

1 **Assessing global-scale organic matter reactivity patterns in marine**
2 **sediments using a lognormal reactive continuum model**

3 **Sinan Xu^{1,2,3}, Bo Liu³, Sandra Arndt⁴, Sabine Kasten^{3,5}, and Zijun Wu^{1*}**

4 ¹State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji
5 University, Shanghai, 200092, China

6 ²The Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of
7 Marine Geology, Qingdao, 266071, China

8 ³Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570
9 Bremerhaven, Germany

10 ⁴Department of Geosciences, Environment and Society, Université Libre de Bruxelles,
11 Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium

12 ⁵Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany

13

14 **Correspondence to: Zijun Wu (wuzj@tongji.edu.cn)**

15

16 **Abstract**

17 Organic matter (OM) degradation in marine sediments is largely controlled by its
18 reactivity and profoundly affects the global carbon cycle. Yet, there is currently no general
19 framework that can constrain OM reactivity on a global scale. In this study, we propose a
20 reactive continuum model based on a lognormal distribution (*l*-RCM), where OM
21 reactivity is fully described by parameters μ (the mean reactivity of the initial OM bulk
22 mixture) and σ (the variance of OM components around the mean reactivity). We use the
23 *l*-RCM to inversely determine μ and σ at 123 sites across the global ocean. The results show

24 that the apparent OM reactivity ($\langle k \rangle = \mu \cdot \exp(\sigma^2/2)$) decreases with decreasing
25 sedimentation rate (ω) and show that OM reactivity is more than three orders of magnitude
26 higher in shelf than that in abyssal regions. Despite the general global trends, higher than
27 expected OM reactivity is observed in certain ocean regions characterized by great water
28 depth and/or pronounced oxygen minimum zones, such as the Eastern-Western Coastal
29 Equatorial Pacific and the Arabian Sea, emphasizing the complex control of the
30 depositional environment (e.g., OM flux, oxygen content in the water column) on benthic
31 OM reactivity. Notably, the *l*-RCM can also highlight the variability of OM reactivity in
32 these regions. Based on inverse modeling results in our dataset, we establish the significant
33 statistical relationships between $\langle k \rangle$ and ω , and further map the global OM reactivity
34 distribution. The novelty of this study lies in its unifying view, but also in contributing a
35 new framework that allows predicting OM reactivity in data-poor areas based on readily
36 available (or more easily obtainable) information. Such a framework is currently lacking
37 and limits our abilities to constrain OM reactivity in global biogeochemical and/or Earth
38 System Models.

39

40 **1 Introduction**

41 Marine sediments act as the ultimate sink for organic carbon. The size and reactivity of
42 the benthic organic matter (OM) reservoir is a critical component of the global carbon cycle
43 (Arndt et al., 2013). In particular, the reactivity of benthic OM imposes a substantial control
44 on the magnitude of benthic carbon burial over geological timescales due to the recycling
45 of organic carbon by dissimilatory microbial activity in the deep biosphere (Boudreau,
46 1992; Zonneveld et al., 2010), the dissolution and precipitation of carbonates (Meister et

47 al., 2022; Nöthen and Kasten, 2011), and the production of methane (Dickens et al., 2004;
48 Whiticar, 1999). Decades of research have shown that OM reactivity is controlled by both
49 the nature of the OM (origin, composition and degradation state), as well as its
50 environmental and depositional conditions (e.g., redox conditions, sedimentation rate,
51 mineral protection, microbial community composition and biological mixing) (Burdige,
52 2007; Egger et al., 2018; Hartnett et al., 1998; Hedges and Keil, 1995; Larowe et al., 2020a;
53 Zonneveld et al., 2010). However, due to the complex and dynamic nature of the main
54 controls on OM reactivity, the specific relative significance of these controlling factors
55 remains poorly quantified. Consequently, OM degradation models generally do not
56 explicitly describe the influence of environmental and depositional factors on OM
57 reactivity and its evolution but rather apply simplified parametrizations (Freitas et al., 2021;
58 Pika et al., 2021). Over the past decades, several models have been developed and
59 successfully used to quantify OM degradation in marine sediments. They can be broadly
60 divided into two groups: discrete models, such as the (multi) G model (Berner, 1964;
61 Jørgensen, 1978), and continuum models, such as the reactive continuum model (RCM)
62 (Boudreau and Ruddick, 1991) and the power model (Middelburg, 1989).

63 Discrete models divide the bulk OM pool into several discrete fractions, each with its
64 own constant reactivity (Fig.1A). The 1- G model is the earliest OM degradation model,
65 which is based on the assumption that OM degrades according to first order dynamics with
66 a single constant degradation rate constant (Berner, 1964). The multi- G model, however,
67 divides OM into several fractions, and each fraction is degraded according to a first-order
68 rate with a fraction-specific reactivity (Jørgensen, 1978). Although multi- G models
69 successfully fit observed OM degradation dynamics when comprehensive data sets are

70 available, their application on a global scale is complicated by the need to partition the OM
71 reactivity into a finite number of fractions and define their reactivities. A multi-*G* model
72 with *n* discrete OM fractions requires constraining $2n-1$ parameters and is, thus, over-
73 parametrized (Jørgensen, 1978). Nevertheless, because of its mathematical simplicity and
74 wide use, multi-*G* models have been used in a range of diagenetic models designed for the
75 global/regional scale (e.g., CANDI, MEDIA, MEDUSA, and OMEN SED) (Boudreau,
76 1996; Meysman et al., 2003; Munhoven, 2007; Pika et al., 2021). Constraining the $2n-1$
77 OM degradation model parameters for these global-scale applications is not
78 straightforward. Early strategies for constraining the reactivity of OM on a global scale
79 have focused on deriving empirical relationships between OM reactivity and single, easily
80 observable characteristics of the depositional environment (water depth, sedimentation
81 rate, or OM flux) (Arndt et al., 2013). However, poor statistically significant link between
82 OM reactivity and depositional environment could be established ($R^2 < 0.1$) after compiling
83 published multi-*G* model's parameters across a wide range of depositional environments,
84 model complexities as well sediment depths/ burial time scales (Arndt et al., 2013).

