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Dear Biogeosciences editor, 

 

Thank you for handling and thanks to the reviewers for their constructive suggestions. We have 

completed a round of major revision.  

 

Most comments were asking for clarifications and further exploration of data. We have made effort 

to improve clarity in the manuscript. We have run cross-validation experiments and have provided 

additional visualizations including plots for different PFTs as requested by the reviewers. 

Regarding the seasonality of the model, while it is not the focus of this paper, we can comment 

that the model seasonal behavior should be comparable to what we expect out of the other Farquhar 

models (photosynthesis only), because here we only estimated static parameters. For a few R2’s 

questions, there is already content in the original manuscript discussing those topics so we pointed 

out where the content is and added more emphasis if needed. 

 

There are many questions. To facilitate your processing, we pasted the modifications in the 

manuscript to the respective response to questions. We also provided in this document, the line 

numbers from the clean manuscript version (uploaded as “diffecosys_paperV3.0_revised_clean”) 

that correspond to text modified or added. In the following, brown text is from reviewers while 

black text is our response. 

 

  

 

Anonymous Referee #1 

This paper presents a nice example of combining theory based models and machine learning to 

efficiently identify parameters of an ecosystem model, exploiting observation data recorded at 

multiple sites. The approach is valid and the results are interesting. However, the documentation 

of data and methods is currently deficient on a level that makes it hard to grasp the main messages 

and interpret the results. Section 2 of the paper does in my yes require a thorough revision, 

including new explanatory figures, restructuring and replacement of text blocks. For this reason I 

recommend a major revision or rejection with an invitation to resubmit. 

 

Thank you for your evaluation! 

 

Major comments 

 

1. I assume a key point of the developed framework is that it enables to directly backpropagate 

from the outputs through the model equations to the neural networks. This is not clear from 

the paper at all. Much of the framework description seems like you feed NN predictions of 

parameters through a black box physics-based model, which is a standard approach. I suggest 

a dedicated subsection, possibly including a figure, to clarify this detail. 

 

Yes, the differentiability which supports gradient-based optimization is the soul of the proposed 

work. We have discussed this in the paper (Abstract: “programmatically differentiable (meaning 

gradients of outputs to variables used in the model can be obtained efficiently and accurately)…”, 

lines 146 (in the previous manuscript version) “In order to train the physical equations and neural 

networks together using gradient descent, the above equations were implemented on differentiable 
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platforms to support backpropagation”). To further emphasize it, we added a paragraph {lines 

112: 123} at the beginning of section 2.1 (General overview) to emphasize it. Also Figure 1 was 

modified to represent both the forward run (blue arrows) and the backpropagation (black arrows) 

and thus better represent the framework (shown below). 

 

“Our general framework trains connected neural networks to provide parameters (and later 

process representations) to process-based models (PBM), in this case the photosynthesis module 

of the FATES ecosystem model, on all the training data points simultaneously (Figure 1a). The 

neural networks map from some raw inputs to some tuneable physical parameters (θ) (later 

extensible to processes) required for the PBM. The predicted physical parameters are then fed into 

the differentiable PBM along with other required forcing variables (F) and untuned constant 

attributes (θc) to compute the simulated target variable (ysim) which is compared with observations 

to compute a loss function. The forward run starts from the neural network inputs and ends at the 

loss function (following the blue arrows in Figure 1a). We then backpropagate the errors (shown 

by black arrows in Figure 1a) through the PBM equations back to the neural networks so we can 

train them using gradient descent. To support gradient-based training, the entire framework must 

be differentiable (Shen et al., 2023) and neither the neural network nor the process-based model 

is a black box --- they both allow explicit inspection and modification of the internal structures. 

Thus, the photosynthesis module of FATES had to be reimplemented on differentiable platforms.” 
 

 

Figure 1. Diagram showing the differentiable parameter learning (dPL) framework which is a hybrid of neural networks and 

the photosynthesis module in the FATES ecosystem model written on a differentiable platform. (a) The generic workflow: Some 

raw information is mapped into physical parameters via a neural network. These parameters are sent into a process-based model 

(PBM), which then outputs variable Y that is compared with observations. Direct supervision for the physical parameters is not 

required -- we do not need ground truth for these parameters. The loss function is “global” in that it involves all training data 

points, rather than being computed site-by-site as done in traditional calibration. (b) The workflow for the computational 

example described in this work. We estimate either Vc,max25 or the parameter B, or both of them at the same time, using neural 

networks. The parameters are then fed into the differentiable photosynthesis module in FATES, which then outputs the net 

photosynthesis rate, An(sim), that is compared with An(obs). When they were not estimated from data, default values from the 
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literature were used. Blue arrows show running the neural networks with the PBM in a forward mode (“prediction” mode), 

while black arrows indicate backpropagation from the loss function back through the differentiable model equations to the 

neural networks to update their weights, which is only done during initial NN training. 

 

2. The datasets used for training and testing are not properly documented. We don't know how 

many datapoints are included over which time periods. The random holdout suddenly appears 

in the results, and in general we don't know how training/validation/testing splits are defined.  

 

We apologize for this oversight. The following paragraph {lines 371: 380} was added to section 

2.5 (Synthetic data and real data experiments) to explain more about the tests held as well as 

how the data were split.   

 

“Two different tests were performed with respect to data splitting: temporal holdout and 

randomized cross-validation --- the former test stresses the models’ ability to project into the 

future while the latter is the typical experiment run in the literature. Due to the irregularity of 

measurement dates at each location (as mentioned previously in section 2.4.1), the temporal 

periods for the training and testing datasets varied by location. In the temporal holdout test, for 

each PFT in each location, the available dates of measurements were recorded. The oldest 80% 

of these dates were used for training and the remaining more recent 20% were used for testing. 

The temporal holdout test was run for both synthetic and real data experiments. For the 

randomized cross-validation test, as the name implies, the dataset was randomly split into 5 folds 

(groups) and each time the model was trained on 4 folds (80% of the datapoints) and tested on the 

5th fold (20% of the data points). This was done a total of 5 rounds, so that all of the data points 

were used for testing once. The cross-validation test was run only for the real data experiments..”    

 

3. CLM4.5 standard parameters play a central role in the results, but we know nothing about 

where they come from / how they are defined and if, for example, all or a subset of values are 

used for comparison. 

 

Reference for CLM4.5:  

https://opensky.ucar.edu/islandora/object/technotes%3A515/datastream/PDF/view 

CLM4.5 documentation presents the standard values of the parameters and the equations that we 

used in this study as a benchmark and a detailed discussion of these choices is outside the scope 

of this work. We already did provide some of the basic parameter values (model values for Vc,max25) 

from CLM4.5 and other similar models in Table 3 and provided references (in the text). We also 

added a subsection {lines 295: 301} to section 2.4 (Input and observation datasets) to better 

clarify as shown below. 

 

“2.4.3 CLM4.5 default parameters 

CLM4.5 documentation (Oleson et al., 2013) provide reference values for comparison and 

equations for both target parameters Vc,max25 and B. For Vc,max25, default values corresponding to 

each PFT (shown in Table 3) are well documented in CLM4.5 (chapter 8; table 8.1). Similarly, 

for parameters B and βt, their default equations (shown in this work in Appendix B) are provided 

in the documentation of CLM4.5 as well. We also used other PFT photosynthetic parameters 

required for ꞵt computations, such as the soil matric potentials for closed stomata, ψc, and open 

stomata, ψo, (see Equations 8,10,12), and the plant root distribution parameters (see Equation 9).” 

https://opensky.ucar.edu/islandora/object/technotes%3A515/datastream/PDF/view
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4. The explanation of the ecosystem model suffers from a clear struggle between trying not to 

include the entire set of equations in the paper, while providing sufficient detail. For me the 

level of detail provided in the paper was actually confusing, because it required constant 

looking up in the appendix to understand the context, distracting from the main messages. I 

think a way out could be to include a figure that summarizes the main blocks of the model 

(including what parts correspond to f1 and f2), include only the changed equations in the paper, 

and otherwise keep the full model description in the appendix. On a sidenote: is f2 not the same 

as an observation equation, that is commonly used in state space models? 

 

We added the figure below which shows the block equations corresponding to equations f1 and f2 

which we have renamed f and h, respectively. Yes, f2 (h) is the observation equation. f and h may 

share common components, but they are mathematically different: f is a system constraint while h 

is a “observation equation”. In this example, f is solved for the unknown Ci while h connects Ci to 

the observation An.  

 



5 

 

 
Figure 2. Model equations corresponding to f and h in equation 1. Blue boxes indicate equations corresponding to f. Yellow 

boxes indicate equations corresponding to h. First, we obtain a solution for Ci (intercellular leaf CO2 pressure) by solving 

the nonlinear system (f equations) as illustrated in the last blue box. Then, we forward h equations to compute An (net 

photosynthesis rate) using Ac, Aj, and Ap as discussed in section 2.2. Details about different variables and parameters 

included in f and h equations are provided in Appendix A. 
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5. Details on hyperparameters (neural network # of layers, activation functions, learning rates 

etc.) are not provided at all. Some key information should be provided in the paper, and a 

reference to supporting information or the code should be provided for details. 

 

We apologize for this oversight. We added a paragraph {lines 356: 369} to section 2.5 (Synthetic 

data and real data experiments) which states some details about the hyperparameters: 

 

“The MLPs employed had three layers: an input layer, one hidden layer, and an output layer. To 

ensure an output value between 0 and 1 for both Vc,max25 and B parameterizations, sigmoid 

activation functions were used for both hidden and output layers. Vc,max25 was then rescaled to be 

within a pre-defined range based on literature values of 20 to 150 µmol m-2 s-1. For the i-th soil 

layer, Bi values were kept between 0 and 1, so with Si ranging between 0.01 and 1 (see Appendix 

B), the term Si
-Bi then had a range of 1 to 100. This ensured that the value of ψi ranges from ψc to 

ψo (see Equation 10). 

 

The quantity of available data posed a limitation and did not permit an extensive hyperparameter 

tuning experiment with a train/validation/test split. Hence, we employed a “lazy” trial and error 

process with hyperparameters (learning rates and hidden size) using 70% of the data as training 

data and 30% as a validation set, just to ensure we had a roughly performing hyperparameter set 

(see Appendix C). We selected a learning rate of 0.045 and a hidden size equal to the number of 

inputs (9 for the NNV and 8 for the NNBi). We kept these same hyperparameters when we ran 5-

fold cross validation with an 80%:20% train:test ratio. In addition, we found that moderately 

perturbing the hyperparameters resulted in very little change in the performance. This design was 

necessary considering the practical limits of the available data, even though this study already 

represents a large-sample study in the domain of ecosystem modeling.” 

