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Abstract. Photosynthesis plays an important role in carbon, nitrogen, and water cycles. Ecosystem models for 
photosynthesis are characterized by many parameters that are obtained from limited in-situ measurements and applied to the 15 
same plant types. Previous site-by-site calibration approaches could not leverage big data and faced issues like overfitting or 
parameter non-uniqueness. Here we developed a programmatically differentiable (meaning gradients of outputs to variables 
used in the model can be obtained efficiently and accurately) version of the photosynthesis process representation within the 
Functionally Assembled Terrestrial Ecosystem Simulator (FATES) model. This model is coupled to neural networks that 
learn parameterization from observations of photosynthesis rates. We first demonstrated that the framework was able to 20 
recover multiple assumed parameter values concurrently using synthetic training data. Then, using a real-world dataset 
consisting of many different plant functional types, we learned parameters that performed substantially better and 
dramatically reduced biases compared to literature values. Further, the framework allowed us to gain insights at a large scale. 
Our results showed that the carboxylation rate at 25°C (Vc,max25), was more impactful than a factor representing water 
limitation, although tuning both was helpful in addressing biases with the default values. This framework could potentially 25 
enable a substantial improvement in our capability to learn parameters and reduce biases for ecosystem modeling at large 
scales. 
 
Short Summary. Photosynthesis is critical for life and is affected by a changing climate. Many parameters come into play 
when modeling, but traditional calibration approaches have faced many issues. Our framework trains coupled neural 30 
networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that 
were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates. 

1 Introduction 

Plant photosynthesis is critically important for regulating the global carbon and nutrient cycles, and thus the future climate. 

Understanding future climate trajectories requires the understanding of photosynthetic responses to changes in environmental 35 

factors including atmospheric CO2 concentrations, radiation, temperature, humidity, and nutrient and water availability 
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(Kirschbaum, 2004). Photosynthesis is influenced by many factors such as higher CO2 levels, reduced productivity of 

vegetation (i.e., nutrient concentration) (Thompson et al., 2017), intensified droughts (Urban et al., 2017; Xu et al., 2019) 

and rising temperatures (Dusenge et al., 2019) under a changing climate. To comprehensively evaluate the impacts of these 

changing processes and vegetation feedbacks to the atmosphere, we need accurate representations of photosynthesis in 40 

models. 

 

For global assessments of the carbon cycle, vegetation models were developed to simulate terrestrial ecosystem processes 

and the distributions of vegetation, both vertically in the soil-plant system and horizontally across the landscape. Substantial 

efforts over the last few decades have improved the representation of vegetation and its responses and feedbacks to climate 45 

change (Fisher et al., 2018). A typical framework structure for a vegetation model is to keep track of changes in carbon and 

optionally nutrient states, driven by climatic variables and modulated by soil properties, with feedback to the climate, e.g., 

CO2 releases, radiation, and vegetation composition and structure. A core component of the vegetation module is 

photosynthesis (Quillet et al., 2010). 

 50 

Present ecosystem models for photosynthesis are based primarily on mechanistic descriptions of plant photosynthesis 

pathways, but this theoretically-sound modeling paradigm faces many challenges, with parametric uncertainty being a major 

one. Photosynthesis models may describe limitations of carboxylation rates, light availability, and plant-specific factors like 

enzyme efficiencies for C3 and C4 plants differently (Farquhar et al., 1980; Farquhar and Caemmerer, 1982; Meyer, 1983; 

Von Caemmerer, 2003, 2013; Yin and Struik, 2009). They contain many parameters that quantify these efficiencies and 55 

limitations. In the past, these parameters have been estimated from different approaches: 1) obtained from a limited set of in-

situ sites and scaled based on climate and environmental factors (Verheijen et al., 2013); 2) calibrated on observational data 

site by site or for a few sites for a plant functional type (PFT) (Mäkelä et al., 2019; Wang et al., 2014); or 3) optimized based 

on environmental conditions (Ali et al., 2016). However, these estimated values may not be optimal at the global scale. Site-

by-site calibrations using genetic or similar algorithms are highly expensive and are limited in their spatial coverage and 60 

generalizability to different PFTs and species. Furthermore, such calibration faces the issue of nonuniqueness (which some 

call equifinality (Beven and Freer, 2001)), where different parameter sets produce the same outcome. As a result, calibration 

can easily lead to poorly-generalizable parameter values. This problem exists for many domains with diverse parameters, 

including ecosystem modeling (Tang and Zhuang, 2008). It is similarly found in hydrologic modeling and has troubled 

scientists there for decades (Beven, 2006). More recently, some parameters can be fitted directly from large datasets with 65 

directly measured parameter values (Luo et al., 2021), which is highly valuable but is limited to those parameters with 

extensive observations, e.g., soil water retention and hydraulic properties. An efficient way to permit large-scale inverse 

modeling is needed. 
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There has been substantial progress in utilizing modern machine learning (ML) for geosciences. Purely data-driven deep 70 

learning models (LeCun et al., 2015; Reichstein et al., 2019; Shen, 2018; Shen et al., 2018) directly learn from data so they 

tend to be fairly accurate and many have outperformed traditional models for a large number of applications such as 

hydrological (Feng et al., 2020, 2021; Rahmani et al., 2020, 2021), agricultural (ElSaadani et al., 2021; Hossain et al., 2019; 

Liu et al., 2022a; Saleem et al., 2019), cryosphere (Leong and Horgan, 2020; Zhang et al., 2019), water quality (Hrnjica et 

al., 2021; Zhi et al., 2021), and ecosystem modeling (Zhang et al., 2020, 2021). Unfortunately, deep learning models also 75 

lack interpretability and process clarity, and can only output trained variables with extensive observations. This need for data 

is often not satisfied for ecological processes. 

 

To aid geoscientific models in general, Tsai et al. (2021) presented an efficient framework known as differentiable parameter 

learning (dPL), in an effort to leverage recent progress in ML to mitigate the issues listed above for parameter inversion. 80 

This framework turns parameter estimation into a large-scale ML problem. It is mainly composed of a parameter estimation 

module based on a neural network (NN), combined with a process-based model (or its surrogate). The whole framework 

must be “programmatically differentiable” (Baydin et al., 2018; Innes et al., 2019), which refers to a programming paradigm 

where we can efficiently and accurately obtain the gradients of the outputs with respect to any of the variables used in the 

model. Once we have programmatic differentiability, dPL can efficiently learn unknown functions from big data to serve as 85 

either a parameterization or process representation. Tsai et al. (2021) found that this framework scales well with more data, 

produces spatially and temporally well-generalized parameter sets, extends well to uncalibrated variables, and saves orders 

of magnitude in computational time. Feng et al. (2022a) further showed that an adopted, differentiable process-based 

hydrologic model with dPL could approach the performance of a purely data-driven ML model, and potentially outperform 

ML in data-sparse regions (Feng et al., 2022b). These successes can be conveniently migrated to the ecosystem modeling 90 

domain. 

