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Abstract 7 

Although the northern Indian Ocean (IO) is globally one of the most productive regions and receives dissolved 8 

iron (DFe) from multiple sources, there is no comprehensive understanding of how these different sources of DFe 9 

can impact upper ocean biogeochemical dynamics. Using an Earth system model with an ocean biogeochemistry 10 

component this study shows that atmospheric deposition is the most important source of DFe to the upper 100 m 11 

of the northern IO, contributing more than 50% of the annual DFe concentration. Sedimentary sources are locally 12 

important in the vicinity of the continental shelves and over the southern tropical IO, away from high atmospheric 13 

depositions.  While atmospheric deposition contributes to more than 10% (35%) to 0-100 m (surface level) 14 

chlorophyll concentrations over large parts of the northern IO, sedimentary sources have similar contribution to 15 

chlorophyll concentrations over the southern tropical IO. Such increases in chlorophyll are primarily driven by an 16 

increase in diatom population over most of the northern IO. The regions that are susceptible to chlorophyll 17 

enhancement following external DFe additions are where low levels of background DFe and high background 18 

NO3:DFe values are observed. Analysis of DFe budget over selected biophysical regimes over the northern IO 19 

points to vertical mixing as most important for DFe supply, while the importance of advection (horizontal and 20 

vertical) varies seasonally. Apart from removal of surface DFe by phytoplankton uptake, subsurface balance 21 

between DFe scavenging and regeneration is crucial in replenishing DFe pool to be made available to surface 22 

layer by physical processes. 23 

1 Introduction 24 

Iron is an essential micronutrient for primary producers in the ocean due to the catalytic role of iron in 25 

photosynthesis, respiration, and nitrogen fixation (Geider & La Roche, 1994; Raven, 1988). Although iron is one 26 

of the most abundant elements in the Earth’s crust (McLennan, 2001), its low solubility (Sholkovitz et al., 2012) 27 

coupled with an intricate balance between complexation by ligands and high scavenging tendency does not make 28 

it readily bioavailable (Boyd & Ellwood, 2010). It has been estimated that iron availability limits primary 29 

productivity in as much as ~30% of the global oceans, which results in accumulation of unutilized macronutrients 30 

like nitrate and phosphate (Moore et al., 2013a). Even in regions experiencing nitrate limitation of productivity, 31 

nitrogen fixation is controlled by the supply of iron (e.g., Mills et al., 2004; Moore et al., 2009; Schlosser et al., 32 

2014). Several iron addition experiments performed in the open oceans have demonstrated its significance in 33 

regulating phytoplankton growth and drawdown of atmospheric CO2 (e.g., Blain et al., 2007; Boyd et al., 2007; 34 

Coale et al., 1996; de Baar et al., 2005; Pollard et al., 2009).  35 
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The main external sources of dissolved iron (DFe) to the world oceans are atmospheric depositions (e.g., Conway 36 

et al., 2014; Jickells et al., 2005), continental sediments (Elrod et al., 2004; Johnson et al., 1999), river inputs (e.g., 37 

Buck et al., 2007; Canfield, 1997), sea ice (Sedwick & DiTullio, 1997; Wang et al., 2014) and iron seeping from 38 

hydrothermal vents (e.g., Nishioka et al., 2013; Tagliabue et al., 2010). Most ocean biogeochemistry models 39 

simulating the iron cycle estimate dust (1.4-32.7 Gmol yr-1) or sedimentary sources (0.6–194 Gmol yr-1) to have 40 

the highest contribution to ocean DFe inventory (Tagliabue et al., 2016). However, many of these models do not 41 

include hydrothermal sources of DFe. Numerical modelling using dust, sedimentary and hydrothermal sources of 42 

DFe have shown that while ocean column DFe inventory is most sensitive to sedimentary and hydrothermal DFe, 43 

atmospheric and sedimentary sources of DFe have the largest impact on atmospheric carbon dioxide (Tagliabue 44 

et al., 2014). This is because hydrothermal vents can only impact productivity where these vents are located at 45 

shallow depths, while atmospheric and sedimentary DFe can impact productivity over both the open and coastal 46 

ocean regions. However, with availability of more in situ DFe measurements, the relative importance of different 47 

sources of DFe are being re-examined at global as well as regional scales.  48 

The northern Indian Ocean (IO) is one of the most productive regions of the global oceans, contributing high 49 

levels of organic carbon fluxes to the deeper ocean (e.g., Barber et al, 2001; Madhupratap et al., 2003; Rixen et 50 

al., 2019). The monsoonal winds drive phytoplankton blooms over different regions of the northern IO, arising 51 

from distinct physical mechanisms in different seasons. These mechanisms include blooms due to coastal and 52 

open ocean upwelling, advection of nutrients by ocean currents, and mixed layer deepening by winter convection. 53 

Episodic blooms are also triggered by passage of cyclones (Kuttippurath et al., 2021) and mesoscale eddies 54 

(Prasanna Kumar et al., 2004; Vidya & Prasanna Kumar, 2013). The region hosts one of the most intense oxygen 55 

minimum zones of the world oceans (Schmidtko et al., 2017) and is globally one of the major denitrification sites 56 

(e.g., Morrison et al., 1999; Bianchi et al., 2012). Several water column measurements have shown that the primary 57 

limiting nutrient over the northern IO is reactive nitrogen with possible colimitation by silicate (Końe et al., 2009; 58 

Moore et al., 2013a; Morrison et al., 1998). In recent years, a few studies using ocean biogeochemistry models 59 

have also pointed to possible iron limitation of phytoplankton blooms during southwest monsoon months (June-60 

September), especially over upwelling regions of the western Arabian Sea (AS), which is the north-western part 61 

of the IO (Końe et al., 2009; Wiggert et al., 2007). These findings on the role of iron limitation have also been 62 

supported by incubation experiments over the AS during the late southwest monsoon, which have noted 63 

chlorophyll enhancements following iron enrichments (Moffett et al., 2015). Furthermore, in situ measurements 64 

during the late southwest monsoon have revealed complete drawdowns of silicate, owing to its high utilization 65 

under iron limitation, as well as high nitrate-to-iron ratios over the western AS (Naqvi et al., 2010). Nutrient 66 

enrichment experiments over the central AS during northeast monsoon months (December-March) have also 67 

revealed signatures of iron and nitrate colimitation, with addition of these two nutrients supporting increases in 68 

diatoms and coccolithophores (Takeda et al., 1995). Colimitation by nitrogen, phosphorus and iron has been 69 

identified over the southern Bay of Bengal (BoB, the north-eastern part of the IO) and the eastern equatorial IO 70 

(Twining et al., 2019). Thus, availability of iron can have major impacts on availability of other macronutrients 71 

and productivity, which can in turn impact denitrification and mid-depth oxygen levels in this region by 72 

modulating fluxes of sinking organic matters. 73 
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In general, there is a reduction in surface DFe concentrations over the northern IO from north to south. Systematic 74 

DFe measurements, encompassing all seasons over the AS, conducted during the Joint Global Ocean Flux Study 75 

(JGOFS) of the 1990s showed DFe concentrations often exceeding 1 nM, especially during the southwest 76 

monsoon (Measures & Vink, 1999). Subsequent measurements revealed lower levels of DFe with surface values 77 

ranging between 0.2-1.2 nM over the AS and between 0.2-0.5 nM over the BoB (Chinni et al., 2019; Chinni & 78 

Singh, 2022; Grand et al., 2015; Moffett et al., 2015; Vu & Sohrin, 2013). These values are generally higher than 79 

most of the open ocean regions. In contrast, southwards of the equatorial IO have surface DFe values generally 80 

less than 0.2 nM (e.g., Chinni et al., 2019; Grand et al., 2015; Twining et al 2019; Vu & Sohrin, 2013). The oxygen 81 

minimum zone, located to the north of the equator between depths of 150-1000 m, has elevated levels of DFe (>1 82 

nM), possibly due to DFe transport from reducing shelf sediments and remineralization of sinking organic matter 83 

(Moffett et al., 2007).  84 

The overall high values of DFe over the northern IO can stem from multiple external sources of DFe identified 85 

within this region: atmospheric aerosol inputs (dust and black carbon) from South and Southwest Asia (Banerjee 86 

et al., 2019; Srinivas et al., 2012), continental shelf sediments, high river discharge, especially, over the BoB (e.g., 87 

Chinni et al., 2019; Grand et al., 2015) and hydrothermal vents from the Central Indian Ridge that mainly impact 88 

DFe levels at depths of around 3000 m (Nishioka et al., 2013). The importance of episodic dust depositions in 89 

alleviating iron limitations of primary productivity over the central AS has been identified, during the northeast 90 

monsoon when a deeper ferricline compared to the nitracline yields a high nitrate-to-iron ratio (Banerjee and 91 

Kumar, 2014). Additionally, modelling studies over the AS have demonstrated that DFe derived from dust 92 

deposition can support about half of the observed primary productivity and a large fraction of nitrogen fixation 93 

(Guieu et al., 2019). Centennial-scale model simulations over the IO have revealed that changes in phytoplankton 94 

community structure have resulted in increased (reduced) carbon uptake over the eastern (western) IO in response 95 

to increased anthropogenic DFe deposition in the present day compared to pre-industrial levels (Pham & Ito, 96 

2021). Yet another challenge is that, away from regions with high aerosol loading, other sources of DFe can 97 

become important in supporting ocean productivity and controlling patterns of nutrient limitations. Such 98 

understanding of relative roles of different sources of DFe in controlling the biogeochemical dynamics of the 99 

northern IO remains unexplored. This is important considering the multiple sources of DFe over the northern IO. 100 

To this end, the present study uses a suite of simulations from a state-of-the art Earth system model with an iron 101 

cycle in its ocean biogeochemistry component to explore the relative contribution of different sources of DFe to 102 

phytoplankton blooms and impacts on nutrient availability over the upper 100 m of the northern IO. Furthermore, 103 

