Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: Insights from optical properties and carbon isotopes

Shuai Chen¹, Jun Zhong², Lishan Ran¹, Yuanbi Yi², Wanfa Wang³, Zelong Yan⁴, Si-liang Li^{2,5}, Khan
M.G. Mostofa²

⁶ ¹Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong, China

- ⁷²Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
- 8 ³College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of
- 9 Education, Guizhou University, Guiyang, 550025, China
- 10 ⁴School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116081, China
- 11 ⁵State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
- 12 Correspondence to: Jun Zhong (jun.zhong@tju.edu.cn) and Lishan Ran (lsran@hku.hk)

13 Abstract. Mountainous rivers are critical in transporting dissolved organic carbon (DOC) from terrestrial environments to 14 downstream ecosystems. However, how geomorphologic factors and anthropogenic impacts control the composition and 15 export of DOC in mountainous rivers remains largely unclear. Here, we explore DOC dynamics in three subtropical 16 mountainous catchments (i.e., the Yinjiang, Shiqian, and Yuqing catchments) in southwest China which are heavily influenced by anthropogenic activities. Water chemistry, stable and radioactive carbon isotopes of DOC ($\delta^{13}C_{DOC}$ and 17 18 $\Delta^{14}C_{DOC}$), and optical properties (UV absorbance and fluorescence spectra) were employed to assess the biogeochemical 19 processes and controlling factors on riverine DOC. The radiocarbon ages of DOC in the Yinjiang River varied widely from 20 928 years before present to modern. Stepwise multiple regression analyses and partial least square path models revealed that 21 geomorphology and anthropogenic activities were the major drivers controlling DOC concentrations and DOM 22 characteristics. Catchments with higher catchment slope gradients were characterized by lower DOC concentrations, enriched $\delta^{13}C_{DOC}$ and $\Delta^{14}C_{DOC}$, and more aromatic dissolved organic matter (DOM), which were opposite to those with 23 24 gentle catchment slopes. Variabilities in DOC concentrations were also regulated by land use with higher DOC 25 concentrations in urban and agricultural areas. Furthermore, DOM in catchments with a higher proportion of urban and agricultural land uses was less aromatic, less recently produced and exhibited a higher degree of humification and more 26 27 autochthonous humic-like DOM. This research highlights the significance of incorporating geomorphologic controls on 28 DOC sources and anthropogenic impacts on DOM composition into the understanding of DOC dynamics and quality of 29 DOM in mountainous rivers which are globally abundant.

30 1 Introduction

31 Dissolved organic carbon (DOC) plays a fundamental role in the riverine carbon cycle with approximately 0.26 Pg (1Pg

32 $=10^{15}$ g) of DOC exported from global rivers to the ocean each year, accounting for more than half of the total organic carbon 33 export (Cai, 2011; Raymond and Spencer, 2015). Owing to continued climate warming and rapid land use changes, it is 34 important to gain a better understanding of the spatial and temporal dynamics of DOC transport in river systems (Butman et 35 al., 2014; Fasching et al., 2016; Zhong et al., 2021). For example, the elevated temperature has a dominant effect on DOC 36 concentration and dissolved organic matter (DOM) composition by enhancing decomposition and photochemical 37 degradation rates of DOM (Zhou et al., 2018), contributing to significant CO₂ emissions from inland waters (Raymond et al., 38 2013). Additionally, DOM provides energy and nutrient sources for aquatic biota (Findlay et al., 1998), adsorbing heavy 39 metals and organic pollutants (Aiken et al., 2011). Riverine DOC can also restrict in-stream primary production by reducing 40 light penetration and lowering temperature in the water column, thereby serving as an important determinant in shaping the 41 ecological and biogeochemical processes in aquatic environments (Ask et al., 2009). Therefore, disentangling the processes 42 controlling riverine DOC dynamics is crucial for a greater understanding of aquatic ecosystem functioning and the global 43 carbon cycle. Recent advances in spectroscopic techniques, especially the UV-visible spectrophotometry and fluorescence 44 spectroscopy, and widespread application of stable and radioactive carbon isotopes on bulk DOC have provided insights into 45 the composition, source, and age of DOM in freshwater ecosystems (Fellman et al., 2010; Marwick et al., 2015; Minor et al., 46 2014). These new techniques have led to significant improvements in our understanding of the biogeochemical processes of 47 DOC in river systems, which will continue to be effective tools for researchers to gain deeper insights into the riverine 48 carbon cycle.

49 The biogeochemical processes of DOM in river systems have been extensively studied, which depend largely on the 50 sources and composition of DOM (Toming et al., 2013). Riverine DOM is a mixture generated from autochthonous and 51 allochthonous sources. Among them, autochthonous DOM is a pool of dead and living microbial and algal biomass that is 52 derived within the aquatic ecosystem (Devesa-Rey and Barral, 2011), which mainly consists of non-humic substances that 53 are more bioavailable (Toming et al., 2013). In comparison, allochthonous DOM refers to DOM that originates from outside 54 of the aquatic ecosystem and is typically composed of higher plants and soil organic matter (Zhang et al., 2023), which may 55 also contain organic waste of anthropogenic origin (Ramos et al., 2006; Toming et al., 2013). Consequently, allochthonous 56 DOM is generally characterized by high lignin content and high molecular weight, making it refractory to decomposition 57 (Devesa-Rey and Barral, 2011).

Recent studies have indicated the significance of geomorphologic factors, such as elevation and catchment slope, in influencing the export of DOC and riverine carbon cycling (Connolly et al., 2018; Li Yung Lung et al., 2018). Compared with high-relief catchments, low-relief regions with longer water residence time, stronger hydrologic connectivity to rivers, and greater development of wetlands are typically characterized by increased concentration of riverine DOC (Harms et al., 2016; McGuire et al., 2005). Specifically, DOC supply is likely regulated by the amount of stored soil organic carbon (SOC) 63 in a catchment (Lee et al., 2019; Rawlins et al., 2021). However, this supply is limited by shallow soil depth and high flow 64 velocity in high-relief regions (Lee et al., 2019). The varying extent of hydrologic connectivity due to changing water 65 residence time with different catchment slopes may also have significant influences on DOC dynamics (Connolly et al., 66 2018). Typically, it is anticipated that as the slope increases towards higher elevation areas, where residence time is relatively 67 short and soil organic matter is well-connected to hydrologic pathways, the composition of DOM pools in inland waters will 68 shift towards a more "terrestrial" characteristic. This shift involves larger molecules with high molecular weight and 69 aromatic structures (Creed et al., 2018; Xenopoulos et al., 2021). Although geomorphologic characteristics have proved to be 70 useful in estimating DOC concentrations (Harms et al., 2016; Mzobe et al., 2020), the underlying mechanisms that regulate 71 DOC dynamics in small mountainous rivers remain poorly understood. Therefore, a deep understanding of the 72 geomorphologic controls on DOC dynamics is urgently needed. Subtropical small mountainous rivers are characterized by 73 steep catchment slopes, high erosion rates, frequent rainfall events in wet seasons, and rapid change in hydrology during 74 these rainfall events (Lee et al., 2019; Leithold et al., 2006), yet have received little research attention regarding their DOC 75 dynamics. Moreover, runoff, catchment slope gradient, and SOC have been recognized as good predictors for DOC export in 76 small mountainous rivers (Lee et al., 2019). Yet, the extent to which these factors, along with land use patterns, effectively 77 regulate the DOC dynamic is still far from well-understood (Lee et al., 2019: Mover et al., 2013).

Anthropogenic impacts, such as urban and agricultural land uses, have led to significant alterations to the flux of DOC 78 79 and the fate and quality of DOM in global streams and rivers (Coble et al., 2022; Wilson and Xenopoulos, 2008; Xenopoulos 80 et al., 2021). Agricultural streams and rivers are dominated by microbial-derived, protein-like DOM, while urban freshwater 81 ecosystems are characterized by microbial, humic-like or protein-like, and autochthonous DOM (Hosen et al., 2014; 82 Williams et al., 2016; Xenopoulos et al., 2021). Agricultural and urban land uses tend to increase nutrient loading in streams, 83 resulting in enhanced bacterial production and DOM decomposition (Quinton et al., 2010; Williams et al., 2010). As a result, 84 microbial-derived DOM plays a crucial role in agricultural and urban rivers. In addition, DOM tends to have a more reduced 85 redox state and is likely more labile and accessible to the microbial community in agricultural streams when compared to the 86 DOM found in natural streams (Fasching et al., 2019; Williams et al., 2010). On the scale of years to decades, anthropogenic 87 impacts can accelerate terrestrially sourced DOC export to aquatic ecosystems (Xenopoulos et al., 2021). On the scale of 88 decades to centuries, however, anthropogenic impacts would shift natural DOM to forms of low-molecular weight, enhanced 89 redox state with potentially increased liability, or increased aromaticity due to warmer climate and altered hydrology 90 (Stanley et al., 2012; Xenopoulos et al., 2021).

In this study, we evaluated how geomorphologic controls (i.e., mean catchment slope and mean drainage elevation) and anthropogenic impacts (i.e., land use patterns) affect the DOC dynamics and DOM characteristics in three subtropical catchments encompassing numerous small to medium mountainous rivers in southwest China. Our prior observations from

94 these catchments showed that particulate organic carbon (POC) and dissolved inorganic carbon (DIC) dynamics were highly 95 affected by in-stream photosynthesis, as evidenced by stable carbon isotope and radioactive carbon isotope of POC and DIC 96 (Chen et al., 2021). We hypothesize that catchments with a higher proportion of agricultural and urban land use, gentler 97 catchment slope, and lower elevation would exhibit higher riverine DOC concentrations and more autochthonous microbial 98 humic-like DOM than steeper catchments at high elevations with fewer influences by agricultural and urban land uses. 99 Relationships of DOC concentrations, stable isotopic values of DOC, DOM quality assessed through optical metric, nutrient 100 concentrations, and land use patterns versus geomorphologic characteristics (i.e., mean catchment slope and mean drainage 101 elevation) were examined. We also examined relationships between geomorphologic characteristics and radiocarbon for nine 102 sampling sites in the Yinjiang River. This study allows us to gain a deeper insight into the geomorphologic controls and 103 anthropogenic impacts on DOC dynamics and DOM quality in the subtropical, anthropogenically influenced mountainous 104 rivers.

105 2 Materials and Methods

106 **2.1 Study area**

107 Yinjiang River (Y), Shiqian River (S), and Yuqing River (Q) are tributaries of the Wujiang River (Fig. 1a), the largest 108 tributary on the south bank of the upper Changjiang River. The drainage area is 1231, 2101, and 1561 km² for the Yinjiang, 109 Shiqian, and Yuqing rivers, respectively. Data on land use types and air temperature in 2015, as well as a 90 m digital 110 elevation model (Shuttle Radar Topography Mission, SRTM) were obtained from the Resource and Environment Data Cloud 111 Platform of the Chinese Academy of Sciences (http://www.resdc.cn/). The SOC content in the surface layer (0-5 cm) was 112 collected from the SoilGrids1km database (a global soil information system at 1 km resolution) (Hengl et al., 2014). 113 Information on dams was retrieved from Wang et al. (2022), and their location was identified by Google Earth. Furthermore, 114 the distance from the river mouth (i.e., the Yinjiang, Shiqian, and Yuqing rivers) to the sampling sites was also estimated 115 using Google Earth. We further delineated the sub-catchments, which constitute the contributing area upstream of sampling 116 sites, by spatial analyst tools of ArcGIS (version 10.2). The mean catchment slope (degrees; 3D analysis tools) and elevation 117 for sub-catchments were extracted from the digital elevation model using ArcGIS. Annual air temperature (Tair), catchment 118 slope, topsoil SOC, and proportion of urban and agricultural land use for these sub-catchments were also determined using 119 ArcGIS. The mean drainage elevation of these three catchments ranges from 340 m to 2424 m, with the lowest and highest 120 elevations both reported in the Yinjiang River catchment, showing the greatest change in relief (Figs. 1a and S1a). The

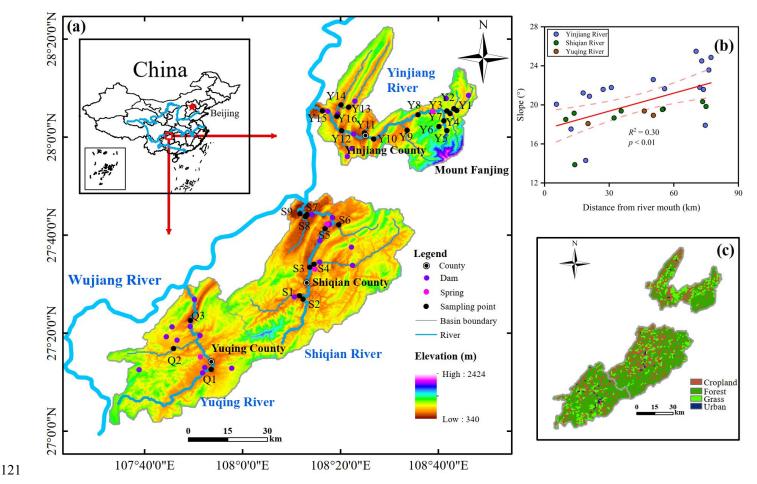


Figure 1. Map of the study area. (a) Overview of the sampling sites and elevation characteristics in the three study catchments, including the Yinjiang, Shiqian, and Yuqing catchments, (b) correlation between mean catchment slope and the distance from the river mouth (i.e., the Yinjiang, Shiqian, and Yuqing rivers) to the sampling site, and (c) spatial variation in land-use patterns.

