Supplement

Figure R1. Changes in a) global total land carbon stock and b) land surface albedo and c) evapotranspiration in the AFFOREST (solid lines; Δ AFFOREST) and REDUCED_FF (solid lines with triangle markers; Δ REDUCED_FF) cases relative to the FIXED_AGR case in the SSP2-4.5 (green), SSP3-7.0 (orange) and SSP5-8.5 (red) scenarios. In the AFFOREST simulations, the amount of carbon additionally stored in land (between 2006-2500) are 319.84 PgC, 418.93 PgC, and 379.21PgC in the SSP2-4.5, SSP3-7.0, and SSP 5-8.5 scenarios, respectively, while the

difference between land carbon stock in REDUCED_FF and FIXED_AGR is nearly zero in the three SSP scenarios. The land surface albedo in the AFFOREST case is smaller by 0.011 (averaged over 2471-2500) in the three SSP scenarios compared to FIXED_AGR case, while the REDUCED_FF case has similar land surface albedo as in the FIXED_AGR case in the three SSP scenarios. The evapotranspiration is smaller (larger) in the AFFOREST (REDUCED_FF) case compared to the FIXED_AGR case due to increase (decrease) in water use efficiency of vegetation at higher (lower) atmospheric CO₂ levels.

Figure R2. The left (right) panel shows the spatial pattern of the difference in evapotranspiration (averaged over 2471-2500) between the AFFOREST (REDUCED_FF) and FIXED_AGR simulations. The top, middle and bottom panels correspond to the SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios, respectively. The AFFOREST case has smaller evapotranspiration compared to the FIXED_AGR case in regions where forest regrow, while the REDUCED_FF case has larger or similar evapotranspiration compared to the FIXED_AGR case in different regions in the three SSP scenarios.

Figure R3. The left (right) panel shows the spatial pattern of the difference in zonal mean vertical ocean potential temperature (averaged over 2471-2500) between the AFFOREST (REDUCED_FF) and FIXED_AGR simulations. The top, middle and bottom panels correspond to the SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios, respectively. The difference in ocean potential temperature between AFFOREST and FIXED_AGR cases is nearly zero everywhere (except in the surface ocean in SSP2-4.5), while the surface ocean is cooler in the REDUCED_FF case compared to the FIXED_ AGR case in the three SSP scenarios.

Figure R4. Changes in a) global mean atmospheric CO₂ concentration and b) global mean surface air temperature in the AFFOREST (solid lines; Δ AFFOREST) and REDUCED_FF (solid lines with triangle markers; Δ REDUCED_FF) cases relative to the FIXED_AGR case in the SSP2-4.5 (green), SSP3-7.0 (orange), and SSP5-8.5 (red) scenarios. The decrease in atmospheric CO₂ because of afforestation or reduced fossil fuel emissions is almost twice in SSP3-7.0 and SSP5-8.5 compared to SSP2-4.5 due to two reasons: i) amount of carbon removed by land is larger in the SSP3-7.0 and SSP5-8.5 scenarios because of larger CO₂-fertilization effect as discussed in Sect 3.1 ii)) larger ocean carbon uptake in the FIXED_AGR case relative to the AFFOREST and REDUCED_FF cases in the SSP3-7.0 and SSP5-8.5 scenarios compared to SSP2-4.5 (Table S2). The REDUCED_FF case has lower SAT than the FIXED_AGR case in the three SSP scenarios case because of reduced fossil fuel emissions. In the AFFOREST case, the cooling effect of removal of CO₂ is partially or completely offset by the biophysical warming effect of regrowth of forests. Hence, the AFFOREST case has similar SAT as that of FIXED_AGR in the SSP3-7.0 and SSP5-8.5 scenarios and smaller SAT in the SSP2-4.5.

