Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster
(*Crassostrea gigas*) farming: A case study in the Hinase Area, Okayama Prefecture and
Shizugawa Bay, Miyagi Prefecture, Japan

Masahiko Fujii¹,²,³, Ryuji Hamanoue², Lawrence Patrick Cases Bernardo¹,³, Tsuneo Ono⁴, Akihiro
Dazai⁵, Shigeyuki Oomoto⁶, Masahide Wakita⁷, and Takehiro Tanaka⁸

¹Faculty of Earth Environmental Science, Hokkaido University, Sapporo, 0600810, Japan
²Graduate School of Environmental Science, Hokkaido University, Sapporo, 0600810, Japan
³Now at International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, Iwate,
⁴Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, 2368648, Japan
⁵Center for Sustainable Society, Minamisanriku, 9860775, Japan
⁶Eight-Japan Engineering Consultants Inc., Okayama, 7008617, Japan
⁷Mutsu Institute for Oceanography, Japan Agency for Marine-Earth Science and Technology, Aomori, 0350022, Japan
⁸NPO Satoumi Research Institute, Okayama, 7048194, Japan

Correspondence to: Masahiko Fujii (mfujii@aori.u-tokyo.ac.jp)
Abstract. Coastal warming, acidification, and deoxygenation are progressing primarily due to the increase in anthropogenic CO$_2$. Coastal acidification has been reported to have effects that are anticipated to become more severe as acidification progresses, including inhibiting the formation of shells of calcifying organisms such as shellfish, which include Pacific oysters (*Crassostrea gigas*), one of the most important aquaculture resources in Japan. Moreover, there is concern regarding the combined impacts of coastal warming, acidification, and deoxygenation on Pacific oysters. However, spatiotemporal variations in acidification and deoxygenation indicators such as pH, aragonite saturation state (Ω_{arag}), and dissolved oxygen have not been observed and projected in oceanic Pacific oyster farms in Japan. To assess the present and project future impacts of coastal warming, acidification, and deoxygenation on Pacific oysters, we performed continuous *in-situ* monitoring, numerical modeling, and microscopic examination of Pacific oyster larvae in the Hinase area of Okayama Prefecture and Shizugawa Bay in Miyagi Prefecture, Japan, both of which are famous for their Pacific oyster farms. Our monitoring results first found Ω_{arag} values lower than the critical level of acidification for Pacific oyster larvae in Hinase, although no impact of acidification on larvae was identified by microscopic examination. Our modeling results suggest that Pacific oyster larvae are anticipated to be affected more seriously by the combined impacts of coastal warming and acidification, with lower pH and Ω_{arag} values and a prolonged spawning period, which may shorten the oyster shipping period and lower the quality of oysters. On the other hand, no significant impact of surface-water deoxygenation on Pacific oysters was identified at present nor was projected for the future in both sites.

1 Introduction

Since the industrial revolution of the mid-18th century, anthropogenic carbon dioxide (CO₂) emissions have increased (Intergovernmental Panel on Climate Change (IPCC), 2021) as a result of activities such as fossil-fuel consumption, industry, and land-use changes (e.g. Le Quéré et al., 2018). The CO₂ emitted has a greenhouse effect and is therefore a contributor to global warming. Global warming is progressing due to the increase in anthropogenic CO₂ and other greenhouse gases. In addition, ocean temperatures are increasing as the oceans absorb the increased thermal energy associated with global warming (e.g. Levitus et al., 2009). There is concern that the impact on ecosystems in the seas will be considerable. The effects of rising sea temperatures on ecosystems vary. Most marine organisms are heterotherms, and there have been reports at higher latitudes of organisms that usually prefer warmer seawater in the south. Global warming may also cause extreme events such as larger typhoons (e.g. Yoshino et al., 2015) and increased heavy rainfall (e.g. Papalexiou and Montanari, 2019). Increased high-rainfall events result in increased river flooding and alter material inputs to the ocean, thus affecting coastal ecosystems (Hoshiba et al., 2021), which may, in turn, affect human well-being via fisheries and marine tourism. Therefore, it is necessary to predict the impact of ocean warming on coastal areas and ecosystems, and to implement appropriate adaptation measures.

CO₂ leached into the ocean reacts with water (H₂O) in seawater to form carbonic acid (H₂CO₃). The H₂CO₃ separates into hydrogen ions (H⁺), bicarbonate ions (HCO₃⁻), and carbonate ions (CO₃²⁻), releasing H⁺ into seawater. Therefore, as the amount of CO₂ leached into the ocean increases, seawater, which is inherently slightly alkaline, decreases in pH and becomes closer to neutral or acidic. This phenomenon is called ocean acidification (Orr et al., 2005; Bates et al., 2014; Jiang et al., 2019).

Ocean acidification is a global phenomenon. Over the past century, global average pH values have decreased by 0.1 unit, indicating an increase in hydrogen ion concentrations ([H⁺]) of nearly 30% (Orr et al., 2005; Doney et al., 2020). Additionally, rates of ocean acidification have been reported to vary by region, especially in coastal regions. A major contributor to the differences in the progression of acidification in coastal areas is human activity, such as coastal protection works, inflows of river water containing industrial wastewater, and sea-surface aquaculture (Suzuki et al., 2020). In addition, spatiotemporal variations in seawater pH are more pronounced in coastal areas than in open-ocean areas because of the complex environments created by natural phenomena such as biological activity and river inflows associated with rainfall. Alterations in the acidity of coastal waters is termed coastal acidification or coastal ocean acidification (Wallace et al., 2014) and is typically distinguished from ocean acidification.

The H⁺ in seawater reacts with CO₃²⁻ to maintain equilibrium. Therefore, the concentration of carbonate ions ([CO₃²⁻]) in seawater decreases as acidification progresses. Calcifying organisms such as shellfish, corals, shrimps, and crabs, which have shells and skeletons of calcium carbonate (CaCO₃), are affected by this process. Because calcifying organisms form their own shells and skeletons using calcium ions (Ca²⁺) and CO₃²⁻ in seawater, CaCO₃ saturation state (Ω) values are an indicator of the effects on these organisms. Therefore, Ω and pH values are important for evaluating the effects of acidification on organisms. Ω is determined by the product of [CO₃²⁻] and calcium ion concentration ([Ca²⁺]), which is expressed by the following equation:
\[
\Omega = \frac{[Ca^{2+}][CO_3^{2-}]}{K_{sp}},
\]

where \(K_{sp}\) is the solubility product of CaCO\(_3\) (Guinotte and Fabry, 2008).

Calcifying organisms include commercially important species that provide significant ecosystem services, such as shellfish and corals. Therefore, there are concerns regarding the impact of acidification on human communities. In addition, CaCO\(_3\) has two crystalline body structures, aragonite and calcite, with aragonite being the more soluble (Morse et al., 1980). Because the larval stages of shellfish and corals form aragonite shells and skeletons, there is concern that the effects of acidification will be more pronounced than in organisms with calcite shells. Previous studies have reported the effects of reduced aragonite saturation (\(\Omega_{arag}\)) on different species, based on laboratory experiments that evaluated acidification effects such as coral bleaching and the occurrence of deformities and mortality in larval shellfish by manipulating the partial pressure of CO\(_2\) (Kurihara et al., 2007; Anthony et al., 2008; Kurihara, 2008; Kimura et al., 2011; Onitsuka et al. 2014, 2018; Waldbusser et al., 2015). However, it is not clear when and where these effects occur in the ocean. Therefore, to assess the acidification impact on commercially important species, it is necessary to clarify the ocean environment and evaluate the impacts on each species and life stage.