85 Reactive continuum models (RCMs) are an alternative to discrete models. They assume
86 that OM compounds are continuously distributed over a wide range of reactivities. The
87 degradation rate can be described as the sum of an infinite number of discrete fractions,
88 each degraded according to first-order kinetics (Boudreau and Ruddick, 1991), as

$$89 \quad G(t) = \int_0^{\infty} G(0) \cdot g(k, 0) \cdot e^{-kt} dk \quad (1)$$

90 where $G(t)$ is OM content at time t , $G(0)$ is OM content at the sediment-water interface
91 (SWI), k is the first-order degradation rate constant, and $g(k, 0)$ is the initial reactivity
92 distribution of OM at the SWI. The key to constructing an RCM is to select a continuum

93 distribution that describes the OM reactivity at the SWI (Fig. 1B). Considering the k value
 94 in Eq. 1 must be greater than zero ($k > 0$), some of the all-axial statistical distributions ($x \in$
 95 $(-\infty, +\infty)$) are not appropriate for constructing RCM (e.g., Normal distribution, Fig.1D₁).
 96 Boudreau and Ruddick. (1991), following Aris (1968) and Ho et al. (1987), proposed to
 97 use a Gamma distribution (γ -RCM, Fig.1D₂) due to its mathematical properties and its
 98 ability to capture the observed dynamics:

$$99 \quad g(k, 0) = \frac{a^v \cdot k^{v-1} \cdot e^{-ak}}{\Gamma(v)} \quad (2)$$

100 where a is the average age of the OM at the SWI, v is the shape parameter, and $\Gamma(v)$ is the
 101 Gamma function. In addition, Middelburg. (1989) empirically derived a power law from a
 102 large data compilation of measured OM reactivity (Fig.1C), which is mathematically
 103 equivalent to the γ -RCM. The advantage of the continuum models over the discrete models
 104 is that they merely require constraining two free parameters to capture the widely observed
 105 continuous decrease in OM reactivity with degradation time/depth. Recently, γ -RCM has
 106 been used to inversely determine the free γ -RCM parameters, and thus benthic OM
 107 reactivity, from observed POC and sulfate depth profiles across a wide range of different
 108 depositional environments (Freitas et al., 2021). Although results revealed broad global
 109 patterns, no significant statistical relationship ($R^2 < 0.46$) between the parameters (a and v)
 110 of the γ -RCM (Arndt et al., 2013) and characteristics of the depositional environment could
 111 be found, and constraining OM degradation model parameters on the global scale thus
 112 remains difficult.

113 Here, we present an RCM based on a lognormal distribution (Forney and Rothman,
 114 2012b):

$$115 \quad g(k, 0) = \frac{1}{k \cdot \sigma \cdot \sqrt{2\pi}} \cdot e^{-(\ln k - \ln \mu)^2 / (2\sigma^2)} \quad (3)$$

116 where $\ln \mu$ is the mean of $\ln k$, and σ^2 is the variance of $\ln k$ (Fig.1D₃). Parameter μ
 117 determines the mean reactivity of the initial OM bulk mixture and parameter σ reflects the
 118 spread of OM components around the mean reactivity.

119 The lognormal distribution is formed by the multiplicative effects of random variables,
 120 which is commonly observed in nature (e.g., the radioactivity of elements in the crust, the
 121 incubation period of infectious diseases, and ecological species abundance) (Limpert et al.,
 122 2001). In the ocean system, the rates of ocean primary production and biological carbon
 123 export also fit the lognormal distribution (Cael et al., 2018). The degradation of OM in
 124 natural ecosystems is controlled by a network of biologically, physically, and chemically
 125 driven processes (Forney and Rothman, 2014), so the variables raised from such
 126 multiplicative processes are often followed by a lognormal distribution. Forney and
 127 Rothman (2012b) showed that litter bag OM incubation data is indeed best described by a
 128 lognormal distribution of rates.

129

130 **Figure 1. Schematic diagram of different OM degradation models.** A: G model, B:
131 RCM, C: Power model and D: Common continuum distribution functions. The x coordinate
132 denotes the variation range of values, and the y coordinate denotes the probability density
133 distribution (ρ) (D₁: the Normal distribution, a typical all-axis distribution, D₂: the Gamma
134 distribution, a typical semi-axis ($x>0$) distribution, and D₃: the Lognormal distribution, a
135 typical semi-axis ($x>0$) distribution).

136
137 In this study, we first compared the *l*-RCM with other OM degradation models and
138 analyzed the advantages of the *l*-RCM in describing the OM reactivity distribution. Then
139 we simulated OM degradation in marine sediment at 123 global sites using the *l*-RCM.
140 Based on inverse modeling results in our dataset, we established the empirical formulas of
141 OM reactivity *vs* sedimentation rate and further mapped the global OM reactivity
142 distribution. This study provides a new framework for assessing OM reactivity on
143 regional/global scales and predicting OM reactivity in data-poor areas based on easily
144 obtainable environmental parameters (e.g., sedimentation).