 

Here, we apply the dPL framework to the photosynthesis module of the Functionally Assembled Terrestrial Ecosystem 

Simulator (FATES) model. FATES is an ecosystem model that describes co-existence and competition in plant functional 

types (PFTs) (Koven et al., 2020). FATES can be used as an ecosystem module in the Community Land Model (CLM) 95 

(Oleson et al., 2013; Lawrence et al., 2019) to represent the ecosystem demography (Fisher et al., 2015). The photosynthesis 

module is based on the Farquar photosynthesis model. To apply the dPL framework in our study, we first reimplemented the 

photosynthesis module in FATES so that it became programmatically differentiable. Second, we connected this model to 

neural networks for parameter estimation. With this tool, we aim to answer the following questions: (1) What is the 

achievable model performance, in terms of predicting photosynthesis rates in space and in time, by tuning the parameters for 100 

the classical photosynthesis module without changing the model structure? (2) Are parameters like Vc,max25 and soil water 

limitation factor simultaneously identifiable? (3) Are parameters learned from a large global dataset similar to the values 

we used in our current models? In the following, we first described the photosynthesis model with different parameter 
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estimation experiments and target datasets. We then discuss the parameters chosen to be estimated and their significance. 

Afterward, we presented the results from synthetic experiments and experiments based on real datasets from sites around the 105 

globe. Finally, we compared the learned parameters to values from the literature, and provided some suggestions for future 

work.  

2 Methods and datasets  

2.1. General overview 

Our work focused on the photosynthesis module in FATES. Ignoring the impacts of vegetation states, this module, just as 110 

many others, can be formulated as a system of nonlinear equations with many parameters: 

𝑓ଵሺx;  θ, θୡ, Fሻ ൌ 0;𝑦 ൌ  𝑓ଶሺx,θ, θୡ, Fሻ  (1) 

where f1 represents a system of nonlinear equations, x represents the unknowns of the equations (in this case the internal leaf 

CO2 partial pressure [pa]), y is an observable variable (in this case photosynthetic rate [µmol m-2 s-1]) that is dependent on x 

via nonlinear equations f2, F represents some forcing variables such as radiation and air temperature, θ represents a list of 

tunable physical parameters, and θc represents untuned constant attributes. Given a set of θ with known θc and F, we need to 115 

solve for x from f1 and send the solution into f2 to further compute y: y = f2(f1
-1(θ, θc, F), θ, θc, F). This whole workflow can 

be lumped into one model: 

y ൌ  δ୮ୱ୬ሺθ,θୡ, Fሻ  (2) 

where δpsn represents the overall model. Some of the tunable parameters are typically formulated as being PFT-dependent 

(e.g., the maximum carboxylation rate), or related to soil water availability (e.g., the soil water stress). We posit that there 

exists a parameterization scheme, θ = gW(R), which is a mapping relationship from some underlying attributes R to the 120 

physical parameters represented by a neural network with W as the learnable weights. Thus, we can learn W so the simulated 

variable y matches the observations y*: 

W ൌ  argminሺLሺδ୮ୱ୬ሺθ,θୡ, Fሻ, y∗ሻሻ ൌ  argmin୛ሺL൫δ୮ୱ୬ሺg୛ሺRሻ,θୡ, Fሻ, y∗൯ሻ   (3) 

where L is the loss function. For the purpose of solving the inverse problem and training the neural network gW in an 

“online” mode using gradient descent (the only practically-employed algorithm for neural network training), we 

reimplemented the photosynthesis module in FATES onto two differentiable platforms: Julia and PyTorch (discussed in 125 

more detail below).  

 

In order to test the learning capability of our framework and the identifiability of the parameters, we first ran synthetic 

experiments to verify if the model would be able to retrieve assumed values for the physical parameters. Second, using a 

https://doi.org/10.5194/bg-2022-211
Preprint. Discussion started: 2 November 2022
c© Author(s) 2022. CC BY 4.0 License.



5 

dataset with thousands of photosynthesis rate measurements, we trained the differentiable model to obtain estimated 130 

parameters at the global scale, and compared them to the literature. 

2.2. The Farquhar photosynthesis model 

The FATES photosynthesis module is based on the classical Farquhar model for C3 plants (Farquhar et al., 1980), which 

calculates the photosynthetic rate based on carbon fluxes under different limitations.  For C4 plants, it uses the Collatz model 

(Collatz et al., 1992). Both models assume that the gross photosynthetic rate is affected by the maximum rate of 135 

carboxylation and is limited by RuBP carboxylase (Rubisco) (Ac), light and electron transport (Aj), and PEP carboxylase 

enzyme in C4 plants (Ap). The final gross photosynthetic rate “A” is calculated using the empirical curvature parameters (θcj 

and θip), while the net photosynthetic rate An is the same as the gross rate (A) after the plant respiration rate (Rd) is subtracted. 

The system can be described succinctly as the following, with Equations 5 and 4 playing the roles of f1 and f2 in Equation 1, 

respectively, and the whole set of associated equations in Appendix A. 140 

A୬ ൌ AሺC୧ሻ െ  Rୢ (4) 

C୧ ൌ Cୟ െ  A୬Pୟ୲୫
ሺ1.4gୱ ൅ 1.6gୠሻ

ሺgୱ ൅ gୠሻ
 (5) 

Equation 5 is a single-variable nonlinear equation, with the intercellular leaf CO2 pressure (Ci) as the unknown term to be 

solved, (serving as the x term in Equation 1). Ci is influenced by the CO2 partial pressure at the leaf surface (Ca), the net 

photosynthetic rate (An), the atmospheric pressure (patm), the leaf stomatal conductance (gs), and the leaf boundary layer 

conductance (gb). Upon solving for Ci, we can further calculate An, which is the y term in equation 1. In the original FATES 

and CLM, the system of nonlinear equations were solved iteratively using fixed-point iteration (Oleson et al., 2013).  145 

 

In order to train the physical equations and neural networks together using gradient descent, the above equations were 

implemented on differentiable platforms to support backpropagation. We developed two alternative implementations: 

PyTorch (Paszke et al., 2019) and Julia  (Bezanson et al., 2012). The PyTorch version solves the coupled nonlinear equations 

using our own parallel implementation of Newton iteration, while the Julia version is implemented via a symbolic computer 150 

algebra system (CAS) and is compatible with a wide variety of nonlinear solvers (Gowda et al., 2022). In contrast to the 

previous fixed-point iteration used by FATES, our PyTorch Newton iteration solver can run on a graphical processing unit 

(GPU) in parallel for many sites. Newton’s iteration features second-order convergence compared to the slower convergence 

of fixed-point iteration, while GPU parallelism represents orders of magnitude in computational savings compared to the 

original algorithm in FATES. The photosynthesis problem studied here has only one unknown (Ci) even though there are 155 

many other supporting equations, while we have tested other nonlinear systems with <10 unknowns. For higher-dimensional 

systems, alternative treatment for the adjoint equations may be needed to speed up the gradient calculation since the Jacobian 

needs to be inverted which can impact the efficiency. Altogether, we can train this model with the coupled neural networks 
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for hundreds of data points in under 10 minutes (typically in 600 iterations) and could also train the model on 10,000 data 

points. For the Julia implementation, the symbolic toolbox ModelingToolKit.jl (Gowda et al., 2022; Ma et al., 2021) was 160 

employed to automatically generate the solution scheme as Julia code, and along with solvers from NonlinearSolve.jl, solve 

the system of equations in the forward problem. Presently, we have implemented the Julia version in serial mode only. 