125 topsoil SOC exhibited a spatial distribution that resembled elevation, with regions with higher elevation displaying higher 126 SOC contents (Fig. S2). Similar to elevation, the Yinjiang River catchment has a greater variation in mean catchment slope 127 (from 14.3° to 25.5°), while the Shiqian and Yuqing river catchments have a mean catchment slope of approximately 20°, 128 except the segment above site S8 (13.9°; Figs. 1b and S1b). Carbonate rock is widely distributed in the three catchments, 129 accounting for a large proportion of the exposed strata (Han and Liu, 2004). The remaining areas are mainly covered by 130 clastic rocks, igneous rocks, and low-grade metamorphic rocks. Forest, agriculture, and urban areas are the three dominant 131 land uses in these studied catchments (Fig. 1c). Forest is generally distributed in high-elevation regions, while urban and 132 agricultural land uses are mainly located in low-elevation regions. The proportion of urban and agricultural land uses in the 133 Yuqing River catchment varies from 17.3% to 23.1% (Figs. 1c and S1c). This catchment has a higher % urban/agriculture 134 land use than other studied catchments and less variability in land use compared to the Yinjiang and Shiqian river catchments 135 (from 4.5% to 46.5% and from 9.6% to 41.3%, respectively). There are three mountainous agricultural counties (i.e., 136 Yinjiang, Shiqian, and Yuqing; Fig. 1a) in this study area, where crops are mainly C4 (e.g., corn and sorghum) and C3 (e.g., 137 rice, wheat, and potato) plants. Dams and reservoirs are widely distributed in the three catchments, and these dams are primarily used for agricultural irrigation and power generation (Fig. 1a). This study area is highly affected by monsoon-influenced humid subtropical climate with April to October being the rainy season, and the average annual precipitation, runoff, and discharge are 1100 mm, 1004 mm yr⁻¹ and 14.4 m³ s⁻¹, respectively, in the Yinjiang River catchment. Further details on the regional setting of the study area and the sources and methods for catchment characteristics delineation are provided in our previous study (Chen et al., 2021).

143 2.2 Field sampling

144 Surface water samples (n = 28) along the mainstem and major tributaries of the Yinjiang River, Shiqian River, and Yuqing 145 River and spring water samples (n = 4) were collected in September 2018 (Fig. 1a). During the sampling period, two water 146 samples (sites Y12 and Y15) were significantly affected by rainfall events, and an additional sample was collected at site 147 Y12 before the rainfall event as it is close to the hydrological station. Unless stated otherwise, the data used in this study 148 from site Y12 are based on the sample collected after rainfall events due to the availability of carbon isotopes. Electrical 149 conductivity (EC) and dissolved oxygen (DO) were measured by a multi-parameter water quality probe (WTW, pH 150 3630/Cond 3630, Germany) in the field. For the analysis of ion concentrations, total phosphorus (TP), ammonium (NH4⁺-N), 151 and total nitrogen (TN), water samples were filtered through 0.45 µm cellulose acetate membranes. Water samples for the 152 concentrations and isotopes of DOC and DOM absorbance and fluorescence were filtered through pre-combusted glass fibre 153 filters (Whatman, 0.7 µm). The filtered water was stored in a Milli-Q water and sampling water pre-washed brand-new 154 low-density polyethylene container at low temperature (4°C) in the dark within one week before optical properties analysis 155 and acidified by phosphoric acid to pH = 2 for DOC analysis. Water samples were also filtered for determining DIC (through 156 0.45 µm cellulose acetate membranes) through titration with hydrochloric acid and analyzing POC using retained suspended 157 particles on the filter membranes. The water samples filtered through 0.22 µm cellulose-acetate filter membranes were used 158 to determine water isotopes (δ^{18} O and δ D). Detailed information on sampling methods was provided in Chen et al. (2021) 159 and Zhong et al. (2020).

160 **2.3 Laboratory analysis**

The main cations (K⁺, Na⁺, Ca²⁺, and Mg²⁺) were measured by inductively coupled plasma emission spectrometer (ICP-OES), and the main anions (Cl⁻, SO₄²⁻, and NO₃⁻) were measured by ion chromatography (Thermo Aquion; Chen et al., 2020). The normalized inorganic charge balance is within 5%, indicating the accuracy of the measured data. The concentrations of NH₄⁺-N were analyzed using an automatic flow analyzer (Skalar Sans Plus Systems), and the relative deviations of the results of NH₄⁺-N were less than 5%. DOC concentrations were determined with a total organic carbon analyser (OI Analytical, Aurora 1030W, USA) with duplicates (±1.5%, analytical error) and a detection limit at 0.01 mg L⁻¹. Water isotopes were measured by a Liquid Water Isotope Analyzer (Picarro L2140-i, USA) with measurement precisions at ± 168 0.3 % for δ^{18} O. The above analyses were carried out at the Institute of Surface Earth System Science, Tianjin University.

169 For the determination of stable carbon isotope and radiocarbon isotope of DOC ($\delta^{13}C_{DOC}$ and $\Delta^{14}C_{DOC}$), water samples 170 were first concentrated using a rotary evaporation and then oxidized through the wet oxidation method (Leonard et al., 2013). 171 In this study, nine water samples collected from the Yinjiang River were selected for $\Delta^{14}C_{DOC}$ analysis as the Yinjiang River 172 catchment has the greatest change in geomorphologic characteristics (i.e., elevation and catchment slope) and the highest 173 proportion of agricultural and urban land uses among the three catchments. The generated CO_2 was purified in a vacuum system for $\delta^{13}C_{DOC}$ and $\Delta^{14}C_{DOC}$ analyses, respectively. $\delta^{13}C_{DOC}$ was directly determined by the MAT 253 mass spectrometer 174 with an analysis accuracy of ± 0.1 %. For $\Delta^{14}C_{DOC}$ analysis, the purified CO₂ was transformed into graphite following the 175 176 same method of $\Delta^{14}C_{POC}$ analysis (Chen et al., 2021) and measured by an accelerator mass spectrometry (AMS) system 177 within 24 hours with an analytical error of ± 3 ‰ (Dong et al., 2018).

Optical analyses on DOM were conducted on river samples. DOM absorbance of river water samples was measured from 250 to 750 nm at 1 nm intervals using a UV (ultraviolet)-visible spectrophotometer (UV-2700, Shimadzu) with a 1 cm quartz cuvette. The UV-visible spectrophotometer was blanked with Milli-Q water prior to data collection. Decadic absorbance values were used to calculate decadic absorption coefficients as below (Poulin et al., 2014):

$$182 \qquad \alpha_{254} = Abs_{254}/L,$$

Where, α_{254} is the decadic absorption coefficient (m⁻¹), Abs₂₅₄ is the absorbance at 254 nm, and L represents the path length (m). Specific UV absorbance at 254 nm (SUVA₂₅₄; reported in units of L mg C⁻¹ m⁻¹) was determined according to Weishaar et al. (2003; Table 1):

(1)

(2)

186 SUVA₂₅₄ = α_{254} /DOC.

187 DOM fluorescence was determined with a fluorescence spectrophotometer (F-7000, Hitachi, Japan) to quantify 188 humic-like, fulvic-like, and protein-like fluorescences (Fellman et al., 2010). The fate of humic-like fluorescences may be 189 self-assembly particles or be adsorbed onto minerals, while protein-like fluorescences are tightly associated with biological 190 processes, and biodegraded into inorganic matter (Fellman et al., 2010; He et al., 2016). The excitation wavelengths ranged 191 from 220 to 400 nm at 5 nm increments, and the emission wavelength from 280 to 500 nm at 2 nm increments. Blanks were 192 measured daily with the same settings to correct excitation-emission matrices (EEMs). Parallel factor analysis (PARAFAC) 193 was performed using the N-way toolbox in Matlab (MathWorks, USA) to determine peaks (Andersson and Bro, 2000; 194 Mostofa et al., 2019; Stedmon and Bro, 2008). Detailed procedures and criteria for applying and validating the PARAFAC 195 model are available in Yi et al. (2021). Identified PARAFAC model components were further compared with relevant 196 published and reported fluorophores in the OpenFluor database (Table 1; Murphy et al., 2014). Several common indices of 197 DOM composition were determined from EEMs, including fluorescence index (FI; McKnight et al., 2001), humification 198 index (HIX; Ohno, 2002), and freshness index (β/α ; Parlanti et al., 2000; Table 2).

199

200 Table 1. Description of the three components identified by PARAFAC and comparison with previous studies from the

Component	Ex _{max}	Em _{max}	Description and likely structure	Number of matches in Openfluor	Previous studies
C1	295	402	Similar to traditionally defined peak M, marine humic-like components, are products from microbial processes or autochthonous production.	6	C6 (Walker et al., 2009); C4 (Kim et al., 2022); C4 (Li et al., 2016)
C2	275	338	Protein-like (Tryptophan-like) components, commonly found in anthropogenically affected rivers, are associated with recent biological production and breakdown products of lignin.	30	C3 (DeFrancesco and Guéguen, 2021); C7 (Lambert et al., 2017); C2 (Du et al., 2019)
C3	325	440	Traditional fulvic-like peaks A and C, humic-like and terrestrial delivered OM, autochthonous, or microbial source.	70	C1 (Amaral et al., 2016); C1 (Ryan et al., 2022); C1 (Shutova et al., 2014)

201	OpenFluor database with a minimum	n similarity score of 0.95	(Murphy et al., 2014).

202

203 2.4. Statistical analysis

204 Normality of the data was first examined by a Shapiro-Wilk test using SPSS 26. Normally distributed data were analyzed by 205 one-way ANOVA with Tukey's post-test for multiple comparisons. Nonparametric data with three or more comparisons were 206 made by Kruskal-Wallis test followed by Holm's Stepdown Bonferroni correction. The Mann-Whitney U test was used for 207 comparison of distributions between two groups. The correlations among DOC concentrations, DOM properties, carbon 208 isotopes, ion concentrations, and catchment characteristics (i.e., mean catchment slope, the proportion of different land uses, 209 mean annual air temperature, and mean drainage elevation) were computed by Pearson's correlation coefficients (R) by 210 OriginPro 2021 (student version). Values are presented as the mean ± standard deviation (SD). All statistical tests were 211 performed at a 0.05 significance level. In addition, all the statistical analyses were performed again after data from site Y12 212 were removed to test the possible skew of findings, as the sample was significantly affected by rainfall events. If not 213 mentioned otherwise, the results from site Y12 did not skew the findings at the significance level of 0.05.

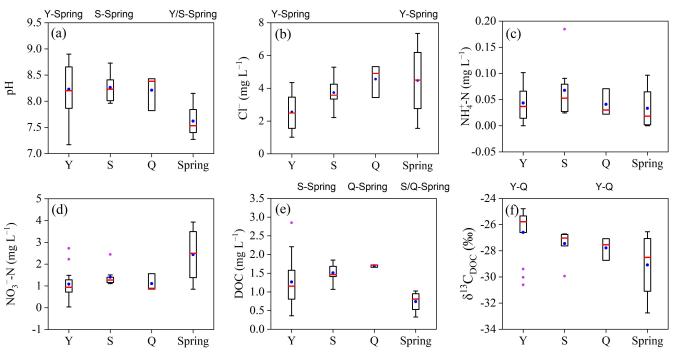
We performed a stepwise multiple linear regression (MLR) modeling to identify significant environmental factors of DOC concentrations and DOM properties using SPSS 26. All environmental factors were included in the models except for SOC because we aim to examine the impacts of human activities and geomorphology rather than the direct influence of SOC on DOC concentrations and DOM properties. The objective model with the highest adjusted R^2 value was used to infer the DOC concentrations and DOM properties. In addition to the MLR and Pearson correlation analyses to explore the

219	relationships between environmental factors and DOC, we further performed the partial least squares path model (PLS-PM)
220	to infer direct and indirect effects of multiple factors (e.g., geomorphologic and anthropogenic impacts) on DOC
221	concentrations and DOM properties. The PLS-PM analysis was performed using the R package "plspm" (Sanchez, 2013).
222	Because PLS-PM offers the advantage of not imposing any distributional assumptions on the data, which enhances its broad
223	applicability (Sanchez, 2013), and allows for the exploration of complex cause-effect relationships involving latent variables,
224	it is a suitable technique for multivariate analyses. Each latent variable consists of one or more manifest variables (e.g.,
225	geomorphology, including elevation and slope). The environmental factors used in the model were categorized into seven
226	latent variables, including geomorphology (elevation and slope), anthropogenic activities (e.g., urban and agricultural land
227	uses and anthropogenically derived $Cl^{-}(Cl^{-}_{anthro}, calculated as the total Cl^{-} concentration minus atmospheric contributed Cl^{-}$
228	concentration, which is the lowest Cl ⁻ concentration at site Y5 in the Yinjiang River; Gaillardet et al., 1997; Meybeck, 1983)),
229	climate (T _{air}), SOC (SOC content), water chemistry (pH), POC (POC concentrations), and nutrient (NH4 ⁺ -N and TN). The
230	environmental factors and their manifest variables included in the model were the most critical variables identified based on
231	the Pearson correlation results. These variables were selected after reducing the full models (initial models with more
232	variables) to meet the requirements of the PLS-PM analysis (Du et al., 2023; Sanchez, 2013; Tian et al., 2019). In addition,
233	the structure of the model was simplified to focus on the major effect of environmental factors on DOC concentrations rather

Table 2. DOM optical parameters used in this study.