Figure R5. Changes in a) global total ocean carbon content and b) global mean surface ocean pH in the AFFOREST (green; Δ AFFOREST) and REDUCED_FF (blue; Δ REDUCED_FF) cases relative to the FIXED_AGR case in the SSP2-4.5 (green), SSP3-7.0 (orange), and SSP5-8.5 (red) scenarios. The AFFOREST and REDUCED_FF cases have smaller ocean carbon than the FIXED_AGR case in the three SSP scenarios because of the reduction of atmospheric CO₂ in the AFFOREST and REDUCED_FF cases by afforestation and reduced fossil fuel emissions, respectively, and the consequent reduction in ocean carbon uptake. The AFFOREST and REDUCED_FF cases have larger surface ocean pH than the FIXED_AGR case because of the smaller ocean carbon content in the AFFOREST and REDUCED_FF cases (Figure S6).

References

Adler, R. F., Gu, G., Sapiano, M., Wang, J.-J., and Huffman, G. J.: Global precipitation: Means, variations and trends during the satellite era (1979–2014), Surv. Geophys., 38, 679–699, 2017.

Alkama, R. and Cescatti, A.: Biophysical climate impacts of recent changes in global forest cover, Science (80-.)., 351, 600–604, 2016.

Anderson, R. G., Canadell, J. G., Randerson, J. T., Jackson, R. B., Hungate, B. A., Baldocchi, D. D., Ban-Weiss, G. A., Bonan, G. B., Caldeira, K., Cao, L., Diffenbaugh, N. S., Gurney, K. R., Kueppers, L. M., Law, B. E., Luyssaert, S., and O'Halloran, T. L.: Biophysical considerations in forestry for climate protection, Front. Ecol. Environ., 9, 174–182, https://doi.org/10.1890/090179, 2011.

Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., and Mirin, A.:
Combined climate and carbon-cycle effects of large-scale deforestation, Proc. Natl. Acad. Sci.,
104, 6550–6555, https://doi.org/10.1073/PNAS.0608998104, 2007.

Betts, R. A., Cox, P. M., Lee, S. E., and Woodward, F. I.: Contrasting physiological and structural vegetation feedbacks in climate change simulations, Nature, 387, 796–799, 1997.

Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science (80-.)., 320, 1444–1449, 2008.

Boysen, L. R., Brovkin, V., Pongratz, J., Lawrence, D. M., Lawrence, P., Vuichard, N., Peylin, P., Liddicoat, S., Hajima, T., and Zhang, Y.: Global climate response to idealized deforestation in CMIP6 models, Biogeosciences, 17, 5615–5638, 2020.

Bright, R. M., Davin, E., O'Halloran, T., Pongratz, J., Zhao, K., and Cescatti, A.: Local temperature response to land cover and management change driven by non-radiative processes, Nat. Clim. Chang., 7, 296–302, 2017.

Cao, L. and Jiang, J.: Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering, Geophys. Res. Lett., 44, 12,484-12,491, https://doi.org/10.1002/2017GL076546, 2017.

Cao, L., Bala, G., Caldeira, K., Nemani, R., and Ban-Weiss, G.: Climate response to

physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3. 1) and Community Land Model (CLM3. 0), Geophys. Res. Lett., 36, 2009.

Cao, L., Bala, G., Caldeira, K., Nemani, R., and Ban-Weiss, G.: Importance of carbon dioxide physiological forcing to future climate change, Proc. Natl. Acad. Sci., 107, 9513–9518, 2010.

Chen, G. S., Notaro, M., Liu, Z., and Liu, Y.: Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer, J. Clim., 25, 4511–4522, https://doi.org/10.1175/JCLI-D-11-00317.1, 2012.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., and Heimann, M.: Carbon and other biogeochemical cycles, in: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 465–570, 2014.

DeVries, T.: The Ocean Carbon Cycle, Annu. Rev. Environ. Resour., 47, 317–341, 2022.

Duan, Z. and Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol., 193, 257–271, 2003.

Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change on Earth's surface energy balance, Nat. Commun., 9, 679, 2018.

Gopalakrishnan, R., Bala, G., Jayaraman, M., Cao, L., Nemani, R., and Ravindranath, N. H.: Sensitivity of terrestrial water and energy budgets to CO2-physiological forcing: An investigation using an offline land model, Environ. Res. Lett., 6, 44013, 2011.

