our manuscript did and seems
to be undergoing review. Upon some examination, we believe the basic modules are very different.
They are using a light-use-efficiency approach and predicted GPP, while our paper focused on
photosynthesis using a Farquhar-type model. Hence, we don’t think there is much overlap between
the two.

1. Two key equations are incorrect in the paper:

1) line 140: equation 5, Ci=Ca-An*Pam™(1.49s+1.60n)/(gs+Qb);

2) Iine 505: equation Al, Ac:chax*(Ci'r*)/(Ci+Kc*(l‘l‘Ko/Oi)).

According to the user guide of the FATES model (https:/fates-users-
guide.readthedocs.io/projects/tech-doc/en/latest/fates tech_note.html#fundamental
photosynthetic-physiology-theory), the equations should be:
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1) Ci=Ca-An*Pam™(1.49s+1.605)/(gs*gn);

2) Ac:chax*(Ci'r*)/(Ci+Kc*(1+0i/Ko)).

Since the FATES model is reimplemented in Julia and PyTorch by the authors, the codes might be
also wrong. If so, the unit of C; will be incorrect, leading to errors in the inversion of V¢maxes and
B. The wrong computation of the effective Michaelis-Menten coefficient (=K*(1+0i/Ko)) might
only have a slight effect if the temperature is close to 25°C, but should be concerned if the
temperature is too low or high (and I do see some points with low leaf temperature in the ‘Lin15’
database). Thus, | have doubts about the current results and relevant analysis.

Regarding the equations --- we were cautious to adhere to the original FATES equations before
implementing it on PyTorch or Julia. Unfortunately, there were some typos in the manuscript
in line 140 and line 505 in the paper which have been corrected. We confirmed that we used the
correct equations in our differentiable model:

Ci:Ca'An*Patm*(1.4gs+1.GQb)/(gs*gb);

Ac=Vemax* (Ci-T'+)/(Ci+Kc*(1+0i/Ko)).

No results need to be changed. The code was correct as we compared carefully against the Fortran
code in these subroutines as we developed the differentiable versions of the code. We will be
publishing the code as the paper gets closer to acceptance so this can be examined in the code.
Again, we apologize for the errors in the manuscript.

2. Asall the results are validated only once using the temporal holdout data or the random holdout
data, the generalizability of the dPL (or NNs+NNy) is not clear. If the N-fold or leave-one-out
cross-validation can be adopted, the statistical metrics can be more justifiable to reflect the
model performance.

Thanks for being rigorous. We believe the randomly selected points were representative, but we
conducted a cross validation (CV) and show the results below. The results are as follows:

(a) Temporal holdout test for the following system (80% train: 20% test)

RunNs Corr (pml:fll\l/ils—IZE s-1) (umollslll?-SZ s-1) NSE
Train Test Train Test Train Test Train Test

Vdef+Bdef 0.565 6.778 1.475 0.042
Vdef+B 0.631 0.582 6.339 6.110 1.521 0.944 0.176 0.170
V+Bdef 0.758 0.565 4.598 6.135 -0.164 -1.624 0.566 0.163
V+B 0.786 0.771 4.319 4.296 0.102 -0.226 0.617 0.590
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(b) Cross Validation (5-fold) test for the following system

RMSE Bias
Runs Corr (nmol m-2 s-1) (pmol m-2 s-1) NSE
Train Test Train Test Train Test Train Test
Vdef+Bdef 0.565 6.778 1.475 0.042
Vdef+B 0.623 0.621 6.281 6.298 1.584 1.578 0.177 0.173
V+Bdef 0.715 0.709 4,960 5.020 -0.410 -0.401 0.487 0.474
V4B 0.783 0.778 4,306 4,359 0.074 0.081 0.613 0.604

We also provide the metrics for each fold:

Folds | COR_test | RMS_test | BIAS_test | NSE_test
1 0.769 4,701 0.104 0.591
2 0.781 3.856 0.388 0.605 V4B
3 0.789 4.108 -0.146 0.622
4 0.767 4.654 0.072 0.584
5 0.784 4.417 -0.035 0.615

This is exactly as we expected in our initial reply posted online --- the 5-fold CV results are similar
to the previous random results and better than the temporal test results. In addition, we showed the
train/test An scatter plots for the five folds in question 14 above (in the detailed comments) by the
first reviewer.

We believe a spatial test, though, would best belong to a different paper as the paper is already
getting long. There are many techniques to improve spatial generalization and enlarge datasets
using remote sensing which, if combined with the present content, would just be too much for a
first paper. We clarify this point in the paper by adding the following sentences {lines 611: 615}
to section 4 (Discussion):

“Also, this study doesn’t cover the spatial generalization since we don’t present results for spatial
tests or based on site-level comparison. To improve spatial generalization may require further
changes in the model, dynamical parameters, or using other error mitigation approaches (Feng
et al., 2021, 2022b; Ma et al., 2021a). This is not our scope for this study; however, it will be
considered for future work.”

3. The forcing variables and parameters are not clearly differentiated in the paper. For example,
is the leaf layer boundary conductance, gy, a constant parameter across sites or a temporally
changing variable? If it is a forcing variable for FATES, where is gp from? is 0ice a forcing
variable or a parameter correlated with temperature and 6iiq? Is the Caa constant value or
variable? The model would be different if the spatial and temporal variability of all these
factors are considered. If all these are parameters (i.e., scalars), what are the values?

The Lin15 dataset included different forcing variables that we used in our model including:
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RH Relative humidity

T Air temperature

Ty Leaf temperature

Patm Atmospheric pressure

PAR (o) Photosynthetic active radiation
gv Boundary layer conductance

Concerning (gv, Oice and C,), here are details about how they were considered in the model:

e (b, the boundary layer conductance values were already available in Linl5 dataset.
However, it has some missing values which we then computed using the inverse

relationship between gy and the boundary layer resistance rp. r, was approximated

by the

following equation as documented in CLM5.0 (Lawrence et al., 2019) in section 5.1:

r :l dleaf
7 Cy | Uay

Where Cy and diea are both constants (0.01 ms™2 and 0.04 m respectively), while U,y is the

wind velocity. We stated this in Appendix A {lines 675: 679} as the following:

“where Ca is COz partial pressure near the leaf surface (calculated as 0.039% of Patm) and

go is the leaf boundary layer conductance, which was available in Lin15 except fo

r some

missing values which were computed using the inverse relationship between gy and the

boundary layer resistance (r»). ro was approximated by the following equat
documented in section 5.1 of CLM5.0 (Lawrence et al., 2019):
1 dleaf