Index Name	Calculation	Description	Reference
SUVA ₂₅₄ = α_{254} /DOC SUVA ₂₅₄ concentration. α_{254} is the decadic UV absorbance at 254 nm.		An indicator for the degree of aromaticity. It is positively correlated with aromaticity.	Weishaar et al. (2003)
Fluorescence FI = Em450/Em500, at Ex 370 nm. index (FI)		A proxy for DOM source. Higher values (~1.9) were associated with microbial sources, and lower values (~1.4) correlated with terrestrial sources.	McKnight et al. (2001)
Humification index (HIX)	HIX = $\sum 435-480/(\sum 300-345+\sum 435-480)$, at Ex 254 nm.	Indicator of humification status of DOM. Higher HIX values indicate an increasing degree of humification.	Ohno (2002)
Freshness index (β/α)	$\beta/\alpha = \text{Em380} (\beta) / \text{the Em intensity}$ maximum between 420 and 435 nm at Ex 310 nm (α).	Higher β/α values are commonly associated with the increasing contribution of recently microbially produced DOM.	Parlanti et al. (2000)

than to explore the effects on other factors (e.g., the geomorphologic controls on POC were ignored). The significance of the


237 path coefficients was determined through a nonparametric bootstrap resampling of 1000 times.

238 3 Results

239 3.1 Spatial variations in water chemistry, DOC concentrations, and isotopes of DOC

240 Both river water and spring water were mildly alkaline with pH varying from 7.2 to 8.9, and the pH in the Yinjiang and 241 Shiqian rivers was higher than that in the spring water (Fig. 2a). The Cl⁻ concentration showed an increasing trend in the 242 Yinjiang, Shiqian, and Yuqing rivers, with an average of 2.56 ± 1.03 mg L⁻¹, 3.76 ± 0.83 mg L⁻¹, and 4.55 ± 0.81 mg L⁻¹, 243 respectively (Fig. 2b). In addition, the Cl⁻ concentration in the spring water ($4.48 \pm 2.08 \text{ mg L}^{-1}$) was significantly higher 244 than that in the Yinjiang River (p < 0.05; Fig. 2b). Within the rivers and springs, the water displayed similar NH₄⁺-N 245 concentrations with the mean value at 0.04 ± 0.03 mg L⁻¹, 0.07 ± 0.05 mg L⁻¹, 0.04 ± 0.03 mg L⁻¹, and 0.03 ± 0.04 mg L⁻¹ in the Yinjiang, Shiqian, Yuqing rivers, and spring water (Fig. 2c). In springs, the average NO_3^-N concentration was 1.93 \pm 246 247 0.93 mg L⁻¹, higher than the average in the three rivers (1.15 ± 0.36 mg L⁻¹), though there were no significant differences for 248 the overall NO₃⁻-N concentration between the rivers and springs (p > 0.05; Fig. 2d).

249

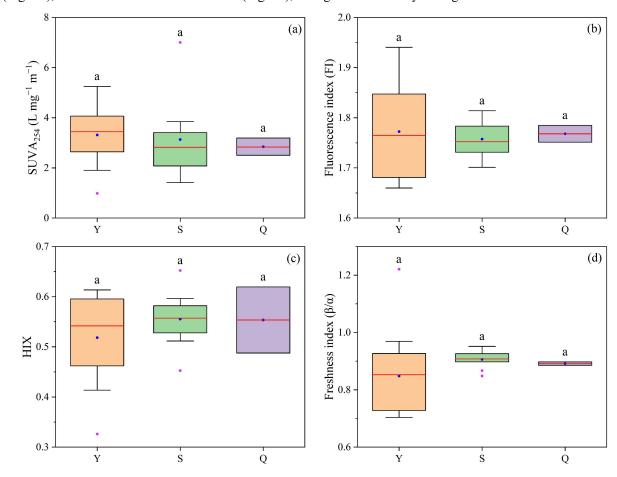
250

Figure 2. Spatial variations in water chemistry in the Yinjiang (Y), Shiqian (S), and Yuqing (Q) rivers and springs. (**a**) pH, (**b**) Cl⁻, (**c**) NH₄⁺-N, (**d**) NO₃⁻-N, (**e**) DOC, and (**f**) δ^{13} C_{DOC}. In each box plot, the end of the box represents the 25th and 75th percentiles, the blue solid dot represents the mean, the horizontal line inside the box represents the median, and the whiskers represent 1.5 times the upper and lower interquartile ranges (IQR). The magenta solid dot represents the outlier (data points outside of the 1.5 interquartile ranges). Letters above the boxes represent significant differences between the grouping of river and/or spring water based on statistical analyses at the significance level of 0.05 (e.g., Y-Spring above panel (b) indicates that the Cl⁻ in river water of the Yinjiang River was significantly

257 different from that in the spring water).

DOC concentrations in the three study rivers varied from 0.36 to 2.85 mg L^{-1,} with the highest mean concentration in the Yuqing River ($1.70 \pm 0.04 \text{ mg L}^{-1}$; Fig. 2e), followed by the Shiqian River ($1.51 \pm 0.22 \text{ mg L}^{-1}$) and the Yinjiang River ($1.27 \pm 0.66 \text{ mg L}^{-1}$). The DOC concentrations in spring water were significantly lower than those in the surface water of the Shiqian and Yuqing rivers (p < 0.05; Fig. 2e), and the average DOC concentration in spring water ($0.74 \pm 0.30 \text{ mg L}^{-1}$) was also lower than the average DOC concentration in the Yinjiang River, indicating there must be other sources of DOC besides groundwater.

For $\delta^{13}C_{DOC}$, although the average $\delta^{13}C_{DOC}$ values showed a decreasing trend in the Yinjiang River, Shiqian River, Yuqing River, and springs, averaging at $-26.6 \pm 1.8 \%$, $-27.5 \pm 1.1 \%$, $-27.8 \pm 0.9 \%$, and $-29.1 \pm 2.7 \%$, respectively, there were no statistically significant differences on the overall $\delta^{13}C_{DOC}$ values between the three rivers and springs (p > 0.05; Fig. 2f). The $\Delta^{14}C_{DOC}$ of the Yinjiang River varied widely from -109 % to 33 ‰ with an average of $-54.7 \pm 39.9 \%$ (Table 3). The radiocarbon ages of the DOC ranged from 928 years BP (i.e., before present) to present, and the youngest $\Delta^{14}C_{DOC}$ (33.3 ‰) was found at site Y12.


Table 3. $\Delta^{14}C_{DOC}$ and age of DOC in the Yinjiang River.

River	Samples	$\Delta^{14}C_{DOC}$ (‰)	DOC-Age (yr BP)	SD of DOC-Age (yr BP)	
	Y1	-92	774	25	
	Y2	-74	616	23	
	Y3	-52	430	27	
	Y5	-40	326	27	
Yinjiang River	Y9	-59	491	27	
Kiver	Y11	-51	417	27	
	Y12	33	Modern	28	
	Y13	-49	401	24	
	Y14	-109	928	28	

271 **3.2. Riverine DOM optical properties**

Two humic-like components (C1 and C3) and one protein-like component (C2) were identified by the PARAFAC model in these three rivers (Fig. S3; Table 1). Component C1 is similar to traditionally defined peak M and sourced from microbial processes or autochthonous production (Kim et al., 2022; Li et al., 2016; Walker et al., 2009). Component C2 was previously related to recent biological production (DeFrancesco and Guéguen, 2021; Du et al., 2019; Lambert et al., 2017). C3 was the most widely found component in previous research among three fluorescent components and was identified as traditional fulvic-like peaks A and C, representing terrestrial delivered OM or autochthonous microbial sourced OM (Amaral et al., 2016; Ryan et al., 2022; Shutova et al., 2014). Although C1 and C2 varied more widely in the Yinjiang River compared with the Shiqian and Yuqing rivers, the two fluorescent components did not show a statistical difference among the three rivers (p > 0.05; Figs. S3a and b). However, a greater proportion of C3 was found in the Shiqian River, exhibiting a distinctive signature compared with the Yinjiang River (Fig. S3c). The proportion of C3 did not show any significant differences between the Yuqing River and the other two rivers (i.e., the Yinjiang and Shiqian rivers).

The average SUVA₂₅₄ were 3.3 ± 1.1 , 3.1 ± 1.8 , and 2.8 ± 0.3 L mg⁻¹ m⁻¹ in the Yinjiang, Shiqian, and Yuqing rivers, respectively, without significant spatial differences across the three rivers (p > 0.05; Fig. 3a). For the fluorescence indexes, the overall fluorescence property did not vary significantly among the three rivers (p > 0.05; Figs. 3b, c, and d). FI varied in a narrow range compared with β/α and HIX. FI of DOM ranged from 1.66 to 1.94, averaging 1.78 (Fig. 3b), indicating a mixture of DOM of terrestrial and microbial origins. In comparison, β/α varied from 0.70 to 1.22 (Fig. 3d), and HIX varied from 0.33 to 0.65 (Fig. 3c), with greater variability among the three rivers.

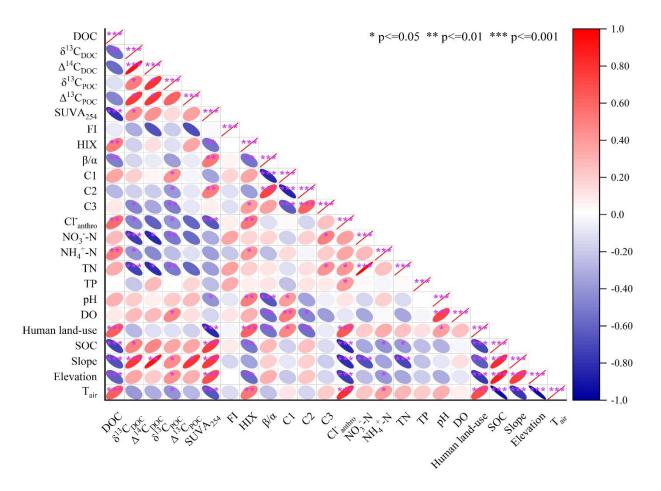

290

Figure 3 Spatial variations in DOM property in the Yinjiang (Y), Shiqian (S), and Yuqing (Q) catchments. (a) SUVA₂₅₄, (b) fluorescence index (FI), (c) HIX, and (d) freshness index (β/α). In each box plot, the end of the box represents the 25th and 75th percentiles, the blue solid dot represents the average, the horizontal red line represents the median, and the whiskers represent 1.5 IQR. The magenta solid dot represents the outlier, which is outside of the 1.5 interquartile range. Different lowercase letters above the boxes denote significant differences across rivers based on statistical analysis with p < 0.05.