 

The table below (added in Appendix C in the revised manuscript) shows that moderate changes to 

the hidden size do not matter too much. Thus, due to data limitation, we did not tune 

hyperparameter extensively. We simply used a hidden size equal to the number of inputs. Should 

there be more data available in the future, we could certainly use a train/validation/test split and 

run more hyperparameter tuning. 

 
Table C1 V+B model formulation performance for different sizes of NNBi with 80%:20% train: test split ratio 

 

Corr 
RMSE  

(μmol m-2 s-1) 

Bias  

(μmol m-2 s-1) 
NSE 

 

Train Test Train Test Train Test Train Test  

V+B  

0.7862 0.7712 4.3188 4.2920 0.0898 -0.2339 0.6175 0.5904 NNBi[8,6,1] 

0.7863 0.7713 4.3178 4.2912 0.0866 -0.2395 0.6177 0.5905 NNBi [8,7,1] 

0.7862 0.7706 4.3190 4.2957 0.1023 -0.2261 0.6174 0.5897 NNBi [8,8,1] 

0.7858 0.7700 4.3222 4.3018 0.0711 -0.2653 0.6169 0.5885 NNBi [8,9,1] 

0.7855 0.7720 4.3275 4.2864 0.1049 -0.2182 0.6159 0.5914 NNBi [8,8,8,1] 

 

Detailed comments   
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1. line 61: nonuniqueness is also going to be a problem if we employ newer frameworks like 

PINNs or dPL 

 

We agree that non-uniqueness will still remain an issue and will need to be tested/controlled, but 

it should be better with dPL than with previous site-by-site calibration approach, because one 

neural network is constrained by all data points. There is an implicit spatial constraint. This effect 

was demonstrated in fine detail in Tsai et al., 2021. As shown in that paper, as we turn parameter 

calibration into parameter learning, the framework can generalize better in space and in 

uncalibrated variables. It’s obviously a tricky issue between the available data we have, the amount 

of structure we specify, and the tradeoff between variance and bias. What we hope to achieve is to 

maximally leverage the available information.  

 

2. line 110: it might be worthwhile to start with a reference to figure 1 and a down to earth 

explanation of the objective of your work, i.e. to calibrate model parameters across many sites, 

to capture the variation of parameters using neural networks, and to employ differentiable 

programming to speed up the identification process 

 

As mentioned above in our response to major question 1, we added a new first paragraph {lines 

125: 127} in Section 2.1, General overview, about the overall framework and cited Figure 1. That 

paragraph is followed by: 

 

“In this case, the process-based model is the photosynthesis module in FATES, which can be 

written as a nonlinear system of equations, and its solution is implicit. The system can be written 

as:…” 
 

3. line 118: please explain PFT again in this section 

 

PFT was replaced with the full description of plant functional type and the whole text was modified 

{lines 133: 135} to: 

 “Some of the tuneable parameters are typically formulated as being Plant Functional Type (PFT)-

dependent (e.g., the maximum carboxylation rate at 25°C, Vc,max25) where each PFT includes 

groups of plant species that share similar physical and phenological characteristics leading to 

similar interactions with the environment.…” 

 

4. line 140: If you preserve eq. 4 and 5 in the paper, I think they should be presented in 

reverse order (f1 first, f2 second) 

 

These equations have been reversed to show f (formerly f1) before h (formerly f2). 

 

5. line 146-164: please include only methodological descriptions that are relevant for the results. 

of the julia implementation was not used, then it should not be described and discussed 

 

Thanks for the point and we do understand where the reviewer is coming from. While Julia was 

not the main tool for production here, we mention it because the SciML toolset, co-developed by 

two of the coauthors, may be valuable to ecosystem modelers. Moreover, it is formulated very 
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differently in a novel symbolic format which is in fact quite interesting and could potentially lead 

to an alternative path, and the package is evolving rapidly. Hence, we think preserving it has some 

value. Removing it would also mean removing some coauthors, which we do not want to do 

because their input was valuable for the development of this work and thus should be credited.  

 

6. line 183: you don't describe anywhere in your data how many PFTs you consider. it is therefore 

here also not clear how many dummy variables this model receives as input. 

 

Our dataset included 9 different PFT categories. A paragraph {lines 273: 285} with more details 

about the Lin15 dataset was added to subsection 2.4.1 (Forcing and Photosynthesis rates) stating 

the number of PFTs considered plus the name of each PFT. 

 

“We refer to this dataset as Lin15 throughout the rest of this work with 43 sites chosen whose 

dates and times of measurements were available. Lin15 covered nine different PFT categories: 

rainfed crop “Crop R”, Broadleaf Evergreen Tree Tropical “BET Tropical”, Broadleaf 

Evergreen Tree Temperate “BET Temperate”, C3 grass, C4 grass, Needleleaf Evergreen Tree 

Boreal “NET Boreal”, Needleleaf Evergreen Tree Temperate “NET Temperate”, Broadleaf 

Deciduous Tree Temperate “BDT Temperate”, and Broadleaf Deciduous Shrub Temperate “BDS 

Temperate”. Measurements were taken on a sub-hourly scale but not necessarily on a continuous 

daily interval. That’s why for almost all the sites, data were available on some random days (not 

necessarily continuous) in one or a few years.  

 

Lin15 also contained forcing variables, including air temperature (T), leaf temperature (Tv), 

atmospheric pressure (Patm), relative humidity (RH), photosynthetic active radiation (φ) and 

boundary layer conductance (gb). Moreover, we used ERA5 to fill in for any missing forcing 

variables in Lin15. In equation 4,  Patm and gb were used directly from the dataset, while Ca was 

computed as 0.039% of Patm, and gs was calculated using the Medlyn conductance model (Medlyn 

et al., 2011) as explained in  Appendix  A.” 

 

7. line 190-205: I think this information is not needed to understand the main message 

 

This information is important because it is referred to in different parts of the paper and briefly 

shows how the soil water stress function (ꞵt) is calculated. 

 

Lines 190 – 195 (in the previous manuscript version) show equation 7 which we later refer to as 

the equation to be replaced with equation 10 in the model changes section. Thus, we need to 

mention both the default and the changed equations. 

 

Lines 195 – 205 (in the previous manuscript version) show the equations for calculating the soil 

water stress function (ꞵt) and the plant wilting factor (wi), which we later refer to as part of the 

equations used in the synthetic and real data experiments after retrieving or estimating the 

parameter Bi. We also refer to the changed in wi computations (see Equation 12) in the Model 

changes section in the revised manuscript.  

8. eq. 10: why is psi_max replaced by psi_0? (missing explanation) 
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In lines 216 – 218 (in the previous manuscript version), we stated the actual equations that we used 

in for computing ψi (in which ψsat was replaced with ψo). 

 

In Appendix A and B (added in the revised manuscript), we kept all the original equations the 

same whether those related to FATES or to computing the soil water stress function (ꞵt).  

 

Proposed equation in this study (Equation 10) Original equation (Equation 7) 

Ѱi(PFTሻ = Ѱo ×  Si
−Bi(soil,PFTሻ

≥ Ѱc Ѱi  = Ѱsat,i ×  Si
−𝐵𝑖 ≥ Ѱc 

 

Reasons for this replacement: 

  

In the original CLM4.5 equations, ψsat is based on empirical functions, percentage of sand 

(%sand), and fraction of organic matter (Fom) (see Equations B4 – B5 in Appendix B). Using the 

original Equation 7 for computing ψi results in a plant wilting factor wi equal to one for more than 

90% of the data points across different soil layers. 

 

To give the model more flexibility in the computation of ψi and thus allow more variability in wi 

values, ψsat was replaced with ψo. However, to ensure having wi values less than or equal 1 as in 

the original wi (see Equation 8 in the revised manuscript), we tried to create equation 10 in a way 

that satisfies this condition using ψo. Parameter Bi (output from NNBi) was restricted to be within 

the range 0 and 1 to satisfy the same condition as well (see the added paragraph for NN  structures 

in section 2.5). Applying those changes, we were able to get ψi values within the range of ψo and 

ψc while showing more variability in the computed wi.  

  

Also, we added this paragraph {lines 252: 264} to section 2.3.1 (Model changes) for clarification: 

 

“The default equations in the Community Land model V4.5 (CLM4.5) for computations of Bi 

(Appendix B) show that the parameter Bi depends on two attributes, %clayi and Fom,i, which is why 

they were used in NNBi. To account for the dependence of ψsat,i on %sandi (Appendix B) and its 

replacement by ψo (see equations 7 and 10), %sandi was also added to NNBi. We also added PFT 

to NNBi inputs because vegetation may interact with soil moisture constraint and we want to allow 

relevant factors to be included, rather than restricting the list of inputs to what was previously 

used in the literature. Since in NNBi, we use quantitative inputs (%sandi, %clayi, Fom,i) along with 

categorical inputs (PFT), we used the embedding layer in PyTorch, which translates each category 

to a vector of quantitative variables. This categorical data can then easily be combined with other 

quantitative inputs we provide to our neural network.   

 

Moreover, using the original Equation 7 for computing ψi resulted in a plant wilting factor, wi, 

equal to one for more than 90% of the datapoints across different soil layers. Changing Equation 

7 to the form shown in Equation 10 helped to express more variability in wi and eventually in the 

computed soil water stress function (ꞵt). 

 

Here, the point is to calculate photosynthesis. We can see clearly the modified model works very 

well for photosynthesis. The differentiable modeling approach was specifically designed to enable 

inspection of various modules and assumptions in the model to improve model performance. It is 

possible that alternative formulations can also perform well, and we do not preclude that here. 
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9. eq. 11: what is F_om? 

 

F_om is the fraction of organic matter. We explained it clearly right after the equation in the revised 

manuscript {lines 247: 249}as the following: 

 

“Bi is a PFT- and soil-texture-dependent shape parameter (between 0 and 1) estimated as: 

Bi = NNBi(%sandi, %clayi, Fom,i, PFT)  (11)  

where %sandi, %clayi, and FIm,i respectively represent the percentage of sand, the percentage of 

clay, and the fraction of organic matter in soil layer i..” 