Climate change has increased the vertical density gradient of upper-ocean layers, thereby weakening the downward flux of oxygen and hence decreasing the oxygen content. The decreased solubility of oxygen in seawater induced by ocean-surface warming has contributed to the decrease in ocean oxygen content (ocean deoxygenation; Stramma et al., 2010, 2011, 2012, 2020; Helm et al., 2011; IPCC, 2019; Sasano et al., 2015, 2018; Ito et al., 2017; Schmidtko et al., 2017; Oschlies et al., 2018; Ono et al., 2021). In coastal areas, by contrast, oxygen content is frequently disturbed by anthropogenic processes such as eutrophication, changes in freshwater loading, and alternation of topography (coastal deoxygenation; Rabalais et al., 2010; Zhang et al., 2010; Ning et al., 2011; Breitburg et al., 2018; IPCC 2019; Laffoley and Baxter, 2019; Wei et al., 2019; Limburg et al., 2020; Xiong et al., 2020; Fujii et al., 2021; Kessouri et al., 2021). Climate change also affects the coastal oxygen environment by increasing the temperature of coastal water, thus decreasing oxygen solubility, and modulates basin-scale water circulation, thereby changing the patterns and strengths of seasonal intrusions of open-ocean waters into coastal areas (Koslow et al., 2011, 2015; Booth et al., 2012). These indirect consequences of global climate change make coastal oxygen environments more problematic, even if the degree of anthropogenic perturbations in coastal areas remains constant.

In Japan, nutrient loadings from land areas have gradually decreased in most coastal regions (Abo and Yamamoto, 2019). Eutrophic conditions are however still extant in many bays and estuaries, and seasonal hypoxic conditions in summer bottom layers improve only slowly (Imai et al., 2006; Ando et al., 2021; Yamamoto et al., 2021). Deoxygenation and ocean acidification cause combined effects on marine organisms (Melzner et al., 2013; DePasquale et al., 2015; Gobler and Baumann, 2016; IPCC, 2018). Monitoring variations in oxygen and pH is thus essential for assessment of conditions in coastal ecosystems.

Pacific oyster farming occupies an important position in the domestic fisheries industry in Japan. In 2018, the value of oyster production from marine aquaculture was about JPY 35 billion, accounting for about 7% of Japan’s total marine aquaculture production. There are concerns regarding the economic impacts of coastal warming, acidification, and
deoxygenation on regions where oyster farming is a key industry.

Previous assessments of the effects of acidification on Pacific oysters (*C. gigas*) have shown increased larval mortality and malformation rates due to lower pH and Ω_{arag} values, as well as reduced calcification rates in adult oysters (Gazeau et al., 2007; Kurihara et al., 2007; Waldbusser et al., 2015; Gimenez et al., 2018; Durland et al., 2019). Oyster farms in northwestern Oregon, which generate USD 273 million annually, have been impacted by coastal upwelling causing deep, low-pH, low-Ω_{arag} seawater to manifest at the surface (Barton et al., 2012). There is concern that Japan may face a similar situation in the future as acidification progresses.

Although the ecological effects of coastal warming, acidification, and deoxygenation on Pacific oyster (*C. gigas*) are becoming clearer, when and how these effects will occur at oyster-farming sites are unknown. Because Pacific oyster is a commercially important species, to recommend adaptation measures requires projection of future impacts of coastal warming, acidification, and deoxygenation. For this purpose, we used monitoring sites in Pacific-oyster-farming areas in Japan and developed a coupled physical-biogeochemical model (Chapter 2). Chapter 3 provides observed and projected data on coastal warming, acidification, and deoxygenation, and on Pacific oyster and farming thereof. Our findings are discussed and summarized in Chapters 4 and 5, respectively.
2 Materials and Methods

2.1 Study sites

Two sites of Pacific oyster (C. gigas) aquaculture were selected: the Hinase area in Bizen City, Okayama Prefecture (hereafter Hinase) and Shizugawa Bay in Minamisanriku Town, Miyagi Prefecture (hereafter Shizugawa) (Fig. 1). Okayama and Miyagi Prefectures together account for approximately 20% of the total domestic oyster aquaculture production, making them important regions for domestic oyster aquaculture. Of these, Hinase accounts for 50% of Okayama Prefecture’s oyster aquaculture production, and Shizugawa is a major oyster-farming area, accounting for 10% of Miyagi Prefecture’s oyster aquaculture production (Ministry of Agriculture, Forestry and Fisheries website).

Hinase is located in the Seto Inland Sea, the largest enclosed coastal sea in Japan (The Association for Environmental Conservation of the Seto Inland Sea website). The Seto Inland Sea is shallow, with an average depth of 38 m, and is bordered by the open sea at its southeastern, northwestern, and southwestern ends. In addition to being an enclosed sea area, excessive inflow of nutrients from the land due to human activities since the 1950s, loss of seaweed and eelgrass due to land reclamation, and frequent red tides caused by these factors have led to eutrophication of the sea area, and hypoxia and anoxia in the bottom layer. Eutrophication has been overcome in many surface waters of the Seto Inland Sea through measures to control excessive inflow of nutrients from land over the last few decades, and the surface waters are even oligotrophic nowadays (e.g. Abo and Yamamoto, 2019; Yamamoto et al., 2021), but exchange of seawater with the open sea is weak, and the bottom layer is hypoxic.

Shizugawa Bay is a medium-sized bay that measures approximately 10 km east to west and 5 km north to south, with a mouth facing east (Horii et al., 1994), and has been classified as both an enclosed coastal sea (Ministry of the Environment, 2010) and an open-type bay (Komatsu et al., 2018). Since the 1990s, environmental impacts such as anoxia due to overcrowding of coho salmon and Pacific oysters have been observed (Nomura et al., 1996). Subsequently, the Great East Japan Earthquake of March 11, 2011, caused major damage to the social infrastructure surrounding the bay as well as the aquaculture facilities in the bay, and the subsequent tsunami affected the eelgrass and seaweed beds and tidal flats that support the fisheries.

In both areas, local residents have taken the initiative to improve the marine environment and practice "sato umi", which is defined as "a sea where productivity and biodiversity have increased due to the addition of human labor" (Yanagi, 2006). For example, in Hinase, there were approximately 590 ha of eelgrass beds in 1950, but by 1985 that area had drastically decreased to approximately 12 ha. Eelgrass seeding activities by local fishermen began in that year, and the eelgrass beds have now recovered to about 250 ha (Tanaka, 2017). This human labor has increased the numbers of species and populations of fish and shellfish, and improved biodiversity. In addition, in Shizugawa, after the Great East Japan Earthquake, the number of oyster rafts used for oyster aquaculture and the cultivation density decreased, improving the growth efficiency of the oysters and enabling them to be shipped in 7–10 months, compared to 3 years before the earthquake, thus improving productivity (Komatsu et al., 2018).

Against this backdrop, observations of the marine environment are being conducted in both areas, with active cooperation
by local fishermen, within the framework of the Nippon Foundation Ocean Acidification Adaptation Project (OAAP; http://nippon.zaidan.info/dantai/0611718/dantai_info.htm), to assess acidification and to develop adaptation measures. Four monitoring sites have been set up in Hinase and Shizugawa (Fig. 1). In Hinase, Site H-1 is located at the mouth of the Chikusa River, the largest river in the study site. Site H-2 is an oyster seedling site, located near the mouth of Katakami Bay. Site H-3 is an eelgrass bed, located at the mouth of Genji Bay. Site H-4 is the farthest offshore, with water depths of 10.2–12.4 m. In Shizugawa, Site S-1 is at the mouth of the Hachiman River, the largest river in the area. Site S-2 is a seaweed-farming site, and Site S-3 is a nursery for oysters. Site S-4 is the farthest offshore, and has water depths of 15.5–16.9 m.