145

146 **2 Materials and methods**

147 **2.1 OM degradation model approach**

148 We constructed an RCM with lognormal distribution (*l*-RCM) to simulate the OM
149 degradation in marine sediments. The $g(k,0)$ we used in Eq. 1 is the lognormal distribution
150 (Eq.3). Because of the tail of $g(k,0)$, the mean rate constant for bulk OM degradation or the
151 apparent degradation rate of the bulk OM ($\langle k \rangle$) is written as follows:

152
$$\langle k \rangle = \int_0^{\infty} k \cdot g(k, 0) dk = \mu \cdot e^{\sigma^2/2} \quad (4)$$

153 **2.2 Inverse model approach**

154 Here, we used 123 published datasets of OM depth profiles across a wide range of
155 different depositional environments that have been sourced from published literature
156 (Middelburg, 1989; Arndt et al., 2013; Middelburg et al., 1997) and the IODP database
157 (Fig.2, Supplementary Table S1) to inversely determine the μ and σ parameters. We also
158 analyzed a small number ($n=12$) of laboratory experiment data on OM degradation
159 (Middelburg, 1989), as well as OM degradation data ($n=16$) from terrestrial soils (Katsev
160 and Crowe, 2015). We followed the inverse modeling approach by Forney et al.(2012a) to
161 identify the best-fitting parameters μ and σ based on the Newton method.

162
163 **Figure 2. Global distribution of investigated sites.**

164

165 Notably, the burial time was correlated with the porosity. A simple exponential function
166 was used to describe porosity in sediments:

167
$$\varphi(x) = \varphi_0 \cdot e^{-\lambda x} \quad (5)$$

168 where φ_0 is the values of porosity at the SWI, λ is the attenuation coefficient, and x is
169 depth. Considering the compaction impacts on OM degradation, the burial time
170 corresponding to each depth in the OM profile can be calculated as:

171
$$t(x) = \int_0^x \omega^{-1} dx = \frac{x}{\omega_f} + \frac{(\varphi_0 - \varphi_f)}{(1 - \varphi_f) \cdot \lambda \cdot \omega_f} \cdot (e^{-\lambda \cdot x} - 1) \quad (6)$$

172 where φ_f is the values of porosity at larger depths, calculated from Eq. 5 and the pre-set
 173 simulation depth. If the porosity data were not available, the global set as: shelf regions
 174 ($\varphi_0: 0.45, \lambda: 0.5 \times 10^{-3}$), slope regions ($\varphi_0: 0.74, \lambda: 1.7 \times 10^{-4}$), and abyssal regions ($\varphi_0: 0.7, \lambda:$
 175 0.85×10^{-3}) (LaRowe et al., 2020b).

176 **2.3 Global upscaling of sedimentation rate**

177 The inversely determined μ, σ couples of all investigated sites were then used in a linear
 178 regression method to derive the empirical relationships between OM parameters $\mu, \sigma, \langle k \rangle$
 179 and the local sedimentation rates (ω). A correction factor (f_c , Eq.7) was applied to calculate
 180 the skewness bias inherent in the back conversion from a log-log transformed linear
 181 regression model to arithmetic units (Egger et al., 2018; Middelburg et al., 1997).

182
$$f_c = e^{2.65 \times s^2} \quad (7)$$

183 where s^2 is the variance of the model residuals. The newly derived empirical
 184 relationships between $\langle k \rangle$ and ω were then used to calculate global maps of OM reactivity
 185 at the SWI on a $1^\circ \times 1^\circ$ grid cell of the world ocean. At each grid point, ω was estimated
 186 based on the empirical relationship between ω (ω in cm yr^{-1}) and the water depth (z in m)
 187 (Eq.8, Fig.3), derived from 260 observations on the global continental shelves (Burwicz et
 188 al., 2011), complemented here by an extra 360 sites including abyss regions (data from
 189 Arndt et al. (2013), Egger et al. (2018)).

190
$$\omega(z) = \frac{0.4}{1 + \left(\frac{z}{200}\right)^{3.5}} + \frac{0.004}{1 + \left(\frac{z}{4500}\right)^{17}} \quad (8)$$

191
 192 **Figure 3. Relationship between Sedimentation rate (w) and water depth (z in m).** The
 193 data are taken from Arndt et al. (2013) (black circles), Egger et al. (2018) (pink circles),
 194 Betts and Holland (1991) (red circles), Colman and Holland (2000) (green circles), and
 195 Seiter et al. (2004) (blue circles). The pink line is the fitting result according to Eq. 8
 196 ($R^2=0.57$), and the black line is the fit obtained from the data of Burwicz et al. (2001)
 197 ($R^2=0.43$).

198

199 Considering the geographic differences in depositional environments and to describe the
 200 global distribution of sedimentary OM reactivity in more detail, we divided the global
 201 ocean into 30 different regions (Table 2, Fig.4) using 5600 single measured data of OM
 202 content in global surface sediment (<5 cm sediment depth) and the previously used
 203 combined qualitative and quantitative geostatistical methods (Seiter et al., 2004).

204

205 **Figure 4. The 30 different regions of the global ocean were divided using 5600 single**
 206 **measured data of OM content (wt.%) of surface sediments**

207

208 **3 Results and discussion**

209 **3.1 OM reactivity distribution described by the γ -RCM and the l -RCM**

210 To compare OM reactivity distribution described by the l -RCM and the γ -RCM, we
 211 determined the best fit to the eight OM datasets reported by Boudreau and Ruddick. (1991).
 212 The results show that both RCMs fit the data equally well, as illustrated by the high
 213 coefficient of determination for each fit ($R^2 > 0.9$, Table 1 and Fig.5). However, the l -RCM
 214 and the γ -RCM differ in their ability to find a unique solution and in their respective
 215 probability density functions of OM reactivity ($\rho(k)$). For example, Fig.6A and 6B show
 216 the best-fit OM profiles for two contrasting sites: BX-6 on the shelf and DSDP 58 in the
 217 abyssal region. The inversely determined parameters at the two sites are $\mu = 2.23 \times 10^{-3} \text{ yr}^{-1}$,
 218 $\sigma = 2.03$ at BX-6, and $\mu = 6.11 \times 10^{-5} \text{ yr}^{-1}$, $\sigma = 1.66$ at DSDP 58 by the l -RCM. At BX-6, the