DFe budget has been analysed over the upper ocean for varied biophysical regimes in this region to identify how 104 

different sources of DFe can impact the total DFe budget.  105 

 106 

2 Data and model 107 

The study uses satellite and reanalysis products, ocean observation data, and an Earth system model to assess 108 

contributions of different sources of DFe to phytoplankton blooms over the northern IO. For the present study, 109 

the northern IO is considered to encompass 30oN–20oS latitude, 40o–105oE longitude. Thus, the tropical part of 110 

the southern IO is also included. Only the open ocean regions, having bottom depth greater than 1000 m, are 111 

studied here. The four seasons referred to in this study are defined as: the northeast monsoon: December-March; 112 
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spring intermonsoon: April-May; southwest monsoon: June-September; and fall intermonsoon: October-113 

November. 114 

2.1    Model 115 

This study uses the ocean component Parallel Ocean Program version 2 (POP2) (Smith et al., 2010) embedded in 116 

the Community Earth System Model (CESM) version 2.1. This version of CESM incorporates several 117 

improvements over previous versions of the model (Danabasoglu et al., 2020). The POP2 model is a level-118 

coordinate model having Arakawa B-grid in the horizontal with North Pole displaced over Greenland. The vertical 119 

resolution is 10 m for the upper 160 m and decreases with depth to 250 m in the bottom. The horizontal resolution 120 

is nominally 1o with meridional resolution increasing to 0.27o near the equator (Danabasoglu et al., 2012), 121 

implying that mesoscale eddies are not resolved. Momentum advection is based on a second-order central 122 

advection scheme while tracer advection relies on a third-order upwind advection scheme. Vertical ocean mixing 123 

is parameterized using the non-local K-Profile parameterization (Large et al., 1994), which is incorporated into 124 

CESM2.1 via the Community Ocean Vertical Mixing (CVMix) framework. Horizontal mixing is parameterized 125 

using the Gent and Williams (1990) scheme, which includes eddy-induced velocity in addition to diffusion of 126 

tracers along isopycnals. Macronutrients and oxygen are initialized from World Ocean Atlas 2013 version 2 127 

dataset (Garcia et al., 2014a, b) and alkalinity is initialized using GLobal Ocean Data Analysis Project 128 

(GLODAPv2; Olsen et al., 2016). 129 

The biogeochemistry component of POP2 is implemented using Marine Biogeochemistry Library (MARBL), 130 

which is the most updated version of the previously implemented Biogeochemistry Elemental Cycle (BEC) model 131 

(Long et al., 2021).  The model includes key limiting nutrients (N, P, Si, Fe), three types of explicit phytoplankton 132 

functional groups (diatoms, diazotrophs and nano/picophytoplankton), one implicit calcifier group, and one 133 

zooplankton type.  The C:N ratio for nutrient assimilation is fixed at 117:16 (Anderson and Sarmiento,1994), 134 

whereas P:C, Fe:C, Si:C and chlorophyll:C ratios are allowed to vary based on ambient nutrient concentrations. 135 

The Fe:C ratio is allowed to change within a fixed range based on phytoplankton growth terms, loss terms, and 136 

the iron uptake half-saturation constant for different phytoplankton groups (Moore et al., 2004). For each of the 3 137 

phytoplankton groups the minimum allowed Fe:C ratio is 2.5 µmol mol-1. The maximum allowed Fe:C ratio is 30 138 

µmol mol-1 for diatoms and small phytoplankton, and 60 µmol mol-1 for diazotrophs due to their higher demand 139 

for iron. The zooplankton Fe:C ratio is fixed at 3.0 µmol mol-1. Individual nutrient limitation for phytoplankton is 140 

assessed based on Michaelis-Menten nutrient uptake kinetics, which is a function of the specific nutrient 141 

concentration and nutrient uptake half-saturation coefficient. The half-saturation coefficient is nutrient-specific 142 

and phytoplankton-group specific. Nutrient limitation terms vary from 0 to 1, with 0 being the most limiting 143 

nutrient. Multiple nutrient limitation follows Liebig’s law of minimum, so that the nutrient limitation term with 144 

minimum value limits phytoplankton growth rate (Long et al., 2021). Loss of phytoplankton in MARBL is 145 

accounted for by grazing, mortality, and aggregation of sinking flocculants.  146 

The main DFe sources considered in MARBL are atmospheric depositions, shelf sediments, riverine inputs, and 147 

hydrothermal vents. Globally, these sources of DFe account for 13.62 Gmol yr-1, 19.68 Gmol yr-1, 0.37 Gmol yr-148 

1, and 4.91 Gmol yr-1, respectively (Long et al., 2021). Atmospheric sources of DFe are from dust and black carbon 149 

depositions obtained from a fully coupled CESM2 simulation in hindcast mode at nominal 1o spatial resolution as 150 
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a part of the Coupled Model Intercomparison Phase 6 (CMIP6) contribution. Dust emissions and 151 

transport/deposition are calculated, respectively, using the Community Land Model version 5 (CLM5) and 152 

Community Atmosphere model version 6 (CAM6) in Whole Atmosphere Community Climate Model (WACCM) 153 

configuration. The newly included Modal Aerosol Module version 4 (MAM4) in CAM6 includes dust in the 154 

accumulation and coarse modes. Black carbon is emitted in the primary mode and transferred to accumulation 155 

mode via aging (Liu et al., 2016). Monthly climatology of dust and black carbon for the year 2000 is used in 156 

repeating mode. About 3.5% of dust is assumed to be iron with the solubility of iron depending on the ratio 157 

between coarse and fine dust fluxes. This accounts for increasing iron solubility with increasing distance from 158 

dust source regions. A constant solubility of 6% is assigned to iron derived from black carbon aerosols. 159 

Sedimentary iron supply is based on sub-grid scale bathymetry that depends on two factors: firstly, for reducing 160 

sediments, it is proportional to particulate organic carbon fluxes in regions where these fluxes are larger than 3 g 161 

C m-2 yr-1; secondly, in oxic sediments, it depends on constant low background fluxes and bottom current velocity, 162 

which accounts for sediment resuspension. As a result, the main sources of sedimentary DFe are along continental 163 

shelves and productive margins, with little contribution coming from the deep ocean. For the river source of DFe, 164 

discharge data for the year 2000 from Global Nutrient Export from WaterSheds (GlobalNEWS, Mayorga et al., 165 

2010) is combined with constant DFe concentration of 10 nM. For hydrothermal vents, a constant flux of iron 166 

from the grid boxes containing vents is applied so that the total hydrothermal vent iron flux is equal to 167 

approximately 5.0 Gmol yr-1.  168 

Iron input to oceans is balanced by losses from biological uptake and scavenging. Loss of iron from the biological 169 

pool occurs through mortality and grazing upon phytoplankton by zooplankton as well as higher trophic grazing 170 

on zooplankton. In CESM, scavenging increases non-linearly with DFe concentration. The scavenging rate 171 

depends on the total sinking fluxes of particulate organic carbon, biogenic silica, calcium carbonate and dust, 172 

which strongly influence DFe in excess of ligand concentrations (Moore and Braucher, 2008). Scavenged iron 173 

enters the particulate iron pool, while iron released from grazing and mortality of autotrophs and zooplankton also 174 

contributes to the particulate iron pool depending on species-specific Fe:C ratios. Remineralization of particulate 175 

iron at depth is parameterized as a function of the particulate organic carbon flux. Desorption of iron contributes 176 

to the remineralized iron pool and is calculated using a constant desorption rate for scavenged iron. In addition, 177 

there is slow dissolution of “hard” dust fraction (~98% of total dust) with depth such that ~0.3% of dust will 178 

dissolve over 4000 m (Armstrong et al., 2002; Moore et al., 2004). For the remainder of the 2% “soft” dust, 179 

remineralization takes place with a length-scale of 200 m. The model also includes an explicit ligand tracer for 180 

complexing Fe, with ligand sources being from particulate organic carbon remineralization and dissolved organic 181 

matter production. Ligand sinks are scavenging, uptake by phytoplankton, ultraviolet radiation, and bacterial 182 

uptake or degradation.  183 

This study is based on 5 sets of simulations for identifying contributions from different sources of DFe: control 184 

simulation (CTRL); and simulations that individually remove DFe supply from atmospheric depositions (NATM), 185 

sediments (NSED), rivers (NRIV) and hydrothermal vents (NVNT). Differences between CTRL and NATM 186 

simulations indicate the biogeochemical impacts solely due to atmospheric deposition of DFe and is referred to 187 

as ATM. Similarly, biogeochemical impacts solely from sedimentary, river and hydrothermal DFe sources are, 188 

respectively, referred to as SED, RIV and VNT cases. Simulations have been conducted in hindcast mode for 60 189 
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years using forcing from the Coordinated Ocean-ice Reference Experiments version 2 (CORE-II) dataset for the 190 

years 1948-2007 (Large & Year, 2009). The CORE-II data includes interannual variability and consists of 6-191 

hourly temperature, air density, specific humidity, 10 m wind-speeds, and sea-level pressure from National 192 

Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 193 

(Kalnay et al., 1996). Daily shortwave and longwave radiation are taken from Goddard Institute for Space Studies-194 

International Satellite Cloud Climatology Project radiative flux profile data (GISS-ISCCP-FD) (Zhang et al., 195 

2004). Monthly precipitation is combined Global Precipitation Climatology Project (GPCP, Huffman et al., 1997) 196 

and Climate Prediction Center Merged Analysis of Precipitation (CMAP, Xie & Arkin, 1997) data. Monthly 197 

streamflow since 1948 is based on gauge data and CLM model has been used to calculate the freshwater fluxes 198 

(Dai et al., 2009). The present study uses the last 10 years of simulations, given its focus on impacts of DFe 199 

sources on biogeochemistry of the upper 100 m of the oceans at seasonal scale.  200 

2.2  Observation data 201 

Monthly climatology for ocean temperature, salinity and nutrients have been obtained from World Ocean Atlas 202 