2.2 Observation

We have measured hourly water temperature, salinity, and pH values at a depth of 1 m at each site in Hinase since August 29, 2020 and in Shizugawa since September 4, 2020, using instruments capable of continuous measurement. Dissolved oxygen (DO) has also been monitored continuously at a depth of 1–1.5 m at one site in Hinase (H-2) and one in Shizugawa (S-3). A conductivity and temperature sensor (INFINITY-CTW ACTW-USB; JFE Advantech) was used to measure temperature and salinity hourly, while DO was measured hourly using a RINKO W ARROW-USB (JFE Advantech). Calibration of the DO sensor was carried out by two-point (zero and span) calibration using 0 and 100% (saturated) oxygen waters (Fujii et al., 2021). To measure pH, glass-electrode pH sensors (SPS-14; Kimoto Electric) were used. The sensors were removed every 1–3 months for cleaning, including removal of attached organisms, data collection, battery replacement, and calibration. See Fujii et al. (2021) for details of the experimental design.

Water samples were collected when the sensors were maintained, and chlorophyll, total alkalinity (TA), dissolved inorganic carbon (DIC), nutrients (nitrate [NO₃], nitrite [NO₂], ammonium [NH₄], phosphate [PO₄], and silicate [Si]) were measured (Si was not assessed at Shizugawa). TA and DIC values were obtained using a total alkaline titration analyzer (ATT-05 by Kimoto Electronic) and a coulometer (Model 3000A; Nippon ANS) (Wakita et al., 2017, 2021; Fujii et al., 2021). The values were calibrated against certified reference material provided by Prof. A. G. Dickson (Scripps Institution of Oceanography, University of California San Diego) and KANSO TECHNOS. The pH (total scale) values at the in situ temperatures were calculated from the carbonate dissociation constants in Lueker et al. (2000) and temperature, salinity, TA, and DIC using CO2SYS (Pierrot et al., 2006).

During continuous monitoring of pH, together with correction of the absolute value, it is necessary to correct for the drift of the observed value (Yamaka, 2019; Fujii et al., 2021). In this study, the pH value of a pH sensor at time t (pH(t)) was obtained using the following equation (Hamanoue, 2022):

\[
pH(t) = pH_m(t) + \frac{\left[pH_{sample}(t_e) - pH_m(t_i)\right]}{t_e - t_i}
\]

where \(pH_m(t) \) represents the measured value of pH at time \(t \); \(pH_{sample}(t_e) \) and \(pH_{sample}(t_i) \) are the pH values at the end time \(t_e \) and start time \(t_i \) of each deployment, respectively, obtained by the seawater sample and sensor; \(pH_m(t_i) \) is the pH value...
measured by the sensor at time t_i; $\text{pH}_{\text{m}}(\text{dt}_e)$ is the minimal or average pH value measured by the sensor for 24 hours prior to dt_e.
P pH increases during the day due to photosynthesis, and decreases during the night due to respiration of organisms. If algae or other organisms adhere to the glass-electrode portion of the sensor, the effect of photosynthesis during the day is amplified, and the pH value is overestimated. To minimize calibration uncertainty due to this effect, the lowest daily value was used for $\text{pH}_{\text{m}}(\text{dt}_e)$ if an effect of photosynthesis was observed in the previous 24 hours, and the average value was used if not.

Ω_{arag} can be calculated using one of the following values in addition to water temperature and salinity—pH, TA, DIC, and CO$_2$ concentration in seawater. Of these, the TA and DIC values were calculated by the above when seawater was sampled, but such sampling was conducted only once or twice per month. Therefore, because the TA of seawater is highly correlated with salinity (e.g. Yamamoto-Kawai et al., 2015), a regression equation was calculated from the salinity and TA values of the seawater samples (Fig. 2). Hourly TA values were estimated from hourly salinity data obtained from continuous observations. Hourly values of Ω_{arag} were calculated using CO2SYS (Lewis et al., 1998), together with water temperature and pH values obtained from continuous observations. The maximum error for this process of determining alkalinity from salinity is about 30 μmolkg$^{-1}$ and 0.06 for alkalinity and Ω_{arag}, respectively.

To examine the effects of precipitation and freshwater inflow from rivers on the spatiotemporal changes in acidification indices, precipitation data from the sites nearest to Hinase (Mushiage, Oku Town, Setouchi City, Okayama Prefecture) and Shizugawa (Shizugawa, Minamisanriku Town, Miyagi Prefecture, respectively) (Japan Meteorological Agency website; https://www.data.jma.go.jp/obd/stats/etrn/index.php) were obtained. The precipitation data were compared directly with the spatiotemporal changes in salinity, pH, and Ω_{arag} to verify whether variations were due to precipitation or inflow from rivers.

2.3 Microscopic examination of oyster larvae

Like other calcifying organisms, Pacific oyster ($C. \text{gigas}$) is particularly vulnerable to acidification at the larval stage. By incubating Pacific oysters in a high-CO$_2$ tank, Kurihara et al. (2007) revealed that acidified water inhibited the growth of D-shaped veliger larvae. Thus, microscopic examination of D-shaped veliger larvae enables assessment of the impact of acidification on Pacific oyster.

Microscopic examination of D-shaped veliger larvae collected using 50–100-μm mesh plankton nets was carried out in Hinase and Shizugawa during the spawning season. In Hinase, the examination was performed at the Hinase Fisheries Association from July 4 to August 31, 2020 (n = 370) and from June 21 to October 1, 2020 (n = 244), and at the Oku Fisheries Association from July 11 to September 9, 2020 (n = 292), and from July 2 to August 30, 2021 (n = 156). In Shizugawa, microscopy examination was performed at the Kesennuma Miyagi Prefectural Fisheries Experimental Station from July 27 to September 2, 2020 (n = 60) and July 26 to September 6 (n = 70).

2.4 Modeling

To reproduce the coastal environment in Hinase and Shizugawa and to project future conditions, the Regional Ocean Modeling System (ROMS) was used. Of the versions of ROMS, we chose CROCO (ver. 1.1; Jullien et al., 2019), which can perform
high-resolution simulations and account for various interactions, including atmosphere, tides, and bathymetry. In addition, CROCO enables coupling of ROMS with the Pelagic Interaction Scheme for Carbon and Ecosystem Studies (PISCES; Aumont et al., 2003; Aumont, 2005), a marine ecosystem model, enabling calculation of biogeochemical as well as physical processes (Bernardo et al., 2021; Hamanoue, 2022). The model is therefore suitable for simulating complex coastal marine environments. The prognostic variables for the physical processes of the model were water temperature and salinity, and those for the biochemical processes were DO, TA, DIC, and nutrients (NO₃, PO₄, Si). pH and Ω_{arag} were calculated from the values of water temperature, salinity, TA, and DIC obtained by the model using CO2SYS. The unavoidable biases in model results of prognostic variables relative to observed values were corrected using the procedure adapted by Yara et al. (2011) and Fujii et al. (2021).