 

10. line 232: the CLM4.5 data points should be documented in a dedicated data section. In general, 

I suggest they you separate the description of data and experiments 

 

Our data are now described in Section 2.4, preceding the description of our experiments in Section 

2.5. CLM4.5 documentation clearly presents the standard values of the parameters and the 

equations that we used in this study, and a detailed discussion of them is outside the scope of this 

work. We already did provide some of the basic parameter values (model values for Vc,max25) from 

CLM4.5 and other similar models in Table 3 and provided references (in the text). We also added 

a subsection (shown below) to section 2.4 (Input and observation datasets) to better clarify. A 

subsection (shown in the response to major question 3, above) was also added to Section 2.4 (Input 

and observation datasets). 

 

11. line 239: were all calculations performed only for the topsoil layer in all experiments? 

 

This is valid for the synthetic case only whose purpose was just to test the whole framework, while 

for the real case all the five soil layers (mentioned in Static attributes subsection) were used to 

estimate the parameter Bi for each soil layer. For better clarification we added these paragraphs to 

section 2.5 (Synthetic data and real experiments): 

 

For the synthetic case {lines 314: 320}: 

 

“In the second synthetic case, “Vc,max – B”, we tested simultaneously retrieving both Vc,max25 and 

B , the latter of which varies spatially for different static attributes. For simplicity, we used only 

the topsoil layer for this case and excluded the influence of the PFT term; therefore we assumed 

B1 = 0.1 * Fom,1 + 0.45 * (%sand1 + %clay1) to generate the synthetic data. The plant wilting 

factor (w1) was then calculated using equation 12 and was fed into equation 9 to compute the soil 

water stress function (ꞵt). Since we were using only the topsoil layer, ꞵt was simplified to (ꞵt  = 

w1r1) with a root distribution value for the topsoil layer (r1 = 1). To retrieve B1, we used NNBi (see 

Equation 11) but excluded the PFT term since it was not used in synthesizing B1 values.” 

 

For the real case {lines 348: 349}: 

 

“Representing a real case, Bi was estimated for the i-th soil layer based on the static attributes for 

that layer in the four tested model formulations. Thus, Bi varied both horizontally and vertically 

for each PFT. ”  

 



11 

 

12. Table 1: missing symbol explanations for means and standard deviations 

 

For clarification, this line was added to the bottom of table 1 

 “𝜎 refers to the standard deviation, 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ refers to the mean of the observed values, and 𝑆𝐼𝑀̅̅ ̅̅ ̅refers to the 

mean of the simulated values.” 

 

13. line 383: please include time series for observations and model predictions 

 

Time series are not the focus for several reasons. Measurements in Lin15 dataset were taken on 

sub-hourly scale but not necessarily on a continuous daily interval. For almost all the sites, data 

were available on some random days (not necessarily continuous) in one or a few years. In fact, 

many of the measurement days are far from each other and we can barely find consecutive days 

for producing sensible time series. Second, this model was not posed as a time-continuous 

problem. In other words, there is no accumulated memory between different dates. Hence, we 

think a time series plot would be somewhat misleading. We believe more effort, including a 

vegetation growth module, is needed to simulate seasonality nearly optimally. 

 

14. fig. 5: symbols in legend cannot be distinguished. are results shown for the test dataset? 

 

These points belong to both training and testing datasets. We previously had a version that 

distinguished between train and test, as pasted below. As you can see, there are no visual 

differences between two types of points and such symbology does not really bring in new 

information. Later, we wanted to use symbols to indicate PFTs, which seems more informative. 

So, to avoid overcomplicating the figure, we removed the train/test differences. We also remind 

the reviewer that we provide cross validation results in the revised manuscript, which shows 

similar statistics to the random holdout. 

We already ran the requested cross validation (5-fold). The figures below show train/test points 

from the five folds. As one can see, there seems no systematic difference between train and test in 

the cross-validation case. 

 

Fold 1: 
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Fold 2: 

 
 

Fold 3: 

 
 

Fold 4: 

 
Fold 5: 
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In the revised manuscript, we used Figure 6 shown below since we believe that the figure with 

different PFT types, delivers more useful information. To avoid confusion between whether 

training or testing sets were used for plotting, we created this figure using the test points from the 

5 folds in the cross-validation test (cross validated dataset). 
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Figure 6. Comparisons of photosynthesis model calibration. Comparing impacts of default and learned parameters by 

plotting observed vs. simulated An (net photosynthetic rate) values calculated using different candidate models (described 

by which parameter definitions they use). (a) Impact of learning B with default Vc,max25. (b) Impact of learning Vc,max25 with 

varying B (either learned alongside V in V+B, or defined by the default equations in CLM4.5. The colors represent the 

results from the four different models, the shapes indicate the plant functional type (PFT) groups, and the dotted line in 

each panel indicates the ideal 1:1 relationship. Subscript “def” indicates that the variable was calculated using the default 

definitions in CLM4.5, while lack of this subscript indicates that the parameter was learned using a NN. Scatter plots were 

created using the test dataset from the 5 folds of the cross-validation test. For better illustration, only 3 PFTs are placed in 

a panel, as indicated by the panel titles. Comparing symbols in the same panel gives insights about the role of estimating B, 

while comparing left and right panels gives insights about the role of estimating Vc,max25.   

15. line 426: i would add that you have identified parameter values that are optimized for the 

considered set of model equations and forcings. both of these have limitations. Equations may 

be wrong, ERA5 is rather uncertain, and measurement principles can vary between stations. 

This is both a limitation and a strength of your framework. Parameter values will not be 
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transferable to other inputs. On the other hand you can obtain optimized predictions for the 

given set of forcings. 

 

Good point. Just like any other model, the performance may be impacted when you change the 

forcing datasets because these datasets may have certain biases. If the model is trained on a global 

scale, we hope the various different kinds of forcings to be encountered can serve to limit 

overfitting. We added the following sentences {lines 617: 620} to section 4 (Discussion). 

 

“We would like to highlight that such parameterizations are suitable to the target and forcing 

dataset used in training (which is still the most representative accessible dataset) and are related 

to the process-based model employed. The dataset may have limitations related to the consistency 

in the measurement approach, and there may be errors in the forcing data, or imperfections in 

model structure. The model performance may also vary based on different forcing data and inputs 

used.” 
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Anonymous Referee #2 

The authors of the manuscript ‘A differentiable ecosystem modeling framework for large-scale 

inverse problems: demonstration with photosynthesis simulations’ describe the application of the 

‘differentiable parameter learning’(dPL) framework to the photosynthesis module of FATES 

model. The framework, and concept, overcomes extrapolation limitations from site-by-site 

calibration approaches and allows leveraging information content in large-scale datasets towards 

a global parameterization of photosynthesis models. Neither the concept (Tsai et al., Nature 

Communications, https://www.nature.com/articles/s41467-021-26107-z, 2021; Bao et al., 

Authorea, https://www.authorea.com/doi/full/10.1002/essoar.10512186.3, 2022) nor the dPL 

framework (Tsai et al., 2021; Feng et al., 2022ab) are new. However, the framework is used in the 

FATES model for the first time and the results would be of interest for further model development, 

but also to the scientific community at large. 

At this point, the experiment focuses on inverting two parameters, Vcmax25 and B, resulting in that 

the accuracy of the simulated net photosynthesis rate being slightly improved. The main concerns 

at this stage relate to apparently incorrect formulations of some key equations, to issues about the 

validation strategy, to the fact that the forcing data and the experiments are not described 

sufficiently, challenging the acceptance of the study, while hampering any reproducibility efforts. 

Please see below for details. 

We appreciate your detailed comments! As a summary, it seems most of the questions seek 

clarifications and details about the model. Thank you – these comments should help us elucidate 

the model better. We did not find major comments that require computational experiments or major 

reorganization. There is a question about cross validation, which we have already run and shows 

expected and essentially similar results. Moreover, some metrics were requested, and we 

calculated them and reported them in the responses. 

We indeed followed our previous differentiable parameter learning paradigm which was first 

applied in hydrology (Tsai et al., 2021; Feng et al., 2022), as noted in the manuscript, but this is a 

novel use in the large domain of ecosystem modeling, which is a very large field of study. The 

system is also different as here we have a nonlinear system of equations while in hydrologic cases, 

we have ordinary differential equations; thus the mathematical treatment is different. The Julia 

software solves the system using adjoint solvers, although it is a relatively minor point as we 

mainly used the PyTorch version for its high parallel efficiency. 

We could not have noticed Bao et al., 2022 as it went online after our manuscript did and seems 

to be undergoing review. Upon some examination, we believe the basic modules are very different. 

They are using a light-use-efficiency approach and predicted GPP, while our paper focused on 

photosynthesis using a Farquhar-type model. Hence, we don’t think there is much overlap between 

the two. 

1. Two key equations are incorrect in the paper: 

1) line 140: equation 5, Ci=Ca-An*Patm*(1.4gs+1.6gb)/(gs+gb);  

2) line 505: equation A1, Ac=Vcmax*(Ci-Γ*)/(Ci+Kc*(1+Ko/Oi)). 

According to the user guide of the FATES model (https://fates-users-

guide.readthedocs.io/projects/tech-doc/en/latest/fates_tech_note.html#fundamental 

photosynthetic-physiology-theory), the equations should be: 

https://fates-users-guide.readthedocs.io/projects/tech-doc/en/latest/fates_tech_note.html#fundamental
https://fates-users-guide.readthedocs.io/projects/tech-doc/en/latest/fates_tech_note.html#fundamental
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1) Ci=Ca-An*Patm*(1.4gs+1.6gb)/(gs*gb);  

2) Ac=Vcmax*(Ci-Γ*)/(Ci+Kc*(1+Oi/Ko)). 

Since the FATES model is reimplemented in Julia and PyTorch by the authors, the codes might be 

also wrong. If so, the unit of Ci will be incorrect, leading to errors in the inversion of Vcmax25 and 

B. The wrong computation of the effective Michaelis-Menten coefficient (=Kc*(1+Oi/Ko)) might 

only have a slight effect if the temperature is close to 25°C, but should be concerned if the 

temperature is too low or high (and I do see some points with low leaf temperature in the ‘Lin15’ 

database). Thus, I have doubts about the current results and relevant analysis. 

 

Regarding the equations --- we were cautious to adhere to the original FATES equations before 

implementing it on PyTorch or Julia. Unfortunately, there were some typos in the manuscript 

in line 140 and line 505 in the paper which have been corrected. We confirmed that we used the 

correct equations in our differentiable model: 

Ci=Ca-An*Patm*(1.4gs+1.6gb)/(gs*gb);  

Ac=Vcmax*(Ci-Γ*)/(Ci+Kc*(1+Oi/Ko)). 

 

No results need to be changed. The code was correct as we compared carefully against the Fortran 

code in these subroutines as we developed the differentiable versions of the code. We will be 

publishing the code as the paper gets closer to acceptance so this can be examined in the code. 