2018 (WOA18) at 1ox1o spatial resolution (Garcia et al., 2019). Monthly surface chlorophyll concentrations have 203 

been obtained from the European Space Agency Ocean Color Climate Change Initiative (OC-CCI) version 5 at 4 204 

km spatial resolution for the period 2003-2020 (Satyendranath et al., 2019). OC-CCI merges ocean color 205 

information from multiple sensors: Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-present), 206 

Sea‐Viewing Wide Field‐of‐View Sensor (SeaWiFS, 1997-2010), MEdium Resolution Imaging Spectrometer 207 

(MERIS, 2002-2012) and Visible Infrared Imaging Radiometer (VIIRS, 2012-present). The product is bias-208 

corrected and quality-controlled, yielding much lower data gaps compared to individual sensors. Monthly 209 

climatology of mixed layer depth (MLD) gridded at 1ox1o spatial resolution has been obtained from Argo profiles 210 

based on a hybrid algorithm that calculates a suite of MLDs using several criteria, such as gradient/threshold 211 

method, maxima or minima of a particular property, intersection with seasonal thermocline (Holte et al., 2017). 212 

The resulting patterns are analysed to yield final MLD estimates. To explore ocean surface circulation, Ocean 213 

Surface Current Analysis Real-time (OSCAR) data at 0.33ox0.33o spatial resolution and 5-day temporal resolution 214 

has been used. Horizontal velocities are measured using sea surface heights, ocean surface winds, and sea surface 215 

temperatures, thereby accounting for flows due to geostrophic balance, Ekman dynamics, and thermal wind 216 

(Dohan & Maximenko, 2010). 217 

 218 

To examine the ability of CESM to realistically simulate the variation in DFe concentrations in the upper 100 m 219 

over the northern IO, this study uses DFe profile compilations by Tagliabue et al. (2012) and the GEOTRACES 220 

Intermediate Data Product 2021 (Schlitzer et al., 2021). To these, published data from Moffett et al. (2015) has 221 

also been added, comprising DFe data collected in the AS during September 2007.  The DFe estimated in these 222 

data are based on filtration of seawater through filter sizes between 0.2-0.45 µm. 223 

 224 

3 Results and discussions 225 

First, the performance of CESM-POP2 simulations with respect to observations over the northern IO is examined. 226 

Next, the contributions of different DFe sources to upper ocean DFe concentrations, phytoplankton blooms and 227 

patterns of nutrient limitations is discussed. Finally, the paper explores how different sources of DFe can influence 228 

the total DFe budget across selected biophysical regimes over the northern IO. 229 

https://doi.org/10.5194/bg-2022-224
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.



7 
 

3.1  Model evaluation 230 

In this section CESM simulation (for CTRL case) of physical parameters as well as nitrate and chlorophyll 231 

concentrations over the upper 100 m of the northern IO is evaluated. Except for MLD, ocean currents, and 232 

chlorophyll, all modeled parameters have been compared with WOA18 observations. Simulated MLDs are 233 

compared with Argo-based values of Holte et al. (2017), ocean currents are compared with OSCAR data, and 234 

chlorophyll concentrations are compared with OC-CCI observations. In general, CESM shows good 235 

correspondence with observations of seasonal cycle of temperature, salinity and MLD. However, there is positive 236 

temperature and salinity bias over IO (Figs. S1 and S2 in the Supplement). This warm bias over IO differs from 237 

the previous version of CESM, which has a cold bias in this region (Danabasoglu et al., 2020). Figure 1 shows 238 

seasonal climatology in CESM simulations and observations, for MLD, nitrate concentrations, surface ocean 239 

currents, and chlorophyll concentrations. Overall, CESM simulates the main features of surface ocean circulation 240 

and spatio-temporal variations in MLD well. There are some deviations, such as a much stronger simulated Somali 241 

Current along the northeast coast of Africa, especially during the southwest monsoon season, which can lead to 242 

strong advection of upwelled nutrients away from this region. CESM also simulates a stronger South Equatorial 243 

Current during southwest monsoon, which occupies a broader region compared to observations and leads to a 244 

stronger westward flow in the model between 0-5oS latitude. The net result of the warm and positive salinity bias 245 

is that CESM simulates much deeper MLD than observations throughout the year across the study domain. 246 

Averaged annually, the largest overestimation (of ~40 m) is over the equatorial IO particularly during the spring 247 

and fall intermonsoon months, when the Wyrtki Jet is prevalent over the region (Figs. S2 e-f). Additionally, MLD 248 

overestimation of ~45 m is also seen over the AS during February-March and the southern tropical IO during 249 

September-October, both associated with winter-convection. 250 

With respect to the seasonal cycle of nitrate, CESM has the least bias over AS followed by BoB (Figs. 1a-d and 251 

S3), but its performance is comparatively lower over the equatorial IO and southern tropical IO. For example, 252 

WOA18 data shows the highest value of nitrate over southern tropical IO in January, whereas in CESM simulation 253 

the highest nitrate concentration is shifted to April-June associated with mixed layer deepening. On the other 254 

hand, CESM simulates a much weaker seasonal cycle of nitrate over the equatorial IO compared to WOA18 255 

observations. These regions, over southern tropical IO and the equatorial IO, where CESM fares poorly also have 256 

fewer nutrient profile observations compared to AS and BoB. For example, no more than 10 nitrate observations 257 

are available in a grid-point over the southern tropical IO and equatorial IO, whereas there are several grid-points 258 

over the AS where more than 30 observations are available. Overall, CESM simulations underestimate nitrate 259 

with respect to WOA18 data for the upper 100 m of the water column.  260 
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 261 

Figure 1: Comparison of CESM-CTRL simulated variables (upper panels) with observations (lower panels) for 262 
northeast monsoon (a,b,e,f) and southwest monsoon (c,d,g,h). Shading in (a-d) are nitrate concentrations averaged for 263 
upper 100 m and the black contours are the mixed layer depth (m). Shading in (e-h) are surface chlorophyll 264 
concentrations and the vectors are the surface currents. SEC: South Equatorial current, SECC: South Equatorial 265 
Counter Current, NMC: Northeast Monsoon Current, SMC: Southwest Monsoon Current, SC: Somali Current. 266 

 267 

Turning to chlorophyll concentrations, CESM simulations capture the main characteristics of the seasonal cycle 268 

and its spatial distribution over the northern IO (Figs. 1e-h and S3), with certain biases and shifts in the timing of 269 

the peak blooms. For example, over the BoB, the model has difficulty in capturing the temporal evolution of 270 

chlorophyll concentrations. Over the AS and the equatorial IO, peak bloom in the simulations occurs in September, 271 

in contrast to July in the observations. Similarly, over the southern tropical IO, the peak bloom is delayed in the 272 

model to October as compared to its appearance in July in observations. Most of the AS and the BoB show 273 

underestimation (~ -60%) in simulated chlorophyll concentration with respect to OC-CCI values. Such 274 

underestimation of major nutrients and chlorophyll over most of the northern IO are common to many modelling 275 

studies where coastal regimes and mesoscale processes are not adequately captured without finer spatial resolution 276 

(e.g., Dutkiewicz et al., 2012; Ilyina et al., 2013; Long et al., 2021; Moore et al., 2013b; Pham & Ito, 2021). For 277 

example, a modelling study by Resplandy et al. (2011) has shown that eddy-induced vertical transport is 278 

responsible for ~40% of nitrate fluxes in the winter convection regions of the AS during the late northeast 279 

monsoon. The study also showed that mesoscale eddies can account for 65-91% of vertical and lateral advection 280 

of nitrate in the upwelling regions of the AS during the southwest monsoon. Additionally, the positive MLD bias 281 

simulated by CESM can trigger light limitation of phytoplankton growth, leading to underestimation of 282 

chlorophyll. If the threshold depth for photosynthesis is considered as the depth of the isolume given by 0.415 283 

mol quanta m−2 day−1 (Z0.145, Boss & Behrenfeld, 2010; Letelier et al., 2004), then the CESM simulated MLD is 284 

deeper than the Z0.145, leading to light limitation of phytoplankton growth over the entire AS and large parts of 285 

BoB throughout the year (Fig. S4). During the southwest monsoon, almost the entire domain experiences light 286 

limitation, especially off the coast of Somalia and the southern tropical IO.  287 

CESM simulations of DFe are evaluated next, using all available in situ DFe concentration data for upper 20 m 288 

of the ocean, for different seasons. In addition, distribution of DFe along selected transects for the upper 100 m 289 
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are studied: (1) CLIVAR cruise 109N along the eastern IO during April 2007; and (2) GEOTRACES cruises GI-290 

01, GI-02, GI-04 and GI-05. While CESM simulates the general pattern of DFe distribution over the northern IO 291 

reasonably well, DFe variation with depth and with increasing distance from the coast is stronger in simulations 292 

than in observations. For upper 20 m, correlation between observed and simulated DFe concentrations is 0.41 293 

(Figs. 2a-d). The coefficients for correlation between observed and simulated DFe for GEOTRACES and 294 

CLIVAR transects vary between 0.64 and 0.38 (Fig. 2e). All these correlation coefficients are significant at 95% 295 

confidence level. This indicates that CESM is able to reproduce the north-to-south gradient in DFe concentrations, 296 

the comparatively low DFe concentration west of 65oE over the AS, as well as increases in DFe with depth over 297 

both the eastern and western IO reasonably well.   298 

Figures 2 f and g show two examples of variation of DFe distribution with latitude and depth along the eastern 299 

and western IO, respectively. The model overestimates DFe values, especially to the north of the equator and at 300 

depths greater than 50 m. Such overestimation of DFe over the northern IO in CESM could result from a variety 301 

of factors, like source strength, assumed solubility of iron, biases in dissolved oxygen concentrations or ligand 302 

concentrations, and uncertainties in the removal of DFe by biological uptake as well as scavenging. Specific 303 

attribution for the overestimation of simulated DFe is beyond the scope of this paper. Dust deposition is one 304 

possible factor leading to overestimation of simulated DFe. However, due to sparse dust deposition observations 305 

available over this region, it is difficult to come to conclusion about its role in CESM-simulated DFe bias over 306 

this region. Using Dust Indicators and Records of Terrestrial and MArine Palaeoenvironments (DIRTMAP) 307 

version 2 database of modern day dust deposition (Kohfeld & Harrison, 2001) an attempt has been made here to 308 

understand CESM bias in dust deposition over AS. Median dust deposition values from DIRTMAP ranges 309 

between ~14 g m-2yr-1 over the western AS (40o-60oE), ~7 g m-2yr-1 over the central AS (60o-70oE) and ~20 g m-310 