219 best-fitting parameters by the γ -RCM are $v = 0.278$ and $a = 22.5$, and at DSDP 58, $v = 1.08$
 220 and $a = 20224$. According to the parameter sensitivity analysis, the R^2 of the fitted results
 221 remains greater than 0.9 when a and v change substantially simultaneously (Fig.6D,
 222 Supplementary Table S2, Fig.S1, S2, and S3). As a result, different combinations of a and
 223 v can fit the data equally well. For example, simultaneously increasing v and a ($v = 0.5$ and
 224 $a = 53$) at site BX-6 or decreasing v and a ($v = 0.5$ and $a = 4024$) at site DSDP 58 lead to a
 225 slight change in R^2 . Adding additional measured data, such as depth profiles of porewater
 226 sulfate and methane concentrations, can help find a unique solution (Freitas et al., 2021).
 227 In contrast, the best-fit parameters μ and σ are unique in the l -RCM, and even small changes
 228 in either parameter can lead to abysmal fitting results (Fig.6D). The second difference
 229 between the two models concerns the shape of the probability distribution $\rho(k)$.
 230 Statistically, the features of the Gamma distribution vary with the value of v . If $v < 1$, $\rho(k)$
 231 tends to positive infinity when k approaches zero. In contrast, if $v > 1$, $\rho(k)$ tends to zero
 232 when k approaches zero. Hence, the characteristics of the Gamma distribution under
 233 different v values are difficult to visually compare the OM reactivity distributions at site
 234 BX-6 ($v < 1$) and DSDP 58 ($v > 1$) (Fig.6C). Compared with γ -RCM, the l -RCM can better
 235 distinguish OM reactivity distribution at different sites.

236

237 **Table 1. List of model parameters and coefficients of determination (R^2) for the**
 238 **fitting result of γ -RCM and l -RCM.**

Core	γ -RCM			l -RCM		
	v (-)	a (yr)	R^2	μ (yr $^{-1}$)	σ (-)	R^2
Foam	0.152	4.2	0.930	2.2×10^{-3}	3.725	0.923
SCR-44	0.202	70.4	0.929	4.4×10^{-4}	2.706	0.922
BX-6	0.278	22.5	0.929	2.24×10^{-3}	2.031	0.936
PC2&TW2	0.052	0.16	0.937	5.5×10^{-5}	6.688	0.947
10141&2	0.193	10184	0.935	1.9×10^{-6}	3.289	0.936
7706-41K	0.910	141.3	0.974	9.5×10^{-3}	0.899	0.972

7706-36	0.804	231.7	0.978	4.79×10^{-4}	1.089	0.980
DSDP58	1.080	20224	0.917	6.11×10^{-5}	1.663	0.921

239

240

241 **Figure 5. Fitting results of the l -RCM and the γ -RCM.** The pink dots are the measured
242 OM data, the red lines are l -RCM fitting results, and the blue lines are γ -RCM fitting
243 results.

244

245

246 **Figure 6. Comparison of *l*-RCM and γ -RCM.** **A, B:** the fitting results of the *l*-RCM and
 247 the γ -RCM for site BX-6 and DSDP 58. **C:** OM reactivity distribution from *l*-RCM and γ -
 248 RCM. Top inset, Gamma distribution at site BX-6 at a larger y-axis. **D:** Distribution of
 249 R^2/R^2_{Best} for parameter sensitivity analysis of the γ -RCM and the *l*-RCM at sites BX-6 and
 250 DSDP 58. The pink lines in the D₁ and D₂ denote the range that $R^2/R^2_{\text{Best}} > 0.9$ in the γ -RCM.
 251 The R^2/R^2_{Best} in the *l*-RCM converges as the pink arrows in the D₃ and D₄, ultimately
 252 reaching the best fitting results as the pink pentagrams.

253

254 3.2 Regional distribution of OM reactivity

255 In the *l*-RCM, parameter μ represents the mean reactivity of the OM fractions, which
 256 dominates the rate of OM degradation (Supplementary Fig.S2), and parameter σ describes
 257 the homogeneity of OM fractions, with larger σ value indicating more heterogeneous
 258 mixture of OM (Forney et al., 2012b). The inverse determination of the *l*-RCM parameters

259 μ and σ across the wide range of different depositional environments allows quantitative
260 insights into OM reactivity and provides essential information on the main environmental
261 controls on OM reactivity. Fig.7 illustrates the inversely determined μ - σ for all 123 depth
262 profiles of marine sediment POC investigated in this study and compares them with
263 inversely determined parameters from published soil and laboratory incubation data. It
264 highlights the large inter- and intraregional variability of best-fit μ (10^{-6} – 10^2 yr^{-1}) and σ
265 (0.2–6). However, despite the large variability, it also reveals broad global patterns in μ
266 and σ . Notably, best-fit μ - σ couples form environmental clusters along a μ gradient, with
267 the highest μ being determined for laboratory degradation experiments of fresh
268 phytoplankton (Garber, 1984; Westrich and Berner, 1984) ($\mu=10^0$ – 10^2 yr^{-1}), followed by
269 soil incubation under natural (Katsev and Crowe, 2015), yet still idealized conditions
270 ($\mu=10^0$ – 10^1 yr^{-1}), while OM degraded in marine sediments generally reveals lower
271 inversely determined $\mu<10^0$ yr^{-1} . The higher μ values determined for soil OM seemingly
272 contradict the widely accepted notion that soil OM is generally less reactive than marine
273 OM (Larowe et al., 2020a; Zonneveld et al., 2010). However, this apparent contradiction
274 can be explained by the idealized conditions of the incubation experiments (e.g., only one
275 type of material, some of which had nitrogen added), as well as the degradation state of the
276 investigated OM. Although soil OM is structurally less reactive (Hedges and Keil, 1995;
277 Zonneveld et al., 2010), the soil incubation experiments were conducted with initially
278 undegraded material. In contrast, OM deposited in marine sediments consists of a complex
279 mixture of OM from autochthonous and allochthonous sources that is altered to various
280 degrees during transit from its source to the sediment (Hewson et al., 2012).