7, =—
"7C, | Uw

ion as

(A13)

where Cy and diear are both constants (0.01 ms™*2 and 0.04 m respectively), while Uay is the

wind velocity. ”

e 0ice, the volumetric ice content values were ignored (considered as zero) since both

the air

and leaf temperatures in our dataset were above the freezing temperature (0 °C or 273.15
K) by at least 5 degrees. We stated this in section 2.3 {lines 236: 238} as the following:

“In our calculations, Oice Was ignored since both the leaf and the air temperatures
dataset were above the freezing temperature (0 °C or 273.15 K) by at least 5 °C.”

e C, the CO; partial pressure near the leaf surface values were variable spatial
temporally and they were taken as 0.039% of the atmospheric pressure. We stated
section 2.4 {lines 273: 285} as shown below.

in our

ly and
this in

“We refer to this dataset as Lin15 throughout the rest of this work with 43 sites chosen whose dates
and times of measurements were available. Lin15 covered nine different PFT categories: rainfed
crop “Crop R”, Broadleaf Evergreen Tree Tropical “BET Tropical”, Broadleaf Evergreen Tree

2

Temperate “BET Temperate”, C3 grass, C4 grass, Needleleaf Evergreen Tree Boreal

“NET

Boreal”, Needleleaf Evergreen Tree Temperate “NET Temperate”, Broadleaf Deciduous Tree
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Temperate “BDT Temperate”, and Broadleaf Deciduous Shrub Temperate “BDS Temperate”.
Measurements were taken on a sub-hourly scale but not necessarily on a continuous daily interval.
That’s why for almost all the sites, data were available on some random days (not necessarily
continuous) in one or a few years.

Lin15 also contained forcing variables, including air temperature (T), leaf temperature (Tv),
atmospheric pressure (Pam), relative humidity (RH), photosynthetic active radiation (p) and
boundary layer conductance (g»). Moreover, we used ERAS to fill in for any missing forcing
variables in Lin15. In equation 4, Pamand gp were used directly from the dataset, while Ca was
computed as 0.039% of Pam, and gs was calculated using the Medlyn conductance model (Medlyn
et al., 2011) as explained in Appendix A.”

4. Line 216-218: the reason for replacing saturated soil matric potential (Wsat) with soil matric
potential for closed stomata (Wc) is not explained. Equation 10 shows that the Wsat is replaced
with soil matric potential for open stomata(‘¥o), not Wc. Furthermore, the Wiwas still
calculated using Wsat in Appendix A (equations A16-A18). I’'m confused about which variable
was used to calculate i.

In lines 216 — 218 (in the previous manuscript version), we stated the actual equations that we used
in for computing i (in which ysat was replaced with o).

In Appendix A and B (added in the revised manuscript), we kept all the original equations the
same whether those related to FATES or to computing the soil water stress function ().

Proposed equation in this study (Equation 10) Original equation (Equation 7)
W, (PFT) = ¥, x s7P1C0MPD > g W=, X ST,

Reasons for this replacement:

In the original CLMA4.5 equations, wsat IS based on empirical functions, percentage of sand
(%sand), and fraction of organic matter (Fom) (See Equations B4 — B5 in Appendix B). Using the
original Equation 7 for computing i results in a plant wilting factor w; equal to one for more than
90% of the data points across different soil layers.

To give the model more flexibility in the computation of yi and thus allow more variability in w;
values, ysat was replaced with yo. However, to ensure having w; values less than or equal 1 as in
the original w; (see Equation 8 in the revised manuscript), we tried to create equation 10 in a way
that satisfies this condition using yo. Parameter B; (output from NNg;i) was restricted to be within
the range 0 and 1 to satisfy the same condition as well (see the added paragraph for NN structures
in section 2.5). Applying those changes, we were able to get i values within the range of . and
we While showing more variability in the computed wi.

Also, we added this paragraph {lines 252: 264} to section 2.3.1 (Model changes) for clarification:

“The default equations in the Community Land model V4.5 (CLM4.5) for computations of B;
(Appendix B) show that the parameter Bi depends on two attributes, %clay; and Fom,i, which is why
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they were used in NNgi. To account for the dependence of wsati on %sand; (Appendix B) and its
replacement by o (see equations 7 and 10), %sand; was also added to NNgi. We also added PFT
to NNg; inputs because vegetation may interact with soil moisture constraint and we want to allow
relevant factors to be included, rather than restricting the list of inputs to what was previously
used in the literature. Since in NNgi, we use quantitative inputs (%sand;, %clayi, Fom,i) along with
categorical inputs (PFT), we used the embedding layer in PyTorch, which translates each category
to a vector of quantitative variables. This categorical data can then easily be combined with other
quantitative inputs we provide to our neural network.

Moreover, using the original Equation 7 for computing yi resulted in a plant wilting factor, wi,
equal to one for more than 90% of the datapoints across different soil layers. Changing Equation
7 to the form shown in Equation 10 helped to express more variability in wj and eventually in the
computed soil water stress function (ft).”

Here, the point is to calculate photosynthesis. We can see clearly the modified model works very
well for photosynthesis. The differentiable modeling approach was specifically designed to enable
inspection of various modules and assumptions in the model to improve model performance. It is
possible that alternative formulations can also perform well, and we do not preclude that here, as
this is not a main point of concern for this paper.

5. Line 218-220: is NN: used to predict B: or ¥i? B depends on only %clay and F... according to
equations A22-A23, while the authors add %sand, which is related to V. and, therefore, V.. |
didn’t find a direct relationship between Bi and %sand according to the original equations in
the FATES model. If NNzis used to predict ¥, | think the equation can be
V=0i*NNs(%sand,%clay,PFT,F..,T), where T represents the factors controlling 6i., €.g.,
temperature.

NNgi is used to predict Bi. Indeed, Bi in the original equations depends only on %clay; and Fom,i,
however due to the changes we implemented to equation 7 (replacement of wsat with o), the
%sand; was also added to the NNgi. We also added PFT to NNg; inputs because vegetation may
interact with soil moisture constraint and we want to allow relevant factors to be included, rather
than restricting the list of inputs to what was previously used in the literature. This is precisely the
point of replacing existing equations with NNs --- we can be freed from previous restrictive
assumptions and test new ideas rapidly. We discussed the incentives for these changes in the last
response above (No.4).