Results presented in this paper were produced using the PyTorch version, although the computational results were the same 

with the Julia version. 

2.3. The parameterization pipeline and model changes 165 

We used multilayer perceptron (MLP) neural networks as the parameterization module g in Equation 3. The purpose of the 

MLPs is to estimate parameters θ, which are then fed into the photosynthesis module to obtain the net photosynthetic rate 

(An) (Appendix A). The MLPs were trained based on the loss function between the solved and observed values of An. As 

described in Equation 2, the whole workflow is hereafter referred to as the δpsn model (“delta-photosynthesis model”) (the 

greek letter δ is selected because the model is programmatically differentiable and δ is often associated with gradients). 170 

There may be multiple MLPs to estimate different parameters in θ, each with different inputs of either continuous or 

categorical data, and they can all be trained together. Figure 1a below shows the framework for different parameter 

estimation experiments. We carried out both single-parameter and dual-parameter (learning two parameters simultaneously) 

experiments for both synthetic and real case datasets.  

 175 

We chose to estimate one or both of two specific parameters in our experiments. The first one is the plant maximum 

carboxylation rate at 25°C (Vc,max25), which is normally formulated as a PFT-dependent parameter. Although Vc,max25 is 

hypothesized to be PFT-dependent, recent studies have shown that the parameter can vary in space and time and by different 

species in the PFT as well (Ali et al., 2015; Chen et al., 2022; Qian et al., 2019).  Estimating Vc,max25 is not a trivial matter due 

to its high variability and sensitivity to different factors such as drought, leading some studies to suggest a substitute for it. 180 

For example, Croft et al. (2017) suggested using the leaf chlorophyll content as a direct proxy for Vc,max25. Nevertheless, 

considering this is an initial study applying dPL, we followed the convention and parameterized it based on PFT: 

Vc,max25 = NNV (PFT) (6) 

where PFT is the plant functional type category (in one-hot encoding format) and the neural network used for 

parameterization of Vc,max25 is referred to as NNV hereafter. 

 185 

The second parameterization is B = NNB(R) (R includes %sand, %clay, fraction of organic matter, and PFT; see equation 

11), and the neural network used for parameterization of B is referred to as NNB. B is the parameter defined by Clapp & 

Hornberger (1978) and it influences the soil water stress function (ꞵt, where the subscript t indicates transpiration). ꞵt is 

called “btran” in the CLM code and it reflects the impacts of soil wetness on stomatal conductance and ranges from zero 
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(extreme dry conditions causing stomata closure) to one (wet conditions with stomata fully open). B is purely a function of 190 

soil properties whereas ꞵt is affected by soil water potential and plant root distribution across different soil layers and is a 

PFT-dependent feature. B comes into play when calculating the soil water potential ψi using a power-law formulation: 

Ѱ୧  ൌ Ѱୱୟ୲,୧ ൈ  S୧
ି஻೔ ൒ Ѱୡ  (7) 

where ψsat is the saturated soil matric potential and S is the soil wetness, both defined for a specific soil layer. Different soil 

attributes such as percentages of sand (%sand) and clay (%clay), fraction of organic matter (Fom), and soil moisture (θliq) are 

used in computing ψsat, S, and B (Appendix A). These equations will later be replaced by our NN-based parameterization 195 

scheme (NNB, see equation 11) because they were originally empirical and may not be optimal at the global scale. 

ꞵt can be calculated by aggregating the plant wilting factor (w) and plant root distribution (r) across different soil different 

layers based on the PFT (see equation 8) (Oleson et al., 2013).  

β୲ ൌ  ෍w୧r୧
୧

  (8) 

The plant wilting factor (wi), is mainly dependent on the soil water potential ψi and other PFT-dependent parameters such as 

the soil matric potentials for closed stomata ψc and open stomata ψo, which represent the soil water potentials when stomata 200 

are fully closed and fully open, respectively, as in equation (9). The factor wi is also dependent on other factors like the 

temperature of the soil layer (Ti) relative to the freezing temperature (Tf), the volumetric liquid water (θliq) and ice (θice) 

contents, and the volumetric water content at saturation (θsat).  

w୧ ൌ  ቐ
Ѱୡ െ  Ѱ୧ 
Ѱୡ െ  Ѱ୭

ቈ
θୱୟ୲,୧ െ  θ୧ୡୣ ୧

θୱୟ୲,୧
቉ ൑ 1  ;  T୧ ൐  T୤ െ 2 and θ୪୧୯,୧ ൐ 0

0                                                        ;   T୧ ൑  T୤ െ 2 and θ୪୧୯,୧ ൑ 0
ቑ  (9) 
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 205 

Figure 1. Diagram showing the differentiable parameter learning (dPL) framework which is a hybrid of neural networks and the 
photosynthesis module in the FATES ecosystem model written on a differentiable platform. (a) The generic workflow: Some raw 
information is mapped into physical parameters via a neural network. These parameters are sent into a process-based model, 
which then outputs variable Y that is compared with observations. Direct supervision for the physical parameters is not required -
- we do not need ground truth for these parameters. The loss function is “global” in that it involves all training data points, rather 210 
than being computed site-by-site as done in traditional calibration. (b) The workflow for the computational example described in 
this work. We estimate either Vc,max25 or the parameter B using neural networks, or both of them at the same time. When they 
were not estimated from data, default values from the literature were used. 

 

2.3.1 Model changes 215 

Two simple changes were applied in computing the soil water stress function (ꞵt). In place of equation 7, the soil matric 

potential is calculated using the soil matric potential for closed stomata as: 

Ѱ୧ ൌ Ѱ୭ ൈ  S୧
ି஻೔ ൒ Ѱୡ  (10) 

where B is estimated using NNB as: 

B ൌ  NN୆ሺ%sand, %clay, PFT, F୭୫ሻ  (11) 

The default equations in the Community Land model V4.5 (CLM4.5) for computations of B (Appendix A) show that the 

parameter B depends on two attributes, %clay and Fom, which is why they were used in NNB. To account for the dependence 220 
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of ψsat on %sand (Appendix A) and its replacement by ψo (see equations 7 and 10), %sand was also added to NNB. Since in 

NNB, we use quantitative inputs (%sand, %clay, Fom) along with categorical inputs (PFT), we used an one-hot embedding 

layer in PyTorch, which translates each category to a vector of quantitative variables. This categorical data can then easily be 

combined with other quantitative inputs we provide to our neural network.  