281 In addition to the difference between incubation data and field observations, Fig. 7 also
282 reveals a three order of magnitude decrease in inversely determined μ for OM from the
283 shelf (10^{-3} – 10^{-1} yr $^{-1}$) to the slope (10^{-4} – 10^{-3} yr $^{-1}$), and ultimately abyssal regions ($<10^{-4}$ yr $^{-1}$). In addition, shelf and slope regions also generally reveal a larger σ (1–3), while abyssal
284 regions display a narrower σ range (0.5–1). This observed progressive decrease in μ and σ
285 from the shelf to the abyssal ocean confirms previously observed patterns (Arndt et al.,
286 2013; Freitas et al., 2021; Zonneveld et al., 2010) and reflects the interaction between OM
287 structure (or its source) and the degree of alteration/pre-processing as OM transits from its
288 original source to the ultimate sedimentary sink. In the dynamic shelf regions, highly
289 variable OM loads from different sources, including *in-situ* produced marine OM, laterally
290 transported, pre-processed terrestrial or marine OM, are often physically protected from
291 further erosion/deposition cycles due to high suspended sediment loads (Arndt et al., 2013;
292 Larowe et al., 2020a). As a result, benthic OM is composed of a complex mixture of fresh
293 and pre-aged compounds of highly variable (hence larger σ of the initial distribution), yet
294 generally higher reactivity. On the upper and mid-continental slopes, intensive lateral
295 and/or vertical transport processes or the abrupt relocation of sediment result in similar
296 complex mixtures of OM (hence similar σ of the initial distribution) (Larowe et al., 2020a).
297 However, transport timescales are often longer due to the greater water depths and distance
298 to land. The deposited OM is generally more degraded and thus less reactive than in shelf
299 environments. In contrast, benthic OM in abyssal regions is mainly derived from marine
300 production (Rowe and Staresinic, 1979; Larowe et al., 2020a). During its slow settling
301 through the water column, highly reactive OM compounds are rapidly degraded, and only
302 the less reactive compounds persist and settle onto the sediment (Dunne et al., 2007). The

304 values of μ and σ in the abyssal regions are thus significantly smaller than in the shelf and
 305 slope regions. The decrease of μ and σ from the shelf to abyssal regions reveals a decline
 306 in reactivity during lateral transport of OM, where μ mainly controls the overall reactivity
 307 and σ indicates the coverage of the main component of OM.

308

309 **Figure 7. Regional distribution of OM reactivity.** Distribution of parameters σ and μ in
 310 different regions. Pink solid circles denote fitting results of sites in the NEPAC with
 311 extremely low OM reactivity.

312

313 3.3 Global distribution patterns of OM reactivity

314 Parameters μ and σ together control the degradation process of OM, which can be further
 315 described by the apparent degradation rate of the bulk OM ($\langle k \rangle$). Sedimentation rate (ω)
 316 is a widely observed and comparably easy to measure proxy for local depositional
 317 conditions with sizable global data sets or empirical formulas available (Burwicz et al.,
 318 2011). Fig. 8A, 8B and 8C show the global decreasing trend of μ , σ and $\langle k \rangle$ with ω for the
 319 general sea regions (shelf (<200m), slope (200–2000m), and abyss (>2000m)). The active

320 OM fractions (e.g., sugars and proteins) are preferentially exhausted during the lateral
321 transport of OM from the shelf to the abyssal regions, leading to a decrease in the mean
322 OM reactivity (μ , Fig. 8A), and thus OM is mainly composed of refractory components (σ ,
323 Fig. 8B). Due to the multiple sources of OM in the shelf regions, including fresh and older
324 OM imported laterally by inland rivers, and OM settled from the euphotic layer (LaRowe
325 et al., 2020a), the values of the values of μ , σ and $\langle k \rangle$ fluctuates significantly. However,
326 the general trend is superimposed by a large variability and apparent reactivity $\langle k \rangle$ in
327 specific environments, notably deviating from this generally observed trend. More
328 specifically, higher μ and σ values and, thus, higher OM reactivities occur in the Eastern-
329 Western Coastal Equatorial Pacific (EWEP), Southwestern-Africa continental margin
330 (SWAF), Northwestern-America continental margin (NWAM), and the Arabian Sea
331 (ARBS) regions. These results are completely consistent with prior observations and model
332 results (Arndt et al., 2013) and can be directly linked to the prevailing water-column redox
333 and depositional conditions. High benthic OM reactivities have previously been reported
334 for depositional environments that are characterized by a dominance of marine algal OM
335 (Hammond et al., 1996) and strong lateral transport processes (e.g., SWAF, NWAM)
336 (Arndt et al., 2013). Consequently, the larger values of all μ and σ , and $\langle k \rangle$ occur in the
337 inverse modelling results for these depositional environments (Fig. 8). Furthermore, the
338 reactivity of sedimentary OM is considerably influenced by oxygen content or more
339 precisely, by oxygen exposure time in the water column and at the seafloor (Aller, 1994;
340 Hartnett et al., 1998; Hedges and Keil, 1995; Mollenhauer et al., 2003; Zonneveld et al.,
341 2010). Lower oxygen concentrations, as present in these regions in the form of pronounced
342 oxygen minimum zones (OMZs), will slow down the degradation of OM both in the water