In addition, here, the point is to calculate photosynthesis. We can see clearly the modified model
works very well for photosynthesis. The differentiable modeling approach was specifically
designed to enable inspection of various modules and assumptions in the model to update the
formula, so more modifications will definitely happen in the future.

Concerning this formula, ¥=0:*NNz(%sand, %clay,PFT,F..,T), we would like to thank you for
this suggestion. However, we suspect that including T in NNg;i to represent 0. might not very
effective. The histogram of air temperature (shown in the figure below) indicates that our dataset
does not include any points with air temperatures below 5 °C, which clarifies why 6ice was ignored
in our calculations. Thus, there is low probability that the temperature would have a great effect if
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included in NNBgi. Further investigation would be outside of the scope of this work, but we agree
that more data collection and investigation into air temperature and its effects in the future may be
worthwhile.

Histogram of air temperature
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6. | think the neural networks (NNes and NN.) need constraints on Vemes and Wi. Although the
authors declared that the predicted Vs Without any constraints is within a rational range
similar to the literature and measurement, the range of the predicted B is not discussed. If the
predicted B is very large at some point, ¥ can be much higher than W¥,, leading to w; being
higher than 1 (i.e., exceeding the range defined in equation A15). Besides, the Vs 1S possibly
to be inappropriate without any physical constraints at sites not considered in this study.

We actually did impose constraints on both NNgi and NNy in predicting V¢ maxes and B.

For V¢ maxes:

We constrained the output of NNv to be between 0 and 1 using a sigmoid activation function for
the output layer in the NN. We then rescaled the output to be within a pre-defined range based on
literature of minimum value of 20 umol m s! to a maximum value of 150 umol m2 s,

For B:

We constrained the output of NNgi to be between [0, 1] using a sigmoid activation function for
the output layer in the NN. Given that the soil wetness S; (in equation 7 and 10) ranges between
[0.01,1] as defined in the original CLM4.5 equations, therefore the term Si®' can have a range of
[1, 100] which when multiplied by o ensures having wi values with a maximum limit of o, while
the condition of wi >= w: was conserved in equation 10 (same as equation 7) for ensuring a
minimum limit of yc. Thus, we ensured that yi computed using equation 10 is within the range of
woand we which resulted in wi values less than or equal to 1.
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The following paragraph {lines 356: 360} was added to section 2.5 (Synthetic data and real data
experiments) which states some details in this regard:

“The MLPs employed had three layers: an input layer, one hidden layer, and an output layer. To
ensure an output value between 0 and 1 for both Vcmaxes and B parameterizations, sigmoid
activation functions were used for both hidden and output layers. V¢ maxes Was then rescaled to be
within a pre-defined range based on literature values of 20 to 150 pmol m? s*. For the i-th soil
layer, Bi values were kept between 0 and 1, so with S; ranging between 0.01 and 1 (see Appendix
B), the term Si®' then had a range of I to 100. This ensured that the value of wiranges from we to
wo (see Equation 10).”

Furthermore, some other authors may choose to impose additional constraints, which will be a
great research topic to pursue and should reduce the uncertainty of the parameters. Yet this seems
unnecessary for the model setup here.

7. Line 235-236: ‘we tested retrieving both Vemaxes and B, the latter of which varies spatially and
temporally.” If B varies temporally, it should be clarified how the training data is partitioned
and how the ‘random holdout test’ is done. For example, is B changing per year or every N
years? how many years/points per site are used to estimate B? Do the training points have to
be in sequence or not?

In the referenced lines, we specifically refer to the synthetic case. For this case, the values for the
parameter By in the topsoil layer were synthesized using the following equation B; = 0.1 * Fom1 +
0.45 * (%sand: + %clay1), so Bz only varies spatially (different static attributes). We modified this
sentence {lines 314: 315} to be “we tested simultaneously retrieving both V¢ maxes and B , the latter
of which varies spatially for different static attributes”.

Moreover, this paragraph {lines 371: 380} was added in section 2.5 (Synthetic data and real data
experiments) to explain more about the tests held as well as data splitting.

“Two different tests were performed with respect to data splitting: temporal holdout and
randomized cross-validation --- the former test stresses the models’ ability to project into the
future while the latter is the typical experiment run in the literature. Due to the irregularity of
measurement dates at each location (as mentioned previously in section 2.4.1), the temporal
periods for the training and testing datasets varied by location. In the temporal holdout test, for
each PFT in each location, the available dates of measurements were recorded. The oldest 80%
of these dates were used for training and the remaining more recent 20% were used for testing.
The temporal holdout test was run for both synthetic and real data experiments. For the
randomized cross-validation test, as the name implies, the dataset was randomly split into 5 folds
(groups) and each time the model was trained on 4 folds (80% of the datapoints) and tested on the
5t fold (20% of the data points). This was done a total of 5 rounds, so that all of the data points
were used for testing once. The cross-validation test was run only for the real data experiments. ”

8. Line 238-239: ‘For simplicity, the computations of B, Wi, wi, Bt were performed for the top soil

layer only.” In the synthetic experiment, only the top soil layer is considered. However, ‘B, ¥,
wi‘ for the other layers are not clarified (=zero or default values in CLM?). Are the other soil
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layers considered in the real data experiment? If yes, how many ‘B’ was estimated (i.e., how
many soil layers and how many temporally changing Bi)? If not, wi can only represent the
water availability at the top layer. The Bt is equal to wi and the root distribution, ri, at the top
layer. What is r; at the top layer (soil depth=0cm according to line 306)?

We added further explanation for the synthetic case {lines 314: 320} in section 2.5 (Synthetic
data and real data experiments):

“In the second synthetic case, “Vemax— B, we tested simultaneously retrieving both V¢ maxes and
B, the latter of which varies spatially for different static attributes. For simplicity, we used only
the topsoil layer for this case and excluded the influence of the PFT term; therefore we assumed
B: = 0.1 * Fom1 + 0.45 * (%sand: + %clay:) to generate the synthetic data. The plant wilting
factor (w1) was then calculated using equation 12 and was fed into equation 9 to compute the soil
water stress function (f;). Since we were using only the topsoil layer, g: was simplified to (6: =
war1) with a root distribution value for the topsoil layer (r1 = 1). To retrieve By, we used NNgi (see
Equation 11) but excluded the PFT term since it was not used in synthesizing B1 values. ”

For the real experiments:

Five soil layers were considered in these experiments with the exact depths described in subsection
2.4.2 (Static attributes). NNgi used static attributes (Fom,i, %0sand;, and %clay;i) from all soil layers
along with PFT and predicted B; values for each layer. So according to Bi = NNg;j (%clayi, %sandi,
Fom,i, PFT), B varies horizontally (static attributes per location) as well as vertically for each soil
layer, and for each PFT. For better clarification, we edited the equation for B, which now reads B
= NNBgi (%clayi, %sandi, Fom,i, PFT) (see Equation 11 in the revised manuscript)

We added further explanation for the real case {lines 348: 349} in section 2.5 (Synthetic data and
real data experiments):

“Representing a real case, Bj was estimated for the i-th soil layer based on the static attributes for
that layer in the four tested model formulations. Thus, B; varied both horizontally and vertically
for each PFT.”

9. Line 239: ‘To retrieve B, we used NNB but exclude the PFT term.’

| think it is not proper if the PFT is excluded from the training but included in the equation. If PFT
is excluded, the term should be removed from equation 11. The sentence at line 222 *... along with
categorical inputs (PFT), we used...” should be rephrased.

In Line 239 (in the previous manuscript version), we refer to the synthetic case and as mentioned
in the last comment (No.8) we synthesized the values for the parameter B in the topsoil layer
using the following equation By = 0.1 * Fom,1 + 0.45 * (%sand: + %clayi). So, we formulated the
NNg: for the synthetic case as B: = NNg1 (%sandz, %clay1, Fom,1).

In equation 11, we show the general equation used for the real case experiments which included
the PFT term as well in NNg; (discussed previously in comment No.4 in the major comments)
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10. Line 245: ‘The model passing the test of the synthetic case was then applied to a real dataset...’
The same NN was used for synthetic data and real data, but the NN information (layers, neurons
activation functions) is not clear. As real data is much more complex, using a different NN
structure from the synthetic test might have better performance.

Concerning the NN formation, as mentioned above in our response to major question 6, we added
a new first paragraph to section 2.5 (Synthetic data and real data experiments) which states
some details in this regard. That paragraph {lines 362: 369} is followed by:

“The quantity of available data posed a limitation and did not permit an extensive hyperparameter
tuning experiment with a train/validation/test split. Hence, we employed a “lazy ” trial and error
process with hyperparameters (learning rates and hidden size) using 70% of the data as training
data and 30% as a validation set, just to ensure we had a roughly performing hyperparameter set
(see Appendix C). We selected a learning rate of 0.045 and a hidden size equal to the number of
inputs (9 for the NNv and 8 for the NNgi). We kept these same hyperparameters when we ran 5-
fold cross validation with an 80%:20% train:test ratio. In addition, we found that moderately
perturbing the hyperparameters resulted in very little change in the performance. This design was
necessary considering the practical limits of the available data, even though this study already
represents a large-sample study in the domain of ecosystem modeling.”

What we meant by “The model passing the test of the synthetic case was then applied to a real
dataset...” is that we didn’t perform significant changes in the general differentiable model
structure between running the synthetic and real cases.

Indeed, it is true that the real case should be more complex than the synthetic case. However, for
NNv we kept it the same for both cases since in our reference models (CLM4.5, AVIM, BETHY)
Ve maxzs IS @ PFT-dependent parameter and for consistency we didn’t make any changes to NNy (in
this paper, as a starting point). For NNgi, we indeed made a slight change between the synthetic
and the real case regarding the number of soil layers used:

Synthetic Case (one soil layer) Real Case (five soil layers)
B1 = NNz (%sand1, %clayi, Fom,1) Bi = NNgi (%sandi, %clayi, Fom,i, PFT)

We discussed the reasons for using these inputs in NNg; in comment (No.4) in the major comments.

Finally, we would like to mention that this study is one of the first studies in this field, so our
purpose is to present the application of the dPL framework without necessarily finding the best
NNs for learning our target parameters. We can perform more improvements in the
parameterization module in the future.

11. Line 266-267: the loss function is very significant to evaluate the NN, but not explained in the
paper. Without the equation of the loss function or the NN information, the dPL framework
cannot be assessed by others, in other words, the experiment cannot be repeated. | think this
doesn’t fulfil the requirement of Biogeosciences: ‘Is the description of experiments and
calculations sufficiently complete and precise to allow their reproduction by fellow scientists
(traceability of results)?’.
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Concerning the loss function, we already discussed its structure in multiple sections in the
manuscript.

W = arerJlin(L(Spsn(gW(R), 0. F),y°)) (3)

In equation 3: we stated that the weights are minimized using the loss function between the
simulated target variable y (see Equation 2) and the observed target variable y*. We then discussed
how f and h equations are reflected on the photosynthesis module in FATES using equations 4 and
equation 5 respectively. In section 2.2, we highlighted that the y term is the A, (the net
photosynthesis rate) variable in our problem.

Moreover, figure 1b (new version shown in question 1 above by the first reviewer) shows that the
loss function is computed between the simulated and the observed An. We mentioned that for the
dPL framework, we don’t need ground truth for the learnt parameters but we do for An.

Concerning the NN formation, the paragraph we added in the last response to comment No.10
in the major comments would further clarify it. Further, our code will be shared upon paper
acceptance and the results will be entirely reproducible.

12. Line 268-272: the authors ‘hope to identify parameters that can generalize well in space’, so |
think the readers would wonder if the parameters are estimated per site or per PFT. If
parameters are estimated per site, how are they aggregated to parameters per PFT in figure 3a
and 4a? If estimated per PFT, I’m afraid the spatial variability of the parameters is not fully
captured by dPL.

Vemaxes Values were estimated per PFT since NNv(PFT) uses just the PFT as input without any
static attributes specific to each site. Also, our reference values (used for comparison from
CLM4.5, AVIM, BETHY, and TRY) for V¢ maxes come from models that define Vc¢maxes per PFT
not per site. While B; is considered a spatially variable parameter since it depends on site specific
soil attributes. According to this equation B; = NNgi(%sandi, %clayi, Foni, PFT), (equation 11 in the
revised manuscript), B; differs between different sites and for one site it differs for different PFTs
as well.

‘hope to identify parameters that can generalize well in space’: by this sentence we mean that the
dPL, contrary to previous site by site calibration, is able to learn from data from all sites
simultaneously. This is due to the structure of the framework enabling it to be trained “globally”
so it involves all training data points, rather than being computed site-by-site as done in traditional
calibration. In Tsai et al., 2021 we have already established that casting the parameter problem as
parameter learning improves spatial generalization.