2.3.2 Case 1: Synthetic data 225 

In our synthetic experiments, we assumed values for some parameters to generate synthetic photosynthesis rates as the 

training data. Then, we estimated those parameters with NNs while keeping other components unmodified. These 

experiments were intended to verify the plausibility and efficiency of the differentiable learning framework, and the 

identifiability of parameters.  

 230 

In the first synthetic case, “vcmax-only”, the δpsn framework was tested for retrieving a single PFT-dependent parameter, 

Vc,max25, using NNV. We used the suggested values for Vc,max25 from CLM4.5 for different PFTs to calculate the synthetic net 

photosynthetic rates.  

 

In the second synthetic case, “Vc,max - B”, we tested retrieving both Vc,max25 and B , the latter of which varies spatially and 235 

temporally. To generate the synthetic data, we assumed B = 0.1 * Fom + 0.45 * (%sand + %clay), and then the soil matric 

potential (ψi) was calculated using equation 10. The plant wilting factor (wi) and the soil water stress function (ꞵt) were 

calculated using the default equations 9 and 8 respectively. For simplicity, the computations of B, ψi, wi, ꞵt were performed 

for the topsoil layer only. To retrieve B, we used NNB (see equation 11) but excluded the PFT term.  

   240 

For both synthetic runs “vcmax-only” and “vcmax-B”, the MLP models were trained concurrently for all PFTs with several 

data points for each PFT. Moreover, white noise was added to the synthetic values of An with a standard deviation of 5% of 

the mean value.   

2.3.3. Case 2: Real data 

The model passing the test of the synthetic case was then applied to a real dataset (Lin et al., 2015) using observation data. 245 

This tested whether the model, learning from this dataset for many of the PFTs, could find parameters to better describe 

photosynthesis data than the literature values. We do not know the ground truth in this case, so we tested multiple 

formulations to understand the impacts of allowing more or less flexibility in the estimation and the role of each parameter. 

 

We tested several formulations to estimate either one (Vc,max25) or two parameters (Vc,max25 and  B) at a time. In essence, we 250 

compared allowing either one or two of the parameters to be estimated vs. using the default formulation or values from the 
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original model. For Vc,max25, the default values were those defined in CLM4.5, while for ꞵt, the default equations (Appendix 

A) were used to obtain its values. Altogether, we trained the following models: 

 

Vdef + Bdef : in this case, Vc,max25 took the default values from CLM4.5 and B was calculated using the default equations 255 

(Appendix A). This was used as a reference case. 

 

Vdef + B : in this formulation, the default Vc,max25  values from CLM4.5 were used while B was estimated using NNB. 

 

V + Bdef : in this formulation, Vc,max25 was estimated using NNV, while B was calculated using the default equations 260 

(Appendix A). 

 

V + B : in this formulation, we employed both NNV and NNB. They were trained concurrently to see if this interfered with 

parameter retrieval. 

 265 

Just as in the synthetic case, the MLPs were shared between all sites. All sites were used to calculate one loss function as in 

typical machine learning tasks, with the hope of ensuring the wide applicability of the MLPs and leveraging the synergy 

between all sites (Fang et al., 2022). In this way, we also hope to identify parameters that can generalize well in space and be 

applicable at large scales.  

 270 

We then compared the values of Vc,max25 learned by the V+B model, trained on all data points, against values of Vc,max25 in 

other data sources (Kattge et al., 2020; Rogers, 2014), which highlights the variability of these parameters. The TRY 

database (Kattge et al., 2020) has Vc,max25 values defined for several species which can be aggregated to get unique values for 

each PFT (Table 3). Moreover, we compared our Vc,max25 values to the ones used in different earth system models (Rogers, 

2014) for various PFTs. The comparison can first check if the inversely determined values are on the same order of 275 

magnitude as previously-employed values and are physically possible. We also expect our values for different PFTs to be at 

least partially correlated with the ones used in the literature, as they were meant to represent the same physical quantity. A 

complete disagreement or a different order of magnitude would suggest that our values may be not physical. However, 

partial discrepancies would also highlight the knowledge gaps. 

2.4. Statistical metrics 280 

In order to evaluate different experiments and see the sensitivity of the results to changing different parameters, we chose 

four different metrics as shown in table 1, below. The four metrics were root-mean-square error (RMSE), bias, Pearson's 

correlation coefficient (COR), and Nash-Sutcliffe Efficiency (NSE). Both RMSE and bias measure how far the model 

simulations are from the observations; however, RMSE is the standard deviation of all errors while bias is calculated as the 
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average. COR measures the linear relationship between both the simulations and the observations, ranging between -1 and 1. 285 

NSE measures the relative magnitude of the residual variance relative to the observed data variance (Nash and Sutcliffe, 

1970), and has a perfect score of 1. Table 1 below shows the formulations of the four metrics and their possible ranges.  

 

Table 1. Performance metrics used for evaluation and their possible ranges 

Metric Formula Range 

COR ∑ ሺ𝑂𝐵𝑆 െ  𝑂𝐵𝑆ሻሺ𝑆𝐼𝑀௜ െ  𝑆𝐼𝑀ሻ௡
௜ ୀ ଵ

𝜎ை஻ௌ𝜎ௌூெ
 

[-1 , 1] 

RMSE 
ඨ
∑ ሺ𝑆𝐼𝑀௜ െ  𝑂𝐵𝑆௜ሻଶ௡
௜ ୀ ଵ

𝑛
 

[0,  ∞] 

BIAS ∑ ሺ𝑆𝐼𝑀௜ െ  𝑂𝐵𝑆௜ሻଶ
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2.5. Input and observation datasets 

2.5.1 Forcing and Photosynthesis rates: 

We used the ERA5 Reanalysis dataset (Copernicus Climate Change Service (C3S), 2017), which provides hourly estimates 

of soil moisture at different soil levels. The soil moisture contributes to computing ꞵt (see Appendix A), where the soil 

wetness S depends on both the soil moisture and the saturated soil moisture.  295 

 

We used data from the leaf gas exchange database (Knauer et al., 2018; Lin et al., 2015) which is a global database of 

stomatal conductance measurements. It incorporates data from several sites around the world in Australia, Europe, USA, and 

Asia (Figure 2). 43 sites were chosen because they had complete data (with dates of measurements) available. We refer to 

this dataset as Lin15 throughout the rest of this work. Lin15 also contained meteorological forcing variables, including air 300 

temperature, atmospheric pressure, relative humidity, and radiation. Moreover, we used ERA5 to fill in for any missing 

forcing variables in Lin15. 
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2.5.2 Static attributes: 

For ꞵt  calculations, we used data from Hengl & Wheeler (2018) for the soil organic carbon content at different soil depths, 

while data for sand and clay percent was obtained from Hengl (2018). Both are global datasets available at 250 m resolution 305 

at 6 different soil depths (0, 10, 30, 60, 100, and 200 cm). 