296 **3.3.** Factors influencing DOC concentrations, isotopes of DOC, and DOM optical properties

297 Significant pairwise interdependencies between DOC and catchment characteristics were identified in the three study rivers 298 (Fig. 4). There is a strong negative correlation between DOC and SOC (p < 0.001, r = -0.73; Fig. 4), as well as average 299 catchment slope (p < 0.001, r = -0.67). Conversely, DOC displayed a positive correlation with the proportion of urban and 300 agricultural land uses (p < 0.001, r = 0.62), Cl⁻_{anthro} (p < 0.01, r = 0.58), and NH₄⁺-N (p < 0.01, r = 0.51). Stepwise MLR 301 models revealed that topsoil SOC and POC were the most effective predictors for explaining the spatial variation in DOC 302 concentrations (Table 4), while catchment slope and NH4⁺-N exhibited the highest explanatory power for DOC 303 concentrations when SOC was excluded from the models. Unlike DOC, a significant positive correlation with mean 304 catchment slope was found for $\delta^{13}C_{\text{DOC}}$ (p < 0.001, r = 0.76; Fig. 4). In addition, there was a significant negative correlation 305 between $\delta^{13}C_{DOC}$ and NO₃⁻-N (p < 0.001, r = -0.75). Moreover, $\delta^{13}C_{DOC}$ was negatively correlated with DOC concentrations 306 (p < 0.01, r = -0.57; Fig. 4), but positively correlated with $\delta^{13}C_{POC}$ in these three rivers (p < 0.05, r = 0.51). Similar to $\delta^{13}C_{DOC}$, $\Delta^{14}C_{DOC}$ was positively related to mean catchment slope (p < 0.01, r = 0.91) and $\Delta^{14}C_{POC}$ (p < 0.05, r = 0.79). 307 Additionally, there was a positive correlation between $\Delta^{14}C_{POC}$ and catchment slope (p < 0.05, r = 0.79), and no significant 308 309 correlations were detected between $\Delta^{14}C_{POC}$ and the proportion of urban and agricultural land uses or ions that reflect human 310 disturbances (e.g., Cl_{anthro}^- , NH_4^+ -N, and NO_3^- -N; p > 0.05; Fig. 4).

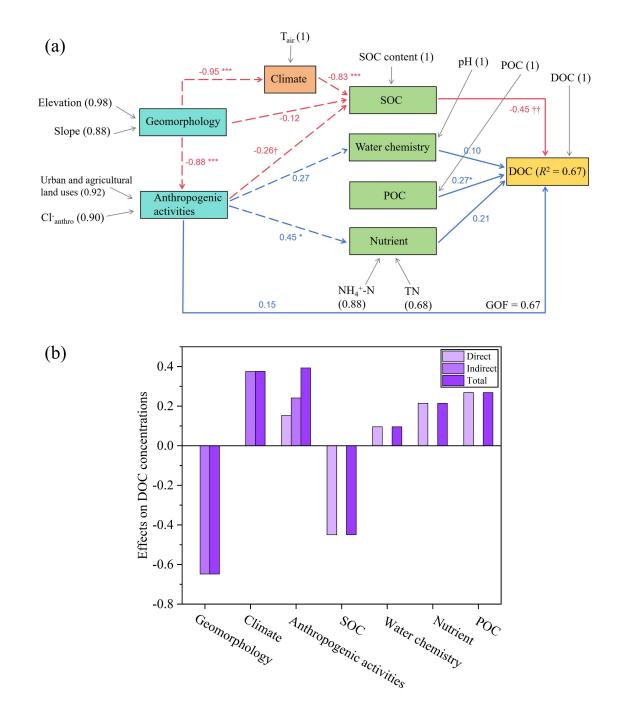
311 SUVA₂₅₄ showed an increasing trend with increasing mean catchment slope (p < 0.001, r = 0.77; Fig. 4). Furthermore, 312 there was a significant negative correlation between SUVA₂₅₄ and the proportion of urban and agricultural land uses (p < p313 0.001, r = -0.83). This is consistent with the constructed stepwise MLR models that urban and agricultural land uses and 314 catchment slope were the best predictors of SUVA254 (Table 4). Although no significant correlation was observed between the 315 fluorescence indexes and catchment slope, they (except for FI) were found to be closely related to land use patterns (Fig. 4). 316 For example, HIX had a positive correlation with urban and agricultural land uses (p < 0.001, r = 0.61; Fig. 4), while β/α had 317 a negative correlation with urban and agricultural land uses (p < 0.01, r = -0.52) and water pH (p < 0.001, r = -0.66). In 318 addition, the fluorescent components did not exhibit significant variations with changing catchment slope (p > 0.05; Fig. 4), 319 but the percentage of C1 and C2 were positively (p < 0.05, r = 0.47) or negatively (p < 0.01, r = -0.55) related to the 320 proportion of urban and agricultural land uses. Urban and agricultural land uses were also identified as predictors for DOM 321 optical indexes (i.e., HIX; Table 4) and fluorescent components (i.e., C1 and C2). However, unlike C1 and C2, C3 was not 322 significantly correlated with urban and agricultural land uses (p > 0.05; Fig. 4), but its variation can be partially explained by 323 NO₃⁻-N concentrations and POC (Table 4).

324

Figure 4. Correlation plot of the selected water chemistry and catchment characteristics. The colors represent the degree of pairwise correlation regarding Pearson's correlation coefficient. $\delta^{13}C_{DOC}$ and $\Delta^{14}C_{DOC}$ at site Y12 were excluded from the analysis as the sample was collected after a rainfall event. In addition, SUVA₂₅₄ at site S3 was excluded from the analysis as the sample was strongly influenced by road construction, which was evidenced by high POC and TSM concentration (Chen et al., 2021). Human land use denotes the proportion of urban and agricultural land uses. Elevation and T_{air} represent mean drainage elevation and annual air temperature, respectively.

330 **3.4.** Direct and indirect effects of environmental factors on DOC concentrations

331 The PLS-PM analysis showed that 67% of the variance in DOC concentrations could be explained by our constructed seven 332 environmental factors ($R^2 = 0.67$, Fig. 5a). The total effect on DOC concentrations is strongest from geomorphology (-0.65), 333 followed by SOC (-0.45), anthropogenic activities (0.39), climate (0.38), POC (0.27), nutrient (0.21), and water chemistry 334 (0.10) (Fig. 5b). The results indicated that geomorphology was the most significant factor in controlling DOC concentrations, 335 primarily through indirect regulation on SOC content, which was directly influenced by annual catchment temperature and 336 anthropogenic activities (Figs. 5a and b). In comparison, anthropogenic activities not only indirectly regulated riverine DOC 337 concentrations through SOC, but also had a significant indirect impact on DOC concentrations through the regulation of 338 nutrient levels. Similar to DOC concentrations, geomorphology (-0.53) exhibited the most pronounced effects on fluorescent 339 components (Fig. S4). However, anthropogenic activities (0.49) demonstrated a comparable effect on fluorescent 340 components, primarily through a direct pathway (0.37; Fig. S4b). Anthropogenic activities (-0.84) were the strongest driver 341 for DOM optical parameters, although geomorphology (0.59) played a significant role in indirectly influencing DOM optical


342 parameters (Fig. S5).

343

344	Table 4. Multiple stepwise linear regression models of catchment attributes and water chemistry on DOC concentrations and
345	DOM properties.

Dependent	Predictors	Model equation		Adj R ²	Significance
variables	Treateors				level
DOC ^a	slope, NH4 ⁺ -N	= -0.109*slope + 4.295*NH ₄ +-N+ 3.375	28	0.50	<i>p</i> < 0.001
DOC	SOC, POC	= -0.006*SOC + 0.384*POC + 4.145	28	0.59	<i>p</i> < 0.001
SUVA ₂₅₄	urban and agricultural land use, slope $=-5.461$ *urban and agricultural land use 0.145 *slope+1.318		26	0.77	<i>p</i> < 0.001
HIX	urban and agricultural land use	= 0.433*urban and agricultural land use + 0.438	27	0.34	<i>p</i> < 0.001
FI		No variables were entered into the equation.	27		
β/α	pH	=-0.195*pH + 2.476	27	0.41	<i>p</i> < 0.001
C1	DO, TP, urban and agricultural land use	= 7.713*DO - 220.846*TP +90.905*urban and agricultural land use - 36.005	27	0.46	<i>p</i> < 0.001
C2	urban and agricultural land use, DO	= -48.748*urban and agricultural land use - 2.515*DO + 58.255	27	0.36	<i>p</i> = 0.002
C3	NO ₃ ⁻ -N, POC	$= 4.181*NO_{3}^{-}-N + 3.738*POC + 3.826$	27	0.34	<i>p</i> = 0.003

^a SOC was not included as predictors in this model to examine the impacts of human activities and geomorphology, rather than the direct
 influence of SOC on DOC concentrations.

348

349 Figure 5. The most parsimonious PLS-PM model shows the direct and indirect effects of geomorphology and anthropogenic activities on 350 DOC concentrations. (a) Path coefficients are shown as arrows with blue and red to represent positive and negative effects, respectively. 351 The solid and dotted lines indicate the direct and indirect influence pathways of environmental drivers on DOC concentrations, 352 respectively. The indicators (e.g., TN) of latent variables (e.g., nutrient) are shown at the beginning of the grey arrows. The numbers in the 353 parentheses are the loading scores. GOF denotes the goodness of fit of the entire model. R^2 indicates the amount of variance in DOC 354 concentrations explained by its independent latent variables. The standardized path coefficients that are significantly different from zero 355 are indicated by *p = < 0.05, **p = < 0.01, ***p = < 0.001, $\dagger p = 0.06$, $\dagger \dagger p = 0.07$. (b) Standardized direct and indirect mean effects of 356 environmental drivers on DOC concentrations derived from the PLS-PM analysis.

357 4 Discussion

358 4.1 Geomorphologic controls on DOC export

359 Catchment slope, which is often closely associated with catchment elevation (Fig. 4), is an important predictor of DOC 360 concentrations because catchment slope is a key factor in affecting flow velocity and thus water retention time (Harms et al., 361 2016; Mzobe et al., 2020). The negative relationship between DOC and SOC (Fig. 4 and Table 4) and the positive correlation 362 between slope and $\Delta^{14}C_{POC}$ or $\Delta^{14}C_{DOC}$ are consistent with previous findings that a shorter water retention time in high relief 363 regions can reduce DOC export from SOC stocks and mobilize organic carbon with younger ages (Catalán et al., 2016). The 364 decreasing organic carbon export in catchments with higher slopes partially explains why high-relief regions exhibit lower 365 riverine DOC concentrations despite having a higher SOC content. Compared with high-relief regions, low-relief regions 366 would discharge more aged organic carbon into rivers when relatively ¹⁴C-depleted DIC and CO₂ (aq) derived from 367 carbonate weathering are incorporated into primary production in low-relief regions, as also evidenced by the positive 368 relationship between slope and $\Delta^{14}C_{POC}$ (Fig. 4). Furthermore, the aged riverine DOC has also been attributed to the input of 369 deeper, older soil organic matter through deeper flow paths (Barnes et al., 2018; Masiello and Druffel, 2001). This aged DOC, 370 discharged through deeper water flow paths, may have also served as an important source of DOC in low relief regions of 371 this study. The correlation of SUVA254 with the mean catchment slope suggests that steeper catchments tend to export DOC 372 with more aromaticity (Fig. 4 and Table 4), indicating the geomorphologic effects on DOM characteristics. Previous research 373 has reported that the aromatic content of DOM tends to decline if DOM is derived from deeper soil profiles (Inamdar et al., 374 2011), which is attributed to the sorption of aromatic DOM when subsurface flow water percolates through the soil profile.

375 Microbial degradation has been well-recognized as a critical factor in controlling organic material preservation in soils 376 (Barnes et al., 2018). Previous studies have reported a decreasing $\delta^{13}C_{DOC}$ with increasing DOC concentrations in spring 377 water (Nkoue Ndondo et al., 2020) and for TOC in soil profiles (Lloret et al., 2016; Nkoue Ndondo et al., 2020). We 378 observed a comparable relationship in river water of the three catchments (Fig. 4). This can be explained by the lateral 379 transport of DOC from microbially active soil horizons into rivers (Lambert et al., 2011), resulting in the enhanced 380 biodegradation of DOC with the preferential removal of ¹²C. As a result, the remaining DOC with lower concentrations is 381 typically characterized by a heavier $\delta^{13}C_{DOC}$ (Nkoue Ndondo et al., 2020; Opsahl and Zepp, 2001), which further indicates 382 that the low-concentration DOC in the three rivers is the result of substantial microbial degradation.

383 Groundwater with significant SOC inputs due to highly active microbial activities has long been recognized as a 384 substantial source of DOC (McDonough et al., 2020; Shen et al., 2015). Several studies have reported increased groundwater 385 contributions with distance downstream at the watershed scale (Cowie et al., 2017; Iwasaki et al., 2021). The strong positive 386 relationship between conductivity and δ^{18} O (p < 0.001; Fig. S6a) is primarily due to the mixing of two end-members (i.e., 387 high-conductivity with ¹⁸O-enriched groundwater and low-conductivity with δ^{18} O-depleted headstream water) for river water 388 (Lambs, 2004), though it may also indicate the impact of evaporation in the catchment (Zhong et al., 2020). In addition, the 389 δ^{18} O values increased progressively from upstream to downstream (Fig. S6b), which also validates the two sources (i.e., 390 headstream water and groundwater) of downstream river water, indicating that groundwater was likely an essential 391 contributor to downstream river water. This also supports our earlier hypothesis that aged DOC could be exported into rivers 392 through deeper water flow paths. However, groundwater was likely not the primary source of riverine DOC due to the 393 relatively low groundwater DOC concentrations as compared with riverine DOC concentrations (Fig. 2e; groundwater is 394 shown as "spring"). Moreover, the groundwater contribution was probably much less significant in the wet season (e.g., 395 September in the study area), even in catchments where DOC is mainly derived from groundwater (Lloret et al., 2016). Thus, 396 we infer groundwater is an important but not a primary source of riverine DOC in the three study rivers.