Further, we have run some preliminary spatial tests which showed only a small decline of
performance when tested in an untrained site. While we obtained a temporal test NSE of 0.581
(80%:20%) train: test ratio, the NSE of a spatial test for the current model is already 0.44,
suggesting this model is reasonably well-generalized in space. Unfortunately, we could not find
spatial tests for benchmarking in the ecosystem modeling literature and would appreciate any
suggestions with a comparable dataset. As we mentioned earlier, we are working on further
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improving the spatial generalization with some error mitigation approaches. This will add lots of
content and should be for the scope of another paper.

13. Line 292-302: the sources of the soil moisture, stomatal conductance, meteorological forcings
and the soil properties are mentioned, but the sources of Ca, gb and Patm are not clear.

We mentioned the paragraphs added to clarify this in comment No.3 in the major comments. While
these represent simplified treatments, our model’s performance suggest that their impacts may be
limited. Such simplifications are necessary as we just are getting started with the different model,
and the model can be made more sophisticated later.

14. The data source of ‘Lin15” was not specified. | found a database at Lin et al., 2015, bud didn’t
find the dates information on lines 296-300.
In the supplementary information Lin et al., 2015, page 6:

“Supplementary Table 2: List of data source. The whole database is publicly available and can be
downloaded from data repository 40 (https://bitbucket.org/gsglobal/leafgasexchange).”

So, they direct the readers to the database (https://bitbucket.org/gsglobal/leafgasexchange) which
has the full parameters listed including dates, species, and other variables.

15. Line 304-305: the soil organic carbon content is collected, but the unit is not explained. Does
the unit need to be transferred to get the soil organic matter fraction?

Yes, we had to do some unit conversion. According to
https://zenodo.org/record/2525553#.Y91da-zMKDbO the soil organic carbon is given in 5 g/kg so
two conversions were done:
1. Divide by 2 (to convert to %) then divide by 100 (to get a fraction)
2. Multiply by the conventional factor “Van Bemmelen factor” 1.72 (soil organic matter =
1.72 soil organic carbon)

To clarify this, we added this paragraph {lines 287: 290} to subsection 2.4.2 (Static attributes):

“For f calculations, we used data from Hengl & Wheeler (2018) for the soil organic carbon
content at different soil depths, where the conventional Van Bemmelen factor of 1.72 was used to
convert to soil organic matter (Fom). Data for sand and clay percentages (%sand, %clay) were
obtained from Hengl (2018). Both are global datasets available at 250 m resolution at 6 different
soil depths (0, 10, 30, 60, 100, and 200 cm) which describe five soil layers.”

16. Line 410-411: the authors claim that the predicted Vecmax25 ‘were well correlated with’
literature values. However, the correlation coefficient or determination coefficient was never
stated in the paper. Too few points are displayed in figure 6b, and the distribution pattern of
only four PFT types (crop R, C3 grass, NET Boreal and BDS temperate) is similar to CLM.

First, the point here is that the values we estimated make physical sense, are on the same order of
magnitude, and are partially correlated with the literature values. We expected there to be some
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correlation but not that high. Higher correlation does not necessarily mean it’s better. Imagine the
extreme case --- if the correlation was 1.0 and every value is the same as literature values, then it
would mean the previous values were perfect, which would mean there it does not need to learn
from data, but this is not the case. Hence, the precise correlation value here is not that important.
We can calculate the correlation, which is 0.843 with CLM4.5 V¢ maxzs.

We attached below figure 8 (added in the revised manuscript) showing the correlation between the
Vemaxes learnt by V+B model versus TRY database or other default models. As the figure shows,
there is high correlation between the estimated V¢ maxes by V+B model versus CLM4.5 (0.843),
BETHY (0.897), and TRY (0.698). However, low correlation exists between the estimated V¢ maxes
by V+B model and AVIM model where the V+B has lower values for BET Temperate, BET
Tropical, and BDT Temperate while it shows higher values for BDS Temperate, C3 grass, and
Crop R. It is difficult to comment which set is better without all models being run on the same
dataset.

120 o
-
o) o e ) L
T -"'
-
Z. 100 L
o —
a ,a"
n *V V * * e
% -~
E 80 L
g a""
2 %R - 8
3 601 T @ Getm ¢
E_ ‘4‘
= P
8 '4""
o -
S a0 A A -7 © G ®0 A
E "
1) "’,‘
20 | ) ¢
20 40 50 80 100 120

Reference V mol m=2 571
cman2s (K ) EEm CLM4.5 R = 0.843

3 AVIM R =0.327
O CropR A BET Tropical 4 BET Temperate * C3grass { C4grass B BETHY,R = 0.897

¥ NET Boreal O NET Temperate o BDT Temperate ¢ BDS Temperate = TRY R =0.698

Figure 8. shows the correlation between the V¢ maxzs values estimated by V+B model on the y-axis versus Ve maxzs values from
CLM45 (black markers), AVIM (cyan markers), BETHY (magenta markers), and TRY database (orange markers).
Different marker shapes represent different PFTs, while different colours represent different reference sources for Ve maxes
per PFT. For the TRY database, we don’t have values for C3 grass and C4 grass due to the lack of overlap in species between
the TRY database and our dataset for those two PFTs.

For Figure 6b (7b in the revised manuscript), since one point is for a PFT for CLM4.5, and V¢ maxes
is defined on a PFT level, there should be exactly the same number of points as there are PFTs. As
a result, the number of data points seemed correct.

17. Line 431-432: | cannot identify the C3 grass at the lower left corner of figure 5b. Maybe a
violin plot per PFT can be helpful to show the difference between optimizing B or not for a
specific plant type. The figures in the paper only show the net photosynthesis rate across all
sites. However, the site-level comparison might be more meaningful to assess the four
parameterization strategies: Vdef+B, VVdef+Bdef, V+Bdef, and V+B.
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Measurements in Lin15 dataset were taken on sub-hourly scale but not necessarily on a continuous
daily interval. For almost all the sites, data were available on some random days (not necessarily
continuous) in one or a few years. This means that the data distribution across sites is not balanced
some sites have very low amounts of data compared to other sites. For this reason, we didn’t assess
the models using the site-level comparison but instead computed the metrics for all sites combined.
Site-level comparison makes more sense when each site has a large amount of data and the dataset
amount is uniformly across sites, which was not the case here.