343 column and at the sediment surface (Jørgensen et al., 2022). This enables the burial of more
 344 reactive OM into the sediments and thus results in the occurrence of high sedimentary OM
 345 reactivity in these regions despite great water depth (e.g., ARBS, EWTP) (Arndt et al.,
 346 2013; Bogus et al., 2012; Ingole et al., 2010; Luff et al., 2000; Volz et al., 2018). The *l*-
 347 RCM not only captures the broad patterns of OM reactivity across the global seafloor even
 348 better than previous models, but also provides statistically more significant relationships
 349 between OM reactivity ($\langle k \rangle$) and sedimentation rate (ω) than inversely determined
 350 parameters of γ -RCM ($R^2 < 0.46$) and discrete models ($R^2 < 0.1$) (Arndt et al., 2013).
 351 Considering that no robust quantitative framework exists at this stage to predict OM
 352 reactivity as a function of easily observable environmental parameters, the *l*-RCM provides
 353 an excellent first-order predictor and a step forward in assessing the global distribution
 354 patterns of OM reactivity, despite the poor relationship between $\langle k \rangle$ and ω for these special
 355 regions (e.g., EWEP, SWAF, NWAM, and ARBS).

357 **Figure 8. Global distribution patterns of OM reactivity.** A. Log-log plot of ω and μ . B.
 358 Log-log plot of ω and σ . C. Log-log plot of ω and $\langle k \rangle$. The solid black line (*i*) denotes
 359 linear regression for shelf, slope, and abyssal regions. The black dotted line (*ii*) denotes
 360 linear regression for high OM reactivity regions, including the EWTP, ARBS, NWAM,
 361 and SWAF regions.

362

363 Based on the empirical relationships in Fig.8 (*i* for the general water depth-related
364 regions, *ii* for the specific regions (EWTP, ARBS, NWAM, and SWAF)), and the water
365 depth- ω relationship (Eq.8), we finally derived, to our knowledge, the world's first map
366 of the global distribution of parameter μ , σ , and $\langle k \rangle$ (Fig.9). Using the relationship between
367 water depth, ω , and $\langle k \rangle$ (Fig.3 and Fig.8C), we further estimated the mean apparent OM
368 reactivity ($\langle K_{\text{region}} \rangle$) in the 30 regions of global ocean (Table 2). Furthermore, the
369 heterogeneity of the OM reactivity distribution in global marine sediments is well
370 illustrated in Fig. 9. Specifically, higher μ (Fig.9A), σ (Fig.9B), and OM reactivity (Fig.9C)
371 is reflected in shelf regions, particularly in northern Atlantic provinces with high latitudes
372 (e.g., Barents Sea ($\langle K_{\text{region}} \rangle \approx 0.02 \text{ yr}^{-1}$), Laptev Sea ($\langle K_{\text{region}} \rangle \approx 0.03 \text{ yr}^{-1}$), and Kara Sea
373 ($\langle K_{\text{region}} \rangle \approx 0.01 \text{ yr}^{-1}$)), due to shallower water depths and high OM fluxes from inland
374 (Burwicz et al., 2011; Seiter et al., 2004). Besides that, the global map also highlights the
375 extremely low OM reactivity, especially in some regions, as indicated by the absence of
376 sulfate-methane transition (SMT) (e.g., the NE-Pacific, NEPAC) (Eggert et al., 2018) and
377 central ocean gyre regions (e.g., South Pacific Gyre) (LaRowe et al., 2020b). Deeper water
378 depth ($>5000\text{m}$), relatively low OM content ($\sim 0.2\text{wt.\%}$), and the old OM age ($>10^4$ years)
379 result in comparably lower μ and σ values (Fig.9A and 9B) and, thus, extremely low benthic
380 OM reactivity ($\langle K_{\text{region}} \rangle \approx 10^{-4} \text{ yr}^{-1}$) (Kallmeyer et al., 2012, Müller and Suess, 1979).
381 Normally, greater water depth enhances oxygen exposure time for OM degradation, and
382 thereby reduce the reactivity of OM arriving at the seafloor, as reflected in the smaller μ
383 values (Fig. 9A). In ocean areas characterized by pronounced OMZs, however, due to
384 strong coastal upwelling or a high export rate of plankton-derived OM, the inhibition of
385 OM degradation processes in the water colcunm results in the preservation of

386 heterogeneously mixed OM components (both active and refractory), as reflected in the
387 larger σ values (Fig. 9B), leading to higher than expected OM reactivity in specific regions
388 despite greater water depths (e.g., ARBS and EWTP ($\langle K_{\text{region}} \rangle \approx 0.01 \text{ yr}^{-1}$) (Fig. 9C). Thus,
389 the *l*-RCM provides a new framework not only for identifying the differences in OM
390 reactivity between regions, but also for assessing regional/global OM reactivity patterns
391 using easily obtainable information (e.g., sedimentation).

392 OM reactivity exerts an important control on the relative significance of OM degradation
393 pathways in marine sediments. In oxic environments, OM will be mainly respired
394 aerobically and through denitrification, whereas deeper within the sediment, it will mainly
395 be decomposed through anaerobic pathways such as sulfate reduction and methanogenesis
396 (Regnier et al., 2011). Therefore, further work should be conducted to simulate the
397 associated biogeochemical processes using the *l*-RCM to better quantify OM degradation
398 and burial in marine sediments on regional or global scales.