The model domain was set to 133° 38' 06" to 135° 47' 67" E and 33° 93' 24" N to 34° 79' 81" in Hinase and 140° 86' 10" E to 142° 86' 20" E and 37° 59' 47" to 39° 76' 47" N in Shizugawa. The horizontal resolution of the models was approximately 2 km. The vertical coordinate system was σ-coordinate and the number of layers was 32. Bathymetry was derived using the 15 arc-second General Bathymetric Chart of the Oceans (GEBCO) 2021 dataset (GEBCO website; Table 1). Representative simulations were carried out for present and future (2090s) conditions. Each simulation was carried out for a 1-year period from May to April (2000 to 2001 for present and 2099 to 2100 for future) and the daily mean results at 1 m depth were used for analysis and comparison with the observed results.

2.4.1 Boundary conditions

The boundary conditions for water temperature, salinity, current velocity, and water level were taken from the Future Ocean Regional Projection (FORP)-JPN02 version 2 dataset (Nishikawa et al., 2021), which has a horizontal resolution of 2 km, the highest resolution for Japan to date. For the future greenhouse gas emissions scenarios, we used the MRI-CGCM3 climate prediction model outputs developed at the Meteorological Research Institute (Tsujino et al., 2017) under the Representative Concentration Pathways (RCP) 2.6 and 8.5 scenarios (van Vuuren et al., 2011) of the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012). Table 1 lists the boundary conditions used in this study.

2.5 Thresholds for evaluating the impacts on Pacific oysters (C. gigas)

Pacific oysters (C. gigas) reach sexual maturity when the accumulated water temperature reaches 600°C based on a water temperature of 10°C, and that at water temperatures of 20°C or higher they spawn once and then mature and spawn again (Oizumi et al., 1971). Therefore, there is a concern that rise in water temperatures in the future may cause earlier or longer spawning and maturation times, which may result in a mismatch with existing oyster-farming approaches. In this study, start and end of Pacific oyster’s spawning period was evaluated as a function of water temperature, based on the above-mentioned thresholds in Oizumi et al. (1971).

There are no previous studies that set the threshold for the impact of ocean acidification on Pacific oysters in Japan coasts.
Therefore, to evaluate the impact of ocean acidification on Pacific oysters, we referred to a threshold of $\Omega_{\text{arag}}=1.5$ (Waldbusser et al., 2015), which was obtained from rearing experiments of Pacific oyster larvae in Oregon, USA, and hence, the species and reaction to local environment may be different from those in Japan coasts. Below that threshold, the development of Pacific oyster larvae is likely to be affected, with slower growth and higher mortality.

To evaluate the impact of deoxygenation on Pacific oysters, we referred to a threshold of DO concentration of 203 μmol kg$^{-1}$ as a lower limit of the optimal DO range for Pacific oyster growth (Hochachka, 1980; Fisheries Agency, 2013).
3 Results

3.1 Observation results

Water temperatures showed significant seasonal variations at both sites. In Hinase, the highest water temperature during the observation period was 32.3°C at H-2 on August 8, 2021 (Fig. 3 (a)). The highest water temperatures at the other sites in Hinase were observed in August 2020, with a temperature difference of 1.2°C between sites. The lowest water temperatures were observed in the middle of January, 2021: 6.2°C at H-1, 3.9°C at H-2, 5.6°C at H-3, and 7.3°C at H-4.

In Shizugawa, the highest water temperature during the observation period was 28.7°C at S-2 on August 6, 2021, and the highest water temperatures at the other sites were observed on September 8, 2020 or August 6, 2021 (Fig. 3 (b)). The lowest water temperature of 6.5°C was observed at S-1 on February 9, 2021. The difference between sites was about 0.8°C and 0.7°C for the maximum and minimum water temperatures, respectively.

As mentioned in 2.5, spawning periods of Pacific oysters are estimated from the water temperature thresholds based on Oizumi et al. (1971). In Hinase, Pacific oysters are estimated to have stopped spawning between October 24 and November 4, 2020, and between October 25 and November 7, 2021 and to have begun spawning between June 8 and 19 in 2021. In Shizugawa, spawning is estimated to have ended between October 8 and 10, 2020 and between October 16 and 18, 2021, and to have begun between July 19 and 24, 2021 (Table 2).

Salinity usually varied between 30.5 and 31.5 at sites in Hinase and between 32 and 34 in Shizugawa (Fig. 3). In the Hinase Area, the minimum salinity at H-1, H-2, H-3, and H-4 during the monitoring period was 11.4, 13.3, 16.5, and 15.3, and appeared on July 9, August 23, July 10, and July 10, 2021, respectively. Considering the second lowest salinity at H-2 during the monitoring period (15.4) also appeared on July 11, 2021, and the heaviest rainfall during the monitoring period (hourly precipitation of 28.5 mm) around the sites occurred at 4am on July 8, 2021, i.e., one or two days before the lowest salinity appeared at the sites, extremely low salinity seems to be related to direct freshwater input from the rainfall and subsequently increased freshwater discharge from vicinal rivers. However, a statistically significant relation between the rainfall and salinity was not identified. In the Shizugawa Bay, the minimum salinity at S-1, S-2, S-3, and S-4 during the monitoring period was 15.2, 23.5, 27.9, and 28.8, and appeared on September 5, 2020, August 23, 2020, May 2, 2021, and July 11, 2021, respectively. Therefore, extremely low salinity was not observed at S-2, S-3, and S-4. On the other hand, the extremely low salinity which appeared at S-1 (located at the mouth of the Hachiman River) at 5pm on September 5, 2020, seemed to be caused by the heaviest rainfall during the monitoring period on that day (hourly precipitation of 37.5 mm at 8am; 9 hours earlier than the appearance of the lowest salinity at S-1), presumably the increased freshwater discharge from the Hachiman River following the heavy rainfall. However, the relation between the salinity and rainfall was not statistically significant at any of the sites in Hinase and Shizugawa, and further studies are necessary.

The observed nutrient concentrations differed among sites and had large seasonal and interannual fluctuations, being relatively high in late summer and autumn, and low in the other periods. The observed range of NO$_3$ concentration was 0.01-8.18 μmol kg$^{-1}$ in Hinase and 0.00-4.75 μmol kg$^{-1}$ in Shizugawa. That of PO$_4$ concentration was 0.03-1.29 μmol kg$^{-1}$ in Hinase.
and 0.01-0.74 μmol kg\(^{-1}\) in Shizugawa. It is difficult to assess if the waters are oligotrophic or not by certain thresholds of nutrient concentrations. On the other hand, if we refer to the half-saturation constant of each nutrient concentration given in the model (e.g. 0.26-1.3 μmol kg\(^{-1}\) for NO\(_3\) and 0.0008-0.004 μmol kg\(^{-1}\) for PO\(_4\) in Aumont (2005)), NO\(_3\) and PO\(_4\) are considered to be depleted which is regarded as oligotrophic condition in some seasons in the surface water in both sites.

DO concentrations showed significant seasonal variation, generally being high in winter and low in summer at all sites in Hinase and Shizugawa (Fig. 4). Although the DO concentrations were above the lower limit of the optimal DO range for Pacific oyster growth (203 μmol kg\(^{-1}\); Hochachka, 1980; Fisheries Agency, 2013) in Shizugawa, they were often below the optimal range in summer and autumn in Hinase.

TA values estimated from continuous salinity observations using the above-mentioned regression equation (Fig. 2) matched those determined by water-sample analysis at each site (Fig. 5). The estimates implied a significant decrease in TA values, associated with a localized decrease in salinity as a result of rainfall and subsequent enhanced riverine discharge, that could not be captured by once-or twice-monthly water-sample analysis.