397 4.2 Anthropogenic impacts on DOC

398 Previous research has found significant changes in DOC concentrations and DOM composition in agricultural and urban 399 landscapes (Spencer et al., 2019; Stanley et al., 2012). Conversion of native forest and pasture to row crop agriculture may 400 lead to substantial losses of SOC stores due to greatly accelerated erosion and decomposition rates (Guo and Gifford, 2002; 401 Montgomery, 2007; Stanley et al., 2012). In comparison, natural vegetation could greatly reduce SOC input into rivers by 402 effectively reducing soil erosion through the consolidation effect of roots on soil and the interception of rainfall by stems and 403 leaves (Zhang et al., 2019). Agricultural activities tend to liberate SOC through erosion over longer timescales and cause an 404 elevated DOC export into rivers (Figs. 4 and 5), although DOC of urban origin can also make a massive contribution to the 405 riverine DOC pool (Sickman et al., 2007). Yet, anthropogenic impacts can also result in decreased DOC concentrations 406 globally due to reduced organic carbon inputs into soils and enhanced SOC decomposition induced by warmer temperatures 407 (Nagy et al., 2018; Spencer et al., 2019) or lead to undetectable changes in DOC concentrations (Veum et al., 2009). These 408 different responses are mainly due to diverse farming practices and associated changing effects on terrestrial and aquatic 409 carbon dynamics (Stanley et al., 2012).

410 Anthropogenic activities are important factors for the pervasive increase in nutrient and ion concentrations (Chetelat et 411 al., 2008; Smith and Schindler, 2009). For catchments without evaporite outcrops, their riverine Cl⁻ excluding atmospheric 412 contribution can be regarded as mainly of anthropogenic origin (Cl⁻anthro), which is a strong indicator of anthropogenic 413 activities (Fig. 5). The positive relationship between DOC concentrations and Cl-anthro as shown in Fig. 4 also demonstrated 414 anthropogenic impacts on DOC export. Nutrient enrichment has been a well-known contributor to eutrophication (Paerl, 415 2009). In conjunction with increasing water residence time due to damming (Fig. 1a), our results demonstrate that enhanced 416 nutrient inputs into rivers will enhance algae production (Chen et al., 2021) and, eventually, accumulation of DOC (as 417 evidenced by the relationship between NH₄⁺-N and DOC in Fig. 4 with NH₄⁺-N serving as a predictor for DOC, see Table 4). A recent study conducted in the Longtan Reservoir in the Xijiang River basin in southwest China with widespread karst landscape (similar to our study area) found that a majority of its POC was intercepted or degraded within the reservoir, with the POC primarily originating from phytoplankton (Yi et al., 2022). Its carbon isotope composition of POC ($\delta^{13}C_{POC}$) ranged from -35% to -30%, which is relatively depleted, and the POC was found to be a significant contributor to the reservoir's DOC (Yi et al., 2022). Thus, the lower $\delta^{13}C_{DOC}$ with increasing NO₃⁻-N further indicated the greater algae- or C3 plant-derived DOC accumulation with a higher level of nutrients (Fig. 4 and Table 4).

424 Despite anthropogenic impacts on DOM characteristics and age have been widely proposed in the last two decades 425 (Butman et al., 2014; Coble et al., 2022; Zhou et al., 2021), there are no clear relationships between land use and ¹⁴C ages in 426 our study area, which may result from large variations in soil characteristics and limited ¹⁴C data. However, DOM 427 characteristics were found to be closely related to land use patterns (Figs. S4 and S5; Table 4). Although significant 428 relationships with urban and agricultural land uses were found for C1 and C2 (Fig. 4; Table 4), it remains unclear how the 429 autochthonous contribution to riverine DOC pool varied with land use change because C1 and C2 are both likely derived 430 from autochthonous production but exhibit opposing trends with increasing urban and agricultural land uses (Table 1). 431 Overall, DOM in catchments with a higher proportion of urban and agricultural land uses was distinct from other catchments 432 as it was less aromatic (SUVA₂₅₄, Fig. 4), less recently produced (β/α), and had a higher degree of humification (HIX). SUVA254 values for the three study rivers were comparable with those reported in coastal glacier mountainous streams with 433 434 late succession in southeast Alaska ($3.4 \pm 0.5 \text{ L mg}^{-1} \text{ m}^{-1}$, n = 5; Holt et al. 2021) and in the anthropogenic influenced downstream of the Yangtze River ($3.4 \pm 1.1 \text{ Lmg}^{-1} \text{ m}^{-1}$, n = 82; Zhou et al. 2021). Lower DOM aromaticity in the urban and 435 436 agricultural streams and rivers was consistent with previous studies (Hosen et al., 2014; Kadjeski et al., 2020), which 437 suggested a microbial origin for the DOM. However, it is important to note that this phenomenon was not universally 438 observed (Zhou et al., 2021). Furthermore, the less aromatic and less recently produced DOM could be due to soil organic 439 materials from deep soil profiles as a result of increased soil erosion by anthropogenic activities (Inamdar et al., 2011; 440 Stanley et al., 2012).

441 **4.3** Biogeochemical processes of DOC and comparison of $\Delta^{14}C_{DOC}$ in mountainous rivers

In this study, geomorphologic characteristics and anthropogenic activities were identified as significant drivers of DOC export and DOM composition across broad spatial scales. Here, we further examine how these two factors regulate the biogeochemical processes of DOC. As discussed above, both geomorphology and anthropogenic activities are significant factors controlling DOC concentrations. The PLS-PM analysis further revealed that the combined effects of the two factors on DOC were mainly achieved through indirect influences on SOC content (Fig. 5). In contrast to the direct impact of anthropogenic activities on SOC through soil erosion, the controls exerted by geomorphology on SOC were closely linked to 448 climate. Lower altitudes are typically associated with higher annual air temperatures (Fig. 4), which promote terrestrial net 449 primary production and the microbial degradation of soil OC (Voss et al., 2015), resulting in the accumulation of large 450 quantities of DOC in soils (Creed et al., 2018). Geomorphology is also associated with reduced water retention time due to 451 rapid flows, leading to a lower input of terrestrially-derived DOC into rivers as discussed earlier. It is worth noting that the 452 conversion of POC to DOC through dissolution and desorption (He et al., 2016) is also an important source of riverine DOC 453 (Fig. 5). Contrary to DOC concentrations, although percentage of urban and agricultural land uses were significantly 454 correlated with mean catchment slope (Fig. S1d), anthropogenic activities were identified as more effective predictors for 455 DOM characteristics than geomorphology (Table 4), highlighting the crucial role of anthropogenic activities in regulating 456 DOM dynamics. Therefore, the biogeochemical processes of DOM in the studied three rivers were collectively affected by 457 geomorphologic controls and anthropogenic impacts. Particularly, geomorphologic controls on DOM were mainly evidenced 458 by carbon isotopes, while anthropogenic impacts were primarily supported by the DOM fluorescence characteristics (Figs. 4 459 and Table 4). There was no significant relationship between carbon isotopes and optical properties, which is inconsistent 460 with previous studies (Aiken et al., 2014; Butman et al., 2012; Zhou et al., 2018). This discrepancy is likely due to the 461 potential masking effect of autochthonous DOM, as also evidenced by the decoupled relationship between $\Delta^{14}C_{DOC}$ and 462 SUVA254 in the St. Lawrence River (Aiken et al., 2014; Butman et al., 2012). Disentangling the dual influences 463 (geomorphologic and anthropogenic) is challenging because they have collectively affected both DOC concentration and 464 DOM quality in these rivers. A comprehensive assessment of the biogeochemical processes of DOC and their multiple 465 controlling factors will advance our understanding of riverine carbon cycling.

466 To provide a deeper insight into the DOC characteristics of the study rivers, DOC concentrations and the carbon isotopes 467 of DOC in global mountainous rivers are compiled and shown in Table 5. $\Delta^{14}C_{DOC}$ in the Yinjiang River (-54.7 ± 39.9 %; 468 Tables 3 and 5) is lower than that of the global average (-11.5 ± 134 %; Marwick et al., 2015), while similar to many other 469 mountainous rivers (e.g., the Mackenzie River) and small mountainous rivers in Puerto Rico; Mover et al., 2013). $\Delta^{14}C_{DOC}$ 470 values for the global mountainous streams and rivers were shown by climate (according to the Köppen-Geiger climate 471 classification (Beck et al., 2018; Table 5) and ranged from tropical monsoon climate (Marwick et al., 2015), temperate 472 oceanic climate (Evans et al., 2007), cold semi-arid climates (Spencer et al., 2014) and continental subarctic climate (Hood 473 et al., 2009). Fresh DOC in mountainous rivers was reported across climates (Evans et al., 2007; Mayorga et al., 2005; Voss 474 et al., 2022). In contrast, the most aged DOC was observed in the Tibetan Plateau (Song et al., 2020; Spencer et al., 2014) 475 and the Gulf of Alaska (Hood et al., 2009). The riverine aged DOC from these regions with cold climates was mainly 476 sourced from melting glaciers with high bioavailability (Hood et al., 2009; Spencer et al., 2014) or derived from permafrost 477 thaws in deeper soil horizons with deeper flow paths (Song et al., 2020). As global air temperature increases, the greater 478 input of the aged yet microbially labile DOC into rivers would lead to increasing emissions of CO₂ and CH₄, which in turn 479 intensifies global warming (Vonk and Gustafsson, 2013).

480

481 **Table 5.** Comparison of carbon isotopes of DOC in mountainous rivers worldwide.

Rivers/Region	Sampling Date (mmyyyy)	Climate	DOC (mg L^{-1})	δ ¹³ C _{DOC} (‰)	Δ^{14} Cdoc (‰)	References
The Yinjiang River (China) 08/2018			1.3 ± 0.7	-26.6 ± 1.9	-55 ± 38	This study
Zambezi (Mozambique)	02/2012-04/2012	_	2.4 ± 0.6	-21.9 ± 2.4	64 ± 23	
Betsiboka (Madagascar)	01/2012-02/2012	_	1.3 ± 0.6	-22.8 ± 2.1	86 ± 43	- (Marwick et al., 2015)
Amazon ^a	05/1995-10/1996	_ Tropical	1.9 ± 0.7	-26.0 ± 3.0	94 ± 176	(Mayorga et al., 2005
Guanica and Fajardo (Puerto Rico)	09/2004-03/2008	_	2.3 ± 2.1	-26.1 ± 3.1	-55 ± 105	(Moyer et al., 2013)
North-West Australia (Australia)	05/2010 and 06/2011	-	1.5 ± 0.7	-25.0 ± 1.7	-67 ± 124	(Fellman et al., 2014)
Santa Clara (USA)	11/1997-03/1998		6.2 ± 2.7	-26.1 ± 0.9	-148 ± 58	(Masiello and Druffel 2001)
Conwy (Wales) ^b		— Temperate	9.2 ± 7.3	-28.0 ± 1.8	105 ± 6	(Evans et al., 2007)
Brocky Burn (Scotland)	02/1998 and 06/1998			-27.9 ± 0.2	29 ± 12	(Palmer et al., 2001)
Southeast Alaska	07/2013		0.8 ± 0.2	-27.0 ± 1.6	-93 ± 77	(Holt et al., 2021)
Gulf of Alaska	07/2008	_	1.2 ± 0.5	-23.9 ± 1.1	-207 ± 121	(Hood et al., 2009)
Alaska ^c	05/2012-10/2012	_	3.7 ± 4.1	-27.4 ± 0.8	-10 ± 55	(Behnke et al., 2020)
Kolyma (Russia) ^d	01/2003-12/2003	_		-28.5 ± 1.3	57 ± 51	(Neff et al., 2006)
Hudson (USA) ^e	01/2004	_	5.9 ± 0.7	-27.0 ± 0.0	-26 ± 13	(Raymond et al., 2004)
Central Ontario (Canada)	1990-1992	Continental	6.4 ± 4.5		96 ± 79	(Schiff et al., 1997)
Mackenzie River Basin (Canada) ^f 06/2018		-	4.3 ± 1.8	-26.9 ± 0.2	-55 ± 72	(Campeau et al., 2020)
Mulde (Germany)	08/2008-10/2010	_	9.8 ± 7.3	-26.6 ± 0.5	7 ± 27	(Tittel et al., 2013)
Fraser (Canada)	07/2009-05/2011	_	4.1 ± 5.6	-26.5 ± 0.5	58 ± 34	(Voss et al., 2022)
Yangtze River source region (China) 02/2017-12/2017		_	2.9 ± 1.4	-27.9 ± 3.3	-397 ± 185	(Song et al., 2020)
Tibetan Plateau (China)		Continental/Dry	0.27 ± 0.0	-23.5 ± 0.2	-209 ± 71	(Spencer et al., 2014)

482 ^a Only rivers draining mountainous areas from the Andean Cordillera were reported. ^b Data were obtained from Marwick et al. (2015). ^c

Calculated from mean values. ^d Only mountainous and upland rivers were reported. ^e Only the Upper Hudson River was reported. ^f Only
 tributaries sourced from Cordillera were reported.