Again, we apologize for the errors in the manuscript. 

 

2. As all the results are validated only once using the temporal holdout data or the random holdout 

data, the generalizability of the dPL (or NNB+NNv) is not clear. If the N-fold or leave-one-out 

cross-validation can be adopted, the statistical metrics can be more justifiable to reflect the 

model performance. 

 

Thanks for being rigorous. We believe the randomly selected points were representative, but we 

conducted a cross validation (CV) and show the results below. The results are as follows: 

 
(a) Temporal holdout test for the following system (80% train: 20% test) 

Runs 
Corr 

RMSE  

(μmol m-2 s-1) 

Bias  

(μmol m-2 s-1) 
NSE 

Train Test Train Test Train Test Train Test 

Vdef+Bdef 0.565 6.778 1.475 0.042 

Vdef+B 0.631 0.582 6.339 6.110 1.521 0.944 0.176 0.170 

V+Bdef 0.758 0.565 4.598 6.135 -0.164 -1.624 0.566 0.163 

V+B 0.786 0.771 4.319 4.296 0.102 -0.226 0.617 0.590 
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(b) Cross Validation (5-fold) test for the following system 

 

Runs Corr 

RMSE  

(μmol m-2 s-1) 

Bias  

(μmol m-2 s-1) NSE 

Train Test Train Test Train Test Train Test 

Vdef+Bdef 
0.565 6.778 1.475 0.042 

Vdef+B 
0.623 0.621 6.281 6.298 1.584 1.578 0.177 0.173 

V+Bdef 
0.715 0.709 4.960 5.020 -0.410 -0.401 0.487 0.474 

V+B 
0.783 0.778 4.306 4.359 0.074 0.081 0.613 0.604 

 

We also provide the metrics for each fold: 

 
Folds COR_test RMS_test BIAS_test NSE_test 

V+B 

1 0.769 4.701 0.104 0.591 

2 0.781 3.856 0.388 0.605 

3 0.789 4.108 -0.146 0.622 

4 0.767 4.654 0.072 0.584 

5 0.784 4.417 -0.035 0.615 

 

This is exactly as we expected in our initial reply posted online --- the 5-fold CV results are similar 

to the previous random results and better than the temporal test results. In addition, we showed the 

train/test An scatter plots for the five folds in question 14 above (in the detailed comments) by the 

first reviewer. 

 

We believe a spatial test, though, would best belong to a different paper as the paper is already 

getting long. There are many techniques to improve spatial generalization and enlarge datasets 

using remote sensing which, if combined with the present content, would just be too much for a 

first paper. We clarify this point in the paper by adding the following sentences {lines 611: 615} 

to section 4 (Discussion): 

 

“Also, this study doesn’t cover the spatial generalization since we don’t present results for spatial 

tests or based on site-level comparison. To improve spatial generalization may require further 

changes in the model, dynamical parameters, or using other error mitigation approaches (Feng 

et al., 2021, 2022b; Ma et al., 2021a). This is not our scope for this study; however, it will be 

considered for future work.” 

 

3. The forcing variables and parameters are not clearly differentiated in the paper. For example, 

is the leaf layer boundary conductance, gb, a constant parameter across sites or a temporally 

changing variable? If it is a forcing variable for FATES, where is gb from? is θice a forcing 

variable or a parameter correlated with temperature and θliq? Is the Ca a constant value or 

variable? The model would be different if the spatial and temporal variability of all these 

factors are considered. If all these are parameters (i.e., scalars), what are the values? 

 

The Lin15 dataset included different forcing variables that we used in our model including: 
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RH Relative humidity 

T Air temperature 

Tv Leaf temperature 

Patm Atmospheric pressure 

PAR (φ) Photosynthetic active radiation 

gb Boundary layer conductance 

 

Concerning (gb, θice and Ca), here are details about how they were considered in the model: 

• gb, the boundary layer conductance values were already available in Lin15 dataset. 

However, it has some missing values which we then computed using the inverse 

relationship between gb and the boundary layer resistance rb. rb was approximated by the 

following equation as documented in CLM5.0 (Lawrence et al., 2019) in section 5.1: 

 

rb =
1

Cv

√
dleaf

Uav
   

Where Cv and dleaf are both constants (0.01 ms-1/2 and 0.04 m respectively), while Uav is the 

wind velocity. We stated this in Appendix A {lines 675: 679} as the following: 

 

“where Ca is CO2 partial pressure near the leaf surface (calculated as 0.039% of Patm) and 

gb is the leaf boundary layer conductance, which was available in Lin15 except for some 

missing values which were computed using the inverse relationship between gb and the 

boundary layer resistance (rb). rb was approximated by the following equation as 

documented in section 5.1 of CLM5.0 (Lawrence et al., 2019): 

𝑟𝑏 =
1

𝐶𝑣

∗  √
𝑑𝑙𝑒𝑎𝑓

𝑈𝑎𝑣

   (A13) 

where Cv and dleaf  are both constants (0.01 ms-1/2 and 0.04 m respectively), while Uav is the 

wind velocity.” 

 

• θice, the volumetric ice content values were ignored (considered as zero) since both the air 

and leaf temperatures in our dataset were above the freezing temperature (0 °C or 273.15 

K) by at least 5 degrees. We stated this in section 2.3 {lines 236: 238} as the following: 

“In our calculations, θice was ignored since both the leaf and the air temperatures in our 

dataset were above the freezing temperature (0 °C or 273.15 K) by at least 5 °C.” 

 

• Ca, the CO2 partial pressure near the leaf surface values were variable spatially and 

temporally and they were taken as 0.039% of the atmospheric pressure. We stated this in 

section 2.4 {lines 273: 285} as shown below. 

 

“We refer to this dataset as Lin15 throughout the rest of this work with 43 sites chosen whose dates 

and times of measurements were available. Lin15 covered nine different PFT categories: rainfed 

crop “Crop R”, Broadleaf Evergreen Tree Tropical “BET Tropical”, Broadleaf Evergreen Tree 

Temperate “BET Temperate”, C3 grass, C4 grass, Needleleaf Evergreen Tree Boreal “NET 

Boreal”, Needleleaf Evergreen Tree Temperate “NET Temperate”, Broadleaf Deciduous Tree 
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Temperate “BDT Temperate”, and Broadleaf Deciduous Shrub Temperate “BDS Temperate”. 

Measurements were taken on a sub-hourly scale but not necessarily on a continuous daily interval. 

That’s why for almost all the sites, data were available on some random days (not necessarily 

continuous) in one or a few years.  

 

Lin15 also contained forcing variables, including air temperature (T), leaf temperature (Tv), 

atmospheric pressure (Patm), relative humidity (RH), photosynthetic active radiation (φ) and 

boundary layer conductance (gb). Moreover, we used ERA5 to fill in for any missing forcing 

variables in Lin15. In equation 4,  Patm and gb were used directly from the dataset, while Ca was 

computed as 0.039% of Patm, and gs was calculated using the Medlyn conductance model (Medlyn 

et al., 2011) as explained in  Appendix  A.”  

 

4. Line 216-218: the reason for replacing saturated soil matric potential (Ψsat) with soil matric 

potential for closed stomata (Ψc) is not explained. Equation 10 shows that the Ψsat is replaced 

with soil matric potential for open stomata(Ψo), not Ψc. Furthermore, the Ψi was still 

calculated using Ψsat in Appendix A (equations A16-A18). I’m confused about which variable 

was used to calculate Ψi. 

 

In lines 216 – 218 (in the previous manuscript version), we stated the actual equations that we used 

in for computing ψi (in which ψsat was replaced with ψo). 

 

In Appendix A and B (added in the revised manuscript), we kept all the original equations the 

same whether those related to FATES or to computing the soil water stress function (ꞵt).  

 

Proposed equation in this study (Equation 10) Original equation (Equation 7) 

Ѱi(PFTሻ = Ѱo ×  Si
−Bi(soil,PFTሻ

≥ Ѱc Ѱi  = Ѱsat,i ×  Si
−𝐵𝑖 ≥ Ѱc 

 

Reasons for this replacement: 

  

In the original CLM4.5 equations, ψsat is based on empirical functions, percentage of sand 

(%sand), and fraction of organic matter (Fom) (see Equations B4 – B5 in Appendix B). Using the 

original Equation 7 for computing ψi results in a plant wilting factor wi equal to one for more than 

90% of the data points across different soil layers. 

 

To give the model more flexibility in the computation of ψi and thus allow more variability in wi 

values, ψsat was replaced with ψo. However, to ensure having wi values less than or equal 1 as in 

the original wi (see Equation 8 in the revised manuscript), we tried to create equation 10 in a way 

that satisfies this condition using ψo. Parameter Bi (output from NNBi) was restricted to be within 

the range 0 and 1 to satisfy the same condition as well (see the added paragraph for NN  structures 

in section 2.5). Applying those changes, we were able to get ψi values within the range of ψo and 

ψc while showing more variability in the computed wi.  

  

Also, we added this paragraph {lines 252: 264} to section 2.3.1 (Model changes) for clarification: 

 

“The default equations in the Community Land model V4.5 (CLM4.5) for computations of Bi 

(Appendix B) show that the parameter Bi depends on two attributes, %clayi and Fom,i, which is why 
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they were used in NNBi. To account for the dependence of ψsat,i on %sandi (Appendix B) and its 

replacement by ψo (see equations 7 and 10), %sandi was also added to NNBi. We also added PFT 

to NNBi inputs because vegetation may interact with soil moisture constraint and we want to allow 

relevant factors to be included, rather than restricting the list of inputs to what was previously 

used in the literature. Since in NNBi, we use quantitative inputs (%sandi, %clayi, Fom,i) along with 

categorical inputs (PFT), we used the embedding layer in PyTorch, which translates each category 

to a vector of quantitative variables. This categorical data can then easily be combined with other 

quantitative inputs we provide to our neural network.   

 

Moreover, using the original Equation 7 for computing ψi resulted in a plant wilting factor, wi, 

equal to one for more than 90% of the datapoints across different soil layers. Changing Equation 

7 to the form shown in Equation 10 helped to express more variability in wi and eventually in the 

computed soil water stress function (ꞵt).” 

  

Here, the point is to calculate photosynthesis. We can see clearly the modified model works very 

well for photosynthesis. The differentiable modeling approach was specifically designed to enable 

inspection of various modules and assumptions in the model to improve model performance. It is 

possible that alternative formulations can also perform well, and we do not preclude that here, as 

this is not a main point of concern for this paper. 