For better clarification of different PFTs, we split figure 5 (6 in the revised manuscript) into 3 rows
representing 3 PFTs (each with 2 subplots) as shown in question 14 above (in the detailed
comments) by the first reviewer. We used the cross-validation dataset for making the plot to avoid
confusion concerning which dataset was used for the plot (train or test). Splitting figure 5 (6 in the
revised manuscript) this way helps present the same information as the previous violin plot (which
we exclude in the new version to avoid redundancy).

18. Line 445-450: I didn’t see any significant correlation between the estimated Vemax25 and the
PFT-mean from TRY database or other model default values. The authors should provide the
scatter plots and the correlation coefficients between the VVcmax values to conclude that the
dPL can get parameters correlated with literature values (line 490).

Previously responded to in comment No0.16 in the major comments.
Minor comments:

1. Line 123: the right part looks very similar to the middle part in equation 3, but the subscript
‘W’ beside ‘argmin’ is not explained. As I understand, the ‘argmin’ in the right part is the same
as the ‘argmin’ in the middle part.

The equation was modified to have w below argmin and not as a side subscript.

W = argvrvnin(L(Spsn(gW(R), 0c.F).y")) (3)

By this way, we mean to express that our target is to find the weights of the neural network that
minimize the loss function between the observed and the target variable which is the net
photosynthesis rate here. So, W here refer to the neural network weights (NNv and NNg;) in our
problem. This was explained clearly in the manuscript paragraph preceding this equation.

2. Line 142: The short name for CO2 partial pressure at the leaf surface is ‘Ca’, but is ‘Cs’ in the
appendix. Please use a uniform short name across the paper.

Cs and Carefer to different variables, however, there definitions are close to each other.

Cs: is the COg partial pressure at the leaf surface.

Ca: is the CO partial pressure near the leaf surface.

They are correct in the way the equations are written inside the manuscript body and the appendix.
We modified the definition of Ca {lines 171: 176} in section 2.2 (The Farquhar photosynthesis
model) to describe CO; partial pressure near the leaf surface as shown in the following:
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“Equation 4 is a single-variable nonlinear equation, with the intercellular leaf CO> pressure (Ci)
as the unknown term to be solved (serving as the x term in Equation 1). Ciis influenced by the CO>
partial pressure near the leaf surface (Ca), the net photosynthetic rate (An), the atmospheric
pressure (Pam), the leaf stomatal conductance (gs), and the leaf boundary layer conductance (gn).
Upon solving for Ci, we can further calculate An, which is the y term in equation 1. In the original
implementations of FATES and CLM, the system of nonlinear equations was solved iteratively
using fixed-point iteration (Oleson et al., 2013).”

3. Line 187: equation 11 is cited at line 187 for the first time, but the full equation is placed at
line 218. The equation should appear close to the first citation.

The equation is written in a more general way as B = NNg(R) at line 187 (in the previous
manuscript version), where R refers to the underlying attributes or the raw inputs. In line 218 (in
the previous manuscript version), we show the actual equation that we used for the
parameterization in our study. To avoid confusion, we removed this equation “B = NNg(R)” in the
revised manuscript and kept only equation 11.

4. Line 193: does ‘i’ represent the soil layer number? I didn’t see the explanation around the
equation.

Yes, the subscript i refers to the soil layer number. We clarified this in the revised manuscript

{lines 227: 229} in section 2.3 (The parameterization pipeline and model changes) as the

following:

“B is purely a function of soil properties and is defined for each soil layer as Biwhere i refers to
the soil layer (see Appendix B). Bi equations will later be replaced by our NN-based
parameterization scheme as explained in section 2.3.1, because they were originally empirical and
may not be optimal at the global scale.”

5. Line 197: ‘across different soil different layers’ should be ‘across different soil layers’.
Modified it in the revised manuscript {lines 239: 240}.

6. Line 203/equation 9: the second line should be Ti<Tf-2 ‘or’ 61ig<0.
Modified it in the revised manuscript {see Equation 8}.

7. Line 205: the short name for the physical parameter at the second blue area should be 6 but not
Oc.
Modified it in the revised manuscript {see Figure 1}.

8. Line 218/equation 11: B and Fom should have a subscript, i.
Bi=NNBi(%sand,%clay,PFT,Fom,i).
Modified it in the revised manuscript {see Equation 11}.

9. Line 222: the ‘one-hot embedding’ was already stated at line 183. The definition should be
explained where it is mentioned for the first time.
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We better clarified that in the revised manuscript by differentiating between two terminologies:
one hot encoding {lines 220: 221} and embedding layer {lines 257: 260}:

In section 2.3 (The parameterization pipeline and model changes), we defined one hot encoding
as the following:

“where PFT is the plant functional type category (in one-hot encoding format, which translates
each category to a binary vector) and the neural network used for parameterization of V¢ maxs is
referred to as NNy hereafter.”

We later defined embedding layer as the following:

“Since in NNg;j, we use quantitative inputs (%sandi, %clayi, Fom,i) along with categorical inputs
(PFT), we used the embedding layer in PyTorch, which translates each category to a vector of
quantitative variables. This categorical data can then easily be combined with other quantitative
inputs we provide to our neural network. ”

10. Line 228: the short name for ‘differentiable learning framework’ is defined but not used.

In line 228 (in the previous manuscript version), ‘differentiable learning framework’ refers to the
dPL “differentiable parameter learning framework”. To unify, we changed it in the revised
manuscript to be “differentiable parameter learning framework”.

11. Line 310/Figure 2: the full names of the land cover types (e.g., BET tropical) are not explained
before or around the figure.

Our dataset included 9 different PFTs categories, a paragraph (see comment No.3 in the major
comments) with more details about Linl5 dataset was added to section 2.4.1 (Forcing and
Photosynthesis rates) stating the number of PFTs considered plus the full name of each PFT.

12. Line 349: table 2 is mentioned for the first time, but the full table is placed after two pages.
We have better organized the revised manuscript.

13. Line 384: the CO2 should be CO2(subscript).
Modified it in the revised manuscript.

14. Line 390/figure 5: | cannot understand the titles of the subplots. What is the meaning of
‘learning B’ and ‘learning Vecmax25°? The B is not optimized in figure 5a.

“Learning” describes which parameter is being obtained. Figure 5a (6a in the revised manuscript)

subplot shows two models, VVdef+Bdef (red color) and Vdef + B (blue color). So both models

agree in using the default V¢ maxes values corresponding to each PFT that’s why subplot (a) title

includes “with default Vc¢maxes”. “Learning B” is added to title “a” since B is learnt in Vdef + B

model.