485 5 Conclusions

This study provided insights into the DOC dynamics and their influencing factors in anthropogenically-impacted subtropical small mountainous rivers. Variations in DOC concentrations are regulated by both geomorphologic and anthropogenic disturbances. We observed a positive relationship between DOC concentrations and anthropogenic land use but a negative 489 correlation between DOC concentration and catchment slope. Carbon isotope variations were mainly due to changing mean 490 catchment slope, while fluorescence properties of DOM were highly influenced by land use. Additionally, we found 491 increased aromaticity with elevated catchment slope and reduced agricultural and urban land uses, indicating the 492 geomorphologic and anthropogenic controls on DOM characteristics. We attribute these diverse DOC responses to altered 493 water retention time, SOC dynamics, and water flow paths. This study highlights that the combination of dual carbon 494 isotopes and optical properties are valuable tools in tracing the origin of riverine DOC and its in-stream processes. With 495 continued economic development and population growth, anthropogenic impacts on DOC are expected to be increasingly 496 evident. However, anthropogenic impacts may alter various biogeochemical processes of DOC in different catchments with 497 changing geomorphologic features due to complicated regulating mechanisms of organic carbon cycling, which to date 498 remains poorly understood. Further studies are warranted to fully understand the combined effects of local geomorphologic 499 controls and increasing anthropogenic impacts on DOC cycling.

500

501 *Data availability.* Water chemistry, isotopes, and DOM properties data used in this study are available online at 502 https://doi.org/10.25442/hku.24433354. Other data are available from the corresponding author Lishan Ran upon request at 503 lsran@hku.hk.

504

505 *Author contributions.* JZ and SL conceived and designed the study. WW, JZ, and ZY contributed to the fieldwork. SC, WW, 506 YY and KMM contributed to the laboratory work and data analyses. SC wrote the original draft. LR, JZ and YY reviewed 507 and edited the manuscript.

508

509 *Competing interests.* The authors declare that they have no conflict of interest.

510

Financial support. This research was funded by the Strategic Priority Research Program of the Chinese Academy of
Sciences (XDB40000000), National Natural Science Foundation of China (Grant Nos. 41925002, 41422303 and 41803007),
and the Research Grants Council of Hong Kong (Grant No. 17300621).

514 References

515 Aiken G. R., Gilmour, C. C., Krabbenhoft, D. P. and Orem, W.: Dissolved organic matter in the Florida Everglades: 516 Crit. 41, implications for ecosystem restoration, Rev. Environ. Sci. Technol., 217-248, 517 doi:10.1080/10643389.2010.530934, 2011.

518 Aiken G. R., Spencer, R. G. M., Striegl, R. G., Schuster, P. F. and Raymond, P. A.: Influences of glacier melt and permafrost

519 thaw on the age of dissolved organic carbon in the Yukon River basin, Global Biogeochem. Cy., 28, 525-537, 520 doi:10.1002/2013gb004764, 2014.

- Amaral V., Graeber, D., Calliari, D. and Alonso, C.: Strong linkages between DOM optical properties and main clades of
 aquatic bacteria, Limnol. Oceanogr., 61, 906-918, doi:10.1002/lno.10258, 2016.
- 523 Andersson C. A. and Bro, R.: The N-way toolbox for MATLAB, Chemometr. intell. lab., 52, 1-4, 2000.
- Ask J., Karlsson, J., Persson, L., Ask, P., Byström, P. and Jansson, M.: Terrestrial organic matter and light penetration:
 Effects on bacterial and primary production in lakes, Limnol. Oceanogr., 54, 2034-2040, doi:10.4319/lo.2009.54.6.2034,
 2009.
- Barnes R. T., Butman, D. E., Wilson, H. F. and Raymond, P. A.: Riverine Export of Aged Carbon Driven by Flow Path Depth
 and Residence Time, Environ. Sci. Technol., 52, 1028-1035, doi:10.1021/acs.est.7b04717, 2018.
- Beck H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A. and Wood, E. F.: Present and future
 Koppen-Geiger climate classification maps at 1-km resolution, Scientific Data, 5, 180214, doi:10.1038/sdata.2018.214,
 2018.
- Behnke M. I., Stubbins, A., Fellman, J. B., Hood, E., Dittmar, T. and Spencer, R. G. M.: Dissolved organic matter sources in
 glacierized watersheds delineated through compositional and carbon isotopic modeling, Limnol. Oceanogr., 66, 438-451,
 doi:10.1002/lno.11615, 2020.
- Burt T. and Pinay, G.: Linking hydrology and biogeochemistry in complex landscapes, Progress in Physical geography, 29,
 297-316, 2005.
- Butman D. E., Wilson, H. F., Barnes, R. T., Xenopoulos, M. A. and Raymond, P. A.: Increased mobilization of aged carbon
 to rivers by human disturbance, Nat. Geosci., 8, 112-116, doi:10.1038/ngeo2322, 2014.
- Butman D., Raymond, P. A., Butler, K. and Aiken, G.: Relationships between Delta C-14 and the molecular quality of
 dissolved organic carbon in rivers draining to the coast from the conterminous United States, Global Biogeochem. Cy., 26,
 GB4014, doi:10.1029/2012GB004361, 2012.
- Cai W. J.: Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?, Annual Review
 of Marine Science, 3, 123-145, doi:10.1146/annurev-marine-120709-142723, 2011.
- Campeau A., Soerensen, A., Martma, T., Åkerblom, S. and Zdanowicz, C.: Controls on the 14C-content of dissolved and
 particulate organic carbon mobilized across the Mackenzie River basin, Canada, Global Biogeochem. Cy.,
 doi:10.1029/2020gb006671, 2020.
- Catalán N., Marcé, R., Kothawala, D. N. and Tranvik, L. J.: Organic carbon decomposition rates controlled by water
 retention time across inland waters, Nat. Geosci., 9, 501-504, doi:10.1038/ngeo2720, 2016.
- Chen S., Zhong, J., Li, C., Wang, W.-f., Xu, S., Yan, Z.-l. and Li, S.-l.: The chemical weathering characteristics of different
 lithologic mixed small watersheds in Southwest China, Chinese J. Ecol., 39, 1288-1299 (in Chinese with English abstract),
 2020.
- Chen S., Zhong, J., Li, S., Ran, L., Wang, W., Xu, S., Yan, Z. and Xu, S.: Multiple controls on carbon dynamics in mixed
 karst and non-karst mountainous rivers, Southwest China, revealed by carbon isotopes (delta(13)C and Delta(14)C), Sci.
 Total Environ., 791, 148347, doi:10.1016/j.scitotenv.2021.148347, 2021.
- Chetelat B., Liu, C.-Q., Zhao, Z., Wang, Q., Li, S., Li, J. and Wang, B.: Geochemistry of the dissolved load of the
 Changjiang Basin rivers: anthropogenic impacts and chemical weathering, Geochim. Cosmochim. Acta, 72, 4254-4277,
 2008.
- Coble A. A., Wymore, A. S., Potter, J. D. and McDowell, W. H.: Land Use Overrides Stream Order and Season in Driving
 Dissolved Organic Matter Dynamics Throughout the Year in a River Network, Environ. Sci. Technol., 56, 2009-2020,
 doi:10.1021/acs.est.1c06305, 2022.
- Connolly C. T., Khosh, M. S., Burkart, G. A., Douglas, T. A., Holmes, R. M., Jacobson, A. D., Tank, S. E. and McClelland, J.
 W.: Watershed slope as a predictor of fluvial dissolved organic matter and nitrate concentrations across geographical space
 and catchment size in the Arctic, Environ. Res. Lett., 13, 104015, doi:10.1088/1748-9326/aae35d, 2018.
- Cowie R. M., Knowles, J. F., Dailey, K. R., Williams, M. W., Mills, T. J. and Molotch, N. P.: Sources of streamflow along a
 headwater catchment elevational gradient, J. Hydrol., 549, 163-178, doi:10.1016/j.jhydrol.2017.03.044, 2017.
- 566 Creed I. F., Bergstrom, A. K., Trick, C. G., Grimm, N. B., Hessen, D. O., Karlsson, J., Kidd, K. A., Kritzberg, E., McKnight,
- 567 D. M., Freeman, E. C., Senar, O. E., Andersson, A., Ask, J., Berggren, M., Cherif, M., Giesler, R., Hotchkiss, E. R.,

- Kortelainen, P., Palta, M. M., Vrede, T. and Weyhenmeyer, G. A.: Global change-driven effects on dissolved organic
 matter composition: Implications for food webs of northern lakes, Global Change Biol., 24, 3692-3714,
 doi:10.1111/gcb.14129, 2018.
- 571 DeFrancesco C. and Guéguen, C.: Long-term Trends in Dissolved Organic Matter Composition and Its Relation to Sea Ice in
- the Canada Basin, Arctic Ocean (2007–2017), Journal of Geophysical Research: Oceans, 126, doi:10.1029/2020jc016578,
 2021.
- 574 Devesa-Rey R. and Barral, M. T.: Allochthonous versus autochthonous naturally occurring organic matter in the Anllóns
 575 river bed sediments (Spain), Environmental Earth Sciences, 66, 773-782, doi:10.1007/s12665-011-1286-3, 2011.
- Dong K., Lang, Y., Hu, N., Zhong, J., Xu, S., Hauser, T.-M. and Gan, R.: The new AMS facility at Tianjin University,
 Radiation Detection Technology and Methods, 2, doi:10.1007/s41605-018-0064-0, 2018.
- Du Y., Chen, F., Zhang, Y., He, H., Wen, S., Huang, X., Song, C., Li, K., Wang, J., Keellings, D. and Lu, Y.: Human Activity
 Coupled With Climate Change Strengthens the Role of Lakes as an Active Pipe of Dissolved Organic Matter, Earth's
 Future, 11, doi:10.1029/2022ef003412, 2023.
- Du Y., Zhang, Q., Liu, Z., He, H., Lurling, M., Chen, M. and Zhang, Y.: Composition of dissolved organic matter controls
 interactions with La and Al ions: Implications for phosphorus immobilization in eutrophic lakes, Environ. Pollut., 248,
 36-47, doi:10.1016/j.envpol.2019.02.002, 2019.
- Evans C. D., Freeman, C., Cork, L. G., Thomas, D. N., Reynolds, B., Billett, M. F., Garnett, M. H. and Norris, D.: Evidence
 against recent climate-induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter,
 Geophys. Res. Lett., 34, doi:10.1029/2007gl029431, 2007.
- Fasching C., Akotoye, C., Bižić, M., Fonvielle, J., Ionescu, D., Mathavarajah, S., Zoccarato, L., Walsh, D. A., Grossart, H. P.
 and Xenopoulos, M. A.: Linking stream microbial community functional genes to dissolved organic matter and inorganic
 nutrients, Limnol. Oceanogr., 65, doi:10.1002/lno.11356, 2019.
- Fasching C., Ulseth, A. J., Schelker, J., Steniczka, G. and Battin, T. J.: Hydrology controls dissolved organic matter export
 and composition in an Alpine stream and its hyporheic zone, Limnol. Oceanogr., 61, 558-571, doi:10.1002/lno.10232,
 2016.
- Fellman J. B., Hood, E. and Spencer, R. G. J. L.: Fluorescence spectroscopy opens new windows into dissolved organic
 matter dynamics in freshwater ecosystems: A review, Limnol. Oceanogr., 55, 2452-2462, doi:10.4319/lo.2010.55.6.2452,
 2010.
- Fellman J. B., Spencer, R. G., Raymond, P. A., Pettit, N. E., Skrzypek, G., Hernes, P. J. and Grierson, P. F.: Dissolved organic
 carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape, Ecology, 95,
 2622-2632, 2014.
- Findlay S., Sinsabaugh, R. L., Fischer, D. T. and Franchini, P.: Sources of dissolved organic carbon supporting planktonic
 bacterial production in the tidal freshwater Hudson River, Ecosystems, 1, 227-239, 1998.
- Gaillardet J., Dupre, B., Allegre, C. J. and Négrel, P.: Chemical and physical denudation in the Amazon River Basin, Chem.
 Geol., 142, 141-173, 1997.
- Guo L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a meta analysis, Global Change Biol., 8, 345-360,
 doi:10.1046/j.1354-1013.2002.00486.x, 2002.
- Han G. and Liu, C.-Q.: Water geochemistry controlled by carbonate dissolution: a study of the river waters draining
 karst-dominated terrain, Guizhou Province, China, Chem. Geol., 204, 1-21, doi:10.1016/j.chemgeo.2003.09.009, 2004.
- Harms T. K., Edmonds, J. W., Genet, H., Creed, I. F., Aldred, D., Balser, A. and Jones, J. B.: Catchment influence on nitrate
 and dissolved organic matter in Alaskan streams across a latitudinal gradient, J. Geophys. Res.: Biogeo., 121, 350-369,
 doi:10.1002/2015jg003201, 2016.
- He W., Chen, M., Schlautman, M. A. and Hur, J.: Dynamic exchanges between DOM and POM pools in coastal and inland
 aquatic ecosystems: A review, Sci. Total Environ., 551-552, 415-428, doi:10.1016/j.scitotenv.2016.02.031, 2016.
- 612 Hengl T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B., Ribeiro, E., Samuel-Rosa, A., Kempen, B.,
- 613 Leenaars, J. G., Walsh, M. G. and Gonzalez, M. R.: SoilGrids1km--global soil information based on automated mapping,
- 614 PLoS One, 9, e105992, doi:10.1371/journal.pone.0105992, 2014.