 

5. Line 218-220: is NNB used to predict Bi or Ψi? B depends on only %clay and Fom according to 

equations A22-A23, while the authors add %sand, which is related to Ψsat and, therefore, Ψi. I 

didn’t find a direct relationship between Bi and %sand according to the original equations in 

the FATES model. If NNB is used to predict Ψi, I think the equation can be  

Ψi=θliq*NNB(%sand,%clay,PFT,Fom,T), where T represents the factors controlling θice, e.g., 

temperature. 

 

NNBi is used to predict Bi. Indeed, Bi in the original equations depends only on %clayi and Fom,i, 

however due to the changes we implemented to equation 7 (replacement of ψsat with ψo), the 

%sandi was also added to the NNBi. We also added PFT to NNBi inputs because vegetation may 

interact with soil moisture constraint and we want to allow relevant factors to be included, rather 

than restricting the list of inputs to what was previously used in the literature. This is precisely the 

point of replacing existing equations with NNs --- we can be freed from previous restrictive 

assumptions and test new ideas rapidly. We discussed the incentives for these changes in the last 

response above (No.4). 

 

In addition, here, the point is to calculate photosynthesis. We can see clearly the modified model 

works very well for photosynthesis. The differentiable modeling approach was specifically 

designed to enable inspection of various modules and assumptions in the model to update the 

formula, so more modifications will definitely happen in the future. 

 

Concerning this formula, Ψi=θliq*NNB(%sand, %clay,PFT,Fom,T), we would like to thank you for 

this suggestion. However, we suspect that including T in NNBi to represent θice might not very 

effective. The histogram of air temperature (shown in the figure below) indicates that our dataset 

does not include any points with air temperatures below 5 °C, which clarifies why θice was ignored 

in our calculations. Thus, there is low probability that the temperature would have a great effect if 
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included in NNBi. Further investigation would be outside of the scope of this work, but we agree 

that more data collection and investigation into air temperature and its effects in the future may be 

worthwhile. 

 

 
 

6. I think the neural networks (NNB and NNv) need constraints on Vcmax25 and Ψi. Although the 

authors declared that the predicted Vcmax25 without any constraints is within a rational range 

similar to the literature and measurement, the range of the predicted B is not discussed. If the 

predicted Bi is very large at some point, Ψi can be much higher than Ψo, leading to wi being 

higher than 1 (i.e., exceeding the range defined in equation A15). Besides, the Vcmax25 is possibly 

to be inappropriate without any physical constraints at sites not considered in this study. 

 

We actually did impose constraints on both NNBi and NNv in predicting Vc,max25 and B.  

For Vc,max25: 

We constrained the output of NNV to be between 0 and 1 using a sigmoid activation function for 

the output layer in the NN. We then rescaled the output to be within a pre-defined range based on 

literature of minimum value of 20 umol m-2 s-1 to a maximum value of 150 umol m-2 s-1.  

 

For B: 

We constrained the output of NNBi to be between [0 , 1] using a sigmoid activation function for 

the output layer in the NN. Given that the soil wetness Si (in equation 7 and 10) ranges between 

[0.01,1] as defined in the original CLM4.5 equations, therefore the term Si
-Bi

 can have a range of 

[1, 100] which when multiplied by ψo ensures having ψi values with a maximum limit of ψo, while 

the condition of ψi >= ψc was conserved in equation 10 (same as equation 7) for ensuring a 

minimum limit of ψc. Thus, we ensured that ψi computed using equation 10 is within the range of 

ψo and ψc which resulted in wi values less than or equal to 1. 
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The following paragraph {lines 356: 360} was added to section 2.5 (Synthetic data and real data 

experiments) which states some details in this regard: 

  

“The MLPs employed had three layers: an input layer, one hidden layer, and an output layer. To 

ensure an output value between 0 and 1 for both Vc,max25 and B parameterizations, sigmoid 

activation functions were used for both hidden and output layers. Vc,max25 was then rescaled to be 

within a pre-defined range based on literature values of 20 to 150 µmol m-2 s-1. For the i-th soil 

layer, Bi values were kept between 0 and 1, so with Si ranging between 0.01 and 1 (see Appendix 

B), the term Si
-Bi then had a range of 1 to 100. This ensured that the value of ψi ranges from ψc to 

ψo (see Equation 10).” 

 

Furthermore, some other authors may choose to impose additional constraints, which will be a 

great research topic to pursue and should reduce the uncertainty of the parameters. Yet this seems 

unnecessary for the model setup here. 

 

7. Line 235-236: ‘we tested retrieving both Vcmax25 and B, the latter of which varies spatially and 

temporally.’ If B varies temporally, it should be clarified how the training data is partitioned 

and how the ‘random holdout test’ is done. For example, is B changing per year or every N 

years? how many years/points per site are used to estimate B? Do the training points have to 

be in sequence or not? 

 

In the referenced lines, we specifically refer to the synthetic case. For this case, the values for the 

parameter B1 in the topsoil layer were synthesized using the following equation B1 = 0.1 * Fom,1 + 

0.45 * (%sand1 + %clay1), so B1 only varies spatially (different static attributes). We modified this 

sentence {lines 314: 315} to be “we tested simultaneously retrieving both Vc,max25 and B , the latter 

of which varies spatially for different static attributes”.  

 

Moreover, this paragraph {lines 371: 380} was added in section 2.5 (Synthetic data and real data 

experiments) to explain more about the tests held as well as data splitting.   

 

“Two different tests were performed with respect to data splitting: temporal holdout and 

randomized cross-validation --- the former test stresses the models’ ability to project into the 

future while the latter is the typical experiment run in the literature. Due to the irregularity of 

measurement dates at each location (as mentioned previously in section 2.4.1), the temporal 

periods for the training and testing datasets varied by location. In the temporal holdout test, for 

each PFT in each location, the available dates of measurements were recorded. The oldest 80% 

of these dates were used for training and the remaining more recent 20% were used for testing. 

The temporal holdout test was run for both synthetic and real data experiments. For the 

randomized cross-validation test, as the name implies, the dataset was randomly split into 5 folds 

(groups) and each time the model was trained on 4 folds (80% of the datapoints) and tested on the 

5th fold (20% of the data points). This was done a total of 5 rounds, so that all of the data points 

were used for testing once. The cross-validation test was run only for the real data experiments.”  

 

8. Line 238-239: ‘For simplicity, the computations of B, Ψi, wi, βt were performed for the top soil 

layer only.’ In the synthetic experiment, only the top soil layer is considered. However, ‘B, Ψi, 

wi‘ for the other layers are not clarified (=zero or default values in CLM?). Are the other soil 
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layers considered in the real data experiment? If yes, how many ‘B’ was estimated (i.e., how 

many soil layers and how many temporally changing Bi)? If not, wi can only represent the 

water availability at the top layer. The βt is equal to wi and the root distribution, ri, at the top 

layer. What is ri at the top layer (soil depth=0cm according to line 306)? 

 

 

We added further explanation for the synthetic case {lines 314: 320} in section 2.5 (Synthetic 

data and real data experiments): 

 

“In the second synthetic case, “Vc,max – B”, we tested simultaneously retrieving both Vc,max25 and 

B , the latter of which varies spatially for different static attributes. For simplicity, we used only 

the topsoil layer for this case and excluded the influence of the PFT term; therefore we assumed 

B1 = 0.1 * Fom,1 + 0.45 * (%sand1 + %clay1) to generate the synthetic data. The plant wilting 

factor (w1) was then calculated using equation 12 and was fed into equation 9 to compute the soil 

water stress function (ꞵt). Since we were using only the topsoil layer, ꞵt was simplified to (ꞵt  = 

w1r1) with a root distribution value for the topsoil layer (r1 = 1). To retrieve B1, we used NNBi (see 

Equation 11) but excluded the PFT term since it was not used in synthesizing B1 values.” 

 

For the real experiments: 

Five soil layers were considered in these experiments with the exact depths described in subsection 

2.4.2 (Static attributes). NNBi used static attributes (Fom,i, %sandi, and %clayi) from all soil layers 

along with PFT and predicted Bi values for each layer. So according to Bi = NNBi (%clayi, %sandi, 

Fom,i, PFT), B varies horizontally (static attributes per location) as well as vertically for each soil 

layer, and for each PFT. For better clarification, we edited the equation for B, which now reads Bi 

= NNBi (%clayi, %sandi, Fom,i, PFT) (see Equation 11 in the revised manuscript) 

 

We added further explanation for the real case {lines 348: 349} in section 2.5 (Synthetic data and 

real data experiments): 

 

“Representing a real case, Bi was estimated for the i-th soil layer based on the static attributes for 

that layer in the four tested model formulations. Thus, Bi varied both horizontally and vertically 

for each PFT.” 

 

9. Line 239: ‘To retrieve B, we used NNB but exclude the PFT term.’ 

I think it is not proper if the PFT is excluded from the training but included in the equation. If PFT 

is excluded, the term should be removed from equation 11. The sentence at line 222 ‘… along with 

categorical inputs (PFT), we used…’ should be rephrased. 

 

In Line 239 (in the previous manuscript version), we refer to the synthetic case and as mentioned 

in the last comment (No.8) we synthesized the values for the parameter B1 in the topsoil layer 

using the following equation B1 = 0.1 * Fom,1 + 0.45 * (%sand1 + %clay1). So, we formulated the 

NNB1 for the synthetic case as B1 = NNB1 (%sand1, %clay1, Fom,1).  

 

In equation 11, we show the general equation used for the real case experiments which included 

the PFT term as well in NNBi (discussed previously in comment No.4 in the major comments) 
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10. Line 245: ‘The model passing the test of the synthetic case was then applied to a real dataset…’ 

The same NN was used for synthetic data and real data, but the NN information (layers, neurons 

activation functions) is not clear. As real data is much more complex, using a different NN 

structure from the synthetic test might have better performance. 

 

Concerning the NN formation, as mentioned above in our response to major question 6, we added 

a new first paragraph to section 2.5 (Synthetic data and real data experiments) which states 

some details in this regard. That paragraph {lines 362: 369} is followed by: 

 

“The quantity of available data posed a limitation and did not permit an extensive hyperparameter 

tuning experiment with a train/validation/test split. Hence, we employed a “lazy” trial and error 

process with hyperparameters (learning rates and hidden size) using 70% of the data as training 

data and 30% as a validation set, just to ensure we had a roughly performing hyperparameter set 

(see Appendix C). We selected a learning rate of 0.045 and a hidden size equal to the number of 

inputs (9 for the NNV and 8 for the NNBi). We kept these same hyperparameters when we ran 5-

fold cross validation with an 80%:20% train:test ratio. In addition, we found that moderately 

perturbing the hyperparameters resulted in very little change in the performance. This design was 

necessary considering the practical limits of the available data, even though this study already 

represents a large-sample study in the domain of ecosystem modeling.” 