Figure 5b (6b in the revised manuscript) subplot shows two models, V+Bdef (yellow color) and

V+B (green color). So both models agree in learning Vcmaxes values corresponding to each PFT
that’s why subplot (b) title includes “Learning V¢maxes”. “Varying B” is added to title “b” since
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the parameter B is computed from the default equations in CLM4.5 for V+Bdef model, while it is
learnt simultaneously with V¢ maxes for V+B model.

We have made some adjustments to the figure caption which should hopefully be more clear. The
revised caption is shown in question 14 above (in the detailed comments) by the first reviewer.

15. Line 514/equation A7: the Cs is not used.

Cs which refers to the CO. partial pressure at the leaf surface is used in the model block of
equations corresponding to the stomatal conductance computations. Figure 2 (added in the revised
manuscript and copied below) shows equations corresponding to f and h. The box marked with
red color shows the usage of Cs
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Figure 2. Model block of equations corresponding to f and h in equation 1. Blue boxes indicate equations corresponding to
f. Yellow boxes indicate equations corresponding to h. First, we obtain a solution for Ci (intercellular leaf CO2 pressure) by
solving the nonlinear system (f equations) as illustrated in the last blue box. Then, we forward h equations to compute An
(net photosynthesis rate) using Ac, Aj, and Ap as discussed in section 2.2. Details about different variables and parameters
included in f and h equations are provided in Appendix A.

16. Line 520-530: the three functions, @1, ®2, and ®3, need to be clarified.

33



@1, Oy, and @3 refer to the equations or the subroutines that we used to prepare the inputs required
to run the FATES photosynthesis module. To run the photosynthesis module, we had to run other
correlated subroutines in FATES that provide some crucial inputs required to simulate the net
photosynthetic rate.

®; corresponds to the set of equations in which we used factors from literature or from the
Community Land Model (CLM) to map the maximum electron transport rate at 25 °C (Jmax2s), the
plant respiration rate at 25 °C (Rq2s5), the initial slope of CO> response curve at 25 °C (Kpz2s) from
Ve maxzs as shown below:

Jmaxz2s = 1.67 Ve maxzs (Medlyn et al.,
2011)
R B { 0.015 Ve maxes > for C3 plants } (Lawrence et al.,
dz2s 0.025 V. max2s ,  for C4 plants 2019)
K _ { 20000 Ve maxzs for C4 plants }
p25

@, corresponds to the equations responsible for rescaling and adjusting the parameters Jmaxzs, Kpzs,
and V¢ maxes for the leaf temperature to output Jmax, Kp, and Vemax

®3 corresponds to the equations responsible for rescaling and adjusting Radzs for the leaf temperature
to output Rq.

All these equations are well documented in FATES code and in CLM5.0 (Lawrence et al., 2019)
in chapter 9 section 9.4.We added this paragraph {lines 664: 670} in appendix A to better clarify
as the following:

“The three biophysical rates V¢ max, Jmax, and Kp along with the plant respiration (Rq), adjusted for
Ty are calculated using their standardized values at 25°C multiplied by temperature response
functions defined in chapter 9.0 in CLM5.0 (Lawrence et al., 2019). V¢ max is also adjusted for the
soil water availability by multiplying it with the soil water stress function(f).

In our case, V¢maxes is either the default value provided in CLM4.5 or is learned by a neural
network, which then is used to calculate other standardized biophysical rates as:

Jmaxzs = 1.67 Vemaxas (A6)
R _ 0.015 V. jmax2s for C3 plants A7

a5 = {0.025 Vemaxzs for C4 plants} (A7)
Kys = {20000 V. paxss for C4 plants} (A8)

”»

17. Appendix: the citations of equations are wrong (e.g, lines 503-504, 512, 520, 534...). The
equations should be cited using A1-A23.

The citations for all equations in Appendix A were modified to A[no.] in the revised manuscript.
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The authors’ reply is timely and clarifies most of the questions and confusion. I’'m looking
forwards to reading the new version of this manuscript! According to the new information
provided by the authors, the manuscript presented how well the net photosynthesis can be
simulated using two parameters (Vcmax25 and Bi) predicted via a simple MLP neural network
(one hidden layer) with a few attributes (PFT, %sand, %clay and Fom). After reading the authors’
reply, I still have the following concerns and comments:

1. There are limited site-level temporal data, thus the seasonality of net photosynthesis cannot be
assessed.

We did not claim the model can simulate seasonality very well at a site. Currently our differentiable
model follows the same structure of the photosynthesis module in the process-based model
“FATES”. We didn’t make significant changes to the model. Because the backbone of the model
is Farquhar, its seasonal behavior should be comparable to what we expect out of the other
Farquhar models, because in this paper we only estimated static parameters. On the other hand,
the nature of our dataset doesn’t enable us to test the seasonality and we didn’t mention this in the
manuscript. This might be within our scope in future work, but is not here.

To avoid confusion, we added this paragraph to the discussion section in the revised manuscript
{lines 608: 615} as the following:

“Although applying the dPL framework improved the parameters to an extent, the model still has
similar structural limitations as other Farquhar-type models. We didn 't test the model’s ability to
capture the seasonality of the net photosynthetic rate due the limited site level temporal data. The
seasonal behavior of the model is expected to be similar to other Farquhar models as here we only
learned static parameters. Further improvement likely will need to consider vegetation growth.
Also, this study doesn’t cover the spatial generalization of the dPL model since we don’t present
results for spatial tests or based on site-level comparison. To improve spatial generalization may
require further changes in the model, dynamical parameters, or using other error mitigation
approaches. This is not our scope for this study; however, it will be considered for future work.”

2. The violin plots showed the net photosynthesis per PFT, but I think readers would be more
interested in how different is the simulated net photosynthesis from the measured net
photosynthesis. Maybe the fourth violin plot (measured values) can be added on the right side
and the NSE can be displayed at the top. Moreover, I think only the test dataset (or better cross-
validated dataset) should be compared with the measured values (e.g., Fig. 5) and used to make
the violin plots.

For better clarification of different PFTs, we split figure 5 (6 in the revised manuscript) into 3 rows
representing 3 PFTs (each of 2 subplots) as shown in question 14 above (in the detailed comments)
by the first reviewer. We used the cross-validation dataset for making the plot to avoid confusion
concerning which dataset was used for the plot (train or test). Splitting figure 5 (6 in the revised
manuscript) this way helps present the same information as the violin plot (which we now exclude
in the new version to avoid redundancy).