- 615 Holt A. D., Fellman, J., Hood, E., Kellerman, A. M., Raymond, P., Stubbins, A., Dittmar, T. and Spencer, R. G. M.: The
- evolution of stream dissolved organic matter composition following glacier retreat in coastal watersheds of southeast
 Alaska, Biogeochemistry, doi:10.1007/s10533-021-00815-6, 2021.
- Hood E., Fellman, J., Spencer, R. G., Hernes, P. J., Edwards, R., D'Amore, D. and Scott, D.: Glaciers as a source of ancient
 and labile organic matter to the marine environment, Nature, 462, 1044-1047, doi:10.1038/nature08580, 2009.
- Hood E., Gooseff, M. N. and Johnson, S. L.: Changes in the character of stream water dissolved organic carbon during
 flushing in three small watersheds, Oregon, J. Geophys. Res.: Biogeo., 111, doi:10.1029/2005JG000082, 2006.
- Hosen J. D., McDonough, O. T., Febria, C. M. and Palmer, M. A.: Dissolved organic matter quality and bioavailability
 changes across an urbanization gradient in headwater streams, Environ. Sci. Technol., 48, 7817-7824,
 doi:10.1021/es501422z, 2014.
- Inamdar S., Singh, S., Dutta, S., Levia, D., Mitchell, M., Scott, D., Bais, H. and McHale, P.: Fluorescence characteristics and
 sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed, J. Geophys.
 Res.: Biogeo., 116, doi:10.1029/2011jg001735, 2011.
- Inamdar S.: The use of geochemical mixing models to derive runoff sources and hydrologic flow paths, Forest hydrology
 and biogeochemistry. Springer, pp. 163-183, 2011
- Iwasaki K., Nagasaka, Y. and Nagasaka, A.: Geological Effects on the Scaling Relationships of Groundwater Contributions
 in Forested Watersheds, Water Resour. Res., 57, doi:10.1029/2021wr029641, 2021.
- Kadjeski M., Fasching, C. and Xenopoulos, M. A.: Synchronous Biodegradability and Production of Dissolved Organic
 Matter in Two Streams of Varying Land Use, Front. Microbiol., 11, 568629, doi:10.3389/fmicb.2020.568629, 2020.
- Kim J., Kim, Y., Park, S. E., Kim, T. H., Kim, B. G., Kang, D. J. and Rho, T.: Impact of aquaculture on distribution of
 dissolved organic matter in coastal Jeju Island, Korea, based on absorption and fluorescence spectroscopy, Environ Sci
 Pollut Res Int, 29, 553-563, doi:10.1007/s11356-021-15553-3, 2022.
- Lambert T., Bouillon, S., Darchambeau, F., Morana, C., Roland, F. A. E., Descy, J.-P. and Borges, A. V.: Effects of human
 land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River,
 Belgium), Biogeochemistry, 136, 191-211, doi:10.1007/s10533-017-0387-9, 2017.
- Lambert T., Perolo, P., Escoffier, N. and Perga, M.-E.: Enhanced bioavailability of dissolved organic matter (DOM) in
 human-disturbed streams in Alpine fluvial networks, Biogeosciences, 19, 187-200, doi:10.5194/bg-19-187-2022, 2022.
- Lambert T., Pierson-Wickmann, A.-C., Gruau, G., Thibault, J.-N. and Jaffrezic, A.: Carbon isotopes as tracers of dissolved
 organic carbon sources and water pathways in headwater catchments, J. Hydrol., 402, 228-238,
 doi:10.1016/j.jhydrol.2011.03.014, 2011.
- Lambs L.: Interactions between groundwater and surface water at river banks and the confluence of rivers, J. Hydrol., 288,
 312-326, doi:10.1016/j.jhydrol.2003.10.013, 2004.
- Lee L.-C., Hsu, T.-C., Lee, T.-Y., Shih, Y.-T., Lin, C.-Y., Jien, S.-H., Hein, T., Zehetner, F., Shiah, F.-K. and Huang, J.-C.:
 Unusual roles of discharge, slope and soc in doc transport in small mountainous rivers, Taiwan, Sci. Rep., 9, 41422303,
 doi:10.1038/s41598-018-38276-x, 2019.
- Leithold E. L., Blair, N. E. and Perkey, D. W.: Geomorphologic controls on the age of particulate organic carbon from small
 mountainous and upland rivers, Global Biogeochem. Cy., 20, GB3022, doi:10.1029/2005gb002677, 2006.
- Leonard A., Castle, S., Burr, G. S., Lange, T. and Thomas, J.: A Wet Oxidation Method for AMS Radiocarbon Analysis of
 Dissolved Organic Carbon in Water, Radiocarbon, 55, 545-552, doi:10.1017/S0033822200057672, 2013.
- Li P., Lee, S. H., Lee, S. H., Lee, J. B., Lee, Y. K., Shin, H. S. and Hur, J.: Seasonal and storm-driven changes in chemical
 composition of dissolved organic matter: a case study of a reservoir and its forested tributaries, Environ Sci Pollut Res Int,
 23, 24834-24845, doi:10.1007/s11356-016-7720-z, 2016.
- Li Yung Lung J. Y. S., Tank, S. E., Spence, C., Yang, D., Bonsal, B., McClelland, J. W. and Holmes, R. M.: Seasonal and
 Geographic Variation in Dissolved Carbon Biogeochemistry of Rivers Draining to the Canadian Arctic Ocean and Hudson
 Bay, J. Geophys. Res.: Biogeo., 123, 3371-3386, doi:10.1029/2018jg004659, 2018.
- 660 Lloret E., Dessert, C., Buss, H. L., Chaduteau, C., Huon, S., Alberic, P. and Benedetti, M. F.: Sources of dissolved organic
- 661 carbon in small volcanic mountainous tropical rivers, examples from Guadeloupe (French West Indies), Geoderma, 282,

- 662 129-138, doi:10.1016/j.geoderma.2016.07.014, 2016.
- Marwick T. R., Tamooh, F., Teodoru, C. R., Borges, A. V., Darchambeau, F. and Bouillon, S.: The age of river-transported
 carbon: A global perspective, Global Biogeochem. Cy., 29, 122-137, doi:10.1002/2014GB004911, 2015.
- Masiello C. A. and Druffel, E. R.: Carbon isotope geochemistry of the Santa Clara River, Global Biogeochem. Cy., 15,
 407-416, 2001.
- Mayorga E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., Hedges, J. I., Quay, P. D., Richey, J. E. and Brown, T. A.:
 Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers, Nature, 436, 538-541,
 doi:10.1038/nature03880, 2005.
- McDonough L. K., Santos, I. R., Andersen, M. S., O'Carroll, D. M., Rutlidge, H., Meredith, K., Oudone, P., Bridgeman, J.,
 Gooddy, D. C., Sorensen, J. P. R., Lapworth, D. J., MacDonald, A. M., Ward, J. and Baker, A.: Changes in global
 groundwater organic carbon driven by climate change and urbanization, Nat. Commun., 11, 1279,
 doi:10.1038/s41467-020-14946-1, 2020.
- McGuire K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M. and Seibert, J.: The role of
 topography on catchment-scale water residence time, Water Resour. Res., 41, doi:10.1029/2004wr003657, 2005.
- McKnight D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T. and Andersen, D. T.: Spectrofluorometric
 characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnol.
 Oceanogr., 46, 38-48, doi:10.4319/lo.2001.46.1.0038, 2001.
- Meybeck M.: Atmospheric inputs and river transport of dissolved substances, Dissolved loads of rivers surface water
 quantity/quality relationships, pp. 173-192, 1983
- Mineau M. M., Wollheim, W. M., Buffam, I., Findlay, S. E. G., Hall, R. O., Hotchkiss, E. R., Koenig, L. E., McDowell, W. H.
 and Parr, T. B.: Dissolved organic carbon uptake in streams: A review and assessment of reach-scale measurements, J.
 Geophys. Res.: Biogeo., 121, 2019-2029, doi:10.1002/2015jg003204, 2016.
- Minor E. C., Swenson, M. M., Mattson, B. M. and Oyler, A. R.: Structural characterization of dissolved organic matter: a
 review of current techniques for isolation and analysis, Environ. Sci.: Processes Impacts, 16, 2064-2079,
 doi:10.1039/c4em00062e, 2014.
- Montgomery D. R.: Soil erosion and agricultural sustainability, Proc. Natl. Acad. Sci. USA, 104, 13268-13272,
 doi:10.1073/pnas.0611508104, 2007.
- Mostofa K. M. G., Jie, Y., Sakugawa, H. and Liu, C. Q.: Equal Treatment of Different EEM Data on PARAFAC Modeling
 Produces Artifact Fluorescent Components That Have Misleading Biogeochemical Consequences, Environ. Sci. Technol.,
 53, 561-563, doi:10.1021/acs.est.8b06647, 2019.
- Moyer R. P., Bauer, J. E. and Grottoli, A. G.: Carbon isotope biogeochemistry of tropical small mountainous river, estuarine,
 and coastal systems of Puerto Rico, Biogeochemistry, 112, 589-612, doi:10.1007/s10533-012-9751-y, 2013.
- Murphy K. R., Stedmon, C. A., Wenig, P. and Bro, R.: OpenFluor–an online spectral library of auto-fluorescence by organic
 compounds in the environment, Analytical Methods, 6, 658-661, 2014.
- Mzobe P., Yan, Y., Berggren, M., Pilesjö, P., Olefeldt, D., Lundin, E., Roulet, N. T. and Persson, A.: Morphometric Control
 on Dissolved Organic Carbon in Subarctic Streams, J. Geophys. Res.: Biogeo., 125, e2019JG005348,
 doi:10.1029/2019jg005348, 2020.
- Nagy R. C., Porder, S., Brando, P., Davidson, E. A., Figueira, A., Neill, C., Riskin, S. and Trumbore, S.: Soil Carbon
 Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil, J Geophys Res Biogeosci, 123, 18-31,
 doi:10.1002/2017JG004269, 2018.
- Neff J. C., Finlay, J. C., Zimov, S. A., Davydov, S. P., Carrasco, J. J., Schuur, E. A. G. and Davydova, A. I.: Seasonal changes
 in the age and structure of dissolved organic carbon in Siberian rivers and streams, Geophys. Res. Lett., 33,
 doi:10.1029/2006gl028222, 2006.
- 705 Nkoue Ndondo G. R., Probst, J. L., Ndjama, J., Ndam Ngoupayou, J. R., Boeglin, J. L., Takem, G. E., Brunet, F., Mortatti, J.,
- 706 Gauthier-Lafaye, F., Braun, J. J. and Ekodeck, G. E.: Stable Carbon Isotopes δ^{13} C as a Proxy for Characterizing Carbon
- Sources and Processes in a Small Tropical Headwater Catchment: Nsimi, Cameroon, Aquat. Geochem., 27, 1-30,
 doi:10.1007/s10498-020-09386-8, 2020.