2yr-1 over the eastern AS (70o-80oE) (Kohfeld & Harrison, 2001). Corresponding median values of dust deposition 311 

over these locations from CESM model are 5 g m-2yr-1, 9 g m-2yr-1 and 14 g m-2yr-1 respectively. It is important to 312 

note here that DIRTMAP represent dust depositions estimates for a specific location using a wide range of 313 

methods, while CESM depositions are averaged over ~100 km. Over the eastern IO, using mixed layer dissolved 314 

Al concentrations dust depositions have been estimated to be 0.2-3.0 g m-2yr-1 between 20oS to 10oN latitude 315 

(Grand et al., 2015). In a separate study, based on Al concentrations in the aerosol, Srinivas and Sarin (2013) have 316 

estimated dust dry-deposition flux of 0.3-3.0 g m-2yr-1 over BoB. Dust deposition from CESM is on the lower end 317 

of this range varying from 1.1 g m-2yr-1 over the northern BoB to 0.2 g m-2yr-1 near the equator. Sediment traps 318 

deployed at shallow depths over the BoB have recorded annual lithogenic fluxes varying from the northern to the 319 

southern bay as ~15 g m-2yr-1 (~89.5oE, 17.5oN) to ~4 g m-2yr-1 (87oE, 5oN) (Unger et al., 2003). The corresponding 320 

variations in CESM dust deposition are ~9 g m-2yr-1, to ~2 g m-2yr-1. Thus, overall, there is possibly some 321 

underestimation of dust deposition over the northern IO, which might not explain positive DFe bias in CESM 322 

simulations. Due to unavailability of measurements, it is very difficult to quantify the importance of other sources 323 

of DFe in contributing to positive DFe bias in CESM simulations. 324 

 325 
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 326 

Figure 2: Comparison of CESM-CTRL simulated DFe (shading) with the observations (filled circles) compiled from 327 
various cruises. The spatial distribution maps in (a-d) consider season-wise DFe distribution averaged over the upper 328 
20 m. (e) The different cruise tracks from which DFe measurements have been used are marked. The numbers within 329 
the parentheses are the correlation coefficients between observed and simulated DFe for each cruise. The vertical 330 
transects in (f-g) show DFe gradients in the water column over (f) the eastern Indian Ocean and (g) the western Indian 331 
Ocean. 332 

 333 

It is seen that CESM consistently overestimates dissolved oxygen over the northern IO with respect to the WOA18 334 

concentrations (Fig. S5). This implies that overestimation of sub-surface DFe concentrations in the model does 335 

not originate in the magnitude and the spatial extent of poorly oxygenated sub-surface waters.  The impact of 336 

organic ligands in maintaining DFe stock by preventing scavenging losses can introduce yet another notable 337 

source of bias in simulated DFe. Only one study has measured ligand concentrations over the northern IO, during 338 

the spring intermonsoon of 1995 (Witter et al., 2000). At 100 m depth, observed ligand concentration ranges from 339 

1.47 nM over the western AS to 4.94 nM over the eastern AS. The corresponding values from CESM simulations 340 

range from 1.55 nM in the western AS to 1.19 nM over the eastern AS. However, it is not possible to conclude 341 

about the impact of ligands on simulated DFe biases based on a single study. With respect to scavenging losses, 342 

it is quite possible that underestimation of productivity over the northern IO can lead to corresponding bias in 343 
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scavenging losses. This is because the base scavenging rate in CESM, apart from depending on dust fluxes, is also 344 

a function of sinking fluxes of particulate organic matter, biogenic silica, and calcium carbonate. For example, 345 

averaged over a year, there is ~60% underestimation in CESM of surface chlorophyll concentrations over the 346 

northern IO, which would impact the sinking fluxes of biogenic matter. This can reduce scavenging losses, 347 

especially, when there is a likely underestimation of dust deposition by CESM. Underestimation of phytoplankton 348 

biomass over the northern IO can also lead to underestimation of phytoplankton uptake losses of DFe in the upper 349 

100 m, which can be yet another source of overestimation of DFe. 350 

To summarize, the ocean component of CESM model has deeper MLD than observations, underestimates nitrate 351 

and chlorophyll and overestimates DFe concentrations. It is difficult to come to a definitive conclusion regarding 352 

the importance of source strength in explaining the positive bias in DFe. It is quite possible that underestimation 353 

of scavenging losses of excess DFe and biological uptake play vital roles in explaining positive DFe biases in this 354 

region. Still, the model simulates spatial and temporal patterns of ocean physical features, as well as variations in 355 

chlorophyll concentrations, nitrate, and DFe concentrations over the northern IO reasonably well. This gives 356 

confidence in using the model to study the iron cycle over the region. Taking the above understanding of strengths 357 

and shortcomings of the model into account, the importance of different DFe sources with respect to 358 

biogeochemistry of the upper 100 m of the northern IO is explored next. 359 

 360 

3.2  Contribution of multiple iron sources 361 

 362 

Figure 3 summarizes the contributions of different sources to annually averaged DFe concentration. Source-wise 363 

DFe contributions for northeast and southwest monsoons are shown in Figs. S6 and S7 respectively. Overall, the 364 

relative contribution from different sources to DFe is roughly the same across different seasons, except for the 365 

somewhat higher contribution of atmospheric DFe during southwest monsoon compared to northeast monsoon. 366 

This is because the arid and semi-arid regions surrounding the northern IO experiences maximum dust activity 367 

from late spring to early southwest monsoon months (e.g., Banerjee et al., 2019; Léon and Legrand, 2003). In the 368 

annual average, atmospheric deposition is the most important source of DFe over the northern IO and contributes 369 

well above 50% of the total DFe concentrations (ATM case in Fig. 3b). Furthermore, atmospheric deposition 370 

contributes more than 70% of DFe supply over most of the AS, southern BoB, and the equatorial IO. The location 371 

of the intertropical convergence zone during northeast monsoon (~10oS latitude) determines the southern limit of 372 

the influence of atmospheric deposition because southwards of the intertropical convergence zone there is a rapid 373 

reduction in DFe concentrations. Dust is the predominant contributor to the atmospheric deposition flux of iron. 374 

Over the northern AS, dust is mostly transported from Iran, Pakistan, Afghanistan, and the Arabian Peninsula, 375 

whereas over southern AS dust from north-eastern Africa also becomes important (Jin et al., 2018; Kumar et al., 376 

2020). Over northern and southern BoB, the major sources of dust are the Indo-Gangetic Plain and northeast 377 

Africa, respectively (Banerjee et al., 2019). Eastwards of 90oE, black carbon contributes ~50% to atmospheric 378 

DFe flux during the northeast monsoon (not shown). The source of black carbon in this region is biomass burning 379 

and fossil fuel combustion transported from the Indo-Gangetic Plain and Southeast Asia (Gustafsson et al., 2009; 380 

Moorthy & Babu, 2006). 381 
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The second largest source of DFe is from continental shelf sediments (Fig. 3c), which become dominant in the 382 

vicinity of the shelves. High sedimentary sources of DFe are characteristic of the Andaman Sea where incoming 383 

rivers can contribute ~600 x 106 T yr-1 of sediments (Robinson et al., 2007). It has been estimated that terrestrial 384 

sources contribute more than 80% to total organic carbon in the inner shelf region of the Gulf of Martaban, 385 

adjacent to the Andaman Sea (Ramaswamy et al., 2008). Elsewhere, sedimentary contributions of ~20% to overall 386 

DFe are found in CESM runs along the northern part of west coast of India and the eastern BoB. Within Ganga-387 

Brahmaputra system, which is responsible for discharge of ~11 x 108 T yr-1 of sediments, only 10% of sediments 388 

is estimated to be transported longshore, with most of the sediments accumulating within the shelf and 389 

subterranean canyon (Liu et al., 2009). Over the open ocean, sedimentary sources are most important within 10o-390 

15oS latitude where the South Equatorial Current is responsible for ~50% of DFe supply via advection from the 391 

Indonesian shelf. During southwest monsoon, sedimentary contribution by the South Equatorial Current extends 392 

farther westward (~70oE longitude, Fig. S7c) compared to the northeast monsoon (~80oE longitude, Fig. S6c).  393 

Signatures of elevated Al due to sedimentary contribution is seen in ship-borne measurements (Grand et al., 2015; 394 

Singh et al., 2020). In fact, such measurements have shown that the South Equatorial Current separates DFe-rich 395 

oxygen-poor water of the northern IO from the DFe-poor oxygen-rich water of the southern tropical IO (Grand et 396 

al., 2015). 397 

 River sources contribute negligibly to total DFe concentrations (Fig. 3d), except in the immediate vicinity of the 398 

mouths of large river systems in the northeast BoB: the Ganges-Brahmaputra and the Irrawady-Sittang-Salween. 399 

This is possibly because flocculation at the river mouth can quickly lead to near-complete losses of DFe compared 400 

to other metals (Flegal et al., 1991; Sholkovitz, 1978). Hydrothermal vents also contribute negligibly to DFe 401 

concentrations in the upper 100 m (Fig. 3e). The hydrothermal vents supplying DFe (often excess of 1.5 nM) in 402 

the northern IO are located in the Central Indian Ridge and the Carlsberg Ridge (Chinni & Singh, 2022; Nishioka 403 

et al., 2013; Vu & Sohrin, 2013), and largely influence DFe concentrations below 1000 m depths. The shallowest 404 

hydrothermal plumes enriched with Fe are located between ~650-900 m in the Gulf of Aden (Gamo et al., 2015), 405 

overlapping with the depth range at which the Red Sea watermass spreads along the western IO (Beal et al., 2000). 406 