 

What we meant by “The model passing the test of the synthetic case was then applied to a real 

dataset…” is that we didn’t perform significant changes in the general differentiable model 

structure between running the synthetic and real cases.  

 

Indeed, it is true that the real case should be more complex than the synthetic case. However, for 

NNV we kept it the same for both cases since in our reference models (CLM4.5, AVIM, BETHY) 

Vc,max25 is a PFT-dependent parameter and for consistency we didn’t make any changes to NNV (in 

this paper, as a starting point). For NNBi, we indeed made a slight change between the synthetic 

and the real case regarding the number of soil layers used: 

 

Synthetic Case (one soil layer) Real Case (five soil layers) 

B1 = NNB1 (%sand1, %clay1, Fom,1) Bi = NNBi (%sandi, %clayi, Fom,i , PFT) 

 

We discussed the reasons for using these inputs in NNBi in comment (No.4) in the major comments. 

 

Finally, we would like to mention that this study is one of the first studies in this field, so our 

purpose is to present the application of the dPL framework without necessarily finding the best 

NNs for learning our target parameters. We can perform more improvements in the 

parameterization module in the future.   

 

11. Line 266-267: the loss function is very significant to evaluate the NN, but not explained in the 

paper. Without the equation of the loss function or the NN information, the dPL framework 

cannot be assessed by others, in other words, the experiment cannot be repeated. I think this 

doesn’t fulfil the requirement of Biogeosciences: ‘Is the description of experiments and 

calculations sufficiently complete and precise to allow their reproduction by fellow scientists 

(traceability of results)?’. 
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Concerning the loss function, we already discussed its structure in multiple sections in the 

manuscript.  

W =  argmin
W

(L൫δpsn(gW(Rሻ, θc, Fሻ, y∗൯ሻ   (3) 

In equation 3: we stated that the weights are minimized using the loss function between the 

simulated target variable y (see Equation 2) and the observed target variable y*. We then discussed 

how f and h equations are reflected on the photosynthesis module in FATES using equations 4 and 

equation 5 respectively. In section 2.2, we highlighted that the y term is the An (the net 

photosynthesis rate) variable in our problem.  

 

Moreover, figure 1b (new version shown in question 1 above by the first reviewer) shows that the 

loss function is computed between the simulated and the observed An. We mentioned that for the 

dPL framework, we don’t need ground truth for the learnt parameters but we do for An.  

 

Concerning the NN formation, the paragraph we added in the last response to comment No.10 

in the major comments would further clarify it. Further, our code will be shared upon paper 

acceptance and the results will be entirely reproducible.  

 

12. Line 268-272: the authors ‘hope to identify parameters that can generalize well in space’, so I 

think the readers would wonder if the parameters are estimated per site or per PFT. If 

parameters are estimated per site, how are they aggregated to parameters per PFT in figure 3a 

and 4a? If estimated per PFT, I’m afraid the spatial variability of the parameters is not fully 

captured by dPL. 

 

Vc,max25 values were estimated per PFT since NNV(PFT) uses just the PFT as input without any 

static attributes specific to each site. Also, our reference values (used for comparison from 

CLM4.5, AVIM, BETHY, and TRY) for Vc,max25 come from models that define Vc,max25 per PFT 

not per site. While Bi is considered a spatially variable parameter since it depends on site specific 

soil attributes. According to this equation Bi = NNBi(%sandi, %clayi, Fom,i, PFT), (equation 11 in the 

revised manuscript), Bi differs between different sites and for one site it differs for different PFTs 

as well.  

 

‘hope to identify parameters that can generalize well in space’: by this sentence we mean that the 

dPL, contrary to previous site by site calibration, is able to learn from data from all sites 

simultaneously. This is due to the structure of the framework enabling it to be trained “globally” 

so it involves all training data points, rather than being computed site-by-site as done in traditional 

calibration. In Tsai et al., 2021 we have already established that casting the parameter problem as 

parameter learning improves spatial generalization. 

 

Further, we have run some preliminary spatial tests which showed only a small decline of 

performance when tested in an untrained site. While we obtained a temporal test NSE of 0.581 

(80%:20%) train: test ratio, the NSE of a spatial test for the current model is already 0.44, 

suggesting this model is reasonably well-generalized in space. Unfortunately, we could not find 

spatial tests for benchmarking in the ecosystem modeling literature and would appreciate any 

suggestions with a comparable dataset. As we mentioned earlier, we are working on further 
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improving the spatial generalization with some error mitigation approaches. This will add lots of 

content and should be for the scope of another paper. 

 

13. Line 292-302: the sources of the soil moisture, stomatal conductance, meteorological forcings 

and the soil properties are mentioned, but the sources of Ca, gb and Patm are not clear. 

 

We mentioned the paragraphs added to clarify this in comment No.3 in the major comments. While 

these represent simplified treatments, our model’s performance suggest that their impacts may be 

limited. Such simplifications are necessary as we just are getting started with the different model, 

and the model can be made more sophisticated later. 

 

14. The data source of ‘Lin15’ was not specified. I found a database at Lin et al., 2015, bud didn’t 

find the dates information on lines 296-300. 

In the supplementary information Lin et al., 2015, page 6: 

 

“Supplementary Table 2: List of data source. The whole database is publicly available and can be 

downloaded from data repository 40 (https://bitbucket.org/gsglobal/leafgasexchange).” 

 

So, they direct the readers to the database (https://bitbucket.org/gsglobal/leafgasexchange) which 

has the full parameters listed including dates, species, and other variables.  

 

15. Line 304-305: the soil organic carbon content is collected, but the unit is not explained. Does 

the unit need to be transferred to get the soil organic matter fraction? 

 

Yes, we had to do some unit conversion. According to  

https://zenodo.org/record/2525553#.Y9Ida-zMKb0 the soil organic carbon is given in 5 g/kg so 

two conversions were done: 

1. Divide by 2 (to convert to %) then divide by 100 (to get a fraction) 

2. Multiply by the conventional factor “Van Bemmelen factor” 1.72 (soil organic matter = 

1.72 soil organic carbon)  

 

To clarify this, we added this paragraph {lines 287: 290} to subsection 2.4.2 (Static attributes): 

 

“For ꞵt  calculations, we used data from Hengl & Wheeler (2018) for the soil organic carbon 

content at different soil depths, where the conventional Van Bemmelen factor of 1.72 was used to 

convert to soil organic matter (Fom). Data for sand and clay percentages (%sand, %clay) were 

obtained from Hengl (2018). Both are global datasets available at 250 m resolution at 6 different 

soil depths (0, 10, 30, 60, 100, and 200 cm) which describe five soil layers.” 

 

16. Line 410-411: the authors claim that the predicted Vcmax25 ‘were well correlated with’ 

literature values. However, the correlation coefficient or determination coefficient was never 

stated in the paper. Too few points are displayed in figure 6b, and the distribution pattern of 

only four PFT types (crop R, C3 grass, NET Boreal and BDS temperate) is similar to CLM. 

 

First, the point here is that the values we estimated make physical sense, are on the same order of 

magnitude, and are partially correlated with the literature values. We expected there to be some 

https://bitbucket.org/gsglobal/leafgasexchange)
https://bitbucket.org/gsglobal/leafgasexchange
https://zenodo.org/record/2525553#.Y9IDa-zMKb0
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correlation but not that high. Higher correlation does not necessarily mean it’s better. Imagine the 

extreme case --- if the correlation was 1.0 and every value is the same as literature values, then it 

would mean the previous values were perfect, which would mean there it does not need to learn 

from data, but this is not the case. Hence, the precise correlation value here is not that important. 

We can calculate the correlation, which is 0.843 with CLM4.5 Vc,max25. 

 

We attached below figure 8 (added in the revised manuscript) showing the correlation between the 

Vc,max25 learnt by V+B model versus TRY database or other default models. As the figure shows, 

there is high correlation between the estimated Vc,max25 by V+B model versus CLM4.5 (0.843), 

BETHY (0.897), and TRY (0.698). However, low correlation exists between the estimated Vc,max25 

by V+B model and AVIM model where the V+B has lower values for BET Temperate, BET 

Tropical, and BDT Temperate while it shows higher values for BDS Temperate, C3 grass, and 

Crop R. It is difficult to comment which set is better without all models being run on the same 

dataset.  

 

Figure 8. shows the correlation between the Vc,max25 values estimated by V+B model on the y-axis versus Vc,max25 values from 

CLM4.5 (black markers), AVIM (cyan markers), BETHY (magenta markers), and TRY database (orange markers). 

Different marker shapes represent different PFTs, while different colours represent different reference sources for Vc,max25 

per PFT. For the TRY database, we don’t have values for C3 grass and C4 grass due to the lack of overlap in species between 

the TRY database and our dataset for those two PFTs.   

For Figure 6b (7b in the revised manuscript), since one point is for a PFT for CLM4.5, and Vc,max25 

is defined on a PFT level, there should be exactly the same number of points as there are PFTs. As 

a result, the number of data points seemed correct.  
 

17. Line 431-432: I cannot identify the C3 grass at the lower left corner of figure 5b. Maybe a 

violin plot per PFT can be helpful to show the difference between optimizing B or not for a 

specific plant type. The figures in the paper only show the net photosynthesis rate across all 

sites. However, the site-level comparison might be more meaningful to assess the four 

parameterization strategies: Vdef+B, Vdef+Bdef, V+Bdef, and V+B.  
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Measurements in Lin15 dataset were taken on sub-hourly scale but not necessarily on a continuous 

daily interval. For almost all the sites, data were available on some random days (not necessarily 

continuous) in one or a few years. This means that the data distribution across sites is not balanced 

some sites have very low amounts of data compared to other sites. For this reason, we didn’t assess 

the models using the site-level comparison but instead computed the metrics for all sites combined. 

Site-level comparison makes more sense when each site has a large amount of data and the dataset 

amount is uniformly across sites, which was not the case here.  

 

For better clarification of different PFTs, we split figure 5 (6 in the revised manuscript) into 3 rows 

representing 3 PFTs (each with 2 subplots) as shown in question 14 above (in the detailed 

comments) by the first reviewer. We used the cross-validation dataset for making the plot to avoid 

confusion concerning which dataset was used for the plot (train or test). Splitting figure 5 (6 in the 

revised manuscript) this way helps present the same information as the previous violin plot (which 

we exclude in the new version to avoid redundancy).  

