Geographical controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: Insights from optical properties and carbon isotopes

Shuai Chen¹, Jun Zhong², Lishan Ran¹, Yuanbi Yi², Wanfa Wang³, Zelong Yan⁴, Siliang Li^{2,5}, Khan M.G. Mostofa²

¹Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong, China

²Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China

³College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China

⁴School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116081, China

⁵State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

Correspondence to: Jun Zhong (jun.zhong@tju.edu.cn) and Lishan Ran (lsran@hku.hk)

Contents of file

Figure S1–S3

Introduction

- 5 This document contains: Figure S1, Relationship between mean drainage slope, mean drainage elevation, and annual air temperature in the Yinjiang (Y), Shiqian (S), and Yuqing (Q) catchments; Figure S2, Land use pattern impacts on DOM character. (a) SUVA₂₅₄ (in L mg⁻¹ m⁻¹) and (b) freshness index (β/α) decreased with increasing proportion of urban and agricultural land use area in the studied catchments. Outlier (site S3) was excluded from analyses in panel a as the sample was strongly influenced by the road construction, which was evidenced by high POC and TSM concentration (Chen et al.,
- 10
 - 2021). (c) Humification index (HIX) positively related to the increasing proportion of urban and agricultural land use area. Figure S3, Relationship between freshness index (β/α) and EEM-PARAFAC components (C2) in the Yinjiang (Y), Shiqian (S), and Yuqing (Q) catchments. Components are presented as % of the total components.

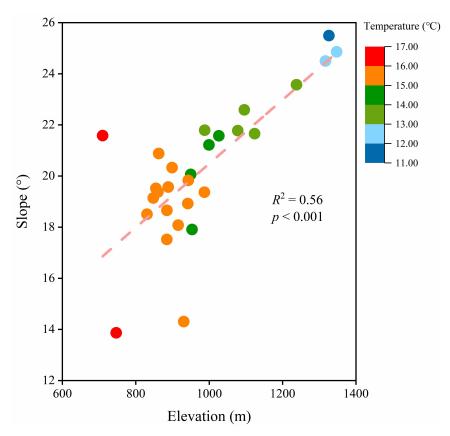
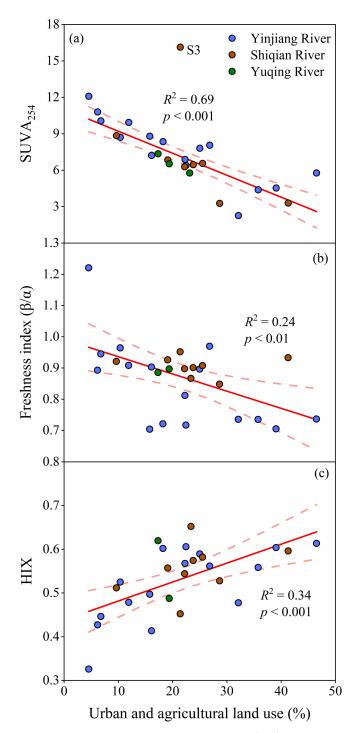



Figure S1 Relationship between mean drainage slope, mean drainage elevation, and annual air temperature in the Yinjiang (Y), Shiqian (S), and Yuqing (Q) catchments.

Figure S2 Land use pattern impacts on DOM character. (a) SUVA₂₅₄ (in L mg⁻¹ m⁻¹) and (b) freshness index (β/α) decreased with increasing proportion of urban and agricultural land use area in the studied catchments. Outlier (site S3) was excluded from analyses in panel a as the sample was strongly influenced by the road construction, which was evidenced by high POC and TSM concentration (Chen et al., 2021). (c) Humification index (HIX) positively related to the increasing proportion of urban and agricultural land use area.

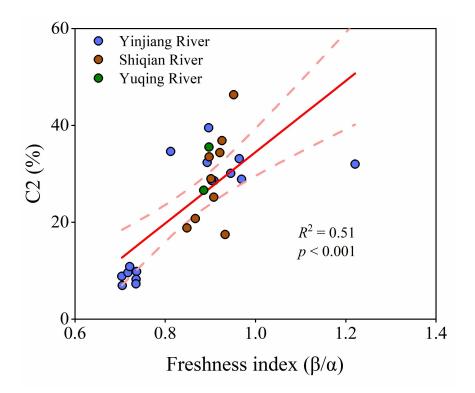


Figure S3 Relationship between freshness index (β/α) and EEM-PARAFAC components (C2) in the Yinjiang (Y), Shiqian (S), and Yuqing (Q) catchments. Components are presented as % of the total components.

30 Reference

Chen S., Zhong, J., Li, S., Ran, L., Wang, W., Xu, S., Yan, Z. and Xu, S.: Multiple controls on carbon dynamics in mixed karst and non-karst mountainous rivers, Southwest China, revealed by carbon isotopes (delta(13)C and Delta(14)C), Sci. Total Environ., 791, 148347, doi:10.1016/j.scitotenv.2021.148347, 2021.