Since this watermass occupies progressively deeper depths with distance, sliding underneath Persian Gulf waters, 407 

surface DFe values are not impacted by these shallower vents. This is in concordance with simulations of 408 

Tagliabue et al. (2010) where, following 500 years of model integration, hydrothermal vents increase globally 409 

averaged DFe concentrations by only ~3% in the depth range of 0-100 m. 410 

The average contribution of different sources of iron to the upper 100 m is summarized for different open ocean 411 

regions over the northern IO in Fig. 3f. Annually averaged atmospheric deposition is clearly the most important 412 

source of DFe throughout the northern IO. This source accounts for almost the entire supply of DFe over the 413 

equatorial IO. The exception to the dominant role of atmospheric deposition is the southern tropical IO, where 414 

sedimentary sources of iron contribute ~40% to the upper ocean iron budget. Overall, river contribution is 415 

generally ~1%, with slightly higher contributions in BoB and the southern tropical IO. Hydrothermal vents make 416 

negligible contributions throughout the northern IO. Adding these four sources of DFe estimated from CESM 417 

experiments does not yield the full 100% of the DFe source, possibly owing to non-linear effects associated with 418 

iron removal processes as well as complexation by organic ligands. 419 

 420 
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 421 
 422 
Figure 3: Contribution of different sources of DFe averaged over the year to the total DFe concentrations over the 423 
upper 100 m. Shading in (a) shows total DFe concentration with all sources included and shadings in (b-e) shows DFe 424 
concentrations arising from individual source. Contours in (b-e) show the percentage contribution of each source to 425 
total DFe concentrations. (f) Bar chart depicting source-specific DFe contribution (in %) over Bay of Bengal (BOB), 426 
Arabian Sea (AS), equatorial IO (EQIO), and the southern tropical IO (STIO). These regions are marked by the dashed 427 
boxes in (a). The thick black contour in (a) traces the 1000 m bathymetry. 428 
 429 

 430 
3.3     Phytoplankton responses to multiple iron sources 431 

In this section, the impact of different sources of DFe on phytoplankton growth is examined. Since river and 432 

hydrothermal sources make negligible contributions to the upper ocean iron concentrations, as shown above, these 433 

are not considered further.  434 

3.3.1 Responses to atmospheric depositions 435 

During the northeast and southwest monsoons, atmospheric DFe brings about increases in column-integrated 436 

chlorophyll concentrations over most of the northern IO (Figs. 4 a and c). The largest column-integrated positive 437 

response is seen in the western AS (west of ~65oE longitude) throughout the year, where atmospheric DFe 438 

accounts for more than ~20% of the column-integrated chlorophyll concentration and more than 50% of surface 439 

chlorophyll concentration (Fig. S8). This region comes under the influence of upwelling during the southwest 440 

monsoon and mixed layer deepening due to winter convection during the northeast monsoon, which can supply 441 

macronutrients required for phytoplankton growths (Madhupratap et al., 1996; Morrison et al., 1998). The other 442 

region displaying a strong positive response is the southern tropical IO during June-September, where atmospheric 443 

DFe contributes ~20% (~35%) of the column (surface) chlorophyll concentration. This is the time of the year 444 

when deep mixed layer leads to entrainment of nutrients into the surface layers (Końe et al., 2009; Lévy et al., 445 
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2007). In contrast, there are some regions, like the northern and western AS, the west coast of India and large 446 

parts of the BoB and the eastern IO, which in spite of receiving high atmospheric DFe hardly experience any 447 

chlorophyll response.  These regions show <1% increase in column chlorophyll concentrations and generally 448 

coincide with high sedimentary iron input. This is discussed further in Section 3.3.3.  449 

 450 

Species-wise decomposition shows that the increases in chlorophyll during both northeast and southwest 451 

monsoons are driven by increases in diatoms and declines in small phytoplankton (Fig. 5). For example, over the 452 

western AS and southern tropical IO, diatoms increase by at least 40% and small phytoplankton populations 453 

decline by at least 50%. Diatoms outperforming other phytoplankton species has been previously witnessed in in 454 

situ iron fertilization experiments (de Baar et al., 2005). This is due to the large cell size of diatoms enabling 455 

higher cellular uptake of iron and also the ability of diatoms for luxury iron uptake, which enables them to 456 

outcompete other species in a bloom (Sunda & Huntsman, 1995). An exception is the equatorial IO, where the 457 

positive response of chlorophyll arises from growth of small phytoplankton. In general, this region has very low 458 

levels of macronutrients and is dominated by picoplankton (Vidya et al., 2013). Those regions exhibiting <1% 459 

increase in phytoplankton in response to atmospheric DFe, in contrast, are characterized by proliferation of small 460 

phytoplankton and reductions of diatoms. Although diazotrophs show positive response to atmospheric DFe 461 

addition throughout the region, this group constitutes only ~1% of total phytoplankton biomass. Such shifts in 462 

phytoplankton community structure in response to DFe additions are also corroborated by in situ experiments 463 

over the northern IO. For example, a nutrient addition experiment over the northern AS during northeast monsoon 464 

period has shown that the maximum positive phytoplankton response takes place due to nitrate+DFe addition 465 

(instead of only DFe addition), accompanied by around four-fold increases in coccolithophores, pennate and large 466 

centric diatoms (Takeda et al., 1995). Ship-board iron addition experiments over the AS during the southwest 467 

monsoon resulted in proliferation of visible colonies of haptophyte Phaeocystis sp. due to silicate-limitation 468 

(Moffett et al., 2015).  Over the eastern IO, where both macronutrients and micronutrients are low, nutrient spiking 469 

with nitrogen, phosphorus, and iron resulted in increase of Prochlorococcus, Synechoccus, as well as Eukaryotes 470 

(Twining et al., 2019).   471 

 472 
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 473 

Figure 4: Percentage contribution of (a and c) atmospheric and (b and d) sedimentary sources of iron during (a and b) 474 
the northeast monsoon and (c and d) the southwest monsoon to column-integrated (0-100 m depth) chlorophyll 475 
concentrations. Green and red contours show background DFe concentrations of 0.2 nM and 0.3 nM respectively. For 476 
the ATM (SED) case, background DFe is obtained from NATM (NSED) simulation.  477 
 478 
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 479 

Figure 5: Species-wise percentage contribution to column chlorophyll (0-100 m) response associated with atmospheric 480 
and sedimentary sources of DFe. 481 
 482 
  483 
3.3.2 Responses to sedimentary sources of iron 484 

As shown in Fig. 3, sedimentary sources supply less than ~20% of DFe north of ~10oS latitude, whereas between 485 

10o-15oS latitude sedimentary iron can contribute to almost half the total DFe concentrations. Unlike atmospheric 486 

sources, sedimentary supply of DFe is mostly confined to regions adjoining continental shelves and islands from 487 

where they are introduced to the open ocean by seasonally varying currents. In general, sedimentary sources make 488 

modest contribution to column productivity (<1% of chlorophyll anomalies) to the north of ~10oS latitude as 489 

described above. This is because high dust deposition to the north of the intertropical convergence zone results in 490 

high background DFe concentrations and controls productivity (see also Section 3.3.3). Sedimentary sources 491 

trigger the strongest positive phytoplankton response over the southern tropical IO region during June-September, 492 

where sedimentary DFe advected by the South Equatorial Current can facilitate more than 20% increase of the 493 

upper 100 m chlorophyll concentrations and ~40% increase at the surface. As noted in Section 3.2, although 494 
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atmospheric deposition contributes nearly half of the total DFe addition to this region, the total iron deposition 495 

here is low (<0.2 nM). The phytoplankton response over the southern tropical IO is dominated by an increase in 496 

diatoms, which contribute to more than 60% of total phytoplankton biomass (Fig. 5). In contrast, over the regions 497 

experiencing <1% chlorophyll increase, there is a shift from diatoms towards small phytoplankton species (Fig. 498 

5). For example, there is more than 80% reduction in diatoms and 50% increase in small phytoplankton over the 499 

western AS. Other current systems such as the poleward flowing Somali current, the eastward flowing Southwest 500 

Monsoon Current and its southward extension along the west coast of Indonesia also transport sedimentary DFe 501 

to the open ocean, but such advection supports only ~5% phytoplankton biomass. 502 

3.3.3 Role of background nutrients in phytoplankton responses to external iron 503 

 504 

It emerges from the previous sections that there is heterogeneity in the phytoplankton response to atmospheric 505 

and sedimentary sources of DFe. The regions of highest DFe input from a specific source are not always the 506 

regions where strongest phytoplankton responses are evoked. What explains these differing patterns of 507 

phytoplankton response? To examine this, patterns of nutrient limitations and iron supply from an external source 508 

with respect to background DFe and nitrate (NO3) concentrations are examined. In considering the phytoplankton 509 

response to atmospheric sources (ATM case), background DFe is taken from the simulation without any 510 

atmospheric source (NATM). Since river and hydrothermal sources make negligible contributions to DFe over 511 

this domain, high levels of DFe in NATM mainly arise in regions where sedimentary sources are important. 512 

Similarly, for estimating phytoplankton response to sedimentary sources (SED case), background DFe is taken 513 

from simulation without any sedimentary source (NSED). 514 

Generally, those regions experiencing greater than 1% increase in chlorophyll in response to atmospheric 515 

(sedimentary) sources coincide with background DFe concentration <0.2-0.3 nM and high background NO3:DFe 516 

ratio from the NATM (NSED) simulation. For example, in NATM simulation, iron serves as the dominant nutrient 517 

that limits productivity over the entire northern IO, with diatoms experiencing stronger iron limitation compared 518 

to other phytoplankton groups (Fig. S9). Iron limitation is particularly severe over central and southern AS, 519 

equatorial IO and the southern tropical IO. In NSED case, there is a switch from nitrate limitation to the north of 520 

the intertropical convergence zone to iron limitation to the south of the intertropical convergence zone (Fig. S10). 521 