 
Figure 2. Map of sites available from the leaf gas exchange database (Lin et al., 2015). Different symbols represent different plant 
functional types. The C4 site is highlighted by a thick-bordered hexagon. The marker sizes represent the quantity of data available 
for each site. (map based on matplotlib basemap, Jeffrey Whitaker) 310 

3 Results 

3.1. Results for synthetic case 

The results of the synthetic experiments showed that our workflow successfully recovered the parameters in either the one-

parameter (vcmax-only) (Figure 3) or two-parameter (“vcmax-B”) cases (Figure 4). In the one-parameter “vcmax-only” 

case, the recovered parameters agreed with the assumed values almost completely for each PFT (Figure 3a). The model was 315 

able to capture the variability in the values of Vc,max25 for different PFTs, where the values ranged from 100.7 μmol m-1 s-1 for 

the rainfed crop (defined as Crop R in CLM4.5) to around 50 μmol m-1 s-1 for C4 grass (Figure 3a). Moreover, we found 

nearly complete agreement between the synthetic and recovered net photosynthesis rates (An) (Figure 3b). This case 

demonstrated that the dPL framework and the posited formulation Vc,max25 = NNV(PFT) were functional, but could not show 

the effects of parameter interactions. Furthermore, we found a similarly near-complete recovery for Vc,max25 with the dual-320 

parameter case (Figure 4a) and a near-complete reproduction of simulated photosynthesis (Figure 4d). However, we noticed 

a negligible amount of scattering with ꞵt (Figure 4c), and to a larger extent, with B (Figure 4b). For all experiments, we 

verified that the training and test periods were highly consistent (between green and blue points in the scattered plots).  
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The results indicate that the problem formulation allows for sufficient sensitivity of the net photosynthesis rate with respect 325 

to PFT-specific Vc,max25 and the soil water constraint. In addition, Vc,max25 and B influence the photosynthesis rate in different 

ways so that, along with a large dataset with different combinations of moisture conditions and PFTs, they can be identified 

simultaneously. This forms the basis of the next stage of the work. The soil moisture parameter identifiability was slightly 

weakened compared to Vc,max25 because there were more equations involved between B and An, and some of them had 

parameters in the exponential operators, e.g., ψi = ψo * S-B. Mathematically, this curve can be flat and the gradients can be 330 

small in some ranges of S. Mechanistically, An can have reduced sensitivity to B under some conditions. Therefore, we do 

not expect soil properties to be fully identifiable from photosynthesis data, but the general pattern may still be learnable. 

 

 

Figure 3. Single parameter recovery for synthetic data. (a) Comparison of modeled parameter values to literature values by plant 335 
functional type (PFT). (b) Actual and modeled net photosynthesis rates for training and testing periods (dashed line indicates the 
ideal 1:1 relationship).  
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 340 

 

Figure 4. Dual parameter recovery for synthetic data. (a) Comparison of modeled parameter values to literature values by plant 
functional type (PFT) estimated using NNV. (b) Actual and modeled parameter values for B, estimated using NNB (dashed line 
indicates the ideal 1:1 relationship). (c) Actual and modeled parameter values for ꞵt, calculated using equations 8, 9, and 10 for the 
topsoil layer. (d) Actual and modeled net photosynthesis rates for training and testing periods.  345 

3.2. Real dataset 

3.2.1. Comparisons between candidate formulations 

The V+B model exhibited obvious advantages over the default FATES model, as well as the models that learned only one of 

the parameters (Table 2). The default CLM4.5 parameters (Vdef +Bdef) led to a low correlation (0.565), a large bias (1.476 
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μmol m-2 s-1) and nearly zero NSE (0.041) (Table 2a). In particular, the default values appeared to cause a large over-350 

estimation of the net photosynthetic rate (An) for the high-photosynthesis data points (especially C4), which are visible in 

Figure 5a. After allowing B to be learned (Vdef +B), the correlation for testing remained the same, while the bias remained 

high (1.754 μmol m-2 s-1). It seems that the treatment of water stress alone did not address the bias. On the other hand, when 

we only allowed Vc,max25 to be estimated (V+Bdef), the bias was slightly reduced and the test NSE increased to (0.229). 

Finally, if we allowed both parameters to be estimated (V+B), a decent correlation was obtained (0.748), the bias was the 355 

smallest value yet (0.347 μmol m-2 s-1) and the test NSE was 0.532, which means the model explained about half of the 

variance in the observed photosynthesis rate. The remaining error might be attributable to other untuned parameters as well 

structural deficiencies of the current model, which can be further improved in the future using the differentiable modeling 

paradigm. 

 360 

A similar behavior in the performance metrics was observed for the random holdout test (Table 2b). In this test, instead of 

splitting the dataset in chronological order with earlier dates set for training and the rest reserved for testing, we randomly 

chose the data points for training and testing. Based on the results shown in table 2b, the random splitting decreased to a 

great extent the disparity in the metrics’ values between training and testing. However, contrary to the temporal holdout test, 

we found a slight improvement in COR (0.619) and NSE (0.171) when B was learned (Vdef +B), while a much higher boost 365 

was found in metrics when Vc,max25 was learned (V+Bdef). This shows the higher impact of learning Vc,max25 on the simulation 

of An, where the COR and NSE increased to 0.695 and 0.442, respectively, while the bias decreased to -0.374. Similar to the 

temporal holdout test, the V+B model showed the best metrics in comparison to other models with the lowest RMSE (4.480) 

and bias (0.177) values, and the highest COR (0.758) and NSE (0.566) values.   

 370 

Consistent with the observations of the synthetic experiments, Vc,max25 and B impacted An in different ways. When Vc,max25 

was not adjusted, the photosynthesis rates simulated for a number of sites in the high-An range (most of them C4 plants) had 

some substantial overestimation, regardless of whether B had learned or default values (Figure 5a). It was only after we also 

learned Vc,max25 that these high biases were reduced (Figure 5b). Hence, apparently, the learning reduced the Vc,max25 for these 

sites compared to the default values. In contrast, learning B mainly corrected the low bias for low-An data points (both C3 and 375 

C4 plants) (Figure 5b). A group of sites with An <2 μmol m-2s-1 have been corrected upward (from yellow to green, bottom 

points in Figure 5b), due to a correction in the soil parameter B. Apparently, the original parameters overestimated the water 

stress for these sites. Our results suggest the adjustments to both parameters improved the results, but Vc,max25 was more 

impactful, especially in addressing the bias.  

 380 

Our test showed that the framework is moderately impacted by long-term nonstationarity, as the temporal test had worse 

metrics than the random test (comparing Table 2b with 2a). The absolute value of the bias increased from 0.177 in the 

random test to 0.347 in the temporal test. This suggests the current model (and perhaps training data) still has some 
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limitations with representing long-term changes. Possible reasons may include CO2 fertilization and its impact on water use 

efficiency or differences in the state of plants, as this factor is not included in our present parameterization. In the future, 385 

these issues could be addressed by assembling a more long-term training dataset (the Lin15 dataset has data ranging from 

1991 to 2013), as well as improving the parameterization and physics of the model. 