399

400

401 **Figure 9. Distribution of μ (A), σ (B), and $\langle k \rangle$ (C) in the global ocean with $1^\circ \times 1^\circ$
402 resolution.**

403

404 **Table 2. Abbreviations of regions in this paper (Seiter et al., 2004), and their area,**
 405 **mean water depth, mean OM content in surface sediment (<5 cm), and apparent OM**
 406 **degradation rata ($<K_{region}>$).**

Abbreviation	Region	water depth ^a (m)	Mean OM (wt.%)	$<K_{region}>$ (yr ⁻¹)
SWAF	SW-Africa continental margin	334	2.5	0.48542
NWAM	NW-America continental margin	731	1.7	0.12695
ARBS	Arabian Sea	1600	1.4	0.08182
EWTP	East-West Coastal Equatorial Pacific	3662	1.2	0.01587
ANT	South Polar Sea	1300	0.3	0.00029
ARGCO	Argentina continental margin	1859	0.3	0.00026
BARENTKAR	Barents Sea and Kara Sea	224	1.1	0.02081
BRAZCO	Brazil continental margin	1051	0.5	0.00034
CANAR	Canaries	1190	0.6	0.00031
CEPAC	Central Equatorial Pacific	5022	0.3	0.00002
CHICO	Chile continental margin	1444	1.5	0.00028
ETROPAT	Eastern tropical Atlantic	2253	0.7	0.00026
EUR1	N-European continental margin	1290	0.8	0.00029
EUR2	S-European continental margin	974	0.3	0.00037
GROE	Northern Nordic Sea	1563	0.7	0.00027
GUBRACO	SE-America continental margin	1844	0.4	0.00026
GUI	Gulf of Guinea	1586	1.1	0.00027
INA	Indian Ocean deep sea	4042	0.4	0.00021
KARA2	Kara Sea	281	1.2	0.01111
LAPTEVSEA	Laptev Sea	190	0.9	0.02964
NEAM	NE-America continental margin	1045	0.9	0.00034
NEPAC	NE-Pacific	4463	0.4	0.00012
NOATL	Northern Atlantic	2161	0.4	0.00026
NWPAC	NW-Pacific	4898	0.6	0.00004
PERCO	Peru continental margin	1020	4.8	0.00035
RIOPLATA	Rio de la Plata mouth	1784	0.8	0.00026
SEPAC	SE-Pacific	3952	0.5	0.00022
SOATL	Southern Atlantic	3592	0.4	0.00024
SWPAC	SW-Pacific	3153	0.8	0.00025
WAFCO	W-Africa continental margin	1982	0.6	0.00026

407 ^awater depth and mean OM content are based on the average depth and OM content of the
 408 sites in each region of Fig.4.

409

410 **4 Conclusions**

411 Compared with previous OM degradation models, the *l*-RCM presented here not only
412 well fits OM depth-content profiles, but also better represents the distribution of OM
413 reactivity by the parameters μ and σ . We use the *l*-RCM to inversely determine μ and σ at
414 123 sites across the global ocean, including shelf, slope, and abyssal regions. Our results
415 show that the apparent OM reactivity ($\langle k \rangle = \mu \cdot \exp(\sigma^2/2)$) decreases with decreasing
416 sedimentation rate (ω), and that OM reactivity is more than three orders of magnitude
417 higher in shelf than in abyssal regions. Due to the complex depositional environments (e.g.,
418 oxygen minimum zones), OM reactivity is higher than predicted in some specific regions
419 (e.g., the NWAM, SWAF, ARBS, and EWTP), which was also captured by the *l*-RCM in
420 these regions. Based on two empirical relationships of $\langle k \rangle$ with ω and ω with z , we
421 obtained the global OM reactivity distribution patterns and finally mapped the global OM
422 reactivity distribution.

423 The reactivity of OM serving as fuel for microbial activity in marine sediments firmly
424 controls the degradation pathways and metabolism rates. Thus, the *l*-RCM has direct
425 implications on the constraints for OM degradation and burial in marine sediments on
426 regional or global scales.

427

428 **References**

429 Aller, R. C.: Bioturbation and remineralization of sedimentary organic matter: effects of
430 redox oscillation, *Chem Geol*, 114, 331-345, doi:10.1016/0009-2541(94)90062-0,
431 1994.

432 Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions II. Some
433 addenda, *Archive for Rational Mechanics and Analysis*, 27, 356-364,
434 doi:10.1007/BF00282276, 1968.

435 Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J., Pancost, R., and Regnier, P.:
436 Quantifying the degradation of organic matter in marine sediments: a review and
437 synthesis, *Earth-science reviews*, 123, 53-86, doi:10.1016/j.earscirev.2013.02.008,
438 2013.

439 Berg, P., Rysgaard, S., Thamdrup, B.,: Dynamic modeling of early diagenesis and nutrient
440 cycling. A case study in an Arctic marine sediment, American Journal of Science 303,
441 905–955, doi: 10.2475/ajs.303.10.905, 2003.

442 Berner, R. A.: An idealized model of dissolved sulfate distribution in recent sediments,
443 *Geochimica et Cosmochimica Acta*, 28, 1497-1503, doi:10.1016/0016-7037(64)90164-
444 4, 1964.

445 Bogus, K. A., Zonneveld, K. A., Fischer, D., Kasten, S., Bohrmann, G., and Versteegh, G.
446 J.: The effect of meter-scale lateral oxygen gradients at the sediment-water interface on
447 selected organic matter based alteration, productivity and temperature proxies,
448 *Biogeosciences*, 9, 1553-1570, doi:10.5194/bg-9-1553-2012, 2012.

449 Boudreau, B. P.: A kinetic model for microbial organic-matter decomposition in marine
450 sediments, *FEMS microbiology ecology*, 11, 1-14, doi:10.1111/j.1574-
451 6968.1992.tb05789.x, 1992.