While iron stress is alleviated with addition of external DFe, there is a shift towards macronutrient, especially 522 

nitrate, limitation (Fig. 6). South of ~15oS latitude continues to experience iron limitation during June-September 523 

due to very low dust deposition. In contrast, regions where chlorophyll increase is <1% following DFe addition 524 

are characterized by nitrate limitation in NATM/NSED simulations and external DFe cannot alleviate this primary 525 

nutrient limitation.  This is further illustrated in Fig. 7 where NO3:DFe ratio is plotted against background DFe 526 

concentrations. Positive chlorophyll response is elicited in regions of lowest background DFe and highest 527 

NO3:DFe ratio. Over the world oceans, a wide range of DFe:C ratio has been observed for diatoms, ranging from 528 

4.3 x 10-5 for DFe-replete conditions to 2.0 x 10-6 for DFe-deplete conditions (de Baar et al., 2008). Assuming 529 

C:N ratio of 117:16 (Anderson and Sarmiento, 1994), range of N:DFe ratios obtained are ~3000 and ~68000, 530 

respectively, for DFe-replete and DFe-deplete conditions. Similarly, by considering iron limitation taking place 531 

for DFe:C ratio of 1 x 10-5 for open ocean species based on laboratory experiments (Sunda & Huntsman, 1995) 532 

and C:N ratio of 106:16, Measures and Vink (1999) have estimated that iron limitation over the AS takes place at 533 

NO3:DFe ratio greater than ~15000. In CESM simulations >1% increase in chlorophyll takes place when initial 534 
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NO3:DFe ratio is more than 10,000 corresponding to Fe-limitation scenario (Fig. 7). With the addition of DFe 535 

from atmospheric or sedimentary sources, the NO3:DFe ratio reduces to even less than ~4000 in some cases, 536 

thereby leading to N-limitation. Previously, iron addition experiments in AS during the southwest monsoon have 537 

shown that the positive chlorophyll response depends on initial nitrate concentrations, with this response 538 

increasing in magnitude with higher initial nitrate concentrations (Moffett et al., 2015). In summary, the initial 539 

NO3:DFe ratio sets the ultimate limit to the magnitude and distribution of phytoplankton response following 540 

external DFe additions. 541 

 542 

 543 

 544 

Figure 6: Patterns of surface nutrient limitations for different phytoplankton functional types from CTRL simulation. 545 
Green: nitrate; blue: iron; red: phosphate; grey: silicate limitations. 546 
 547 
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 548 

Figure 7: Relation between background nutrients and phytoplankton response for atmospheric (a and b) and 549 
sedimentary (c and d) sources of DFe during (a and c) southwest monsoon and (b and d) northeast monsoon. The 550 
horizontal axis shows background DFe concentrations.  The orange columns show NO3:DFe ratio for CTRL case and 551 
grey columns show NO3:DFe ratio for (a-b) NATM and (c-d) NSED cases. The red dashed lines show the location where 552 
NO3:DFe ratio is 10,000: below this value N-limitation prevails in CESM. Green shades highlight the regions where 553 
>1% increase in chlorophyll following DFe addition from a specific source is induced. 554 
 555 

To sum up, atmospheric deposition is the most important source of DFe to the upper 100 m over the entire northern 556 

IO, followed by sedimentary sources. While atmospheric DFe is deposited over wide areas of the open ocean, 557 

sedimentary DFe fluxes arise only from continental shelves and are transported to open oceans through advection 558 

by currents. River and hydrothermal sources make negligible contributions to the total iron budget in the upper 559 

100 m. The primary response to atmospheric DFe is an increase in column-integrated phytoplankton biomass over 560 

most of the northern IO. In contrast, sedimentary source of iron is responsible for increases in column-integrated 561 

phytoplankton biomass mainly to the south of the intertropical convergence zone, where dust depositions are low. 562 

In general, significant positive responses of phytoplankton to addition of DFe are simulated only where low levels 563 

of background DFe concentrations and high values of background NO3:DFe ratio are present. Otherwise, nitrate 564 

becomes the limiting nutrient once DFe is added.  The simulations also show that positive chlorophyll response 565 
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to addition of DFe generally involves proliferation of diatoms, except over the equatorial IO where small 566 

phytoplankton increase is seen. 567 

 568 
3.4 Iron budgets across different bio-physical regimes 569 

This section explores the main processes controlling DFe budget with respect to the role of atmospheric and 570 

sedimentary sources over different bio-physical regimes of the northern IO: (1) the western AS, (2) the southern 571 

BoB, (3) the central equatorial IO and (4) the central southern tropical IO. These regions encompass a wide range 572 

of productivity, with the first region being highly productive with OC-CCI chlorophyll exceeding 1.5 mg m-3. The 573 

southern BoB and central southern tropical IO are moderately productive. Lastly, the central equatorial IO is 574 

oligotrophic with surface chlorophyll concentration being ~ 0.1 mg m-3. The locations of these regions along with 575 

CESM simulated seasonal cycles of mixed layer depths, chlorophyll and dust depositions are shown in Fig. 8. 576 

 577 

Figure 8: (a) Net DFe tendency averaged over the upper 100 m for the study period. The boxes indicate the regions 578 
chosen for further studying DFe budget in Section 3.4. (b-e) Seasonal cycle of dust deposition (red columns), mixed 579 
layer depth (blue curves) and chlorophyll concentrations (black curves) from CESM-CTRL case for the four regions 580 
marked in (a). 581 

 582 

The net dissolved iron tendency (TENDDFe) is calculated as: 583 

TENDDFe = EXT + ADV + MIX + BIO           (1) 584 

where the source terms on the right describe dust/sediments/rivers/vents (EXT), horizontal and vertical advection 585 

(ADV), horizontal and vertical mixing (MIX) and biological sources/sinks (BIO). Advection includes explicitly 586 

resolved velocity as well as an additional “bolus” velocity from parameterization of mesoscale eddies (Gent & 587 

McWilliams, 1990). Vertical mixing includes a tracer gradient dependent term for cross-isopycnal mixing and a 588 

non-local mixing term, which accounts for mixing due to convective and shear instabilities (Large et al., 1994). 589 

Lateral mixing involves parameterization of mesoscale eddy-induced horizontal diffusion along isopycnal 590 

surfaces (Redi, 1982). The BIO term includes DFe losses due to biological iron uptake and scavenging, recycling 591 
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of iron back to the pool via remineralization, and iron released from phytoplankton and zooplankton losses and 592 

grazing. 593 

3.4.1 Western Arabian Sea 594 

The western AS, off Oman and Yemen coastlines (considered here as 13o-16oN and 55o-60oE), is the most 595 

productive region in the northern IO. Primary productivity in the western AS is highest during southwest monsoon 596 

(Fig. 8b), during which alongshore southwesterly winds lead to upwelling and bring subsurface nutrients from 597 

depths of ~150-200 m (Morrison et al., 1998). Some of this upwelled water advects eastwards, transporting 598 

nutrients that enhance productivity in the central AS (Prasanna Kumar et al., 2001). The region also experiences 599 

a secondary bloom during northeast monsoon due to winter convection that deepens the mixed layer. Integrated 600 

over depths of the euphotic zone, average primary productivity over the western AS during mid and late southwest 601 

monsoon is estimated at 135±10 mmol C m-2 d-1 and 110±11 mmol C m-2 d-1 respectively (Barber et al., 2001). In 602 

comparison, primary productivity over the western AS during mid and late northeast monsoon is 137±13 mmol 603 

C m-2 d-1 and 88±4 mmol C m-2 d-1 (Barber et al., 2001).  Although this region encounters high dust deposition 604 

(Haake et al., 1993; Mahowald et al., 2009), in situ measurements have hypothesized possible iron limitation 605 

during late southwest monsoon because upwelled water is drawn from above the iron-rich sub-oxic zone (Naqvi 606 

et al., 2010).  607 

The largest peak in dust deposition is during southwest monsoon, followed by a second peak during northeast 608 

monsoon (Fig. 8b). Accordingly, the upper ocean DFe concentration is highest during southwest monsoon and is 609 

dominated by atmospheric sources (Fig. 9). Sedimentary contribution, although much lower, peaks during late 610 

southwest monsoon and fall intermonsoon months. Throughout the year DFe concentration increases with depth, 611 

thus pointing to consumption by phytoplankton at the surface. Vertical advection and vertical mixing are the most 612 

important physical mechanisms governing DFe supply within this region during southwest monsoon (Fig. 9). 613 

These processes begin to strengthen from May onwards to reach their peak during June-July and decrease 614 

thereafter. Decomposing DFe advection tendency into tendencies arising from gradients in tracer distribution 615 

(DFe´) and velocity convergence (U´) respectively, it is seen that vertical advection of DFe arises from DFe´ and 616 

U´ in equal magnitude. However, the former process is dominant in June and the latter process dominates during 617 

July (Fig. S11). The maximum vertical advection of DFe is centered around 80 m depth and progressively reduces 618 

at shallower depths, as the vertical velocity reduces towards the surface. Vertical mixing prevailing in the upper 619 

40 m brings this vertically advected DFe from subsurface to the surface. Furthermore, horizontal advection plays 620 

an important role in redistributing this DFe supplied by vertical processes, with contributions from horizontal U´ 621 

being at least twice as large as DFe´. During spring and early southwest monsoon, northeastward horizontal 622 

advection removes atmospheric deposited DFe throughout the upper 100 m, while aiding the supply of 623 

sedimentary DFe from Somalia and Omani continental shelves to the western AS. Later in the year as the 624 

southwest monsoon current circulation is established, and meridional currents along the western AS become 625 

stronger, its effect is first evident in the south along the Somali coast and progresses northward with time. The 626 

result is convergence of both atmospheric and sedimentary DFe in the western AS during July-September. During 627 

northeast monsoon, vertical mixing driven by winter convection, with the mixed layer deepening to 100 m, is the 628 

most important means of DFe supply, from both atmospheric and sedimentary sources, into the surface layer. 629 
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Additionally, horizontal advection by westward currents transports DFe from atmospheric deposition in the central 630 