- Ohno T.: Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter, Environ.
 Sci. Technol., 36, 742-746, doi:10.1021/es0155276, 2002.
- Opsahl S. P. and Zepp, R. G.: Photochemically-induced alteration of stable carbon isotope ratios (δ13C) in terrigenous
 dissolved organic carbon, Geophys. Res. Lett., 28, 2417-2420, doi:10.1029/2000gl012686, 2001.
- Paerl H. W.: Controlling Eutrophication along the Freshwater–Marine Continuum: Dual Nutrient (N and P) Reductions are
 Essential, Estuar. and Coast., 32, 593-601, doi:10.1007/s12237-009-9158-8, 2009.
- Palmer S. M., Hope, D., Billett, M. F., Dawson, J. J. and Bryant, C. L.: Sources of organic and inorganic carbon in a
 headwater stream: evidence from carbon isotope studies, Biogeochemistry, 52, 321-338, 2001.
- Parlanti E., Wörz, K., Geoffroy, L. and Lamotte, M.: Dissolved organic matter fluorescence spectroscopy as a tool to
 estimate biological activity in a coastal zone submitted to anthropogenic inputs, Org. Geochem., 31, 1765-1781,
 doi:10.1016/S0146-6380(00)00124-8, 2000.
- Poulin B. A., Ryan, J. N. and Aiken, G. R.: Effects of iron on optical properties of dissolved organic matter, Environ. Sci.
 Technol., 48, 10098-10106, doi:10.1021/es502670r, 2014.
- Quinton J. N., Govers, G., Van Oost, K. and Bardgett, R. D.: The impact of agricultural soil erosion on biogeochemical
 cycling, Nat. Geosci., 3, 311-314, doi:10.1038/ngeo838, 2010.
- Ramos M. C., Quinton, J. N. and Tyrrel, S. F.: Effects of cattle manure on erosion rates and runoff water pollution by faecal
 coliforms, J. Environ. Manage., 78, 97-101, doi:10.1016/j.jenvman.2005.04.010, 2006.
- Rawlins M. A., Connolly, C. T. and McClelland, J. W.: Modeling Terrestrial Dissolved Organic Carbon Loading to Western
 Arctic Rivers, J. Geophys. Res.: Biogeo., doi:10.1029/2021jg006420, 2021.
- Raymond P. A. and Spencer, R. G. M.: Chapter 11 Riverine DOM, in: Hansell, D.A., Carlson, C.A. (Eds.),
 Biogeochemistry of Marine Dissolved Organic Matter (Second Edition). Academic Press, Boston, pp. 509-533, 2015
- Raymond P. A., Bauer, J. E., Caraco, N. F., Cole, J. J., Longworth, B. and Petsch, S. T.: Controls on the variability of organic
 matter and dissolved inorganic carbon ages in northeast US rivers, Mar. Chem., 92, 353-366,
 doi:10.1016/j.marchem.2004.06.036, 2004.
- Raymond P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E.,
 Humborg, C., Kortelainen, P., Durr, H., Meybeck, M., Ciais, P. and Guth, P.: Global carbon dioxide emissions from inland
 waters, Nature, 503, 355-359, doi:10.1038/nature12760, 2013.
- Ryan K. A., Palacios, L. C., Encina, F., Graeber, D., Osorio, S., Stubbins, A., Woelfl, S. and Nimptsch, J.: Assessing inputs of
 aquaculture-derived nutrients to streams using dissolved organic matter fluorescence, Sci. Total Environ., 807, 150785,
 doi:10.1016/j.scitotenv.2021.150785, 2022.
- 739 Sanchez G.: PLS path modeling with R, Berkeley: Trowchez Editions, 383, 551, 2013.
- Schiff S. L., Aravena, R., Trumbore, S. E., Hinton, M. J., Elgood, R. and Dillon, P. J.: Export of DOC from forested
 catchments on the Precambrian Shield of Central Ontario: Clues from 13C and 14C, Biogeochemistry, 36, 43-65, 1997.
- Shen Y., Chapelle, F. H., Strom, E. W. and Benner, R.: Origins and bioavailability of dissolved organic matter in groundwater,
 Biogeochemistry, 122, 61-78, doi:10.1007/s10533-014-0029-4, 2014.
- Shutova Y., Baker, A., Bridgeman, J. and Henderson, R. K.: Spectroscopic characterisation of dissolved organic matter
 changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths, Water Res., 54, 159-169,
 doi:10.1016/j.watres.2014.01.053, 2014.
- Sickman J. O., Zanoli, M. J. and Mann, H. L.: Effects of Urbanization on Organic Carbon Loads in the Sacramento River,
 California, Water Resour. Res., 43, doi:10.1029/2007wr005954, 2007.
- Smith V. H. and Schindler, D. W.: Eutrophication science: where do we go from here?, Trends Ecol. Evol., 24, 201-207,
 doi:10.1016/j.tree.2008.11.009, 2009.
- Song C., Wang, G., Haghipour, N. and Raymond, P. A.: Warming and monsoonal climate lead to large export of
 millennial-aged carbon from permafrost catchments of the Qinghai-Tibet Plateau, Environ. Res. Lett., 15,
 doi:10.1088/1748-9326/ab83ac, 2020.
- 754 Spencer R. G. M., Guo, W., Raymond, P. A., Dittmar, T., Hood, E., Fellman, J. and Stubbins, A.: Source and biolability of
- ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau, Geochim. Cosmochim. Acta, 142,

- 756 64-74, doi:10.1016/j.gca.2014.08.006, 2014.
- Spencer R. G. M., Kellerman, A. M., Podgorski, D. C., Macedo, M. N., Jankowski, K., Nunes, D. and Neill, C.: Identifying
 the Molecular Signatures of Agricultural Expansion in Amazonian Headwater Streams, J. Geophys. Res.: Biogeo., 124,
- 759 1637-1650, doi:10.1029/2018jg004910, 2019.
- Stanley E. H., Powers, S. M., Lottig, N. R., Buffam, I. and Crawford, J. T.: Contemporary changes in dissolved organic
 carbon (DOC) in human-dominated rivers: is there a role for DOC management?, Freshwat. Biol., 57, 26-42,
 doi:10.1111/j.1365-2427.2011.02613.x, 2012.
- Stedmon C. A. and Bro, R.: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial,
 Limnol. Oceanogr. Methods, 6, 572-579, doi:10.4319/lom.2008.6.572, 2008.
- Tian J., Dungait, J. A. J., Lu, X., Yang, Y., Hartley, I. P., Zhang, W., Mo, J., Yu, G., Zhou, J. and Kuzyakov, Y.: Long-term
 nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in
 tropical forest soil, Glob Chang Biol, 25, 3267-3281, doi:10.1111/gcb.14750, 2019.
- Tittel J., Büttner, O., Freier, K., Heiser, A., Sudbrack, R. and Ollesch, G.: The age of terrestrial carbon export and rainfall
 intensity in a temperate river headwater system, Biogeochemistry, 115, 53-63, doi:10.1007/s10533-013-9896-3, 2013.
- Tiwari T., Laudon, H., Beven, K. and Ågren, A. M.: Downstream changes in DOC: Inferring contributions in the face of
 model uncertainties, Water Resour. Res., 50, 514-525, doi:10.1002/2013wr014275, 2014.
- Toming K., Tuvikene, L., Vilbaste, S., Agasild, H., Viik, M., Kisand, A., Feldmann, T., Martma, T., Jones, R. I. and Nõges, T.:
 Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake
 with a highly calcareous catchment, Limnol. Oceanogr., 58, 1259-1270, doi:10.4319/lo.2013.58.4.1259, 2013.
- Veum K. S., Goyne, K. W., Motavalli, P. P. and Udawatta, R. P.: Runoff and dissolved organic carbon loss from a paired-watershed study of three adjacent agricultural Watersheds, Agric., Ecosyst. Environ., 130, 115-122, doi:10.1016/j.agee.2008.12.006, 2009.
- Vonk J. E. and Gustafsson, Ö.: Permafrost-carbon complexities, Nat. Geosci., 6, 675-676, doi:10.1038/ngeo1937, 2013.
- Voss B. M., Eglinton, T. I., Peucker-Ehrenbrink, B., Galy, V., Lang, S. Q., McIntyre, C., Spencer, R. G. M., Bulygina, E.,
 Wang, Z. A. and Guay, K. A.: Isotopic evidence for sources of dissolved carbon and the role of organic matter respiration
 in the Fraser River basin, Canada, Biogeochemistry, doi:10.1007/s10533-022-00945-5, 2022.
- Voss B. M., Peucker-Ehrenbrink, B., Eglinton, T. I., Spencer, R. G. M., Bulygina, E., Galy, V., Lamborg, C. H., Ganguli, P.
 M., Montluçon, D. B., Marsh, S., Gillies, S. L., Fanslau, J., Epp, A. and Luymes, R.: Seasonal hydrology drives rapid
 shifts in the flux and composition of dissolved and particulate organic carbon and major and trace ions in the Fraser River,
 Canada, Biogeosciences, 12, 5597-5618, doi:10.5194/bg-12-5597-2015, 2015.
- Walker S. A., Amon, R. M. W., Stedmon, C., Duan, S. and Louchouarn, P.: The use of PARAFAC modeling to trace
 terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters, Journal of
 Geophysical Research, 114, doi:10.1029/2009jg000990, 2009.
- Wang J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng, Y.,
 Allen, G. H., Crétaux, J.-F. and Wada, Y.: GeoDAR: georeferenced global dams and reservoirs dataset for bridging
 attributes and geolocations, Earth System Science Data, 14, 1869-1899, doi:10.5194/essd-14-1869-2022, 2022.
- Weishaar J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R. and Mopper, K.: Evaluation of specific ultraviolet
 absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol.,
 37, 4702-4708, 2003.
- Williams C. J., Frost, P. C., Morales-Williams, A. M., Larson, J. H., Richardson, W. B., Chiandet, A. S. and Xenopoulos, M.
 A.: Human activities cause distinct dissolved organic matter composition across freshwater ecosystems, Global Change
 Biol., 22, 613-626, doi:10.1111/gcb.13094, 2016.
- Williams C. J., Yamashita, Y., Wilson, H. F., Jaffé, R. and Xenopoulos, M. A.: Unraveling the role of land use and microbial
 activity in shaping dissolved organic matter characteristics in stream ecosystems, Limnol. Oceanogr., 55, 1159-1171,
 doi:10.4319/lo.2010.55.3.1159, 2010.
- 801 Wilson H. F. and Xenopoulos, M. A.: Effects of agricultural land use on the composition of fluvial dissolved organic matter,
- 802 Nat. Geosci., 2, 37-41, doi:10.1038/ngeo391, 2008.

- Xenopoulos M. A., Barnes, R. T., Boodoo, K. S., Butman, D., Catalán, N., D'Amario, S. C., Fasching, C., Kothawala, D. N.,
 Pisani, O., Solomon, C. T., Spencer, R. G. M., Williams, C. J. and Wilson, H. F.: How humans alter dissolved organic
 matter composition in freshwater: relevance for the Earth's biogeochemistry, Biogeochemistry, 1-26,
 doi:10.1007/s10533-021-00753-3, 2021.
- Yi Y., Li, S.-L., Zhong, J., Wang, W., Chen, S., Bao, H. and He, D.: The influence of the deep subtropical reservoir on the
 karstic riverine carbon cycle and its regulatory factors: Insights from the seasonal and hydrological changes, Water Res.,
 226, doi:10.1016/j.watres.2022.119267, 2022.
- Yi Y., Zhong, J., Bao, H., Mostofa, K. M. G., Xu, S., Xiao, H.-Y. and Li, S.-L.: The impacts of reservoirs on the sources and
 transport of riverine organic carbon in the karst area: a multi-tracer study, Water Res., 194, 116933,
 doi:10.1016/j.watres.2021.116933, 2021.
- Zhang Q., Tao, Z., Ma, Z., Gao, Q., Deng, H., Xu, P., Ding, J., Wang, Z. and Lin, Y.: Hydro-ecological controls on riverine
 organic carbon dynamics in the tropical monsoon region, Sci. Rep., 9, 11871, doi:10.1038/s41598-019-48208-y, 2019.
- Zhong J., Chen, S., Wang, W., Yan, Z., Ellam, R. M. and Li, S. L.: Unravelling the hydrological effects on spatiotemporal
 variability of water chemistry in mountainous rivers from Southwest China, Hydrol. Process., 34, 5595-5605,
 doi:10.1002/hyp.13980, 2020.
- Zhong J., Li, S.-L., Zhu, X., Liu, J., Xu, S., Xu, S. and Liu, C.-Q.: Dynamics and fluxes of dissolved carbon under short-term
 climate variabilities in headwaters of the Changjiang River, draining the Qinghai-Tibet Plateau, J. Hydrol., 596, 126128,
 doi:10.1016/j.jhydrol.2021.126128, 2021.
- Zhou Y., Davidson, T. A., Yao, X., Zhang, Y., Jeppesen, E., de Souza, J. G., Wu, H., Shi, K. and Qin, B.: How autochthonous
 dissolved organic matter responds to eutrophication and climate warming: Evidence from a cross-continental data analysis
 and experiments, Earth-Sci. Rev., 185, 928-937, doi:10.1016/j.earscirev.2018.08.013, 2018.
- Zhou Y., Yao, X., Zhou, L., Zhao, Z., Wang, X., Jang, K. S., Tian, W., Zhang, Y., Podgorski, D. C., Spencer, R. G. M.,
 Kothawala, D. N., Jeppesen, E. and Wu, F.: How hydrology and anthropogenic activity influence the molecular
 composition and export of dissolved organic matter: Observations along a large river continuum, Limnol. Oceanogr., 66,
 1730-1742, doi:10.1002/lno.11716, 2021.