 

Figure 5. Comparisons of photosynthesis model calibration: mean estimated value of default parameters vs. mean estimated value 
of best learned parameters vs. observed value for different candidate models. (a) Impact of learning B with default Vc,max25. (b) 390 
Impact of learning Vc,max25 with varying B. The colors represent the results from the four different models, the shapes indicate the 
plant functional type (PFT) groups, and the dotted line in each panel indicates the ideal 1:1 relationship.  
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Table 2. Performance metrics for the candidate models for the Lin15 dataset. In all the following, subscript def indicates the default 
parameter value from CLM4.5 was used, while a parameter lacking def means the parameter was estimated as an output from a 395 
neural network (in all cases, V indicates that Vc,max25 was estimated as a function of PFT using NNV and B indicates estimation 
using NNB). Panel (a) is for the temporal holdout test where 70% of data points were used for training and 30% were reserved for 
testing; panel (b) is for the test where training and testing data groups were randomly selected. 

(a) Temporal holdout test for the following system 

 
Runs 

Corr RMSE  
(μmol m-2 s-1) 

Bias  
(μmol m-2 s-1) 

NSE 

Train Test Train Test Train Test Train Test 

Vdef+Bdef 0.565 6.780 1.476 0.041 

Vdef+Bdef 
** 0.592 5.488 1.034 0.318 

Vdef+B 0.678 0.547 5.887 6.730 1.353 1.754 0.321 -0.084 

V+Bdef 0.769 0.593 4.595 5.677 -0.129 -1.368 0.587 0.229 

V+B 0.800 0.748 4.299 4.421 0.037 0.347 0.638 0.532 

V+B 
** 0.774 0.768 4.269 4.198 0.056 0.092 0.597 0.581 

** refers to using C3_only plants in dataset 400 
 

(b) Random holdout test for the following system 

 
Runs 

Corr RMSE  
(μmol m-2 s-1)  

Bias  
(μmol m-2 s-1) 

NSE 

Train Test Train Test Train Test Train Test 

vdef+Bdef 0.565 6.780 1.476 0.041 

vdef+B 0.644 0.619 6.156 6.185 1.349 1.424 0.220 0.171 

v+Bdef 0.722 0.695 4.928 5.073 -0.389 -0.374 0.500 0.442 

v+B 0.792 0.758 4.262 4.480 0.070 0.177 0.626 0.566 
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 405 
Figure 6. Parameter recovery for real data. (a) Comparison of modeled parameter values to literature values by plant functional 
type (PFT). (b) Actual and modeled Vc,max25 values plotted by PFT (dashed line indicates the 1:1 ideal relationship). In this figure, 
both “V+Bdef” and “V+B” models were trained using the whole dataset. 

3.2.2. Recovered parameters 

Even though we did not prescribe the values of Vc,max25, the training on the dataset converged to parameter values that were 410 

well correlated with, yet still substantially different from, the literature values (Figure 6). The default Vc,max25 values came 

from in-situ measurements at a limited number of sites, while our values came from learning from a large dataset (essentially 

an inversion process limited to the model structure). The fact that they agreed with each other in the main pattern suggests 

both have merit, and that the learning process captured fundamental physics. The upper half of Figure 6b saw a high 

correlation, but Vc,max25 values for the V+B model were uniformly higher than the CLM4.5 defaults, especially for the NET 415 

Boreal PFT. The correlation was lower toward the lower half of Figure 6b (where Vc,max25 from CLM4.5 was lower than 65 

μmol m-2 s-1) -- the learned Vc,max25 had a larger variability. In particular, the learned Vc,max25 (V+B) for C4 grass is much 

lower than the default, which could be attributed to species-level variability and the fact that the dataset contains very limited 

sites with C4 plants. Hence, we do not argue that the values learned here would be applicable globally to other C4 grasses. 

For these cases, the influence of B or Bdef were mostly small (Vc,max25 from V+B and V+Bdef models were mostly similar) and 420 

thus parameter interaction from soil water stress was not significant. It seems the inter-PFT variability in Vc,max25 was 

previously under-represented by the CLM4.5 default parameter values (C4 grass, BET tropical, BDS temperate, BET 

temperature), and the learning process used here expanded the variability. The overall results showcase the ability of the 

algorithm to adapt to data. 
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 425 

In our interpretation, the learned values represent a more “precisely tuned” version of the literature Vc,max25 values, with the 

interference from soil water stress disentangled. The magnitude and ranking for PFTs remained similar to the literature 

values, but the results were improved in different ways for different PFTs. The V+B model obtained lower Vc,max25 for C4 

grasses, addressing the significant overestimation bias for these sites, which we noted in Figure 5a. Due to their different 

photosynthesis pathway, C4 plants have the lowest learned Vc,max25, but overall the highest net photosynthesis rates, which 430 

were not heavily influenced by the choice of the B parameter. For C3 grasses, V+B only slightly increased Vc,max25 compared 

to the default CLM4.5 values, which addressed the low bias noticeable in Figure 5b. The default soil parameterization for C3 

grass sites seemed somewhat deficient as soil water stress accounted for the other parts of variance in net photosynthesis, as 

demonstrated by the comparison between V+B and V+Bdef models in Figures 5b and 6b for C3 grass.  

 435 

We compared our learned Vc,max25 values (Table 3) with values from other earth system models (ESMs) and with some 

observatory values in the TRY database (Kattge et al., 2020; Rogers, 2014). The learned Vc,max25 values are higher than those 

of the TRY database for most PFT classes except for BDS Temperate and BDT Temperate; however, they are within the 

range of values used in other ESMs except for relatively higher estimations for NET Boreal and C3 grasses. On the scale of 

ESMs, several values for Vc,max25 are adopted by those models. For instance Vc,max25 for C4 grass is taken as 25 and 20 (μmol 440 

m-2 s-1) in AVIM and BETHY models, respectively (Table 3). These values agree with the learned Vc,max25 by the V+B model 

of 22.86 (μmol m-2 s-1), whereas much higher values were found to be adopted for C4 grasses with 60 (μmol m-2 s-1) in the 

Biogeochemical cycles model “BiomeBGC'' as reported in Rogers (2014), and 51.6 (μmol m-2 s-1) in CLM4.5. Vc,max25 from 

the V+B model and TRY database are similar for BET Tropical and BDT Temperate. For BDS Temperate, the learned 

Vc,max25 is lower than that in TRY by ~20 (μmol m-2 s-1), but similar values were used by BETHY and lower values were used 445 

by AVIM. For NET Boreal, BET Temperate, Crop R, and NET Temperate, the learned Vc,max25 values were all ~20 (μmol m-2 

s-1) higher than those of the TRY database, but (except for NET Boreal) similar values have been used by AVIM or BETHY. 

Both the learned (V+B) and the observed (TRY database) Vc,max25 values show a similar pattern with the lowest Vc,max25 for 

BET Tropical and a high value assigned for Crop R. 

  450 
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Table 3. Vc,max25 simulated by V+B model versus observed values from the TRY database (with partial overlap in species with the 
Lin15 dataset -- the percentage of overlap is provided in the table), and used in different earth system models such as CLM4.5, 
Atmosphere-Vegetation Interaction Model “AVIM”, and the Biosphere Energy Transfer Hydrology scheme “BETHY”.  