AS into the western AS.  631 

Removal of DFe from the water column is mainly through biological uptake in the upper 40 m. Uptake of DFe by 632 

small phytoplankton dominate biological uptake throughout the year, except during September-October when 633 

diatoms uptake of DFe becomes significant (not shown). This signature of diatoms is also observed in opal fluxes 634 

measured by sedimentary traps deployed near the western AS and has been attributed to lowering of zooplankton 635 

grazing pressures during late southwest monsoon (Smith, 2001) as well as to silicate limitation of diatoms in 636 

initially upwelled waters (Haake et al., 1993). In the subsurface layer, remineralization of sinking fluxes of 637 

particulate iron peaking at ~50 m replenishes the DFe pool during the latter part of the productive months (Fig. 638 

S15a). Iron so released is made available to the surface layer via mixing or advection, thereby playing an important 639 

role in maintaining surface DFe pool. Some of the remineralized DFe is further removed by scavenging, which 640 

peaks at ~80 m during the productive months due to large fluxes of sinking particulate organic carbon, biogenic 641 

silica, calcium carbonate and dust (Fig. S15a). Atmospheric deposition dominates biological source/sink of DFe 642 

throughout the year, while sedimentary DFe is more important for biology during northeast monsoon months. 643 
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 644 
Figure 9: Evolution of the various terms of DFe budget, expressed as µmol m-3 yr-1, by month and depth over the 645 
western Arabian Sea. Left panels: CTRL, Middle panels: ATM and, Right panels: SED case. The contours in the upper 646 
panel for CTRL show evolution of DFe concentrations (nM), while the contours in the upper panels for ATM and SED 647 
cases show the percentage contribution of each of these cases to total DFe concentrations in CTRL case. 648 

 649 

3.4.2 Southern Bay of Bengal 650 

The region corresponding to the southern BoB (7o-10oN and 82o-84oE) is located to the east of Sri Lanka. 651 

Compared to the rest of the BoB, freshwater flux from South Asian rivers reduces markedly in this region due to 652 

advection of high salinity water from AS by the eastward flowing Southwest Monsoon Current (see Fig. 1h) as 653 

well as upward pumping of saltier water by thermocline doming during the southwest monsoon season 654 

(Vinayachandran et al., 2013). This leads to stronger biophysical coupling in the southern BoB, compared to the 655 

rest of the bay, through erosion of the upper stable layer of freshwater capping. During southwest monsoon, the 656 
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Southwest Monsoon Current advects nutrients and chlorophyll from the upwelling regions along the southern tip 657 

of India and Sri Lanka into the southern BoB (Vinayachandran et al., 2004). Over the open southern BoB, to the 658 

east of Sri Lanka, cyclonic wind stress curl drives open ocean upwelling leading to shoaling of the thermocline 659 

that forms the Sri Lankan dome. This results in surface chlorophyll concentration between 0.3-0.7 mg m-3 and 660 

strong subsurface chlorophyll maxima between 20-50 m where chlorophyll concentration can exceed 1 mg m-3 661 

(Thushara et al., 2019). A much lower magnitude of surface chlorophyll concentration (~0.18 mg m -3, Fig. 8c) 662 

and subsurface chlorophyll maxima (~0.2 mg m-3) at 40-60 m depth is simulated by CESM. During the northeast 663 

monsoon, CESM simulates a second bloom over this region associated with winter cooling and mixed layer 664 

deepening to ~60 m (Fig. 8c). This bloom has slightly higher magnitude, peaking at ~0.25 mg m-3, compared to 665 

the southwest monsoon bloom. Surface chlorophyll data from OC-CCI also reveals the presence of northeast 666 

monsoon blooms (peak at ~0.25 mg m-3), which during some years are of higher magnitude than southwest 667 

monsoon blooms.  Argo data in this region also show signatures of mixed layer deepening during winter (not 668 

shown). 669 

Overall, the highest DFe over this region is encountered during the late southwest monsoon and is dominated by 670 

atmospheric deposition (Fig. 10). Vertical advection is the most important process supplying DFe to the surface 671 

layers during spring and southwest monsoon months (Fig. 10). This is aided by a positive wind stress curl 672 

established over the region from March onwards. While vertical velocity is positive during the southwest monsoon 673 

over the entire depth considered, DFe supply by vertical advection is positive only for depths less than 50 m (Fig. 674 

S12). This is because the magnitude of upward velocity gradually reduces with depth, resulting in positive values 675 

of U´ upwards from 40 m depths. (Fig. S12). With the arrival of westward propagating Rossby waves to the 676 

western boundary of the BoB during October, upwelling favorable vertical motion collapses (Webber et al., 2018).  677 

With respect to horizontal advection, it is seen that the magnitude and sign of convergence by the meridional 678 

component of the current mainly controls DFe supply over the southern BoB. This arises from the southward 679 

flowing current to the western flank of the Sri Lankan dome that supplies atmospheric DFe to this region. This 680 

DFe supplied by the southwards current, as well as DFe derived from upwelling, is removed by the energetic 681 

eastward currents during late spring to early fall intermonsoon months.  During the rest of the year, the westward 682 

flowing currents supplies some sedimentary DFe from the Andaman Sea to the southern BoB. However, the much 683 

larger magnitude of dust deposition in the north-western BoB leads to overall negative tracer gradients and, thus, 684 

dilution of DFe by horizontal advection. The most important DFe supply mechanism during northeast monsoon 685 

is enhanced vertical mixing in the upper 20 m associated with deepening of mixed layer. Additionally, 686 

downwelling due to weakly negative wind stress curl during this time of the year removes DFe from the surface 687 

and favors its accumulation in the subsurface ocean. Lateral mixing complements DFe supply to the upper 20 m 688 

during fall and early northeast monsoon, especially from sedimentary sources.  689 

Biological uptake removes DFe throughout the year from the upper 40 m especially during the southwest and 690 

northeast monsoon blooms (Fig. 10).  DFe uptake in the upper 40 m is dominated by small phytoplankton during 691 

most of the year, except during northeast monsoon (not shown). Diatom DFe uptake, on the other hand, dominates 692 

the deep chlorophyll maxima present between 40-70 m throughout the year as well as within the surface layer 693 

during northeast monsoon months. Several studies have pointed to substantial nutrient uptake by diatoms in the 694 

central, coastal, and northern BoB due to riverine supply of silicates (Madhu et al., 2006; Madhupratap et al., 695 

https://doi.org/10.5194/bg-2022-224
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.



25 
 

2003). Remineralization of DFe as well as DFe release from grazing and mortality of phytoplankton and 696 

zooplankton have a primary peak between 50 m-80 m during July-August and secondary peak during February-697 

March. On the contrary, scavenging removes DFe, with its effect peaking during July-August during blooms (Fig. 698 

S15b). 699 

 700 

Figure 10: Same as Figure 9, except over the southern Bay of Bengal. 701 

 702 

3.4.3 Central Equatorial IO 703 

With chlorophyll concentrations around 0.1 mg m-3 for most part of the year, the central equatorial IO (2oS-2oN 704 

and 76o-80oE) is the least productive of all the regions considered (Fig. 8d). Unlike its counterparts in the Pacific 705 
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and the Atlantic Oceans, the equatorial IO experiences only transient upwelling due to changes in wind direction 706 

associated with migration of the intertropical convergence zone. This also leads to surface currents reversing their 707 

direction four times a year. Thus, the region experiences westward surface currents of weak magnitude during the 708 

southwest and northeast monsoon months and much stronger eastwards current during the spring and fall 709 

intermonsoon months (Han et al., 1999). These narrow eastwards surface currents during the intermonsoon 710 

months, known as Wyrtki jets, are in response to westerly winds (Wyrtki, 1973). The biogeochemical 711 

characteristics of the region have only been recently explored with the help of satellite and in situ data (e.g., 712 

Prasanna Kumar et al., 2012; Strutton et al., 2015). Deepening of the surface layer associated with the eastward 713 

transport of water during the intermonsoon months lowers productivity (Prasanna Kumar et al., 2012). 714 

Chlorophyll concentrations, although much lower compared to the rest of the IO, peaks during October-December 715 

possibly due to wind stirring or shear instability at the base of the eastward moving Wyrtki Jet (Strutton et al., 716 

2015).  Additionally, in situ measurements in the central equatorial IO have revealed deep chlorophyll maxima 717 

located ~60 m depth contributing to more than 30% of the total chlorophyll biomass (Vidya et al., 2013). The 718 

peak ocean DFe concentration is encountered during August-November. Overall, comparison between CTRL, 719 

ATM and SED cases show that atmospheric deposition, peaking during July (Fig. 8d), dominates DFe contribution 720 

to the central equatorial IO, whereas sedimentary DFe plays a distant secondary role (Fig. 11).  721 

Horizontal advection is the most important process of DFe supply within the mixed layer during March-May and 722 

September-November (Fig. 11). During the intervening months, vertical advection plays the predominant role in 723 

DFe supply. Decomposing the horizontal advection further into DFe´ and U´ reveals that the meridional velocity 724 

convergence is the main contributor to the central equatorial IO DFe budget during March-May and September-725 

November (Fig. S13). This originates from the westerly wind directing equatorward Ekman flow in both the 726 

hemispheres, which leads to convergence and drives eastward propagating downwelling Kelvin wave (McPhaden 727 

et al., 2015). Averaged over the upper 100 m, zonal velocity convergence, although somewhat of lower magnitude, 728 

opposes meridional velocity convergence throughout the year. When the Wyrtki jet weakens, upwelling induced 729 

by easterly wind drives upward vertical supply of DFe, whereas there is downward vertical removal of DFe during 730 

the intervening periods. This alternating between upwelling and downwelling control on DFe has an upward phase 731 

propagation. An important feature of the central equatorial IO, in contrast to other equatorial regions, is the 732 

presence of transient Equatorial Undercurrent between 60 m-200 m depth with core generally centered on the 733 

depth of the 20oC isotherm (Chen et al., 2015). The Equatorial Undercurrent appears most strongly during winter-734 

spring months and with much weaker magnitude during summer-fall months (Chen et al., 2015; Schott & 735 