DIC values determined by water-sample analysis showed clear seasonal variation, being generally high in winter and low in summer (Fig. 5), likely a result of the higher solubility of atmospheric CO\(_2\) at low temperatures and more vigorous primary production, respectively. The DIC estimated from water temperature, salinity, and pH (and TA via salinity) showed similar fluctuations to the corresponding TA. By contrast, the estimated DIC showed abrupt changes at all sites that were not captured by water-sample analysis. Abrupt drawdown of estimated DIC were sometimes found, and a significant decrease occurred at all four sites in Hinase on July 13, 2021, after a major rainfall event.

pH values varied widely during the observation period at all sites in Hinase and Shizugawa, with a marked decrease after rainfall (Fig. 6). The extent of the post-rainfall decline in pH differed among the sites. In Hinase, the lowest pH was in September 2021, and pH values were lower at H-1, H-2, and H-3 than at H-4, which was the farthest offshore. After rainfall on September 2021, the lowest pH values at H-1 and H-2 were 0.2 units lower than those at the other two sites. In Shizugawa, the lowest pH value of 7.8 occurred in July and August 2021, at S-1 and S-3 (in the estuary and offshore, respectively).

\(\Omega\)arag varied significantly during the observation period at all sites in Hinase and Shizugawa (Fig. 6). The temporal variability varied from site to site, with greater decreases at sites closer to the coast. \(\Omega\)arag values < 1.5 were often detected in Hinase, especially at H-1 and H-2, which were close to the river. Furthermore, during the spawning season of Pacific oysters from June to October or November (Oizumi et al., 1971), values fell below that threshold locally; the lowest \(\Omega\)arag of 0.8 was observed at H-2, which is used as a nursery for oysters, and values remained below the threshold for 2 weeks. In Shizugawa, the \(\Omega\)arag value was below the threshold only in August 2021 at S-3 for 4 hours, coinciding with the spawning season of Pacific oysters. However, no morphological abnormalities were observed in the larvae from Hinase and Shizugawa (Fig. 7), and therefore, we did not find any anecdotal evidence of impacts of ocean acidification on Pacific oyster larvae in this study.
3.2 Modeling results

The model successfully reproduced the spatio-temporal variations of each parameter in Hinase and Shizugawa (Figs. 8 and 9), especially the observed seasonal fluctuation, high and low water temperature and adversely low and high DO concentration in summer and winter, respectively.

The modeled temperature reproduced the observed seasonal fluctuations in Hinase and Shizugawa (Fig. 10). However, the modeled seasonal fluctuation of temperature was around 1 month behind observations in Shizugawa. The model–data mismatch may be a result of the internal variability of the climate model (Yara et al., 2011), especially for the Pacific Ocean, which provided the boundary conditions used in this study. Nonetheless, based on Oizumi et al. (1971), the current start and end date of Pacific oyster’s spawning period was calculated to be on June 14 in Hinase and July 26 in Shizugawa, and on October 24 in Hinase and October 14 in Shizugawa, respectively. These are consistent with the estimated start date (June 8-19 in Hinase and July 19-24 in Shizugawa) and end date (October 24-November 7 in Hinase and October 8-18 in Shizugawa), respectively (Table 2). The observed sudden decrease in the salinity was reproduced but was underestimated by the model (Fig. 10).

The modeled DO, TA, and DIC values reproduced the observed seasonal fluctuations in Hinase and Shizugawa (Figs. 11 and 12). However, the model did not reproduce the short-term fluctuations in biogeochemical parameters. This was mainly because the temporal resolution of the model output is 1 day, insufficient to resolve significant daily fluctuations in biogeochemical processes predominantly caused by biological activities, i.e., photosynthesis by phytoplankton, eelgrass, and seaweeds during the day and respiration of marine creatures at night. Although the spatial resolution of the model (2 km) is relatively high for downscaling climate model outputs, it is insufficient to reproduce spatial differences in biogeochemical-parameter values among the four sites in Hinase and Shizugawa. Also, the model-data mismatch for TA and DIC values, especially the failure to reproduce sudden decreases, resulted from insufficient input of freshwater from rainfall and riverine water into the model.

The modeled pH and Ω_{arag} values reproduced those observed (Fig. 13). However, similar to the other biogeochemical parameters, the model had difficulty in simulating short-term fluctuations. Because the model’s pH and Ω_{arag} values are calculated from modeled temperature, salinity, TA, and DIC values, uncertainties in the latter could magnify or cancel out those in the former. The estimated number of days on which Ω_{arag} values are below the threshold of acidification for Pacific oyster larvae (1.5) at present by the model results is 12 days in Hinase and 0 days in Shizugawa (Table 3).

4 Discussion

4.1 Future projection

The projected results for physical and biogeochemical parameters in the 2090s differed markedly between Hinase and Shizugawa and RCP scenarios (RCP 2.6 vs. 8.5) (Figs. 14 and 15).
In Hinase, the projected rise in water temperature for the rest of this century was slight (Fig. 14 (a)), so DO concentrations
will not change significantly (Fig. 14 (c)). Similarly, salinity will not change by the end of this century, leading to no significant
change in TA (Fig. 14 (b), (d)). Therefore, the significant decrease in pH and Ω_{arag} values from the present to the 2090s,
especially with the RCP 8.5 scenario, is likely caused by the large increase in DIC resulting from the increased atmospheric
CO$_2$ concentrations towards the end of the century (Fig. 14 (e)). The projected results show that larvae of Pacific oysters (C.
gigas) may experience a critical Ω_{arag} value year-round with the RCP 8.5 scenario (Fig. 14 (g)). This severe condition could be
alleviated if anthropogenic CO$_2$ emissions are cut sufficiently in accordance with the Paris Agreement (RCP 2.6 scenario). The
projected results also imply no severe impact of deoxygenation on the growth of Japanese oysters, neither now nor in the 2090s,
at least at 1-m depth.

In Shizugawa, water temperatures are predicted to rise by the 2090s (Fig. 15 (a)), substantially decreasing DO
concentrations (Fig. 15 (c)). Although salinity and TA values will not change from the present to the 2090s with any RCP
scenario (Fig. 15 (b), (d)), DIC will increase significantly (Fig. 15 (e)). Therefore, similar to Hinase, Ω_{arag} value is predicted to
decrease markedly towards the 2090s (Fig. 15 (g)), mainly because of the increase in DIC values. In Shizugawa, no severe
conditions for Japanese oysters are predicted with regard to DO concentrations, but Ω_{arag} values will be below the threshold (<
1.5) except in summer, unless anthropogenic CO$_2$ is reduced sufficiently.

4.2 Projected impacts of coastal warming, acidification and deoxygenation

Because estimation of the timing of start and end dates is dependent on water temperature, the timing may be altered by
future coastal warming. Our model results imply that in Hinase the start date will be earlier in the 2090s than at present, by
two weeks with the RCP 2.6 scenario and by almost one month with the RCP 8.5 scenario, and the end date will be later by
around 20 days with the RCP 8.5 scenario (Table 2; Fig. 16). In Shizugawa, the end date will be 10 days later than at present
in the 2090s with the RCP 2.6 scenario and more than one month later with the RCP 8.5 scenario. With the RCP 2.6 scenario,
the start date is projected to be 10 days earlier in the 2090s than at present. With the RCP 8.5 scenario, the water temperature
is projected to be above 10℃ year-round in the 2090s; therefore, we could not estimate the start date based on Oizumi et al.
(1971).

Coastal warming and acidification may have synergistic impacts on Pacific oyster larvae. As mentioned above, coastal
warming will lengthen the spawning period, which is the life stage most vulnerable to acidification. Therefore, Pacific oyster
larvae may suffer from acidification more seriously and over a longer period. Our model results imply that the number of days
on which Ω_{arag} values are below the threshold of acidification for Pacific oyster larvae (1.5) in Hinase will increase from 12
days at present to 24 days with the RCP 2.6 scenario and to 365 days with the RCP 8.5 scenario in the 2090s (Table 3; Fig. 16).
With the RCP 8.5 scenario, 145 of the 365 days are during the spawning period. In Shizugawa, the number of days on which
Ω_{arag} values are below 1.5 will increase from 0 days to 216 days from the present to the 2090s with the RCP 8.5 scenario, while
with the RCP 2.6 scenario the number of days in the 2090s will be similar to the present. The duration of severe conditions
might be 2 weeks longer, considering that 2–4 weeks are required for Pacific oyster larvae to settle after birth (e.g., Chanley and Dinamani, 1980; Tachi et al., 2013). The prolonged spawning period may shorten the oyster shipping period and lower their quality (Akashige and Fushimi, 1992), potentially damaging the oyster-processing industry.

Compared to the combined impacts of coastal warming and acidification, our model results indicate that the impact of deoxygenation on Pacific oysters will be less severe, at least in surface waters. The model results reveal that the number of days on which DO concentrations are below the optimal range for Pacific oyster growth (< 203 μmol kg⁻¹) will increase in Hinase from 13 days at present to 19 and 21 days in the 2090s with the RCP 2.6 and 8.5 scenarios, respectively, and 0 days in Shizugawa at present and in the 2090s (Table 3).

4.3 Thresholds for impacts of ocean acidification on Pacific oysters in Japan coasts

In this study, impacts of ocean acidification on Pacific oysters (C. gigas) were evaluated by using the threshold of $\Omega_{\text{arag}}=1.5$ (Waldbusser et al., 2015). On the other hand, as mentioned in 3.1, by microscopic examination we did not observe any morphological abnormalities in the larvae (Fig. 7), and therefore, we did not find any anecdotal evidence of impacts of ocean acidification on Pacific oyster larvae in this study. It is possible that we failed to collect abnormal larvae samples for the reason that the abnormal larvae died before our samples were taken, although it is unlikely that there were many such abnormal larvae present. If so, the plankton nets would have been able to collect sufficient numbers of them to be detected under microscopic examination.

Rearing experiments of Waldbusser et al. (2015) were performed in Oregon, USA, where Pacific oysters are not native, while they are native in both the Hinase Area and Shizugawa Bay. Therefore, it is possible that the Pacific oysters in Hinase and Shizugawa have already partly adapted to local environmental changes, including lower pH and Ω_{arag} conditions caused by riverine discharge of freshwater and organic matter. To verify this, we might need further examination including new rearing experiments for native Pacific oyster species in Japan coasts.

Previous studies also suggest that oyster larvae have decreased swimming ability and sink as salinity decreases (e.g. Dekshennicks et al., 1996). Therefore, it is possible that the Pacific oyster larvae did not remain in low-salinity waters, and consequently could escape from the lower pH and Ω_{arag} conditions. These issues should be taken into consideration in future works, although not in this study, and therefore, the impacts of ocean acidification on Pacific oysters may have been overestimated in this sense. Also, considering that our current model underestimated observed sudden decreases in salinity as mentioned in 3.2, more realistic input data of freshwater from rainfall and riverine water would be necessary for better model performance.

5 Conclusion and Remarks

Impacts of ongoing coastal warming, acidification, and deoxygenation on Pacific oysters in Japan coasts have not been clarified
before. This study aimed to assess the current and project the future impacts, through continuous monitoring, microscopic examination, and numerical modeling in two representative oyster farming regions in Japan, the Hinase Area and Shizugawa Bay. This study first elucidated that oyster-farming sites in Hinase have experienced critical levels of acidification, although Pacific oyster larvae do not seem to have been affected. It may therefore be necessary to revisit the acidification threshold for Pacific oysters farmed in Japan coasts.

Our future projections imply that unless CO\textsubscript{2} emissions are reduced in accordance with the Paris Agreement (RCP 2.6 scenario), oyster farming at the study sites may be seriously affected by coastal warming and acidification by the end of this century. The greatest impact will be on larvae, as a result of longer exposure to more acidified waters. A prolonged spawning period may harm oyster processing by shortening the shipping period and reducing oyster quality. Therefore, to minimize impacts on Pacific oyster farming, in addition to mitigation measures, local adaptation measures—such as regulation of freshwater and organic matter inflow from rivers and changes in oyster-farming practices—may be required.

Climate-change-driven extreme events will cause more frequent and intense heavy rainfall; subsequent river inflow of freshwater and organic matter to coasts may further reduce pH and Ω_{arag} in oyster farms. To plan how to minimize the adverse impacts of coastal warming and acidification, coupled physical-biogeochemical models with higher spatiotemporal resolution are needed to simulate river-inflow processes and daily fluctuations in biogeochemical parameters.

5.1 Alleviation of impacts on Pacific oyster farming

As mentioned above, there has been no anecdotal evidence of impacts of ocean acidification on Pacific oyster larvae found in Japan coasts to date. However, our findings indicate such impacts may be seen by the end of this century, implying the need for alleviation measures.

5.1.1 Mitigation

Reducing anthropogenic CO\textsubscript{2} is the most important action globally. Our modeling results show that compared to the RCP 8.5 scenario, the impact of acidification will be alleviated significantly if we can limit future CO\textsubscript{2} emissions in accordance with the Paris Agreement (RCP 2.6 scenario). Previous studies also suggest ways of local mitigation of coastal acidification by using macroalgae and seagrasses that could provide local refugia for resident organisms (e.g. Falkenberg et al., 2021; Hamanoue, 2022). These actions are also important to mitigate future extreme events, the intensity and frequency of which will increase with global warming (e.g. Kimoto et al., 2005; IPCC, 2022). To mitigate global warming and extreme events, measures should be taken to avoid excessive discharge of freshwater and organic matter from rivers to coasts, both of which reduce coastal pH and Ω_{arag} values. For example, eelgrass restoration, that has long been performed in the Hinase Area as mentioned in 2.1, may have some capacity for mitigation.
5.1.2 Adaptation

Even with mitigation measures, coastal warming, acidification, and deoxygenation could last for decades. Therefore, it is necessary to implement multiple adaptation measures in parallel.

At sites close to rivers, extremely low observed pH and Ω_{arag} values were primarily caused by riverine freshwater inflow. Also, riverine organic matter dissolves at the coast, further lowering DO, pH, and Ω_{arag} values. In addition, as mentioned in 5.1.1, extreme events such as severe storms are anticipated to occur more frequently and intensely in future, possibly increasing freshwater and organic matter inflow from rivers. Therefore, regulation of inflow to coasts is required, especially during the larval stage of Pacific oysters, to alleviate acidification and deoxygenation at sites close to rivers. Restoration or placement of eelgrass beds or seaweed farms near river mouths and oyster seedling areas could trap river inflow of freshwater and suspended organic matter. Local catchment management is also considered to alleviate the impacts of acidification and deoxygenation locally (e.g. Scanes et al., 2020).

Currently, Pacific oyster farming in the two study sites is done by using natural seedlings of oyster larvae. However, our model results may imply the need to adopt measures to change oyster-farming practices with the progression of ocean warming and acidification in the future, to alleviate the impacts on oyster farming. Such measures include the enhancement of hatchery rearing of Pacific oyster larvae, which are vulnerable to acidification, under suitable conditions that are maintained naturally or artificially. This is promising; some oyster-farming companies on the west coast of the United States, which experiences low pH and Ω_{arag} values due to predominant coastal upwelling, have purchased oyster seed raised onshore hatcheries in Hawaii (higher pH and Ω_{arag} waters) (Barton et al., 2015). Selective breeding work of Pacific oyster larvae might help improve their capacity to withstand ocean warming and acidification.

Oyster farms are usually moved offshore before early autumn to stimulate oyster growth (Komiyama, 2002). However, this procedure can be hampered by severe storms increasing in frequency. Therefore, changes in oyster-farming practices may be necessitated by the impacts of climate change and extreme events such as severe storms that are anticipated to occur more frequently and intensely in the future.

Author contributions

TT launched the research project; AD and SO performed the measurements; MW analyzed the samples; LPCB and RH performed the modelling; MF, RH, and TO analyzed the data; RH and MF wrote the manuscript draft; LPCB, TO, AD, SO, MW, and TT reviewed and edited the manuscript.

Competing interests

The authors declare that they have no conflict of interest.
Acknowledgments.

We thank Wakako Takeya for support, and Miho Ishizu and anonymous reviewers for their useful comments. This study was supported by the Nippon Foundation Ocean Acidification Adaptation Project (OAAP), the Integrated Research Program for Advancing Climate Models (TOUGOU; Grant Numbers JPMXD0717935498 and JPMXD0717935715), and the Advanced Studies of Climate Change Projection (SENTAN; Grant Number JPMXD0722678534), the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, and the Hokkaido University Functional Enhancement Project. This study used the Future Ocean Regional Projection dataset, which was produced by the Japan Agency for Marine-Science and Technology (JAMSTEC) under the SI-CAT project (Grant Number JPMXD0715667163) of the Ministry of Education, Culture, Sports, Science and Technology of Japan. FORPJPN02 version 2 was provided by JAMSTEC and was collected and provided under the Data Integration and Analysis System (DIAS), which was developed and operated by a project supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan. We used a coupled physical-biogeochemical model that was constructed under the framework of the Study of Biological Effects of Acidification and Hypoxia (BEACH) of the Environment Research and Technology Development Fund (Grant Number JPMEERF20202007) of the Environmental Restoration and Conservation Agency of Japan.

References

General Bathymetric Chart of the Oceans (GEBCO) website: Gridded Bathymetry Data, available at: https://www.gebco.net/data_and_products/gridded_bathymetry_data/, last access: 14 October 2022.

Imai, I., Yamaguchi, M., and Hori, Y.: Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan, Plankton and Benthos Research, 1, 71-84, 2006.

Komiyama, H.: Examination of index item to judge time when the oyster Crassostrea gigas rafts are moved to farther off the coast, Bulletin of the Fisheries Experiment Station, Okayama Prefecture, 17, 64-65, 2002.

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see:

http://www.textcheck.com/certificate/H4uBa9
Table 1: Boundary conditions for the coupled physical-biogeochemical model used in this study. For boundary conditions of dissolved oxygen (DO) and nutrients, the present replicate values were given for the 2090s.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dataset</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathymetry</td>
<td>The 15 arc-second General Bathymetric Chart of the Oceans (GEBCO) 2021 dataset</td>
<td>GEBCO website</td>
</tr>
<tr>
<td>Tide</td>
<td>TPXO Global Tidal Models (TPXO7.0)</td>
<td>Egbert and Erofeeva (2002)</td>
</tr>
<tr>
<td>Ocean physics</td>
<td>Future Ocean Regional Projection (FORP)-JPN02</td>
<td>Tsujino et al. (2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nishikawa et al. (2021)</td>
</tr>
<tr>
<td>Atmospheric forcing</td>
<td>Hinase: GPV/JMA Meso-scale Spectral Model (MSM)</td>
<td>Japan Meteorological Agency website</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shizugawa: Comprehensive Ocean-Atmosphere Data Set (COADS) 2005</td>
<td>Da Silva et al. (1994)</td>
</tr>
<tr>
<td>Atmospheric CO₂ concentration</td>
<td>Present: 370 ppm</td>
<td>van Vuuren et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Future: 420 ppm (RCP 2.6 scenario)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>900 ppm (RCP 8.5 scenario)</td>
<td></td>
</tr>
<tr>
<td>Dissolved oxygen (DO)</td>
<td>Hinase: Public water area water quality measurement data</td>
<td>Ministry of the Environment website</td>
</tr>
<tr>
<td>Nutrients (NO₃, PO₄, Si)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total alkalinity (TA)</td>
<td>Present: obtained from the following equation:</td>
<td>Watanabe et al. (2020)</td>
</tr>
<tr>
<td></td>
<td>[DIC = 2319 + 0.5155 T - 0.2367 DO]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>where T: water temperature; DO: dissolved oxygen concentration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Future: assume that the alkalinity does not change from present</td>
<td></td>
</tr>
<tr>
<td>Dissolved inorganic carbon (DIC)</td>
<td>Present: obtained from the following equation:</td>
<td>Lewis et al. (1998)</td>
</tr>
<tr>
<td></td>
<td>[DIC = 2407 - 12.20 T - 0.7851 DO]</td>
<td>Watanabe et al. (2020)</td>
</tr>
<tr>
<td></td>
<td>Future: outputs from Model description and results of CMIP5-20c3m experiments (MIROC-ESM) (2086-2095)</td>
<td>Watanabe et al. (2011)</td>
</tr>
</tbody>
</table>
Table 2: End and start dates of Pacific oyster (*C. gigas*) spawning in Hinase and Shizugawa, estimated from observed present and modeled present and future water temperatures and based on Oizumi et al. (1971).

<table>
<thead>
<tr>
<th></th>
<th>Hinase</th>
<th>Shizugawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>End date</td>
<td>Start date</td>
<td>End date</td>
</tr>
<tr>
<td>Observation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 24-November 4</td>
<td>June 8-19</td>
<td>October 8-10</td>
</tr>
<tr>
<td>October 25-November 7</td>
<td></td>
<td>October 16-18</td>
</tr>
<tr>
<td>(2021)</td>
<td></td>
<td>(2021)</td>
</tr>
<tr>
<td>Model</td>
<td>Present 2090s</td>
<td>Model (present)</td>
</tr>
<tr>
<td>RCP 2.6</td>
<td>October 24</td>
<td>June 14</td>
</tr>
<tr>
<td></td>
<td>November 11</td>
<td>May 18</td>
</tr>
<tr>
<td>RCP 8.5</td>
<td>October 24</td>
<td>June 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Simulated numbers of days when DO and Ω_{arag} values were below the lower bound of the optimal range ($< 203 \mu\text{mol kg}^{-1}$; Hochachka, 1980; Fisheries Agency, 2013) and the threshold of acidification ($\Omega_{\text{arag}} < 1.5$; Waldbusser et al., 2015) for Pacific oyster larvae in Hinase and Shizugawa. Numbers in parantheses for the threshold of acidification denote the numbers of days of overlap with the Pacific oyster spawning period (except for the 2090s with the RCP 8.5 scenario in Shizugawa, because the spawning period could not be identified).

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Hinase # of days</th>
<th>Shizugawa # of days</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO < 203 (μmol kg$^{-1}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>2090s RCP 2.6</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>RCP 8.5</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>$\Omega_{\text{arag}} < 1.5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>12 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>2090s RCP 2.6</td>
<td>24 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>RCP 8.5</td>
<td>365 (145)</td>
<td>216 (?)</td>
</tr>
</tbody>
</table>
Figure 1: Location of Hinase and Shizugawa Bay, and the H-1, H-2, H-3, and H-4 monitoring sites in Hinase and the S-1, S-2, S-3, and S-4 sites in Shizugawa Bay.
Figure 2: Observed total alkalinity (TA) vs. salinity in (a) Hinase (H-1 [red open square], H-2 [blue open triangle], H-3 [green solid circle], and H-4 [orange open circle]) and (b) Shizugawa (S-1 [red open square], S-2 [blue open triangle], S-3 [green solid circle], and S-4 [orange open circle]). Correlation coefficients: H-1: $R^2 = 0.86$, H-2: $R^2 = 0.85$, H-3: $R^2 = 0.92$, H-4: $R^2 = 0.94$, S-1: $R^2 = 0.88$, S-2: $R^2 = 0.85$, S-3: $R^2 = 0.90$, and S-4: $R^2 = 0.90$.
Figure 3: Observed water-temperature (℃) (top) and salinity (bottom) values in (a) Hinase (H-1, H-2, H-3, and H-4), and (b) Shizugawa (S-1, S-2, S-3, and S-4) from August 2020 to December 2021. Black bars indicate hourly precipitation (mm) at the nearest Automated Meteorological Data Acquisition System (AMeDAS) station—Mushiage (Hinase) and Shizugawa (Shizugawa) (Japan Meteorological Agency website; https://www.data.jma.go.jp/obd/stats/etrn/index.php).
Figure 4: Time series of dissolved-oxygen (DO; μmol kg\(^{-1}\)) values in Hinase and Shizugawa. Measurements were carried out when water-bottle samples were collected, and red solid circles (H-1 and S-1), blue solid triangles (at H-2 and S-2), green solid squares (H-3 and S-3), and yellow solid diamonds (H-4 and S-4) are measured values. Continuous monitoring using sensors was performed after June 10, 2021 at H-2 (in blue dots) and after April 27, 2021 at S-3 (in green dots). The monitored values are shown as dots (blue at H-2 and green at S-3). The lower threshold of the optimal DO range for the growth of Pacific oyster (*C. gigas*) (203 μmol kg\(^{-1}\); Hochachka, 1980; Fisheries Agency, 2013) is denoted by a dotted line. Black bars indicate hourly precipitation (mm) at the nearest AMeDAS stations (Japan Meteorological Agency website; https://www.data.jma.go.jp/obd/stats/etrn/index.php).
Figure 5: Total alkalinity (TA) (µmol kg\(^{-1}\)) values based on water-sample analysis (open circles) and estimated from continuously observed salinity (colored dots) in Hinase (H-1 to H-4) and Shizugawa (S-1 to S-4) from August 2020 to December 2021. Black bars indicate hourly precipitation (mm) at the nearest AMeDAS stations (Japan Meteorological Agency website: https://www.data.jma.go.jp/obd/stats/etrn/index.php).
Figure 6: Observed pH (top) and aragonite saturation state (Ω_{arag}) (bottom) values in (a) Hinase (H-1, H-2, H-3, and H-4) and (b) Shizugawa (S-1, S-2, S-3, and S-4) from August or September 2020 to December 2021. Red domains denote the critical level of acidification for Pacific oyster larvae in Waldbusser et al. (2015) ($\Omega_{\text{arag}} < 1.5$). Blue domains denote the spawning season of Pacific oyster estimated from Oizumi et al. (1971). Black bars indicate hourly precipitation (mm) at the nearest AMeDAS stations (Japan Meteorological Agency website; https://www.data.jma.go.jp/obd/stats/etrn/index.php).
Figure 7: Micrograph of Pacific oyster larvae in Hinase. No morphological abnormalities were observed.
Figure 8: Horizontal distribution of modeled monthly-mean surface temperature (°C) (top), salinity (middle) and DO (μmol kg⁻¹; bottom) in September, December, March and June in the Hinase Area.
Figure 9: Horizontal distribution of modeled monthly-mean surface temperature (°C) (top), salinity (middle) and DO (μmol kg⁻¹; bottom) in September, December, March and June in the vicinity of Shizugawa Bay.
Figure 10: Observed (colored dots) and modeled (black lines) water-temperature (above) and salinity (below) values at 1-m depth in (a) Hinase (August 2020 to July 2021) and (b) Shizugawa (September 2020 to August 2021).
Figure 11: Observed (colored circles, triangles, dots, squares, and diamonds) and modeled (black lines) DO concentration (µmol kg⁻¹) at 1-m depth in (a) Hinase (August 2020 to July 2021) and (b) Shizugawa (September 2020 to August 2021).
Figure 12: Observed (colored dots) and modeled (black lines) TA (above; µmol kg⁻¹) and DIC (below; µmol kg⁻¹) concentration at 1-m depth in (a) Hinase (August 2020 to July 2021) and (b) Shizugawa (September 2020 to August 2021).
Figure 13: Observed (colored dots) and modeled (black lines) pH (above) and Ω_{arag} (below) at 1-m depth in (a) Hinase (August 2020 to July 2021) and (b) Shizugawa (September 2020 to August 2021). Red domains denote the critical level of acidification for Pacific oyster larvae in Waldbusser et al. (2015) ($\Omega_{\text{arag}} < 1.5$).
Figure 14: Modeled (a) temperature (°C), (b) salinity, (c) DO (μmol kg⁻¹), (d) TA (μmol kg⁻¹), (e) DIC (μmol kg⁻¹), (f) pH, and (g) Ω_{arag} values in Hinase from August to July currently (black solid lines) and in the 2090s (RCP 2.6 scenario, blue dashed lines; RCP 8.5 scenario, brown dotted lines). Red domain in (c) denotes DO concentrations below the optimum DO range (< 203 μmol kg⁻¹) for the growth of Pacific oyster (Hochachka, 1980; Fisheries Agency, 2013). Red domain in (g) denotes the critical level of acidification for Pacific oyster larvae in Waldbusser et al. (2015) (Ω_{arag} < 1.5).
Figure 15: Modeled (a) temperature (°C), (b) salinity, (c) DO (μmol kg⁻¹), (d) TA (μmol kg⁻¹), (e) DIC (μmol kg⁻¹), (f) pH, and (g) Ω_{arag} values in Shizugawa from September to August currently (black solid lines) and in the 2090s (RCP 2.6 scenario, blue dashed lines; RCP 8.5 scenario, brown dotted lines). Red domain in (c) denotes DO concentrations below the optimum DO range (< 203 μmol kg⁻¹) for the growth of Pacific oyster (Hochachka, 1980; Fisheries Agency, 2013). Red domain in (g) denotes the critical level of acidification for Pacific oyster larvae in Waldbusser et al. (2015) ($\Omega_{\text{arag}} < 1.5$).
Figure 16: Modeled spawning period at present (in black) and 2090s with RCP 8.5 scenario (in brown) in (a) Hinase and (b) Shizugawa. The start and end dates of the spawning season of Pacific oysters were estimated by referring to thresholds obtained from Oizumi et al. (1971). The start date of the spawning season in 2090s could not be projected in Shizugawa because water temperature lower than 10 °C was not projected, and therefore, the threshold for evaluating the start date by Oizumi et al. (1971) could not be applied.