 

18. Line 445-450: I didn’t see any significant correlation between the estimated Vcmax25 and the 

PFT-mean from TRY database or other model default values. The authors should provide the 

scatter plots and the correlation coefficients between the Vcmax values to conclude that the 

dPL can get parameters correlated with literature values (line 490). 

 

Previously responded to in comment No.16 in the major comments. 

 

Minor comments: 

 

1. Line 123: the right part looks very similar to the middle part in equation 3, but the subscript 

‘W’ beside ‘argmin’ is not explained. As I understand, the ‘argmin’ in the right part is the same 

as the ‘argmin’ in the middle part. 

 

The equation was modified to have w below argmin and not as a side subscript. 

 

W =  argmin
W

(L൫δpsn(gW(Rሻ, θc, Fሻ, y∗൯ሻ   (3) 

By this way, we mean to express that our target is to find the weights of the neural network that 

minimize the loss function between the observed and the target variable which is the net 

photosynthesis rate here. So, W here refer to the neural network weights (NNV and NNBi) in our 

problem. This was explained clearly in the manuscript paragraph preceding this equation.  

 

2. Line 142: The short name for CO2 partial pressure at the leaf surface is ‘Ca’, but is ‘Cs’ in the 

appendix. Please use a uniform short name across the paper. 

 

Cs and Ca refer to different variables, however, there definitions are close to each other.  

Cs: is the CO2 partial pressure at the leaf surface. 

Ca: is the CO2 partial pressure near the leaf surface. 

They are correct in the way the equations are written inside the manuscript body and the appendix. 

We modified the definition of Ca {lines 171: 176} in section 2.2 (The Farquhar photosynthesis 

model) to describe CO2 partial pressure near the leaf surface as shown in the following: 



30 

 

 

“Equation 4 is a single-variable nonlinear equation, with the intercellular leaf CO2 pressure (Ci) 

as the unknown term to be solved (serving as the x term in Equation 1). Ci is influenced by the CO2 

partial pressure near the leaf surface (Ca), the net photosynthetic rate (An), the atmospheric 

pressure (Patm), the leaf stomatal conductance (gs), and the leaf boundary layer conductance (gb). 

Upon solving for Ci, we can further calculate An, which is the y term in equation 1. In the original 

implementations of FATES and CLM, the system of nonlinear equations was solved iteratively 

using fixed-point iteration (Oleson et al., 2013).” 

 

3. Line 187: equation 11 is cited at line 187 for the first time, but the full equation is placed at 

line 218. The equation should appear close to the first citation. 

 

The equation is written in a more general way as B = NNB(R) at line 187 (in the previous 

manuscript version), where R refers to the underlying attributes or the raw inputs. In line 218 (in 

the previous manuscript version), we show the actual equation that we used for the 

parameterization in our study. To avoid confusion, we removed this equation “B = NNB(R)” in the 

revised manuscript and kept only equation 11.  

 

4. Line 193: does ‘i’ represent the soil layer number? I didn’t see the explanation around the 

equation. 

Yes, the subscript i refers to the soil layer number. We clarified this in the revised manuscript 

{lines 227: 229} in section 2.3 (The parameterization pipeline and model changes) as the 

following: 

 

“B is purely a function of soil properties and is defined for each soil layer as Bi where i refers to 

the soil layer (see Appendix B). Bi equations will later be replaced by our NN-based 

parameterization scheme as explained in section 2.3.1, because they were originally empirical and 

may not be optimal at the global scale.” 

 

5. Line 197: ‘across different soil different layers’ should be ‘across different soil layers’. 

Modified it in the revised manuscript {lines 239: 240}. 

 

6. Line 203/equation 9: the second line should be Ti≤Tf-2 ‘or’ θliq≤0. 

 Modified it in the revised manuscript {see Equation 8}. 

 

7. Line 205: the short name for the physical parameter at the second blue area should be θ but not 

θc. 

Modified it in the revised manuscript {see Figure 1}. 

 

8. Line 218/equation 11: B and Fom should have a subscript, i.  

Bi=NNBi(%sand,%clay,PFT,Fom,i). 

Modified it in the revised manuscript {see Equation 11}. 

 

9. Line 222: the ‘one-hot embedding’ was already stated at line 183. The definition should be 

explained where it is mentioned for the first time. 
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We better clarified that in the revised manuscript by differentiating between two terminologies: 

one hot encoding {lines 220: 221} and embedding layer {lines 257: 260}: 

 

In section 2.3 (The parameterization pipeline and model changes), we defined one hot encoding 

as the following: 

“where PFT is the plant functional type category (in one-hot encoding format, which translates 

each category to a binary vector) and the neural network used for parameterization of Vc,max25 is 

referred to as NNV hereafter.” 

 

We later defined embedding layer as the following: 

“Since in NNBi, we use quantitative inputs (%sandi, %clayi, Fom,i) along with categorical inputs 

(PFT), we used the embedding layer in PyTorch, which translates each category to a vector of 

quantitative variables. This categorical data can then easily be combined with other quantitative 

inputs we provide to our neural network.”   

 

10. Line 228: the short name for ‘differentiable learning framework’ is defined but not used. 

 

In line 228 (in the previous manuscript version), ‘differentiable learning framework’ refers to the 

dPL “differentiable parameter learning framework”. To unify, we changed it in the revised 

manuscript to be “differentiable parameter learning framework”. 

 

11. Line 310/Figure 2: the full names of the land cover types (e.g., BET tropical) are not explained 

before or around the figure. 

 

Our dataset included 9 different PFTs categories, a paragraph (see comment No.3 in the major 

comments) with more details about Lin15 dataset was added to section 2.4.1 (Forcing and 

Photosynthesis rates) stating the number of PFTs considered plus the full name of each PFT. 

 

12. Line 349: table 2 is mentioned for the first time, but the full table is placed after two pages. 

We have better organized the revised manuscript.  

 

13. Line 384: the CO2 should be CO2(subscript). 

Modified it in the revised manuscript. 

 

14. Line 390/figure 5: I cannot understand the titles of the subplots. What is the meaning of 

‘learning B’ and ‘learning Vcmax25’? The B is not optimized in figure 5a. 

“Learning” describes which parameter is being obtained. Figure 5a (6a in the revised manuscript) 

subplot shows two models, Vdef+Bdef (red color) and Vdef + B (blue color). So both models 

agree in using the default Vc,max25 values corresponding to each PFT that’s why subplot (a) title 

includes “with default  Vc,max25”. “Learning B” is added to title “a” since B is learnt in Vdef + B 

model.  

 

Figure 5b (6b in the revised manuscript)  subplot shows two models, V+Bdef (yellow color) and 

V+B (green color). So both models agree in learning Vc,max25 values corresponding to each PFT 

that’s why subplot (b) title includes “Learning Vc,max25”. “Varying B” is added to title “b” since 
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the parameter B is computed from the default equations in CLM4.5 for V+Bdef model, while it is 

learnt simultaneously with Vc,max25 for V+B model.  

 

We have made some adjustments to the figure caption which should hopefully be more clear. The 

revised caption is shown in question 14 above (in the detailed comments) by the first reviewer.  

 

15. Line 514/equation A7: the Cs is not used. 

 

Cs which refers to the CO2 partial pressure at the leaf surface is used in the model block of 

equations corresponding to the stomatal conductance computations. Figure 2 (added in the revised 

manuscript and copied below) shows equations corresponding to f and h. The box marked with 

red color shows the usage of Cs 
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Figure 2. Model block of equations corresponding to f and h in equation 1. Blue boxes indicate equations corresponding to 

f. Yellow boxes indicate equations corresponding to h. First, we obtain a solution for Ci (intercellular leaf CO2 pressure) by 

solving the nonlinear system (f equations) as illustrated in the last blue box. Then, we forward h equations to compute An 

(net photosynthesis rate) using Ac, Aj, and Ap as discussed in section 2.2. Details about different variables and parameters 

included in f and h equations are provided in Appendix A. 

 

16. Line 520-530: the three functions, Φ1, Φ2, and Φ3, need to be clarified. 

 

 

θcjAi
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Φ1, Φ2, and Φ3 refer to the equations or the subroutines that we used to prepare the inputs required 

to run the FATES photosynthesis module. To run the photosynthesis module, we had to run other 

correlated subroutines in FATES that provide some crucial inputs required to simulate the net 

photosynthetic rate.  

 

Φ1 corresponds to the set of equations in which we used factors from literature or from the 

Community Land Model (CLM) to map the maximum electron transport rate at 25 °C (Jmax25), the 

plant respiration rate at 25 °C (Rd25), the initial slope of CO2 response curve at 25 °C (Kp25) from  

Vc,max25 as shown below: 

 

Jmax25 = 1.67 Vc,max25  (Medlyn et al., 

2011) 

Rd25    =  {
0.015 Vc,max25     , for C3 plants

0.025 Vc,max25         , for C4 plants    
} 

(Lawrence et al., 

2019) 

Kp25   =  {
 20000 Vc,max25      , for C4 plants    

   
} 

 

Φ2 corresponds to the equations responsible for rescaling and adjusting the parameters Jmax25, Kp25, 

and Vc,max25 for the leaf temperature to output Jmax, Kp, and Vc,max 

 

Φ3 corresponds to the equations responsible for rescaling and adjusting Rd25 for the leaf temperature 

to output Rd.  

 

All these equations are well documented in FATES code and in CLM5.0 (Lawrence et al., 2019) 

in chapter 9 section 9.4.We added this paragraph {lines 664: 670} in appendix A to better clarify 

as the following: 

 

“The three biophysical rates Vc,max, Jmax, and Kp along with the plant respiration (Rd), adjusted for 

Tv are calculated using their standardized values at 25°C multiplied by temperature response 

functions defined in chapter 9.0 in CLM5.0 (Lawrence et al., 2019). Vc,max is also adjusted for the 

soil water availability by multiplying it with the soil water stress function(βt).  

 

In our case, Vc,max25  is either the default value provided in CLM4.5 or is learned by a neural 

network, which then is used to calculate other standardized biophysical rates as: 
𝐽𝑚𝑎𝑥25 = 1.67 𝑉𝑐,𝑚𝑎𝑥25  (A6) 

𝑅𝑑25    = {
0.015 𝑉𝑐,𝑚𝑎𝑥25    𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

0.025 𝑉𝑐,𝑚𝑎𝑥25    𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠
} (A7) 

𝐾𝑝25   = {20000 𝑉𝑐,𝑚𝑎𝑥25  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠} (A8) 

” 

17. Appendix: the citations of equations are wrong (e.g, lines 503-504, 512, 520, 534…). The 

equations should be cited using A1-A23. 

 

The citations for all equations in Appendix A were modified to A[no.] in the revised manuscript.  
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The authors’ reply is timely and clarifies most of the questions and confusion. I’m looking 

forwards to reading the new version of this manuscript! According to the new information 

provided by the authors, the manuscript presented how well the net photosynthesis can be 

simulated using two parameters (Vcmax25 and Bi) predicted via a simple MLP neural network 

(one hidden layer) with a few attributes (PFT, %sand, %clay and Fom). After reading the authors’ 

reply, I still have the following concerns and comments: 

1. There are limited site-level temporal data, thus the seasonality of net photosynthesis cannot be 

assessed. 

 

We did not claim the model can simulate seasonality very well at a site. Currently our differentiable 

model follows the same structure of the photosynthesis module in the process-based model 

“FATES”. We didn’t make significant changes to the model. Because the backbone of the model 

is Farquhar, its seasonal behavior should be comparable to what we expect out of the other 

Farquhar models, because in this paper we only estimated static parameters. On the other hand, 

the nature of our dataset doesn’t enable us to test the seasonality and we didn’t mention this in the 

manuscript. This might be within our scope in future work, but is not here.   

 

To avoid confusion, we added this paragraph to the discussion section in the revised manuscript 

{lines 608: 615} as the following: 

“Although applying the dPL framework improved the parameters to an extent, the model still has 

similar structural limitations as other Farquhar-type models. We didn’t test the model’s ability to 

capture the seasonality of the net photosynthetic rate due the limited site level temporal data. The 

seasonal behavior of the model is expected to be similar to other Farquhar models as here we only 

learned static parameters. Further improvement likely will need to consider vegetation growth. 

Also, this study doesn’t cover the spatial generalization of the dPL model since we don’t present 

results for spatial tests or based on site-level comparison. To improve spatial generalization may 

require further changes in the model, dynamical parameters, or using other error mitigation 

approaches. This is not our scope for this study; however, it will be considered for future work.” 

 

2. The violin plots showed the net photosynthesis per PFT, but I think readers would be more 

interested in how different is the simulated net photosynthesis from the measured net 

photosynthesis. Maybe the fourth violin plot (measured values) can be added on the right side 

and the NSE can be displayed at the top. Moreover, I think only the test dataset (or better cross-

validated dataset) should be compared with the measured values (e.g., Fig. 5) and used to make 

the violin plots. 

 

For better clarification of different PFTs, we split figure 5 (6 in the revised manuscript) into 3 rows 

representing 3 PFTs (each of 2 subplots) as shown in question 14 above (in the detailed comments) 

by the first reviewer. We used the cross-validation dataset for making the plot to avoid confusion 

concerning which dataset was used for the plot (train or test). Splitting figure 5 (6 in the revised 

manuscript) this way helps present the same information as the violin plot (which we now exclude 

in the new version to avoid redundancy).  

 

3. The authors clarified that the Vcmax25 is predicted per PFT but did not mention Bi. Is Bi 

predicted per PFT or per site? How is the predicted Bi compared with values from CLM? 
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Bi differs between different sites and for one site it differs for different PFTs; Bi = NNBi(%sandi, 

%clayi, Fom,i, PFT). Contrary to Vc,max25, there are no default values for B because of two reasons:  

 

a. Bi in the default CLM4.5 equations come from empirical equations based on %clay and 

Fom  

b. We changed equation 7 to equation 10 (as shown below). Thus, parameter Bi in equation 7 

has a completely different range from the one in equation 10 which ranges between 0 and 

1 

 

Equations 7 and 10 

 

Ѱi  = Ѱsat,i ×  Si
−Bi ≥ Ѱc (7) default 

Ѱi(PFTሻ = Ѱo ×  Si
−Bi(soil,PFTሻ

≥ Ѱc (10) New 

Default B equations in CLM4.5 

 
Bi               = ൫1 − Fom,i൯  × Bmin,i + Fom,i  ×  Bom            (B9) 

Bmin,i        = 2.91 + 0.159 × (%clayሻi   (B10) 

To avoid confusion, we modified and added new text and equations {lines 241: 252} in section 

2.3.1 (Model changes) as the following: 

 

“In the original water limitation function in CLM4.5, the stomata response to soil water potential 

is based on a linear function between the water potential for stomata openness and closeness (see 

Equation 8). In light of the possibility that plants could respond differently to soil water potential 

dependent on plant hydraulic traits (Christoffersen et al., 2016), in this study, we modified the soil 

water limitation for PFTs so that they could have different shapes. Specifically, we defined PFT-

dependent soil water stress, ψi (PFT) ranging from ψc and ψo, depending on the soil water content, 

which is calculated as follows: 

Ѱ𝑖  (𝑃𝐹𝑇ሻ = Ѱ𝑜 ×  𝑆𝑖
−𝐵𝑖(𝑠𝑜𝑖𝑙,𝑃𝐹𝑇ሻ

≥ Ѱ𝑐 (10)  

Bi is a PFT- and soil-texture-dependent shape parameter (between 0 and 1) estimated as: 

Bi = NNBi(%sandi, %clayi, Fom,i, PFT)  (11)  

where %sandi, %clayi, and FIm,i respectively represent the percentage of sand, the percentage of 

clay, and the fraction of organic matter in soil layer i. The PFT-dependent soil water stress, ψi 

(PFT), is then fed into the plant wilting equation (9) as the following: 

𝑤𝑖 =
Ѱ𝑐  −  Ѱ𝑖  (𝑃𝐹𝑇ሻ

Ѱ𝑐 −  Ѱ𝑜

=  
Ѱ𝑐 − 𝑚𝑎𝑥 (Ѱ𝑐 , Ѱ𝑜 ×  𝑆𝑖

−𝐵𝑖(𝑠𝑜𝑖𝑙,𝑃𝐹𝑇ሻ
ሻ

Ѱ𝑐 − Ѱ𝑜

 ≤ 1  (12)  
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The new shape parameter Bi in equation 11 has a different range (between 0 and 1) from the 

original one defined by Clapp & Hornberger (1978) in equation 7 and it varies spatially for 

different static attributes and for different PFTs as well.” 

 

As shown in the above, we clearly stated that Bi(soil, PFT) is different from the old parameter 

since it is now a function in soil attributes with PFT, and it also ranges between 0 and 1. We 

restated that in section 2.5 (Synthetic data and real data experiments) by adding the following text 

{lines 390: 393}: 

 

“A complete disagreement or a different order of magnitude would suggest that our values may 

be not physical. Partial discrepancies would highlight any knowledge gaps. We didn’t perform a 

similar comparison between learned and computed Bi values from default equations since the new 

shape parameter Bi(soil, PFT) (see Equation 11) is different from the original one and has a 

different range (between 0 and 1).” 

 

4. Since the site-level comparison and the site-average An comparison are not possible, the 

generalizability cannot be evaluated. However, the model performance across sites can be 

compared to other papers using the Farquhar model (e.g., Fig 1B of Chen at al., PNAS, 

https://doi.org/10.1073/pnas.2115627119, 2022). 

 

Concerning the spatial generalization or the site-level comparison, as mentioned in the previous 

response (No.12 in Reviewer 2’s major comments), a spatial test is not within the scope of this 

paper. We are working on further improving the spatial generalization with some error mitigation 

approaches. This will add lots of content and should be for the scope of another paper. So, we 

added the following paragraph to the discussion section {lines 611: 615}: 

 

“Also, this study doesn’t cover the spatial generalization since we don’t present results for spatial 

tests or based on site-level comparison. To improve spatial generalization may require further 

changes in the model, dynamical parameters, or using other error mitigation approaches (Feng 

et al., 2021, 2022b; Ma et al., 2021a). This is not our scope for this study; however, it will be 

considered for future work.” 
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Things being asked for and added or modified in the new manuscript version: 

1. Explanation for temporal and cross validation test >> (clarified in the revised manuscript 

through paragraphs added) 

 

2. f1 (renamed to f) and f2 (renamed to h) equations clear explanation in the manuscript body 

>> (proposed figure 2 added with explanation for the terms in the equations in Appendix 

A) 

 

3. Details on NNs hyperparameters and hyperparameters tuning >> (clarified in the revised 

manuscript through paragraphs added) 

 

4. Inquiries about Lin15 dataset >> (Number and full name of PFTs, forcing variables, 

atmospheric CO2 (Ca), leaf layer boundary conductance (gb)) >> (clarified in the revised 

manuscript through paragraphs added) 

 

5. Reasons of replacing Ψsat by Ψo in equations 7 and 10 >> (clarified in the revised 

manuscript through paragraphs added) 

 

6. CLM4.5 contribution to the study >> (clarified in the revised manuscript through 

paragraphs added) 

 

7. Inquiries about B calculations across soil layers >> (clarified in the revised manuscript 

through paragraphs added for synthetic and real case experiments) 

 

8. Cross validation tests >> (were performed and results were added in the revised 

manuscript) 

 

9. Model performance is impacted by certain set of model equations and forcings >> (clarified 

in the revised manuscript through paragraphs added to the discussion section) 

 

10. Modify typos in model equations >> (modified in the revised manuscript) 

 

11. NNB and NNV constraints on outputs and output range >> (clarified in the revised 

manuscript through paragraphs added) 

 

12. More complex NN for the real case than synthetic case >> (already done for NNBi but not 

applicable for NNV) 

 

13. Loss function clarification >> (better clarified in the revised manuscript + Figure 1 

modified) 

 

14. Timeseries of observations >> (can’t be provided due to the site limited temporal data) 

 

15. Spatial variability of the parameters not fully captured by dPL >> (spatial test is not the 

scope of this paper, we are working on further improving the spatial generalization with 
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some error mitigation approaches. This will add lots of content and should be for the scope 

of another paper.) 

 

16. Soil organic carbon content unit conversion >> (clarified in the revised manuscript) 

 

17. Vc,max25 correlation literature values >> (figure 8 was added showing the correlation 

between learnt and the reference Vc,max25 values) 

 

18. Split plots per PFT >> (Figure 6 was split into 3 rows each with only 3 PFTs) 

 

19. Figure 5b (6b in the revised manuscript) plotted using both training and test datasets >> 

(was replotted using the cross- validation test results in the revised manuscript) 
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