McCreary, 2001). CESM simulation reveals the signature of the upper part of the Equatorial Undercurrent in 736 

influencing DFe budget. This is characterized by the zonal velocity underneath the mixed layer (~80 m depth) 737 

showing strong eastward transport during January-April and a much weaker eastward transport during September-738 

November. The horizontal convergence of DFe is prominent during the developing phase of the Equatorial 739 

Undercurrent (December-February and June-August), probably, associated with progressive eastward extension 740 

and strengthening of Equatorial Undercurrent from the western IO. These periods of horizontal DFe convergence 741 

are interspersed with vertical DFe convergence. Superimposed on advection, vertical mixing plays an important 742 

role in bringing subsurface DFe to the surface levels in the upper 30 m, peaking during July-August.  743 
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Biological removal of DFe, almost entirely by small phytoplankton, is conspicuous in the upper 40 m and peaks 744 

during September. This is in line with sediment trap studies over the central equatorial IO where peak biogenic 745 

fluxes are detected during the southwest and fall intermonsoon months and are dominated by foraminifera 746 

carbonate (Ramaswamy and Gaye, 2006). Furthermore, in situ water samples have shown that picoplankton, 747 

having size less than 10 µm, consists of more than 90% of the phytoplankton biomass in central equatorial IO 748 

(Vidya et al., 2013). The period of peak biogenic flux is also characterized by peak in DFe removal by scavenging 749 

and remineralization of DFe released from mortality and grazing at deeper layers (Fig. S15c). A secondary 750 

increase in biological removal of DFe is noticed during January-March associated with a secondary peak in 751 

chlorophyll, although its impact is not evident in sediment trap biogenic flux data (Vidya et al., 2013). This might 752 

arise from remineralization of DFe being almost twice the magnitude of scavenging losses during this time of the 753 

year. 754 
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 755 

Figure 11: Same as Figure 9, except over the central equatorial Indian Ocean. 756 

 757 

3.4.4 Central Southern Tropical IO 758 

The central southern tropical IO (13o-17oS and 72o-76oE) is located in the transition zone between DFe-poor region 759 

of the subtropical IO gyre and DFe-enriched northern IO. Of all the regions considered, this receives the lowest 760 

atmospheric DFe (Fig. 8e), resulting in DFe limitation of phytoplankton growth particularly during the boreal 761 

summer (Fig. 6). Steady southeasterly winds, prevailing throughout the year, transport dust from Australian 762 

sources into this region. Peak in dust deposition is during austral spring and summer associated with strong source 763 
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activity (Kok et al., 2021; Yang et al., 2021). A secondary peak in dust deposition during austral winter is possibly 764 

associated with enhanced transport. Northern part of the central southern tropical IO lies on the Seychelles-Chagos 765 

thermocline ridge, which is characterized by doming up of the thermocline due to negative wind stress curl 766 

resulting in Ekman divergence (Vialard et al., 2009). The thermocline progressively deepens towards the sub-767 

tropical southern IO gyre to the south as wind stress curl changes sign to positive. The westward flowing South 768 

Equatorial Current brings low salinity water and nutrients from the Indonesian region. Satellite observed enhanced 769 

chlorophyll concentration during the boreal (austral) summer (winter) months have been attributed to vertical 770 

diffusion (Końe et al., 2009; Lévy et al., 2007). Additionally, westward propagating upwelling/downwelling 771 

Rossby waves arrive in this region following La Nina/El Nino event and play a key role in modulating sea surface 772 

height and the depth of thermocline (Masumoto & Meyers, 1998; Périgaud & Delecluse, 1992). This perturbs the 773 

depth of nitracline, which has significant impact on column productivity (Kawamiya & Oschlies, 2001). 774 

Both ATM and SED sources are important in this region for DFe supply, with the SED (ATM) source having 775 

higher contribution during austral winter (summer) months (Fig. 12). Analysis of CESM-simulated DFe budget 776 

reveals that vertical mixing in the upper 30 m is the most important process of DFe supply, which peaks during 777 

September. This is the time of the year when CESM records the lowest sea surface temperature resulting in mixed 778 

layer deepening. Such winter mixing leads to erosion of vertical gradient in DFe observed during the rest of the 779 

year in the upper 120 m. Horizontal advection is the next most important supplier of DFe in this region. The 780 

westward flowing South Equatorial Current is strongest during austral winter and during winter-to-summer 781 

transition months. This results in meridional velocity convergence and zonal velocity divergence resulting in a 782 

quasi-balance between DFe supply and removal (Fig. S14). Overall, horizontal advection leads to predominantly 783 

sedimentary DFe convergence during March-June and predominantly atmospheric DFe convergence during 784 

September-November.  785 

The wind stress curl is mostly negative, that is upwelling favorable, throughout the year. Between April-October 786 

(austral winter), when winter convection-driven blooms are prominent, wind stress curl becomes weakly negative 787 

to slightly positive. Following this, during January-March, the wind stress curl becomes strongly negative 788 

resulting in upward velocity and favors vertical advection of both atmospheric and sedimentary DFe in equal 789 

magnitude. While vertical U´ is responsible for supplying DFe in the upper 50 m, vertical DFe´ is important at 790 

deeper depths (Fig. S14). 791 

The biological sink of DFe peaks during the month of maximum vertical mixing, that is, during September.  792 

During this time, uptake of DFe is dominated by diatoms, which accounts for more than 80% of the total DFe 793 

uptake. Small phytoplankton dominate the rest of the year. Scavenging removal of DFe and remineralization peaks 794 

one month later during October between 50-90 m depth range (Fig. S15d). Overall, the central southern tropical 795 

IO is the only region where atmospheric deposition and sedimentary sources of iron are equally important in 796 

driving the DFe budget. 797 
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 798 

Figure 12: Same as Figure 9, except over the central southern tropical Indian Ocean. 799 

 800 

4 Conclusions 801 

 802 

Using the ocean component of the Earth system model CESM version 2.1, this study elucidates the impacts of 803 

various sources of DFe on upper ocean productivity, nutrient limitations and DFe budgets over the northern IO. 804 

The iron cycle in CESM represents the complex interplay between several processes including DFe supply, 805 

removal by scavenging and biological uptake, DFe remineralization, and organic ligand complexation. The major 806 

sources of DFe for this region are included in this model: atmospheric deposition, sediments, hydrothermal vents, 807 

and rivers. Although there are model biases in representing physical and biogeochemical variables, the overall 808 

patterns of spatial and temporal variation of DFe are simulated reasonably well in CESM. 809 
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The study finds that atmospheric deposition is the most important source of DFe to the northern IO. Atmospheric 810 

deposition contributes well over 50% of the total DFe concentration and more than 10% (35%) to upper 100 m 811 

(surface level) chlorophyll concentrations, especially over the AS, equatorial IO, and southern tropical IO. 812 

Sedimentary sources become important along continental shelves, where they can contribute to more than 20% of 813 

total DFe. The sedimentary source has the largest impact in fueling phytoplankton blooms over the southern 814 

tropical IO during June-September. In contrast, hydrothermal and river sources have negligible impacts on upper 815 

ocean DFe pools in this region. Almost all regions that experience significant positive chlorophyll responses to 816 

atmospheric as well as sedimentary sources of DFe show a preponderance of diatoms over other phytoplankton 817 

groups. The increases in phytoplankton following external DFe addition are evoked in regions with low 818 

background DFe levels (<0.3 nM) and high initial NO3:DFe, indicating the importance of high levels of 819 

macronutrients. Following, external DFe addition, a shift to nitrate limitation of phytoplankton is observed. 820 

Analysis of DFe budget across different biophysical regimes in the northern IO shows that this budget is generally 821 

dominated by atmospheric deposition, with sedimentary sources of DFe being a distant second contributor. The 822 

exception to this occurs over the southern tropical IO region, where both atmospheric and sedimentary sources 823 

become equally important. In all the regions considered, vertical mixing is the most important physical mechanism 824 

through which DFe is supplied, and furthermore this mechanism is active almost throughout the year. In contrast, 825 

the importance of horizontal and vertical advection is highly seasonal. DFe uptake by small phytoplankton in the 826 

upper ocean is the most important route through which DFe removal takes place, except in the productive waters 827 

where diatoms also participate in the removal process. At subsurface levels, competition between the removal of 828 

DFe by scavenging and its remineralization determines the DFe pool available to the surface ocean via these 829 

aforementioned physical processes. 830 

Of all DFe sources, atmospheric deposition is most likely vulnerable to future global warming, and changes to it 831 

will perhaps exert strong influence on upper ocean productivity and nutrient limitation. This study thus provides 832 

foundations to explore how future scenarios of atmospheric deposition can impact biogeochemistry over the 833 

northern IO.  834 

 835 

Code and data availability 836 

Climatology of ocean temperature, salinity and nutrients are from World Ocean Atlas 2018 available at 837 

https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ . Monthly surface chlorophyll data from OC-CCI is 838 

obtained from https://www.oceancolour.org/. Monthly climatology of ocean mixed layer depth based on Holte at 839 

al. (2017) is downloaded from http://mixedlayer.ucsd.edu/. Surface ocean current data from OSCAR can be 840 

downloaded from: https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-841 

deg?ids=Keywords:Keywords:Projects&values=Oceans::Solid%20Earth::OSCAR&provider=PODAAC.  842 

Dissolved iron from GEOTRACES Intermediate Data Product 2021 is available at 843 

https://www.geotraces.org/geotraces-intermediate-data-product-2021/. Additionally, dissolved iron profile data 844 

are also obtained from Tagliabue et al. (2012) available at https://www.bodc.ac.uk/geotraces/data/historical/.  The 845 

code for CESM2.1 can be downloaded from https://www.cesm.ucar.edu/models/cesm2/release_download.html 846 

(last access: 01 December 2020). 847 
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