3. The authors clarified that the Vcmax25 is predicted per PFT but did not mention Bi. Is Bi
predicted per PFT or per site? How is the predicted Bi compared with values from CLM?
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B: differs between different sites and for one site it differs for different PFTs; B; = NNgi(%sand;,
%clayi, Fomi, PFT). Contrary to V.m.s, there are no default values for B because of two reasons:

a. B in the default CLM4.5 equations come from empirical equations based on %clay and
Fom

b. We changed equation 7 to equation 10 (as shown below). Thus, parameter Bi in equation 7
has a completely different range from the one in equation 10 which ranges between 0 and
1

Equations 7 and 10

W= W x S =W, (7) default
W, (PFT) = W, x S, PiCONFFD > g (10) New

Default B equations in CLM4.5

Bi = (1 - Fom,i) X Bmin,i + Fom,i X Bom (Bg)
Bmini = 2.91+ 0.159 x (%clay); (B10)

To avoid confusion, we modified and added new text and equations {lines 241: 252} in section
2.3.1 (Model changes) as the following:

“In the original water limitation function in CLM4.5, the stomata response to soil water potential
is based on a linear function between the water potential for stomata openness and closeness (see
Equation 8). In light of the possibility that plants could respond differently to soil water potential
dependent on plant hydraulic traits (Christoffersen et al., 2016), in this study, we modified the soil
water limitation for PFTs so that they could have different shapes. Specifically, we defined PFT-
dependent soil water stress, wi (PFT) ranging from yc and wo, depending on the soil water content,
which is calculated as follows:
W, (PFT) = W, x §; PiCoLPD > g (10)

Biis a PFT- and soil-texture-dependent shape parameter (between 0 and 1) estimated as:
Bi = NNgi(%sand;, %clayi, Fom,i, PFT) (11)

where %sandi, %clay;, and Fim,i respectively represent the percentage of sand, the percentage of
clay, and the fraction of organic matter in soil layer i. The PFT-dependent soil water stress, i
(PFT), is then fed into the plant wilting equation (9) as the following:
— . _ —B;(s0il,PFT)
W, = Y. — ¥, (PFT) _ Y. —max (W, ¥, X S, ) <1 (12)
Y-, Y-y,
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The new shape parameter B; in equation 11 has a different range (between 0 and 1) from the
original one defined by Clapp & Hornberger (1978) in equation 7 and it varies spatially for
different static attributes and for different PFTs as well.”

As shown in the above, we clearly stated that Bi(soil, PFT) is different from the old parameter
since it is now a function in soil attributes with PFT, and it also ranges between 0 and 1. We
restated that in section 2.5 (Synthetic data and real data experiments) by adding the following text
{lines 390: 393}:

“A complete disagreement or a different order of magnitude would suggest that our values may
be not physical. Partial discrepancies would highlight any knowledge gaps. We didn 't perform a
similar comparison between learned and computed B; values from default equations since the new
shape parameter Bi(soil, PFT) (see Equation 11) is different from the original one and has a
different range (between 0 and 1).”

4. Since the site-level comparison and the site-average An comparison are not possible, the
generalizability cannot be evaluated. However, the model performance across sites can be
compared to other papers using the Farquhar model (e.g., Fig 1B of Chen at al., PNAS,
https://doi.org/10.1073/pnas.2115627119, 2022).

Concerning the spatial generalization or the site-level comparison, as mentioned in the previous
response (No.12 in Reviewer 2’s major comments), a spatial test is not within the scope of this
paper. We are working on further improving the spatial generalization with some error mitigation
approaches. This will add lots of content and should be for the scope of another paper. So, we
added the following paragraph to the discussion section {lines 611: 615}:

“Also, this study doesn’t cover the spatial generalization since we don’t present results for spatial
tests or based on site-level comparison. To improve spatial generalization may require further
changes in the model, dynamical parameters, or using other error mitigation approaches (Feng
et al., 2021, 2022b; Ma et al., 2021a). This is not our scope for this study; however, it will be
considered for future work.”
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Things being asked for and added or modified in the new manuscript version:

1.

10.

11.

12.

13.

14.

15.

Explanation for temporal and cross validation test >> (clarified in the revised manuscript
through paragraphs added)

f1 (renamed to f) and f2 (renamed to h) equations clear explanation in the manuscript body
>> (proposed figure 2 added with explanation for the terms in the equations in Appendix
A)

Details on NNs hyperparameters and hyperparameters tuning >> (clarified in the revised
manuscript through paragraphs added)

Inquiries about Linl5 dataset >> (Number and full name of PFTs, forcing variables,
atmospheric CO2 (C,), leaf layer boundary conductance (gn)) >> (clarified in the revised
manuscript through paragraphs added)

Reasons of replacing Psat by % in equations 7 and 10 >> (clarified in the revised
manuscript through paragraphs added)

CLMA4.5 contribution to the study >> (clarified in the revised manuscript through
paragraphs added)

Inquiries about B calculations across soil layers >> (clarified in the revised manuscript
through paragraphs added for synthetic and real case experiments)

Cross validation tests >> (were performed and results were added in the revised
manuscript)

Model performance is impacted by certain set of model equations and forcings >> (clarified
in the revised manuscript through paragraphs added to the discussion section)

Modify typos in model equations >> (modified in the revised manuscript)

NNg and NNy constraints on outputs and output range >> (clarified in the revised
manuscript through paragraphs added)

More complex NN for the real case than synthetic case >> (already done for NNgi but not
applicable for NNv)

Loss function clarification >> (better clarified in the revised manuscript + Figure 1
modified)

Timeseries of observations >> (can’t be provided due to the site limited temporal data)

Spatial variability of the parameters not fully captured by dPL >> (spatial test is not the
scope of this paper, we are working on further improving the spatial generalization with
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some error mitigation approaches. This will add lots of content and should be for the scope
of another paper.)

16. Soil organic carbon content unit conversion >> (clarified in the revised manuscript)

17. Vemaxes correlation literature values >> (figure 8 was added showing the correlation
between learnt and the reference V¢ maxes values)

18. Split plots per PFT >> (Figure 6 was split into 3 rows each with only 3 PFTs)

19. Figure 5b (6b in the revised manuscript) plotted using both training and test datasets >>
(was replotted using the cross- validation test results in the revised manuscript)
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