PFT CLM4.5 AVIM BETHY V+B (ours) TRY (mean / % species 
overlap)  

TRY 
(std) 

BET Temperate 61.5 68 58 59.04 39.54 / 31.3% 4.05 

BET Tropical 55 64 28/36  40.07 33.14 / 86.5% 14.09 

BDT Temperate 57.7 60 54 41.63 50.27 / 50.0% 21.62 

BDS Temperate 54 52 65 66.22 87.61/ 58.3% 11.77 

NET Temperate 62.5 60 58 60.64 44.33 / 50.0% 7.13 

NET Boreal 62.6 58 58 85.30 62.90 / 100.0% 22.53 

C3 grass 78.2 55/40  71 89.26 -  -  

C4 grass 51.6 25 20 22.86 
(limited data 

points) 

 - -  

Crop R 100.7 55 90 112.61 84.20 / 60.0% 2.19 
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4 Discussion 455 

As an initial exploration of the potential of the emerging differentiable computing paradigm for application to ecosystem 

modeling, our work showed promise but also had many limitations, as the goal was not to produce the best-performing 

photosynthetic model. We restricted our parameter sets to be dependent on PFT, whereas it is known that within-PFT 

variation can be significant and parameters could also be determined on the trait level as well as by multiple environmental 

factors. Our model did not consider the effects of memory, e.g., rainfall in previous days, and the states of the vegetation, 460 

e.g., carbon stored in the canopy or carbon: nitrogen ratios in the canopy. The soil moisture comes from the ERA5 dataset, 

which, based on comparisons to in-situ data, would be outperformed by ML-based soil moisture predictions (Fang et al., 

2017; Liu et al., 2022a, b), but we used it due to its global seamless coverage and availability for multiple soil depths. This 

work also only modified the parameterization scheme and did not learn model structures. Recently, development in 

differentiable hydrologic models allows learning parts of the model using neural networks (Feng et al., 2022a, b). In 465 

summary, we believe there is still lots of room for improving model quality, but at some point we may run into the limits of 

measurements (aleatoric uncertainty) or data availability (epistemic uncertainty) (Hüllermeier and Waegeman, 2021). Future 

effort can harness deep networks to establish reference levels as a measure of the data uncertainty (Feng et al., 2022a).  

 

This work appears to be the first evaluation of the Lin15 dataset, and, as such, it establishes a reference level to which future 470 

studies can compare. The current dataset may still have limitations in that the number of sites for C4 plants is small and does 

not allow ample testing. Some geoscientific domains have well-known benchmark datasets, e.g., the CAMELS dataset in 

hydrology (Feng et al., 2020). Having such a common (and hopefully large) benchmark dataset allows better model 

structures to be rapidly discovered and is highly beneficial to the growth of the community (Shen et al., 2018). Related to the 

limits of measurement errors discussed above, multiple deep-learning-based studies have explored the approximate limit of 475 

data error (or best achievable model) of CAMELS and that knowledge has been appreciated by the community (Feng et al., 

2021). Moreover, deep learning methods benefit from data synergy effects  (Fang et al., 2022), where more sites and more 

diverse data lead to a more robust model and better performance for each site.  

5 Conclusions 

In this study, we proposed a novel differentiable ecosystem modeling framework that uses neural networks as a 480 

parameterization scheme to support a process-based model (FATES). Training coupled neural networks was not previously 

possible without differentiable programming, and it allows us to approximate complex, a priori unknown mapping 

relationships between plant functional types, landscape characteristics, and physical parameters. The photosynthesis module 

was treated as a system of nonlinear equations, and, like other such systems, could be solved efficiently and in a massively 
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parallel fashion on graphical processing units (GPUs) by our differentiable framework. Vc,max25 and a soil water parameter 485 

could be simultaneously identified in our synthetic experiments, because they played different roles in the model.  

 

Compared to purely data-driven machine learning approaches, the differentiable programming framework provides 

physically meaningful variables and can be used to learn relationships from big data. Via training on a global dataset, we 

found Vc,max25 values for global sites that correlate with the values in the literature, but produce more accurate net 490 

photosynthesis rates. It is noteworthy that these values were identified without any supervision from experts other than the 

preparation of the training dataset and the model. We conclude that Vc,max25 has a larger impact on photosynthesis than the 

soil water stress parameter, but both can be useful in tuning model responses and their default values were not optimal. Not 

only is this method able to improve simulation quality and provide model parameterization, it can allow us to modify model 

structure and ask questions regarding unclear parts of the model in the future. There is significant room for this framework to 495 

improve and expand to other ecosystem modeling application.  
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6 Appendices 

Appendix A 

The System of nonlinear equations 

The FATES photosynthesis module is based on the classical Farquhar model for C3 plants (Farquhar et al., 1980), which 500 

calculates the photosynthetic rate based on carbon fluxes under different limitations.  For C4 plants, it uses the Collatz model 

(Collatz et al., 1992). Both models assume that the gross photosynthetic rate is affected by the maximum rate of 

carboxylation and is limited by RuBP carboxylase (Rubisco) (Ac, equation 1), light and electron transport (Aj, equation 2), 

and PEP carboxylase enzyme in C4 plants (Ap, equation 3). Ac, Aj, and Ap are calculated as: 

Aୡ ൌ  ൞

Vୡ,୫ୟ୶  ൈ ሺC୧ െ  Г∗ሻ 

C୧ ൅  Kୡ  ቀ1 ൅  
K୭
O୧
ቁ

 , for C3 plants

Vୡ୫ୟ୶                                         , for C4 plants    

ൢ (A1) 

A୨ ൌ  ቐ
J୶  ൈ ሺC୧ െ  Г∗ሻ 

4C୧ ൅  8Г∗
    , for C3 plants

αሺ4.6φሻ                         , for C4 plants    
ቑ (A2) 

A୔ ൌ  ቊ K୮
C୧

Pୟ୲୫
                         , for C4 plants   

   
ቋ (A3) 

where Vc,max  is the maximum carboxylation rate, Ci  is the intercellular leaf CO2  pressure,  Γ* is the CO2 compensation point, 505 

Kc  and Ko are the Michaelis-Menten constants, Oi  is the O2 partial pressure, Jx is the electron transport rate, ⍺ is the quantum 

efficiency (0.05 mol CO2 mol-1 photon), φ is the photosynthetically active radiation, Kp  is the initial slope of C4 CO2 

response curve, and patm is the atmospheric pressure. 