Henderson-Sellers, A. and Wilson, M. F.: Surface albedo data for climatic modeling, Rev. Geophys., 21, 1743–1778, https://doi.org/10.1029/RG021I008P01743, 1983.

De Hertog, S. J., Havermann, F., Vanderkelen, I., Guo, S., Luo, F., Manola, I., Coumou, D., Davin, E. L., Duveiller, G., and Lejeune, Q.: The biogeophysical effects of idealized land cover and land management changes in Earth system models, Earth Syst. Dyn., 13, 1305–1350, 2022.

Houldcroft, C. J., Grey, W. M. F., Barnsley, M., Taylor, C. M., Los, S. O., and North, P. R. J.: New Vegetation Albedo Parameters and Global Fields of Soil Background Albedo Derived from MODIS for Use in a Climate Model, J. Hydrometeorol., 10, 183–198, https://doi.org/10.1175/2008JHM1021.1, 2009.

Huang, L., Zhai, J., Liu, J., and Sun, C.: The moderating or amplifying biophysical effects of afforestation on CO2-induced cooling depend on the local background climate regimes in China, Agric. For. Meteorol., 260–261, 193–203, https://doi.org/10.1016/J.AGRFORMET.2018.05.020, 2018.

Jayakrishnan, K. U., Bala, G., Cao, L., and Caldeira, K.: Contrasting climate and carbon-cycle consequences of fossil-fuel use versus deforestation disturbance, Environ. Res. Lett., 17, 064020, https://doi.org/10.1088/1748-9326/AC69FD, 2022.

Keller, D. P., Oschlies, A., and Eby, M.: A new marine ecosystem model for the University of Victoria earth system climate model, Geosci. Model Dev., 5, 1195–1220, https://doi.org/10.5194/GMD-5-1195-2012, 2012.

Kirschbaum, M. U. F. and McMillan, A. M. S.: Warming and elevated CO 2 have opposing influences on transpiration. Which is more important?, Curr. For. Reports, 4, 51–71, 2018.

Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., and Wang, K.: Potential and actual impacts of deforestation and afforestation on land surface temperature, J. Geophys. Res. Atmos., 121, 14–372, 2016.

Meissner, K. J., Weaver, A. J., Matthews, H. D., and Cox, P. M.: The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model, Clim. Dyn., 21, 515–537, https://doi.org/10.1007/S00382-003-0352-2/TABLES/3, 2003.

Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean alkalinity, buffering and biogeochemical processes, Rev. Geophys., 58, e2019RG000681, 2020.

Portmann, R., Beyerle, U., Davin, E., Fischer, E. M., De Hertog, S., and Schemm, S.: Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation, Nat. Commun., 13, 5569, 2022.

Shen, W., He, J., He, T., Hu, X., Tao, X., and Huang, C.: Biophysical Effects of Afforestation on Land Surface Temperature in Guangdong Province, Southern China, J. Geophys. Res. Biogeosciences, 127, e2022JG006913, https://doi.org/10.1029/2022JG006913, 2022.

Wang, Y., Yan, X., and Wang, Z.: The biogeophysical effects of extreme afforestation in modeling future climate, Theor. Appl. Climatol., 118, 511–521, https://doi.org/10.1007/S00704-013-1085-8/FIGURES/6, 2014.

Weaver, A. J., Eby, M., Wiebe, E. C., Ewen, T. L., Fanning, A. F., MacFadyen, A., Matthews,
H. D., Meissner, K. J., Saenko, O., Schmittner, A., Yoshimori, M., Bitz, C. M., Holland, M. M.,
Duffy, P. B., and Wang, H.: The UVic earth system climate model: Model description,
climatology, and applications to past, present and future climates, Atmos. - Ocean, 39, 361–428,
https://doi.org/10.1080/07055900.2001.9649686, 2001.

Winckler, J., Lejeune, Q., Reick, C. H., and Pongratz, J.: Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation, Geophys. Res. Lett., 46, 745–755, 2019.