452 Boudreau, B. P.: A method-of-lines code for carbon and nutrient diagenesis in aquatic
453 sediments, *Computers & Geosciences*, 22, 479-496, doi:10.1016/0098-
454 3004(95)00115-8, 1996.

455 Boudreau, B. P., Arnosti, C., Jørgensen, B. B., and Canfield, D. E.: Comment on "Physical
456 model for the decay and preservation of marine organic carbon", *Science*, 319(5870),
457 1616-1616, doi:10.1126/science.1148589, 2008.

458 Boudreau, B. P. and Ruddick, B. R.: On a reactive continuum representation of organic
459 matter diagenesis, *American Journal of Science*, 291, 507-538,
460 doi:10.2475/ajs.291.5.507, 1991.

461 Bradley, J., Arndt, S., Amend, J., Burwicz, E., Dale, A. W., Egger, M., and LaRowe, D.
462 E.: Widespread energy limitation to life in global subseafloor sediments, *Science*
463 advances, 6, doi:10.1126/sciadv.aba0697, 2020.

464 Burdige, D. J.: Preservation of organic matter in marine sediments: controls, mechanisms,
465 and an imbalance in sediment organic carbon budgets?, *Chem Rev*, 107, 467-485,
466 doi:10.1021/cr050347q, 2007.

467 Burwicz, E. B., Rüpke, L., and Wallmann, K.: Estimation of the global amount of
468 submarine gas hydrates formed via microbial methane formation based on numerical
469 reaction-transport modeling and a novel parameterization of Holocene sedimentation,
470 *Geochimica et Cosmochimica Acta*, 75, 4562-4576, doi:10.1016/j.gca.2011.05.029,
471 2011.

472 Cael, B., Bisson, K., and Follett, C. L.: Can rates of ocean primary production and
473 biological carbon export be related through their probability distributions?, *Global*
474 *biogeochemical cycles*, 32, 954-970, doi:10.1029/2017GB005797, 2018.

475 Dickens, A. F., Gelinas, Y., Masiello, C. A., Wakeham, S., and Hedges, J. I.: Reburial of
476 fossil organic carbon in marine sediments, *Nature*, 427, 336-339,
477 doi:10.1038/nature02299, 2004.

478 Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global particle export
479 from the surface ocean and cycling through the ocean interior and on the seafloor, *Global*
480 *Biogeochemical Cycles*, 21, doi:10.1029/2006GB002907, 2007.

481 Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.: Global diffusive fluxes
482 of methane in marine sediments, *Nature Geoscience*, 11, 421-425,
483 doi:10.1038/s41561-018-0122-8, 2018.

484 Forney, D. and Rothman, D.: Inverse method for estimating respiration rates from decay
485 time series, *Biogeosciences*, 9, 3601-3612, doi:10.5194/bg-9-3601-2012, 2012a.

486 Forney, D. C. and Rothman, D. H.: Common structure in the heterogeneity of plant-matter
487 decay, *Journal of The Royal Society Interface*, 9, 2255-2267,
488 doi:10.1098/rsif.2012.0122, 2012b.

489 Forney, D. C., and Rothman, D. H.: Carbon transit through degradation networks,
490 *Ecological Monographs*, 84(1), 109-129, doi: 10.1890/12-1846.1, 2014.

491 Freitas, F. S., Pika, P. A., Kasten, S., Jørgensen, B. B., Rassmann, J., Rabouille, C.,
492 Thomas, S., Sass, H., Pancost, R. D., and Arndt, S.: Advancing on large-scale trends of
493 apparent organic matter reactivity in marine sediments and patterns of benthic carbon
494 transformation, *Biogeosciences Discussions*, 2021, 1-64, doi:10.5194/bg-18-4651-2021,
495 2021.

496 Garber, J. H.: Laboratory study of nitrogen and phosphorus remineralization during the
497 decomposition of coastal plankton and seston, *Estuarine, Coastal and Shelf Science*, 18,
498 685-702, doi:10.1016/0272-7714(84)90039-8, 1984.

499 Griffith, D. R., Martin, W. R., and Eglinton, T. I.: The radiocarbon age of organic carbon
500 in marine surface sediments. *Geochimica et Cosmochimica Acta*, 74(23), 6788-6800,
501 doi:10.1016/j.gca.2010.09.001, 2010.

502 Hammond, D., McManus, J., Berelson, W., Kilgore, T., and Pope, R.: Early diagenesis of
503 organic material in equatorial Pacific sediments: stoichiometry and kinetics, *Deep Sea
504 Research Part II: Topical Studies in Oceanography*, 43, 1365-1412, doi:10.1016/0967-
505 0645(96)00027-6, 1996.

506 Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of oxygen exposure
507 time on organic carbon preservation in continental margin sediments, *Nature*,
508 391(6667), 572-575, doi:10.1038/35351, 1998.

509 Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an assessment and
510 speculative synthesis, *Marine chemistry*, 49, 81-115, doi:10.1016/0304-4203(95)00008-
511 F, 1995.

512 Hewson, I., Barbosa, J. G., Brown, J. M., Donelan, R. P., Eaglesham, J. B., Eggleston, E.
513 M., and LaBarre, B. A.: Temporal dynamics and decay of putatively allochthonous and
514 autochthonous viral genotypes in contrasting freshwater lakes, *Applied and
515 environmental microbiology*, 78, 6583-6591, doi:10.1128/AEM.01705-12, 2012.

516 Ho, T. and Aris, R.: On apparent second-order kinetics, *AIChE journal*, 33, 1050-1051,
517 doi:10.1002/aic.690330621, 1987.

518 Ingole, B. S., Sautya, S., