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Abstract. Photosynthesis plays an important role in carbon, nitrogen, and water cycles. Ecosystem models for 15 

photosynthesis are characterized by many parameters that are obtained from limited in-situ measurements and applied to the 

same plant types. Previous site-by-site calibration approaches could not leverage big data and faced issues like overfitting or 

parameter non-uniqueness. Here we developed an end-to-end programmatically differentiable (meaning gradients of outputs 

to variables used in the model can be obtained efficiently and accurately) version of the photosynthesis process 

representation within the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) model. As a genre of physics-20 

informed machine learning, differentiable models couple physics-based formulations to neural networks that learn 

parameterization (and potentially processes) from observations, here photosynthesis rates. We first demonstrated that the 

framework was able to recover multiple assumed parameter values concurrently using synthetic training data. Then, using a 

real-world dataset consisting of many different plant functional types, we learned parameters that performed substantially 

better and greatly reduced biases compared to literature values. Further, the framework allowed us to gain insights at a large 25 

scale. Our results showed that the carboxylation rate at 25°C (Vc,max25), was more impactful than a factor representing water 

limitation, although tuning both was helpful in addressing biases with the default values. This framework could potentially 

enable a substantial improvement in our capability to learn parameters and reduce biases for ecosystem modeling at large 

scales. 

 30 

Short Summary. Photosynthesis is critical for life and is affected by a changing climate. Many parameters come into play 

when modeling, but traditional calibration approaches have faced many issues. Our framework trains coupled neural 

networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that 

were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates. 

https://sciml.ai/
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1. Introduction 35 

Plant photosynthesis is critically important for regulating the global carbon and nutrient cycles, and thus the future climate. 

Understanding future climate trajectories requires the understanding of photosynthetic responses to changes in environmental 

factors including atmospheric CO2 concentrations, radiation, temperature, humidity, and nutrient and water availability 

(Kirschbaum, 2004). Photosynthesis is influenced by many factors such as higher CO2 levels, reduced productivity of 

vegetation (i.e., nutrient concentration) (Thompson et al., 2017), intensified droughts (Urban et al., 2017; Xu et al., 2019) 40 

and rising temperatures (Dusenge et al., 2019) under a changing climate. To comprehensively evaluate the impacts of these 

changing processes and vegetation feedbacks to the atmosphere, we need accurate representations of photosynthesis in our 

models. 

 

For global assessments of the carbon cycle, vegetation models were developed to simulate terrestrial ecosystem processes 45 

and the distributions of vegetation, both vertically in the soil-plant system and horizontally across the landscape. Substantial 

efforts over the last few decades have improved the representation of vegetation and its responses and feedbacks to climate 

change (Fisher et al., 2018). A typical framework structure for a vegetation model is to keep track of changes in carbon and 

optionally nutrient states, driven by climatic variables and modulated by soil properties, with feedback to the climate, e.g., 

CO2 releases, radiation, and vegetation composition and structure. A core component of the vegetation module is 50 

photosynthesis (Quillet et al., 2010). 

 

Present ecosystem models for photosynthesis are based primarily on mechanistic descriptions of plant photosynthesis 

pathways, but this theoretically-sound modeling paradigm faces many challenges, with parametric uncertainty being a major 

one. Photosynthesis models may describe limitations of carboxylation rates, light availability, and plant-specific factors like 55 

enzyme efficiencies for C3 and C4 plants differently (Farquhar et al., 1980; Farquhar and Caemmerer, 1982; Meyer, 1983; 

Von Caemmerer, 2003, 2013; Yin and Struik, 2009). They contain many parameters that quantify these efficiencies and 

limitations. In the past, these parameters have been estimated from different approaches: 1) obtained from a limited set of in-

situ sites and scaled based on climate and environmental factors (Verheijen et al., 2013); 2) calibrated on observational data 

site by site or for a few sites for a plant functional type (PFT) (Mäkelä et al., 2019; Wang et al., 2014); or 3) optimized based 60 

on environmental conditions (Ali et al., 2016). However, these estimated values may not be optimal at the global scale. Site-

by-site calibrations using genetic or similar algorithms are highly expensive and are limited in their spatial coverage and 

generalizability to different PFTs and species. Furthermore, such calibration faces the issue of nonuniqueness (which some 

call equifinality (Beven and Freer, 2001)), where different parameter sets produce the same outcome. As a result, calibration 

can easily lead to poorly-generalizable parameter values. This problem exists for many domains with diverse parameters, 65 

including ecosystem modeling (Tang and Zhuang, 2008). It is similarly found in hydrologic modeling and has troubled 

scientists there for decades (Beven, 2006). More recently, some parameters can be fitted directly from large datasets with 
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directly measured parameter values (Luo et al., 2021), which is highly valuable but is limited to those parameters with 

extensive observations, e.g., soil water retention and hydraulic properties. An efficient way to permit large-scale inverse 

modeling is needed. 70 

 

There has been substantial progress in utilizing modern machine learning (ML) for geosciences. Purely data-driven deep 

learning models (LeCun et al., 2015; Reichstein et al., 2019; Shen, 2018; Shen et al., 2018) directly learn from data so they 

tend to be fairly accurate, and many have outperformed traditional models for a large number of applications such as 

hydrological (Feng et al., 2020, 2021; Rahmani et al., 2020, 2021), agricultural (ElSaadani et al., 2021; Hossain et al., 2019; 75 

Liu et al., 2022a; Saleem et al., 2019), cryosphere (Leong and Horgan, 2020; Zhang et al., 2019), water quality (Hrnjica et 

al., 2021; Zhi et al., 2021), and ecosystem modeling (Zhang et al., 2020, 2021). Unfortunately, deep learning models also 

lack interpretability and process clarity, and can only output trained variables with extensive observations. This need for data 

is often not satisfied for ecological processes. 

 80 

To aid geoscientific models in general, Tsai et al. (2021) presented an efficient framework known as differentiable parameter 

learning (dPL), in an effort to leverage recent progress in ML to mitigate the issues listed above for parameter inversion. 

This framework turns parameter estimation into a large-scale ML problem. It is mainly composed of a parameter estimation 

module based on a neural network (NN), combined with a process-based model (or its surrogate). The whole framework 

must be “programmatically differentiable” (Baydin et al., 2018; Innes et al., 2019), which refers to a programming paradigm 85 

where we can efficiently and accurately obtain the gradients of the outputs with respect to any of the variables used in the 

model. Once we have programmatic differentiability, dPL can efficiently learn unknown functions from big data to serve as 

either a parameterization or process representation. Tsai et al. (2021) found that this framework scales well with more data, 

produces spatially and temporally well-generalized parameter sets, extends well to uncalibrated variables, and saves orders 

of magnitude in computational time. Feng et al. (2022a) further showed that an adopted, differentiable process-based 90 

hydrologic model with dPL could approach the performance of a purely data-driven ML model, and potentially outperform 

ML in data-sparse regions (Feng et al., 2022b). These successes can be conveniently migrated to the ecosystem modeling 

domain. 

 

Here, we applied the dPL framework to the photosynthesis module of the Functionally Assembled Terrestrial Ecosystem 95 

Simulator (FATES) model. FATES is an ecosystem model that describes co-existence and competition in plant functional 

types (PFTs) (Koven et al., 2020). FATES can be used as an ecosystem module in the Community Land Model (CLM) 

(Oleson et al., 2013; Lawrence et al., 2019) to represent the ecosystem demography (Fisher et al., 2015). The photosynthesis 

module is based on the Farquar photosynthesis model. To apply the dPL framework in our study, we first reimplemented the 

photosynthesis module in FATES so that it became programmatically differentiable. Second, we connected this model to 100 

neural networks for parameter estimation. With this tool, we aimed to answer the following questions: (1) What is the 
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achievable model performance, in terms of predicting photosynthesis rates in space and in time, by tuning the parameters for 

the classical photosynthesis module without changing the model structure? (2) Are parameters like Vc,max25 and soil water 

limitation factor simultaneously identifiable? (3) Are parameters learned from a large global dataset similar to the values 

we used in our current models? In the following, we first described the photosynthesis model with different parameter 105 

estimation experiments and target datasets. We then discussed the parameters chosen to be estimated and their significance. 

Afterward, we presented the results from synthetic experiments and experiments based on real datasets from sites around the 

globe. Finally, we compared the learned parameters to values from the literature and provided some suggestions for future 

work.  

2. Methods and datasets  110 

2.1. General overview 

Our general framework trains connected neural networks to provide parameters (and later process representations) to 

process-based models (PBM), in this case the photosynthesis module of the FATES ecosystem model, on all the training data 

points simultaneously (Figure 1a). The neural networks map from some raw inputs to some tuneable physical parameters (θ) 

(later extensible to processes) required for the PBM. The predicted physical parameters are then fed into the differentiable 115 

PBM along with other required forcing variables (F) and untuned constant attributes (θc) to compute the simulated target 

variable (ysim) which is compared with observations to compute a loss function. The forward run starts from the neural 

network inputs and ends at the loss function (following the blue arrows in Figure 1a). We then backpropagate the errors 

(shown by black arrows in Figure 1a) through the PBM equations back to the neural networks so we can train them using 

gradient descent. To support gradient-based training, the entire framework must be differentiable (Shen et al., 2023) and 120 

neither the neural network nor the process-based model is a black box --- they both allow explicit inspection and 

modification of the internal structures. Thus, the photosynthesis module of FATES had to be reimplemented on 

differentiable platforms. 

 

In this case, the process-based model is the photosynthesis module in FATES, which can be written as a nonlinear system of 125 

equations, and its solution is implicit. The system can be written as:  

f(x;  θ, θc, F) = 0; 𝑦 =  h(x, θ, θc, F)  (1) 

where f represents the physical system constraint, h is an observation operator, x represents the unknowns of the equations 

(in this case the internal leaf CO2 partial pressure [Pa]), y is an observable variable (in this case net photosynthetic rate [µmol 

m-2 s-1]) that is dependent on x via h, F represents some meteorological forcing variables such as radiation and air 

temperature, θ represents a list of tuneable physical parameters, and θc represents untuned constant attributes. Given a set of 130 
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θ with known θc and F, we need to solve for x from f and send the solution into h to further compute y: y = h(f-1(θ, θc, F), θ, 

θc, F). This whole workflow can be lumped into one model: 

y =  δpsn(θ, θc, F)  (2) 

where δpsn represents the overall model. Some of the tuneable parameters are typically formulated as being Plant Functional 

Type (PFT)-dependent (e.g., the maximum carboxylation rate at 25°C, Vc,max25) where each PFT includes groups of plant 

species that share similar physical and phenological characteristics leading to similar interactions with the environment. 135 

Other tuneable parameters are related to soil water availability (e.g., the soil water stress parameters). We posit that there 

exists a parameterization scheme, θ = gW(R), which is a mapping relationship from some underlying attributes R (e.g., soil 

attributes and plant traits) to the physical parameters represented by a neural network with W representing the learnable 

weights. Thus, we can learn W so that the simulated variable y matches the observations y*: 

W =  argmin
W

(L(δpsn(gW(R), θc, F), y∗))   (3) 

where L is the loss function. For the purpose of solving the inverse problem and training the neural network gW in an 140 

“online” mode using gradient descent (the only practically-employed algorithm for neural network training), we 

reimplemented the photosynthesis module in FATES onto two differentiable platforms: Julia and PyTorch (discussed in 

more detail below).  

 

In order to test the learning capability of our framework and the identifiability of the parameters, we first ran synthetic 145 

experiments to verify if the model would be able to retrieve assumed values for the physical parameters. Second, using a 

dataset with thousands of photosynthesis rate measurements, we trained the differentiable model to obtain estimated 

parameters at the global scale, and compared them to the literature. 
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Figure 1. Diagram showing the differentiable parameter learning (dPL) framework which is a hybrid of neural networks and the 150 
photosynthesis module in the FATES ecosystem model written on a differentiable platform. (a) The generic workflow: Some raw 

information is mapped into physical parameters via a neural network. These parameters are sent into a process-based model 

(PBM), which then outputs variable Y that is compared with observations. Direct supervision for the physical parameters is not 

required -- we do not need ground truth for these parameters. The loss function is “global” in that it involves all training data 

points, rather than being computed site-by-site as done in traditional calibration. (b) The workflow for the computational example 155 
described in this work. We estimate either Vc,max25 or the parameter B, or both of them at the same time, using neural networks. 

The parameters are then fed into the differentiable photosynthesis module in FATES, which then outputs the net photosynthesis 

rate, An(sim), that is compared with An(obs). When they were not estimated from data, default values from the literature were used. 

Blue arrows show running the neural networks with the PBM in a forward mode (“prediction” mode), while black arrows indicate 

backpropagation from the loss function back through the differentiable model equations to the neural networks to update their 160 
weights, which is only done during initial NN training. 

2.2. The Farquhar photosynthesis model 

The FATES photosynthesis module is based on the classical Farquhar model for C3 plants (Farquhar et al., 1980), which 

calculates the photosynthetic rate based on carbon fluxes under different limitations.  For C4 plants, it uses the Collatz model 

(Collatz et al., 1992). Both models assume that the gross photosynthetic rate is affected by the maximum rate of 165 

carboxylation and is limited by the concentration of RuBP carboxylase (Rubisco) (Ac), light and electron transport (Aj), and 

the concentration of PEP carboxylase enzyme in C4 plants (Ap). The final gross photosynthetic rate “A” is calculated using 

the empirical curvature parameters (θcj and θip), while the net photosynthetic rate An is the same as the gross rate (A) after the 

plant respiration rate (Rd) is subtracted. The system can be described succinctly as the following, with Equations 4 and 5 

playing the roles of f and h in Equation 1, respectively, and the whole set of associated equations detailed in Appendix A. 170 
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Ci = Ca − AnPatm

(1.4gs + 1.6gb)

(gs × gb)
 

(4) 

 An = A(Ci) − Rd  (5) 

Equation 4 is a single-variable nonlinear equation, with the intercellular leaf CO2 pressure (Ci) as the unknown term to be 

solved (serving as the x term in Equation 1). Ci is influenced by the CO2 partial pressure near the leaf surface (Ca), the net 

photosynthetic rate (An), the atmospheric pressure (Patm), the leaf stomatal conductance (gs), and the leaf boundary layer 

conductance (gb). Upon solving for Ci, we can further calculate An, which is the y term in equation 1. In the original 

implementations of FATES and CLM, the system of nonlinear equations was solved iteratively using fixed-point iteration 175 

(Oleson et al., 2013).  

 

In order to train the physical equations and neural networks together using gradient descent, the above equations were 

implemented on differentiable platforms to support backpropagation. We developed two alternative implementations: 

PyTorch (Paszke et al., 2019) and Julia  (Bezanson et al., 2012). The PyTorch version solves the coupled nonlinear equations 180 

using our parallel implementation of Newton iteration with automatic differentiation, while the Julia version uses adjoint-

based methods implemented via a symbolic computer algebra system and is compatible with a wide variety of nonlinear 

solvers (Gowda et al., 2022). In contrast to the previous fixed-point iteration used by FATES, our PyTorch Newton iteration 

solver can run on a graphical processing unit (GPU) in parallel for many sites. Newton’s iteration features second-order 

convergence compared to the slower convergence of fixed-point iteration, while GPU parallelism represents orders-of-185 

magnitude savings in computational time compared to the original algorithm in FATES. The photosynthesis problem studied 

here has only one unknown (Ci) even though there are many other supporting equations, but we have successfully tested 

other larger nonlinear systems. Altogether, we can train this model with the coupled neural networks for hundreds of data 

points in under 10 minutes (typically in 600 iterations) and could also train the model on 10,000 data points. For future work 

where time steps are involved, adjoint method will likely be employed to reduce GPU memory use during nonlinear iterative 190 

solve. For the Julia implementation, the symbolic toolbox ModelingToolKit.jl (Gowda et al., 2022; Ma et al., 2021b) was 

employed to automatically generate the solution scheme as Julia code, and along with solvers from NonlinearSolve.jl, solve 

the system of equations in the forward problem. Presently, we have implemented the Julia version in serial mode only. 

Results presented in this paper were produced using the PyTorch version, although the computational results were the same 

with the Julia version. Hence, we think both versions have value for future effort. 195 
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Figure 2. Model equations corresponding to f and h in equation 1. Blue boxes indicate equations corresponding to f. Yellow boxes 

indicate equations corresponding to h. First, we obtain a solution for Ci (intercellular leaf CO2 pressure) by solving the nonlinear 

system (f equations) as illustrated in the last blue box. Then, we forward h equations to compute An (net photosynthesis rate) using 
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Ac, Aj, and Ap as discussed in section 2.2. Details about different variables and parameters included in f and h equations are 200 
provided in Appendix A. 

2.3. The parameterization pipeline and model changes 

We used multilayer perceptron (MLP) neural networks as the parameterization module g in Equation 3. The purpose of the 

MLPs is to estimate parameters θ, which are then fed into the photosynthesis module to obtain the net photosynthetic rate 

(An) (Appendix A). The MLPs were trained based on minimization of the loss function – in brief, the difference between the 205 

solved and observed values of An. As described in Equation 2, the whole workflow is hereafter referred to as the δpsn model 

(“delta-photosynthesis model”) (the Greek letter δ is selected because the model is programmatically differentiable and δ is 

often associated with gradients). There may be multiple MLPs to estimate different parameters in θ, each with different 

inputs of either continuous or categorical data, and they can all be trained together. Figure 1a shows the framework for 

different parameter estimation experiments. We carried out both single-parameter and dual-parameter (learning two 210 

parameters simultaneously) experiments for both synthetic and real case datasets.  

 

We chose to estimate one or both of two specific parameters in our experiments. The first one is the plant maximum 

carboxylation rate at 25°C (Vc,max25), which is normally formulated as a PFT-dependent parameter. Although Vc,max25 is 

hypothesized to be PFT-dependent, recent studies have shown that the parameter can vary in space and time and by different 215 

species in the PFT as well (Ali et al., 2015; Chen et al., 2022; Qian et al., 2019).  Estimating Vc,max25 is not a trivial matter due 

to its high variability and sensitivity to different factors such as drought, leading some studies to suggest a substitute for it. 

For example, Croft et al. (2017) suggested using the leaf chlorophyll content as a direct proxy for Vc,max25. Nevertheless, 

considering this is an initial study applying dPL, we followed the convention and parameterized it based on PFT: 

Vc,max25 = NNV (PFT) (6) 

where PFT is the plant functional type category (in one-hot encoding format, which translates each category to a binary 220 

vector) and the neural network used for parameterization of Vc,max25 is referred to as NNV hereafter. 

 

The second parameterization is for parameter B defined by Clapp & Hornberger (1978), which influences the soil water 

stress function (ꞵt, where the subscript t indicates transpiration). ꞵt is called “btran” in the CLM code and it reflects the 

impacts of soil wetness on stomatal conductance and ranges from zero (extreme dry conditions causing stomata closure) to 225 

one (wet conditions with stomata fully open). In the following, we describe B and ꞵt computations as in CLM4.5 (Oleson et 

al., 2013). B is purely a function of soil properties and is defined for each soil layer as Bi where i refers to the soil layer (see 

Appendix B). Bi equations will later be replaced by our NN-based parameterization scheme as explained in section 2.3.1, 

because they were originally empirical and may not be optimal at the global scale. B comes into play when calculating the 

soil water potential ψi using a power-law formulation: 230 



10 

Ѱi  = Ѱsat,i ×  Si
−𝐵𝑖 ≥ Ѱc (7) 

where ψsat,I is the saturated soil matric potential and Si is the soil wetness, both defined for a specific soil layer (see Appendix 

B for detailed calculations). The plant wilting factor (wi) is then calculated using ψi and other PFT-dependent parameters 

(defined in CLM4.5) such as the soil matric potentials for closed stomata ψc and open stomata ψo, which represent the soil 

water potentials when stomata are fully closed and fully open, respectively, as defined in equation (8). The factor wi is also 

dependent on other factors like the temperature of the soil layer (Ti) relative to the freezing temperature (Tf), the volumetric 235 

liquid water (θliq) and ice (θice) contents, and the volumetric water content at saturation (θsat). In our calculations, θice was 

ignored since both the leaf and the air temperatures in our dataset were above the freezing temperature (0 °C or 273.15 K) by 

at least 5 °C. 

wi =  ቐ

Ѱc −  Ѱi 

Ѱc − Ѱo
[
θsat,i − θice i

θsat,i
] ≤ 1   ;  Ti >  Tf − 2 and θliq,i > 0

0                                                     ; Ti ≤  Tf − 2 or θliq,i ≤ 0

ቑ (8) 

Finally, ꞵt can be calculated by aggregating the plant wilting factor (wi) and plant root distribution (ri) across different soil 

layers based on the PFT as:  240 

βt =  ∑ wiri

i

 (9) 

2.3.1 Model changes 

In the original water limitation function in CLM4.5, the stomata response to soil water potential is based on a linear function 

between the water potential for stomata openness and closeness (see Equation 8). In light of the possibility that plants could 

respond differently to soil water potential dependent on plant hydraulic traits (Christoffersen et al., 2016), in this study, we 

modified the soil water limitation for PFTs so that they could have different shapes. Specifically, we defined PFT-dependent 245 

soil water stress, ψi (PFT) ranging from ψc and ψo, depending on the soil water content, which is calculated as follows: 

Ѱi (PFT) = Ѱo ×  Si
−Bi(soil,PFT)

≥ Ѱc (10)  

Bi is a PFT- and soil-texture-dependent shape parameter (between 0 and 1) estimated as: 

Bi = NNBi(%sandi, %clayi, Fom,i, PFT)  (11)  

where %sandi, %clayi, and FIm,i respectively represent the percentage of sand, the percentage of clay, and the fraction of 

organic matter in soil layer i. The PFT-dependent soil water stress, ψi (PFT), is then fed into the plant wilting equation (9) as 

the following: 250 
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wi =
Ѱc −  Ѱi (PFT)

Ѱc − Ѱo
=  

Ѱc − max (Ѱc, Ѱo ×  Si
−Bi(soil,PFT)

)

Ѱc −  Ѱo
 ≤ 1  (12)  

The new shape parameter Bi in equation 11 has a different range (between 0 and 1) from the original one defined by Clapp & 

Hornberger (1978) in equation 7 and it varies spatially for different static attributes and for different PFTs as well. The 

default equations in the Community Land model V4.5 (CLM4.5) for computations of Bi (Appendix B) show that the 

parameter Bi depends on two attributes, %clayi and Fom,i, which is why they were used in NNBi. To account for the 

dependence of ψsat,i on %sandi (Appendix B) and its replacement by ψo (see equations 7 and 10), %sandi was also added to 255 

NNBi. We also added PFT to NNBi inputs because vegetation may interact with soil moisture constraint and we want to allow 

relevant factors to be included, rather than restricting the list of inputs to what was previously used in the literature. Since in 

NNBi, we use quantitative inputs (%sandi, %clayi, Fom,i) along with categorical inputs (PFT), we used the embedding layer in 

PyTorch, which translates each category to a vector of quantitative variables. This categorical data can then easily be 

combined with other quantitative inputs we provide to our neural network.   260 

 

Moreover, using the original Equation 7 for computing ψi resulted in a plant wilting factor, wi, equal to one for more than 

90% of the datapoints across different soil layers. Changing Equation 7 to the form shown in Equation 10 helped to express 

more variability in wi and eventually in the computed soil water stress function (ꞵt). 

2.4. Input and observation datasets 265 

2.4.1 Forcing and Photosynthesis rates: 

We used the ERA5 Reanalysis dataset (Copernicus Climate Change Service (C3S), 2017), which provides hourly estimates 

of soil moisture at different soil levels. The soil moisture contributes to computing ꞵt (see Appendix B), where the soil 

wetness S depends on both the soil moisture and the saturated soil moisture.  

 270 

We used data from the leaf gas exchange database (Knauer et al., 2018; Lin et al., 2015) which is a global database of 

stomatal conductance measurements and leaf-level photosynthetic rates. It incorporates data from several sites around the 

world in Australia, Europe, USA, and Asia (Figure 3). We refer to this dataset as Lin15 throughout the rest of this work with 

43 sites chosen whose dates and times of measurements were available. Lin15 covered nine different PFT categories: rainfed 

crop “Crop R”, Broadleaf Evergreen Tree Tropical “BET Tropical”, Broadleaf Evergreen Tree Temperate “BET 275 

Temperate”, C3 grass, C4 grass, Needleleaf Evergreen Tree Boreal “NET Boreal”, Needleleaf Evergreen Tree Temperate 

“NET Temperate”, Broadleaf Deciduous Tree Temperate “BDT Temperate”, and Broadleaf Deciduous Shrub Temperate 

“BDS Temperate”. Measurements were taken on a sub-hourly scale but not necessarily on a continuous daily interval. That’s 

why for almost all the sites, data were available on some random days (not necessarily continuous) in one or a few years.  

 280 
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Lin15 also contained forcing variables, including air temperature (T), leaf temperature (Tv), atmospheric pressure (Patm), 

relative humidity (RH), photosynthetic active radiation (φ) and boundary layer conductance (gb). Moreover, we used ERA5 

to fill in for any missing forcing variables in Lin15. In equation 4,  Patm and gb were used directly from the dataset, while Ca 

was computed as 0.039% of Patm, and gs was calculated using the Medlyn conductance model (Medlyn et al., 2011) as 

explained in  Appendix  A. 285 

2.4.2 Static attributes: 

For ꞵt  calculations, we used data from Hengl & Wheeler (2018) for the soil organic carbon content at different soil depths, 

where the conventional Van Bemmelen factor of 1.72 was used to convert to soil organic matter (Fom). Data for sand and 

clay percentages (%sand, %clay) were obtained from Hengl (2018). Both are global datasets available at 250 m resolution at 

6 different soil depths (0, 10, 30, 60, 100, and 200 cm) which describe five soil layers. 290 

 

Figure 3. Map of sites available from the leaf gas exchange database (Lin et al., 2015). Different symbols represent different plant 

functional types. The C4 site is highlighted by a thick-bordered hexagon. The marker sizes represent the quantity of data available 

for each site. (map based on matplotlib basemap, (Whitaker, 2013)) 

2.4.3 CLM4.5 default parameters 295 

CLM4.5 documentation (Oleson et al., 2013) provide reference values for comparison and equations for both target 

parameters Vc,max25 and B. For Vc,max25, default values corresponding to each PFT (shown in Table 3) are well documented in 

CLM4.5 (chapter 8; table 8.1). Similarly, for parameters B and βt, their default equations (shown in this work in Appendix B) 

are provided in the documentation of CLM4.5 as well. We also used other PFT photosynthetic parameters required for ꞵt 

computations, such as the soil matric potentials for closed stomata, ψc, and open stomata, ψo, (see Equations 8,10,12), and 300 

the plant root distribution parameters (see Equation 9). 
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2.5 Synthetic data and real data experiments 

2.5.1 Case 1: Synthetic data 

In our synthetic experiments, we assumed values for some parameters to generate synthetic photosynthesis rates which could 

serve as synthetic training data. Then, we estimated those parameters with NNs while keeping other components unmodified. 305 

These experiments were intended to verify the plausibility and efficiency of the differentiable parameter learning framework, 

and the identifiability of parameters.  

 

In the first synthetic case, “Vc,max-only”, the δpsn framework was tested for its ability to accurately retrieve a single PFT-

dependent parameter, Vc,max25, using NNV. We used the suggested values for Vc,max25 from CLM4.5 for different PFTs to 310 

calculate the synthetic net photosynthetic rates (synthetic training data). For this case the ꞵt values were kept constant (equal 

to one) for all datapoints, since we intended to test the retrievability of one parameter. 

 

In the second synthetic case, “Vc,max – B”, we tested simultaneously retrieving both Vc,max25 and B , the latter of which varies 

spatially for different static attributes. For simplicity, we used only the topsoil layer for this case and excluded the influence 315 

of the PFT term; therefore we assumed B1 = 0.1 * Fom,1 + 0.45 * (%sand1 + %clay1) to generate the synthetic data. The plant 

wilting factor (w1) was then calculated using equation 12 and was fed into equation 9 to compute the soil water stress 

function (ꞵt). Since we were using only the topsoil layer, ꞵt was simplified to (ꞵt  = w1r1) with a root distribution value for the 

topsoil layer (r1 = 1). To retrieve B1, we used NNBi (see Equation 11) but excluded the PFT term since it was not used in 

synthesizing B1 values. 320 

  

For both synthetic runs “Vc,max-only” and “Vc,max - B”, the MLP models were trained concurrently for all PFTs with several 

data points for each PFT. Moreover, white noise was added to the synthetic values of An with a standard deviation of 5% of 

the mean value.   

2.5.2. Case 2: Real data 325 

Once we confirmed that the model passed the test of the synthetic case (correctly retrieving parameter values which were 

used to generate the data it was given), it was then applied to a real dataset (Lin et al., 2015) using observation data. This 

tested whether the model, learning from this dataset for many of the PFTs, could find parameters to better describe 

photosynthesis data than the literature values. There is no ground truth in this case, so we tested multiple formulations to 

understand the impacts of allowing more or less flexibility in the estimation and role of each parameter. 330 

 

We tested several formulations to estimate either one (Vc,max25) or two parameters (Vc,max25 and  B) at a time. In essence, we 

compared allowing either one or two of the parameters to be estimated vs. using the default formulation or values from the 
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original model. For Vc,max25, the default values were those defined in CLM4.5, while for ꞵt, the default equations (Appendix 

B) were used to obtain its values. Altogether, we trained the following models: 335 

 

Vdef + Bdef : in this case, Vc,max25 took the default values from CLM4.5 and B was calculated using the default equations 

(Appendix B). This was used as a reference case. 

 

Vdef + B : in this formulation, the default Vc,max25  values from CLM4.5 were used while B was estimated using NNBi. 340 

 

V + Bdef : in this formulation, Vc,max25 was estimated using NNV, while B was calculated using the default equations 

(Appendix B). 

 

V + B : in this formulation, we employed both NNV and NNBi. They were trained concurrently to see if this interfered with 345 

parameter retrieval. 

 

Representing a real case,  Bi was estimated for the i-th soil layer based on the static attributes for that layer in the four tested 

model formulations. Thus, Bi varied both horizontally and vertically for each PFT.  

 350 

Just as in the synthetic case, the MLPs were shared between all sites. All sites were used to calculate one loss function as in 

typical machine learning tasks, with the hope of ensuring the wide applicability of the MLPs and leveraging the synergy 

between all sites (Fang et al., 2022). In this way, we also hoped to identify parameters that can generalize well in space and 

be applicable at large scales.  

 355 

The MLPs employed had three layers: an input layer, one hidden layer, and an output layer. To ensure an output value 

between 0 and 1 for both Vc,max25 and B parameterizations, sigmoid activation functions were used for both hidden and 

output layers. Vc,max25 was then rescaled to be within a pre-defined range based on literature values of 20 to 150 µmol m-2 s-1. 

For the i-th soil layer, Bi values were kept between 0 and 1, so with Si ranging between 0.01 and 1 (see Appendix B), the 

term Si
-Bi then had a range of 1 to 100. This ensured that the value of ψi ranges from ψc to ψo (see Equation 10). 360 

 

The quantity of available data posed a limitation and did not permit an extensive hyperparameter tuning experiment with a 

train/validation/test split. Hence, we employed a “lazy” trial and error process with hyperparameters (learning rates and 

hidden size) using 70% of the data as training data and 30% as a validation set, just to ensure we had a roughly performing 

hyperparameter set (see Appendix C). We selected a learning rate of 0.045 and a hidden size equal to the number of inputs (9 365 

for the NNV and 8 for the NNBi). We kept these same hyperparameters when we ran 5-fold cross validation with an 80%:20% 

train:test ratio. In addition, we found that moderately perturbing the hyperparameters resulted in very little change in the 



15 

performance. This design was necessary considering the practical limits of the available data, even though this study already 

represents a large-sample study in the domain of ecosystem modeling. 

 370 

Two different tests were performed with respect to data splitting: temporal holdout and randomized cross-validation --- the 

former test stresses the models’ ability to project into the future while the latter is the typical experiment run in the literature. 

Due to the irregularity of measurement dates at each location (as mentioned previously in section 2.4.1), the temporal periods 

for the training and testing datasets varied by location. In the temporal holdout test, for each PFT in each location, the 

available dates of measurements were recorded. The oldest 80% of these dates were used for training and the remaining 375 

more recent 20% were used for testing. The temporal holdout test was run for both synthetic and real data experiments. For 

the randomized cross-validation test, as the name implies, the dataset was randomly split into 5 folds (groups) and each time 

the model was trained on 4 folds (80% of the datapoints) and tested on the 5th fold (20% of the data points). This was done a 

total of 5 rounds, so that all of the data points were used for testing once. The cross-validation test was run only for the real 

data experiments. 380 

 

We then compared the values of Vc,max25 learned by the V+B model, trained on all data points, against values of Vc,max25 in 

other data sources (Kattge et al., 2020; Rogers, 2014), which highlights the variability of these parameters. The TRY 

database (Kattge et al., 2020) has Vc,max25 values defined for several species which can be aggregated to get unique values for 

each PFT (Table 3). Moreover, we compared our Vc,max25 values to the ones used in different earth system models (Rogers, 385 

2014) for various PFTs, e.g., the Atmosphere-Vegetation Interaction Model “AVIM” (Ji, 1995) and the Biosphere Energy 

Transfer Hydrology scheme “BETHY” (Knorr and Heimann, 2001). The comparison enabled us to determine whether the 

inversely determined values were on the same order of magnitude as previously employed in the literature, and are 

physically plausible. We expected our values for different PFTs to be at least partially correlated with the ones used in the 

literature, as they were meant to represent the same physical quantity. A complete disagreement or a different order of 390 

magnitude would suggest that our values may be not physical. Partial discrepancies would highlight any knowledge gaps. 

We didn’t perform a similar comparison between learned and computed Bi values from default equations since the new shape 

parameter Bi(soil, PFT) (see Equation 11) is different from the original one and has a different range (between 0 and 1). 

2.6. Statistical metrics 

To evaluate different experiments and explore the sensitivity of the results to changing different parameters, we chose four 395 

different metrics as shown in table 1, below. The four metrics were root-mean-square error (RMSE), bias, Pearson's 

correlation coefficient (COR), and Nash-Sutcliffe Efficiency (NSE). Both RMSE and bias measure how far the model 

simulations are from the observations; however, RMSE is the standard deviation of all errors while bias is calculated as the 

average. COR measures the linear relationship between both the simulations and the observations, ranging between -1 and 1. 



16 

NSE measures the relative magnitude of the residual variance relative to the observed data variance (Nash and Sutcliffe, 400 

1970), and has a perfect score of 1. Table 1 below shows the formulations of the four metrics and their possible ranges.  

 

Table 1. Performance metrics used for evaluation and their possible ranges 

Metric Formula Range 

COR ∑ (𝑂𝐵𝑆 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅  )(𝑆𝐼𝑀𝑖 − 𝑆𝐼𝑀̅̅ ̅̅ ̅ )𝑛
𝑖 = 1

𝜎𝑂𝐵𝑆𝜎𝑆𝐼𝑀
 

[-1 , 1] 

RMSE 

√
∑ (𝑆𝐼𝑀𝑖 −  𝑂𝐵𝑆𝑖)2𝑛

𝑖 = 1

𝑛
 

[0 , ∞] 

BIAS ∑ (𝑆𝐼𝑀𝑖 − 𝑂𝐵𝑆𝑖 )2𝑛
𝑖 = 1

𝑛
 [-∞ , ∞] 

NSE 
1 − 

∑ |𝑆𝐼𝑀𝑖  − 𝑂𝐵𝑆𝑖|𝑛
𝑖 = 1

∑ |𝑂𝐵𝑆𝑖  − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅  |𝑛
𝑖 = 1

 [-∞ , 1] 

𝜎 refers to the standard deviation, 𝑂𝐵𝑆̅̅ ̅̅ ̅̅  refers to the mean of the observed values, and 𝑆𝐼𝑀̅̅ ̅̅ ̅ refers to the mean of the simulated values. 

3. Results 405 

3.1. Results for synthetic data case 

The results of the synthetic experiments showed that our workflow successfully recovered the parameters in either the one-

parameter case (“Vc,max-only”, Figure 4) or the two-parameter case (“Vc,max-B”, Figure5). In the one-parameter “Vc,max-only” 

case, the recovered parameters agreed with the assumed values almost completely for each PFT (Figure 4a). The model was 

able to capture the variability in the values of Vc,max25 for different PFTs, where the values ranged from 100.7 μmol m-1 s-1 for 410 

rainfed crops (defined as Crop R in CLM4.5) to around 50 μmol m-1 s-1 for C4 grasses (Figure 4a). Moreover, we found 

nearly complete agreement between the synthetic and recovered net photosynthesis rates (An) (Figure 4b). This single-

parameter case demonstrated that the dPL framework and the posited formulation Vc,max25 = NNV(PFT) were functional, but 

could not show the effects of parameter interactions.  

 415 

With the dual-parameter case, we found a similarly near-complete recovery for Vc,max25 (Figure 5a) and a near-complete 

reproduction of simulated photosynthesis (Figure 5d). However, we noticed a negligible amount of scattering with ꞵt (Figure 

5c), and to a larger extent, with B (Figure 5b). For all experiments, we verified that the training and test periods were highly 

consistent (between green and blue points in the scattered plots). The results indicate that the problem formulation allows for 

sufficient sensitivity of the net photosynthesis rate with respect to PFT-specific Vc,max25 and the soil water constraint. In 420 
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addition, Vc,max25 and B influence the photosynthesis rate in different ways so that, along with a large dataset with different 

combinations of moisture conditions and PFTs, they can be identified simultaneously. This forms the basis of the next stage 

of the work. The soil moisture parameter identifiability was slightly weakened compared to Vc,max25 because there were more 

equations involved between B and An, and some of them had parameters in the exponential operators, e.g., ψi= ψo * Si
-Bi. 

Mathematically, such a curve can be flat and the gradients can be small in some ranges of S. Mechanistically, An can have 425 

reduced sensitivity to B under some conditions. Therefore, we do not expect soil properties to be fully identifiable from 

photosynthesis data, but the general pattern may still be learnable. 

 

Figure 4. Single parameter recovery for synthetic data. (a) Comparison of modelled parameter values to literature values by plant 430 
functional type (PFT). (b) Actual and modelled net photosynthesis rates for training and testing periods (dashed line indicates the 

ideal 1:1 relationship).  
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 435 

 

Figure 5. Dual parameter recovery for synthetic data. (a) Comparison of modeled parameter values to literature values by plant 

functional type (PFT) estimated using NNV. (b) Actual and modeled parameter values for B, estimated using NNBi. (c) Actual and 

modeled parameter values for ꞵt for the topsoil layer. (d) Actual and modeled net photosynthesis rates for training and testing 

periods. Dashed lines in b-d indicate the ideal 1:1 relationship. 440 
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3.2. Results for real data case 

3.2.1. Comparisons between candidate formulations 

In the test cases employing real datasets, the V+B model (employing both NNV and NNBi) exhibited obvious advantages over 

the default photosynthesis module in FATES model and the default parameters, as well as the models that learned only one 

of the parameters (Table 2). For the temporal holdout test, the default CLM4.5 parameters (Vdef +Bdef) led to a lower 445 

correlation (0.565), a large bias (1.475 μmol m-2 s-1) and nearly zero NSE (0.042, resulting mainly from the large bias) (Table 

2a). In particular, the default values appeared to cause an under-estimation of the net photosynthetic rate (An) for BET 

Tropical (Figure 6a-I) and C3 grass (Figure 6a-II) but large over-estimation for the high-photosynthesis data points of C4 

plants (Figure 6a-III). After allowing B to be learned (Vdef +B), the correlation for testing remained the same, while the bias 

remained high (0.944 μmol m-2 s-1); it seems that the learning of water stress alone did not address the bias. On the other 450 

hand, when we only allowed Vc,max25 to be estimated (V+Bdef), the bias greatly increased and the test NSE was slightly 

decreased to (0.163). Finally, if we allowed both parameters to be learned (V+B), a decent correlation was obtained (0.771), 

the bias was the smallest value yet (-0.226 μmol m-2 s-1), and the test NSE was 0.590, which means the model explained 

about half of the variance in the observed photosynthesis rate. The remaining error might be attributable to other untuned 

parameters, processes related to vegetation states which are not considered by the present model. These issues can be further 455 

improved in the future using the differentiable modeling paradigm.  

 

A similar behavior in the performance metrics was observed for the five-fold cross-validation test (Table 2b). As mentioned 

in the method, in this test, instead of splitting the dataset in chronological order with earlier dates set for training and the rest 

reserved for testing, we split the dataset into 5 folds (groups) where we ran a total of five rounds, each with four folds used 460 

for training and one fold used for testing, such that each fold could serve as the test fold. The cross validation test decreased 

to a great extent the disparity in the metrics’ values between training and testing (Table 2b). However, contrary to the 

temporal holdout test, we found a slight improvement in COR (0.621) and NSE (0.173) when B was learned (Vdef +B), while 

a much higher boost was found in the metrics when Vc,max25 was learned (V+Bdef). This shows the higher impact of learning 

Vc,max25 on the simulation of An, where the COR and NSE increased to 0.709 and 0.474, respectively, while the bias decreased 465 

to -0.401. Similar to the temporal holdout test, the V+B model showed the best metrics in comparison to other models, with 

the lowest RMSE (4.359) and bias (0.081) values, and the highest COR (0.778) and NSE (0.604) values.   

 

 

 470 
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Table 2. Performance metrics for the candidate models for the Lin15 dataset. In all the following, subscript def indicates the default 475 
parameter value from CLM4.5 was used, while a parameter lacking def means the parameter was estimated as an output from a 

neural network (in all cases, V indicates that Vc,max25 was estimated as a function of PFT using NNV and B indicates estimation 

using NNBi). Panel (a) is for the temporal holdout test where the oldest 80% of data points were used for training and most recent 

20% were reserved for testing; panel (b) is for the cross validation (5-fold) test. 

(a) Temporal holdout test results 480 

Runs 

Corr RMSE  

(μmol m-2 s-1) 

Bias  

(μmol m-2 s-1) 

NSE 

Train Test Train Test Train Test Train Test 

Vdef+Bdef 0.565 6.778 1.475 0.042 

Vdef+B 0.631 0.582 6.339 6.110 1.521 0.944 0.176 0.170 

V+Bdef 0.758 0.565 4.598 6.135 -0.164 -1.624 0.566 0.163 

V+B 0.786 0.771 4.319 4.296 0.102 -0.226 0.617 0.590 

 

(b) Cross Validation (5-fold) test results 

 

 

Runs 

Corr RMSE  

(μmol m-2 s-1)  

Bias  

(μmol m-2 s-1) 

NSE 

Train Test Train Test Train Test Train Test 

vdef+Bdef 0.565 6.778 1.475 0.042 

vdef+B 0.623 0.621 6.281 6.298 1.584 1.578 0.177 0.173 

v+Bdef 0.715 0.709 4.960 5.020 -0.410 -0.401 0.487 0.474 

v+B 0.783 0.778 4.306 4.359 0.074 0.081 0.613 0.604 

 

Consistent with the observations of the synthetic experiments, Vc,max25 and B impacted An in different ways. When Vc,max25 485 

was not adjusted, the photosynthesis rates simulated for a number of sites in the high-An range (most of them C4 plants) had 

some substantial overestimation, regardless of whether B had learned or default values (Figure 6a). It was only after we also 

learned Vc,max25 that these high biases were reduced (Figure 6b). Hence, apparently, the learning reduced the Vc,max25 for these 

sites compared to the default values. In contrast, learning B mainly corrected the low bias for low simulated An data points 
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(specifically for BET Tropical, C3 grass, and C4 grass) (Figure 6b). A group of sites with underestimations in An have been 490 

corrected upward (from yellow to green, bottom points in Figure 6b), due to a correction in the soil parameter B. Apparently, 

the original parameters overestimated the water stress for these sites. Learning both parameters together was also effective in 

reducing overestimations and underestimations in the simulated An for NET Boreal and BDS Temperate respectively. Our 

results suggest the adjustments to both parameters improved the results, but Vc,max25 was more impactful, especially in 

addressing the bias.  495 

 

We also notice the different PFTs benefited differently from the parameter learning. For example, BDS Temperate and crop 

did not benefit much (compare red symbols in Figure 6a and green symbols in Figure 6b), BET Tropical and NET Temperate 

saw moderately improved correlation, while C3 grass and C4 grass saw significant improvements in both correlation and 

bias. These observations indicate the parameters (and thus related processes) tuned here (Vc,max25 and B) have large impacts 500 

on C3 and C4 grass while other untuned processes, e.g., vegetation growth and nutrient states, may be contributing to the 

errors with BDS Temperate and crops. C3 plants’ improvement is mostly due to learning B, as they are more sensitive to 

drought in the model, while C4 plants’ improvement is due to learning Vc,max25, as they are more resistant to drought but more 

sensitive to light in the model. 

 505 

In addition, our test showed that the framework is moderately impacted by long-term nonstationarity, as the temporal test 

had worse metrics than the cross-validation test (comparing Table 2b with 2a). The absolute value of the bias increased from 

0.081 in the cross validation test test to 0.226 in the temporal test. This suggests the current model (and perhaps the training 

data) still has some limitations with representing long-term changes. Possible reasons may include CO2 fertilization and its 

impact on water use efficiency or differences in the state of plants, as this factor is not included in our present 510 

parameterization. In the future, these issues could be addressed by assembling a more long-term training dataset (the Lin15 

dataset has data ranging from 1991 to 2013), as well as improving the parameterization and physics of the model. 
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Figure 6. Comparisons of photosynthesis model calibration. Comparing impacts of default and learned parameters by plotting 

observed vs. simulated An (net photosynthetic rate) values calculated using different candidate models (described by which 515 
parameter definitions they use). (a) Impact of learning B with default Vc,max25. (b) Impact of learning Vc,max25 with varying B (either 

learned alongside V in V+B, or defined by the default equations in CLM4.5. The colors represent the results from the four 

different models, the shapes indicate the plant functional type (PFT) groups, and the dotted line in each panel indicates the ideal 

1:1 relationship. Subscript “def” indicates that the variable was calculated using the default definitions in CLM4.5, while lack of 

this subscript indicates that the parameter was learned using a NN. Scatter plots were created using the test dataset from the 5 520 
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folds of the cross-validation test. For better illustration, only 3 PFTs are placed in a panel, as indicated by the panel titles. 

Comparing symbols in the same panel gives insights about the role of estimating B, while comparing left and right panels gives 

insights about the role of estimating Vc,max25.   

3.2.2. Recovered parameters 

Even though we did not prescribe the values of Vc,max25, the training on the dataset converged to parameter values that were 525 

on the same order of magnitude of, partially correlated with, yet still substantially different from, the literature values (Figure 

7). The default Vc,max25 values came from in-situ measurements at a limited number of sites, while our values came from 

learning from a moderately large dataset (essentially an inversion process limited to the model structure). The fact that they 

agreed with each other in the main pattern suggests both have merit, and that the learning process captured fundamental 

physics. The upper half of Figure 7b saw a high correlation, but Vc,max25 values for the V+B model were uniformly higher 530 

than the CLM4.5 defaults, especially for the NET Boreal PFT. The correlation was lower toward the lower half of Figure 7b 

(where Vc,max25 from CLM4.5 was lower than 65 μmol m-2 s-1) – the learned Vc,max25 had a larger variability. In particular, the 

learned Vc,max25 (V+B) for C4 grass is much lower than the default, which could be attributed to species-level variability and 

the fact that the dataset contains very limited sites with C4 plants. Hence, we do not argue that the values learned here would 

be applicable globally to other C4 grasses. For these cases, the influence of B or Bdef were mostly small (Vc,max25 from V+B 535 

and V+Bdef models were mostly similar) and thus parameter interaction from soil water stress was not significant. It seems 

the inter-PFT variability in Vc,max25 was previously under-represented by the CLM4.5 default parameter values (C4 grass, 

BET tropical, BDS temperate, BET temperature), and the learning process used here enhanced the variability. The overall 

results showcase the ability of the algorithm to adapt to data.  

 540 
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Figure 7. Parameter recovery for real data. (a) Comparison of modelled parameter values to literature values of Vc,max25 by plant 

functional type (PFT). (b) Actual and modelled Vc,max25 values plotted by PFT (dashed line indicates the 1:1 ideal relationship). In 

this figure, both “V+Bdef” and “V+B” models were trained using the whole dataset. 

In our interpretation, the learned values represent a more “fine-tuned” version of the literature Vc,max25 values, with the 

interference from soil water stress disentangled. The magnitude and ranking for PFTs remained similar to the literature 545 

values, but the results were improved in different ways for different PFTs. The V+B model obtained lower Vc,max25 for C4 

grasses, addressing the significant overestimation bias for these sites, which we noted in Figure 6a. Due to their different 

photosynthesis pathway, C4 plants have the lowest learned Vc,max25, but overall the highest net photosynthesis rates, which 

were not heavily influenced by the choice of the B parameter. For C3 grasses, V+B only slightly increased Vc,max25 compared 

to the default CLM4.5 values, which addressed the low bias noticeable in Figure 6b. The default soil parameterization for C3 550 

grass sites seemed somewhat deficient as soil water stress accounted for the other parts of variance in net photosynthesis, as 

demonstrated by the comparison between V+B and V+Bdef models in Figures 6b and 7b for C3 grass.  

 

We compared our learned Vc,max25 values (Table 3 and Figure 8) with values from other earth system models (ESMs) and 

with some observatory values in the TRY database (Kattge et al., 2020; Rogers, 2014). The learned Vc,max25 values are higher 555 

than those of the TRY database for most PFT classes except for BDS Temperate and BDT Temperate; however, they are 

within the range of values used in other ESMs except for relatively higher estimations for Crop R, NET Boreal, and C3 

grasses. On the scale of ESMs, several values for Vc,max25 are adopted by those models. We computed the correlation 

coefficient between our learned Vc,max25 values and reference values from other ESMs or TRY database, finding high 

correlations (except for AVIM model) between the learned and the reference Vc,max25 values for CLM4.5 (0.843), BETHY 560 

(0.897), and TRY database (0.698).  For instance, Vc,max25 for C4 grasses is taken as 25 and 20 (μmol m-2 s-1) in AVIM and 

BETHY models, respectively (Table 3). These values agree with the learned Vc,max25 by the V+B model of 22.99 (μmol m-2 s-

1), whereas much higher values were found to be adopted for C4 grasses with 60 (μmol m-2 s-1) being used in the 

Biogeochemical cycles model “BiomeBGC’’ as reported in Rogers (2014), and 51.6 (μmol m-2 s-1) in CLM4.5. Vc,max25 from 

the V+B model and TRY database are similar for BET Tropical and BDT Temperate. For BDS Temperate, the learned 565 

Vc,max25 was lower than that in TRY by ~20 (μmol m-2 s-1), but similar values were used by BETHY and lower values were 

used by AVIM. For NET Boreal, BET Temperate, Crop R, and NET Temperate, the learned Vc,max25 values were all ~20 

(μmol m-2 s-1) higher than those of the TRY database, but (except for NET Boreal) similar values have been used by AVIM 

or BETHY. Both the learned (V+B) and the observed (TRY database) Vc,max25 values show a similar pattern with the lowest 

Vc,max25 for BET Tropical and a high value assigned for Crop R.  570 
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Table 3. Vc,max25 simulated by the V+B model versus observed values from the TRY database (with partial overlap in species with 

the Lin15 dataset – the percentage of overlap is provided in the table), and used in different earth system models such as CLM4.5, 

Atmosphere-Vegetation Interaction Model “AVIM”, and the Biosphere Energy Transfer Hydrology scheme “BETHY”.  

PFT CLM4.5 AVIM BETHY V+B (ours) TRY (mean / % 

species overlap)  

TRY 

(std) 

Crop R 100.7 55 90 112.29 84.20 / 60.0% 2.19 

NET Boreal 62.6 58 58 88.23 62.90 / 100.0% 22.53 

BET Tropical 55 64 28/36  39.98 33.14 / 86.5% 14.09 

NET Temperate 62.5 60 58 59.34 44.33 / 50.0% 7.13 

BET Temperate 61.5 68 58 61.00 37.73 / 26.7% 0.27 

BDT Temperate 57.7 60 54 41.42 50.27 / 50.0% 21.62 

C3 grass 78.2 55/40  71 87.66 -  -  

BDS Temperate 54 52 65 65.95 87.61/ 58.3% 11.77 

C4 grass 51.6 25 20 22.99 

(limited data points) 

 - -  

 575 
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Figure 8. The correlation between the Vc,max25 values estimated by V+B model on the y-axis versus Vc,max25 values from CLM4.5 

(black markers), AVIM (cyan markers), BETHY (magenta markers), and TRY database (orange markers). Different marker 

shapes represent different PFTs, while different colours represent different reference sources for Vc,max25 per PFT. For the TRY 

database, we don’t have values for C3 grass and C4 grass due to the lack of overlap in species between the TRY database and our 580 
dataset for those two PFTs.  
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4. Discussion 

As an initial exploration of the potential of the emerging differentiable computing paradigm (as a genre of physics-informed 

machine learning) (Shen et al., 2023) for application to ecosystem modeling, our work showed promise but also had many 585 

limitations, as the goal was not to produce the best-performing photosynthetic model. We restricted our parameter sets to be 

dependent on PFT, whereas it is known that within-PFT variation can be significant, and parameters could also be 

determined on the trait level as well as by multiple environmental factors. Our model did not consider the effects of memory, 

e.g., rainfall in previous days, and the states of the vegetation, e.g., carbon stored in the canopy or carbon: nitrogen ratios in 

the canopy. The soil moisture data comes from the ERA5 dataset, which, based on comparisons to in-situ data, would be 590 

outperformed by ML-based soil moisture predictions (Fang et al., 2017; Liu et al., 2022a, b), but we used it due to its global 

seamless coverage and availability for multiple soil depths. This work also only modified the parameterization scheme and 

did not learn model structures. Recently, development in differentiable hydrologic models allows learning parts of the model 

using neural networks (Feng et al., 2022a, b). In summary, we believe there is still lots of room for improving model quality, 

but at some point we will likely run into the limits of measurements (aleatoric uncertainty) or data availability (epistemic 595 

uncertainty) (Hüllermeier and Waegeman, 2021). Future effort can harness deep networks to establish reference levels as a 

measure of the data uncertainty (Feng et al., 2022a).  

 

This work appears to be the first evaluation of the Lin15 dataset, and, as such, it establishes a reference level to which future 

studies can compare. The current dataset may still have limitations in that the number of sites for C4 plants is small and does 600 

not allow ample testing. Some geoscientific domains have well-known benchmark datasets, e.g., the CAMELS dataset in 

hydrology (Feng et al., 2020). Having such a common (and hopefully large) benchmark dataset allows better model 

structures to be rapidly discovered and is highly beneficial to the growth of the community (Shen et al., 2018). Related to the 

limits of measurement errors discussed above, multiple deep-learning-based studies have explored the approximate limit of 

data error (or best achievable model) of CAMELS and that knowledge has been appreciated by the community (Feng et al., 605 

2021). Moreover, deep learning methods benefit from data synergy effects (Fang et al., 2022), where more sites and more 

diverse data lead to a more robust model and better performance for each site. 

Although applying the dPL framework improved the parameters to an extent, the model still has similar structural limitations 

as other Farquhar-type models. We didn’t test the model’s ability to capture the seasonality of the net photosynthetic rate due 

the limited site level temporal data. The seasonal behavior of the model is expected to be similar to other Farquhar models as 610 

here we only learned static parameters. Further improvement likely will need to consider vegetation growth. Also, this study 

doesn’t cover the spatial generalization since we don’t present results for spatial tests or based on site-level comparison. To 

improve spatial generalization may require further changes in the model, dynamical parameters, or using other error 
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mitigation approaches (Feng et al., 2021, 2022b; Ma et al., 2021a). This is not our scope for this study; however, it will be 

considered for future work. 615 

 

We would like to highlight that such parameterizations are suitable to the target and forcing dataset used in training (which is 

still the most representative accessible dataset) and are related to the process-based model employed. The dataset may have 

limitations related to the consistency in the measurement approach, and there may be errors in the forcing data, or 

imperfections in model structure. The model performance may also vary based on different forcing data and inputs used. 620 

5. Conclusions 

In this study, we proposed a novel differentiable ecosystem modeling framework that uses neural networks as a 

parameterization scheme to support a process-based ecosystem model (FATES). Training coupled neural networks was not 

previously possible without differentiable programming, and it allows us to approximate complex, a priori unknown 

mapping relationships between plant functional types, landscape characteristics, and physical parameters. The photosynthesis 625 

module was treated as a system of nonlinear equations, and, like other such systems, could be solved efficiently and in a 

massively parallel fashion on graphical processing units (GPUs) by our differentiable framework. Vc,max25 and a soil water 

parameter (B) could be simultaneously identified in our synthetic experiments, because they played different roles in the 

model.  

 630 

Compared to purely data-driven machine learning approaches, the differentiable programming framework provides 

physically meaningful variables and can be used to learn relationships from big data. Via training on a global dataset, we 

found Vc,max25 values for global sites that correlate with the values in the literature, but produce more accurate net 

photosynthesis rates. It is noteworthy that these values were identified without any supervision from experts other than the 

preparation of the training dataset and the model. We conclude that Vc,max25 has a larger impact on photosynthesis than the 635 

soil water stress parameter, but both can be useful in tuning model responses, with varied impacts on different plants, and 

their default values were not optimal. Not only is differentiable modeling able to improve simulation quality and provide 

model parameterization, it can also allow us to modify model structure and ask questions regarding unclear parts of the 

model in the future. There is significant room for this framework to improve and expand to other ecosystem modeling 

applications.  640 



29 

 

6. Appendices 

Appendix A 

The System of nonlinear equations 

The FATES photosynthesis module is based on the classical Farquhar model for C3 plants (Farquhar et al., 1980), which 

calculates the photosynthetic rate based on carbon fluxes under different limitations.  For C4 plants, it uses the Collatz model 645 

(Collatz et al., 1992). Both models assume that the gross photosynthetic rate is affected by the maximum rate of 

carboxylation and is limited by the concentration of RuBP carboxylase (Rubisco) (Ac, see Equation A1), light and electron 

transport (Aj, see equation A2), and the concentration of PEP carboxylase enzyme in C4 plants (Ap, see Equation A3). Ac, Aj, 

and Ap are calculated as: 

Ac = ൞

Vc,max  × (Ci − Г∗) 

Ci + Kc  ቀ1 +  
Oi
Ko

ቁ
for C3 plants

Vcmax                                       for C4 plants

ൢ (A1) 

Aj = ቐ

Jx  × (Ci −  Г∗) 

4Ci +  8Г∗
     for C3 plants

α(4.6φ)                      for C4 plants    

ቑ (A2) 

AP = ቊ Kp

Ci

Patm
                      for C4 plants   

   
ቋ (A3) 

 650 

where Vc,max  is the maximum carboxylation rate, Ci  is the intercellular leaf CO2  pressure (nonlinear system output),  Γ* is 

the CO2 compensation point, Kc  and Ko are the Michaelis-Menten constants, Oi  is the O2 partial pressure (calculated as 20% 

of the atmospheric pressure), Jx is the electron transport rate (see Equations A4 and A5), ⍺ is the quantum efficiency (0.05 

mol CO2 mol-1 photon), φ is the photosynthetically active radiation (available in Lin15), Kp  is the initial slope of C4 CO2 

response curve, and Patm is the atmospheric pressure (available in Lin15). 655 

 

 Γ*, Kc, and Ko are the scaled parameters based on leaf temperature (Tv) calculated using their standardized values at 25°C 

which are Γ*
25 = 42.75 x 10-6 Patm, Kc,25 = 404.9 x 10-6Patm, and Ko,25 = 278.4 x 10-3Patm, multiplied by the temperature 

response functions defined in chapter 9.0 in CLM5.0 (Lawrence et al., 2019). 

 660 

Jx is given by the minimum root of the following quadratic equation: 
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θPSIIJx
2 − (IPSII +  Jmax)Jx +  IPSII Jmax = 0  (A4) 

where Jmax is the maximum electron transport rate,  θPSII is an empirical curvature for the electron transport rate (0.7) and IPSII 

is the light utilized in electron transport calculated using a quantum yield parameter (ΦPSII = 0.85) as: 

IPSII = 0.5ΦPSII(4.6 φ) (A5) 

The three biophysical rates Vc,max, Jmax, and Kp along with the plant respiration (Rd), adjusted for Tv are calculated using their 

standardized values at 25°C multiplied by temperature response functions defined in chapter 9.0 in CLM5.0 (Lawrence et al., 665 

2019). Vc,max is also adjusted for the soil water availability by multiplying it with the soil water stress function(βt).  

In our case, Vc,max25  is either the default value provided in CLM4.5 or is learned by a neural network, which then is used to 

calculate other standardized biophysical rates as: 

Jmax25 = 1.67 Vc,max25   (A6) 

Rd25    = {
0.015 Vc,max25    for C3 plants

0.025 Vc,max25    for C4 plants
} (A7) 

Kp25   = {20000 Vc,max25  for C4 plants} (A8) 

 

The gross photosynthetic rate (A) is then calculated by solving for the minimum root of the quadratic equations: 670 

θcjAi
2 − (Ac + Aj)Ai + AcAj = 0 (A9) 

θipA2 − (Ai + Ap)A + AiAp = 0 (A10) 

where Ai is an intermediate co-limited photosynthetic rate calculated using the empirical curvature parameter (θcj = 0.999). 

Using Ai and Ap, and the empirical curvature parameter (θip = 0.999), the gross rate (A) is given by the smaller root of 

equation A10. The net photosynthetic rate (An) is: 

An = A − Rd (A11) 

Then using An, the CO2 partial pressure at the leaf surface (Cs) is calculated as: 

Cs = Ca −  
1.4 PatmAn

gb
  ≥ 1.0e − 6 (A12) 

where Ca is CO2 partial pressure near the leaf surface (calculated as 0.039% of Patm) and gb is the leaf boundary layer 675 

conductance, which was available in Lin15 except for some missing values which were computed using the inverse 
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relationship between gb and the boundary layer resistance (rb). rb was approximated by the following equation as documented 

in section 5.1 of CLM5.0 (Lawrence et al., 2019): 

rb =
1

Cv
√

dleaf

Uav
   (A13) 

where Cv and dleaf are both constants (0.01 ms-1/2 and 0.04 m respectively), while Uav is the wind velocity. The stomatal 

conductance (gs) is then given by the maximum root of the quadratic equation: 680 

gs
2 + bgs + c = 0 (A14) 

where b, and c are functions in some PFT-dependent parameters as: 

b =  −(2(go + d) + 
(g1d)2

gb ×  vpd
)  

(A15) 

c =  go
2 + ቆ2go + d (1 − 

g1
2

vpd
)ቇ d 

(A16) 

d =  
1.6 An

Cs/Patm
 

(A17) 

go, the water stressed minimum stomatal conductance, is calculated as the multiplication of βt and the unstressed minimum 

stomatal conductance (10000 µmol m-2 s-1 for C3, 40000 µmol m-2 s-1 for C4). g1, the slope of the Medlyn stomatal 

conductance model (Medlyn et al., 2011) is a PFT specific parameter defined in CLM5.0 (Lawrence et al., 2019). vpd, the 

vapor pressure deficit, is calculated as: 685 

vpd =  
ei − ea

1000
 ≥ 0.05 (A18) 

where ei is the saturation vapor pressure at leaf temperature (Tv) and ea is the air vapor pressure.  

 Finally, Ci, is related to An using Ca, Patm, gs, and gb as the following: 

Ci = Ca − AnPatm

(1.4gs + 1.6gb)

(gs × gb)
  

(A19) 

 Appendix B 

Computations of btran (ꞵt) in CLM4.5 

ꞵt is calculated by aggregating the plant wilting factor (wi) and plant root distribution (ri) across different soil different layers 690 

as: 

βt               =  ∑ wiri

i

 (B1) 
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The plant wilting factor (wi) for  soil layer (i) is mainly dependent on the soil water potential ψi and other PFT-dependent 

parameters such as the soil matric potentials for closed stomata ψc and open stomata ψo, which represent the soil water 

potentials when stomata are fully closed and fully open, respectively. The factor wi is also dependent on other factors like the 

temperature of the soil layer (Ti) relative to the freezing temperature (Tf), the volumetric liquid water (θliq,i) and ice (θice,i) 695 

contents, and the volumetric water content at saturation (θsat,i).  

wi              =  ቐ

Ѱc − Ѱi 

Ѱc −  Ѱo
[
θsat,i − θice i

θsat,i
] ≤ 1  ; Ti >  Tf − 2 and θliq,i > 0

0                                                    ; Ti ≤  Tf − 2 or θliq,i ≤ 0

ቑ (B2) 

The soil matric potential ψi is calculated using a power-law formulation: 

Ѱi              = Ѱsat,i ×  Si
−B𝑖 ≥ Ѱc (B3) 

where ψsat,i is the saturated soil matric potential, Si is the soil wetness, and Bi is the Clapp and Hornberger parameter, all 

defined for a specific soil layer (i). Different soil attributes such as percentages of sand (%sandi) and clay (%clayi), fraction 

of organic matter (Fom,i), and soil moisture (θliq,i) are used in computing ψsat,i, Si, and Bi. ψsat,i is calculated as: 700 

Ѱsat,i        = (1 − Fom,i)  × Ѱsat,min,i + Fom,i  ×  Ѱsat,om (B4) 

where ψsat,om is the saturated organic matter matric potential (-10.3 mm; (Letts et al., 2000)) and ψsat,min,i is the saturated 

mineral soil matric potential calculated using %sandi as: 

Ѱsat,min,i = −10.0 − 101.88− 0.0131×(%sand)i  (B5) 

The soil wetness (Si) is calculated using the volumetric contents θliq,i, θice,i , and θsat,i as: 

S i               =  
θliq,i

θsat,i −  θice,i
 , 0.01 ≤ S ≤ 1 (B6) 

where θsat,i for a soil layer is: 

θsat,i        = (1 −  Fom,i)  × θsat,min,i +  Fom,i  ×  θsat,om (B7) 

θsat,om is the porosity of the organic matter (0.9; (Letts et al., 2000; Farouki, 1981)), while the porosity of the mineral soil 705 

(θsat,min) using %sand is: 

θsat,min,i = 0.489 − 0.00126 × (%sand)i    (B8) 

 Similar to ψsat,i and θsat,i (see Equations B4 and B7), the parameter Bi is calculated as: 

Bi               = (1 − Fom,i)  × Bmin,i +  Fom,i  ×  Bom            (B9) 

where the Bom is the exponent for organic matter (2.7; (Letts et al., 2000)) while Bmin,i the exponent for mineral soil is: 
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Bmin,i        = 2.91 + 0.159 × (%clay)i   (B10) 

Appendix C 

Table C1 V+B model formulation performance for different sizes of NNBi with 80%:20% train: test split ratio 710 

 

Corr 
RMSE  

(μmol m-2 s-1) 

Bias  

(μmol m-2 s-1) 
NSE 

 

Train Test Train Test Train Test Train Test  

V+B  

0.7862 0.7712 4.3188 4.2920 0.0898 -0.2339 0.6175 0.5904 NNBi[8,6,1] 

0.7863 0.7713 4.3178 4.2912 0.0866 -0.2395 0.6177 0.5905 NNBi [8,7,1] 

0.7862 0.7706 4.3190 4.2957 0.1023 -0.2261 0.6174 0.5897 NNBi [8,8,1] 

0.7858 0.7700 4.3222 4.3018 0.0711 -0.2653 0.6169 0.5885 NNBi [8,9,1] 

0.7855 0.7720 4.3275 4.2864 0.1049 -0.2182 0.6159 0.5914 NNBi [8,8,8,1] 
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