  

The gross photosynthetic rate (A) is then calculated by solving for the minimum root of the quadratic equations: 510 

θୡ୨A୧
ଶ െ ൫Aୡ ൅ A୨൯A୧ ൅ AୡA୨ ൌ 0 (A4) 

θ୧୮Aଶ െ ൫A୧ ൅ A୮൯A ൅ A୧A୮ ൌ 0 (A5) 

where Ai is an intermediate co-limited photosynthetic rate calculated using the empirical curvature parameter (θcj). Using Ai 

and Ap, and the empirical curvature parameter (θip), the gross rate is given by the smaller root of equation 5. To get the net 

photosynthetic rate (An), the plant respiration (Rd) is subtracted from the gross rate (A) as the following: 
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A୬ ൌ A െ  Rୢ (A6) 

Then using An, the CO2 partial pressure at the leaf surface (Cs) is calculated as: 

Cୱ ൌ max ሺ1.0e െ 6, Cୟ െ  
1.4 Pୟ୲୫A୬

gୠ
 ሻ  (A7) 

where Ca is CO2 partial pressure near the leaf surface and gb is the leaf boundary layer conductance. The stomatal 515 

conductance (gs) is then given by the maximum root of the quadratic equation: 

agୱଶ ൅ bgୱ ൅ c ൌ 0  (A8) 

where a, b, and c are functions in some PFT-dependent parameters (the intercept and the slope of medlyn stomatal 

conductance model (Medlyn et al., 2011)), An, Cs, patm, gb, and the vapor pressure deficit (D). Finally, Ci, is related to An 

using Ca, patm, gs, and gb as the following: 

C୧ ൌ Cୟ െ  A୬Pୟ୲୫
ሺ1.4gୱ ൅ 1.6gୠሻ

ሺgୱ ൅ gୠሻ
  

(A9) 

Both Vc,max25 and ꞵt  affect the plant-specific photosynthetic fluxes, despite not directly appearing in equations (1-9). They, 520 

however, indirectly affect some parameters where the maximum electron transport rate (Jmax25), the initial slope for C4 CO2 

response curve (Kp25), and  the plant respiration rate (Rd25) at 25 °C depend on Vc,max25 as: 

J୫ୟ୶ଶହ, K୮ଶହ, Rୢଶହ ൌ  ∅ଵሺVୡ,୫ୟ୶ଶହሻ  (A10) 

Then, the biophysical rates Vc,max, Jmax, and Kp, at the vegetation temperature (Tv) are calculated using Vc,max25, Jmax25, Kp25, ꞵt, 

and φ as:   

Vୡ,୫ୟ୶, J୫ୟ୶, K୮       ൌ  ∅ଶሺVୡ,୫ୟ୶ଶହ,J୫ୟ୶ଶହ, K୮ଶହ,β୲,φ, T୴ሻ  (A11) 

Similarly, the plant respiration (Rd) at Tv is calculated using Rd25 as: 525 

Rୢ                               ൌ  ∅ଷሺ Rୢଶହ, T୴ሻ  (A12) 

Vc,max, Kp, and Rd directly appear in equations (1-9), while Jmax, doesn’t directly affect those equations but the Jx term. Jx is 

given by the minimum root of the following quadratic equation: 

θ୔ୗ୍୍J୶ଶ െ ሺI୔ୗ୍୍ ൅  J୫ୟ୶ሻJ୶ ൅  I୔ୗ୍୍ J୫ୟ୶ ൌ 0   (A13) 

where θPSII is an empirical curvature for the electron transport rate and IPSII is the light utilized in electron transport.  

 

Computations of btran (ꞵt) in CLM4.5 530 

ꞵt is calculated by aggregating the plant wilting factor (w) and plant root distribution (r) across different soil different layers. 
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β୲               ൌ  ෍w୧r୧
୧

  (A14) 

The plant wilting factor (wi) is mainly dependent on the soil water potential ψi and other PFT-dependent parameters such as 

the soil matric potentials for closed stomata ψc and open stomata ψo, which represent the soil water potentials when stomata 

are fully closed and fully open, respectively, as in equation (15). The factor wi is also dependent on other factors like the 

temperature of the soil layer (Ti) relative to the freezing temperature (Tf), the volumetric liquid water (θliq) and ice (θice) 535 

contents, and the volumetric water content at saturation (θsat).  

w୧              ൌ  ቐ
Ѱୡ െ  Ѱ୧ 
Ѱୡ െ  Ѱ୭

ቈ
θୱୟ୲,୧ െ  θ୧ୡୣ ୧

θୱୟ୲,୧
቉ ൑ 1  ;  T୧ ൐  T୤ െ 2 and θ୪୧୯,୧ ൐ 0

0                                                        ;   T୧ ൑  T୤ െ 2 and θ୪୧୯,୧ ൑ 0
ቑ  (A15) 

The soil matric potential ψi is calculated using a power-law formulation: 

Ѱ୧              ൌ Ѱୱୟ୲,୧ ൈ  S୧
ି஻೔ ൒ Ѱୡ  (A16) 

where ψsat is the saturated soil matric potential, S is the soil wetness, and B is the Clapp and Hornberger parameter, all 

defined for a specific soil layer (i). Different soil attributes such as percentages of sand (%sand) and clay (%clay), fraction of 

organic matter (Fom), and soil moisture (θliq) are used in computing ψsat, S, and B. ψsat is calculated as: 540 

Ѱୱୟ୲,୧        ൌ ൫1 െ  F୭୫,୧൯  ൈѰୱୟ୲,୫୧୬,୧ ൅  F୭୫,୧  ൈ  Ѱୱୟ୲,୭୫  (A17) 

where Fom,i is the fraction of organic matter, ψsat,om is the saturated organic matter matric potential, and ψsat,min,i is the 

saturated mineral soil matric potential calculated using (%sand) as: 

Ѱୱୟ୲,୫୧୬,୧ ൌ െ10.0 െ 10ଵ.଼଼ି ଴.଴ଵଷଵൈሺ%ୱୟ୬ୢሻ౟   (A18) 

The soil wetness (S) is calculated using the volumetric contents θliq, θice , and θsat as: 

S ୧               ൌ  
θ୪୧୯,୧

θୱୟ୲,୧ െ  θ୧ୡୣ,୧
 , 0.01 ൑ S ൑ 1  (A19) 

where θsat for a soil layer is: 

θୱୟ୲,୧        ൌ ൫1 െ  F୭୫,୧൯  ൈ θୱୟ୲,୫୧୬,୧ ൅  F୭୫,୧  ൈ  θୱୟ୲,୭୫  (A20) 

θsat,om is the porosity of the organic matter, while the porosity of the mineral soil (θsat,min) using (%sand) is: 545 

θୱୟ୲,୫୧୬,୧ ൌ 0.489 െ 0.00126 ൈ ሺ%sandሻ୧     (A21) 

 Similar to ψsat and θsat (see equation 17 and 20), the parameter B is calculated as: 
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B୧               ൌ ൫1 െ  F୭୫,୧൯  ൈ B୫୧୬,୧ ൅  F୭୫,୧  ൈ  B୭୫             (A22) 

where the Bom is the exponent for organic matter while Bmin,i the exponent for mineral soil is: 

B୫୧୬,୧        ൌ 2.91 ൅ 0.159 ൈ ሺ%clayሻ୧   (A23) 

7 Code Availability 

A code release with the example training dataset will be provided upon acceptance of the paper. 
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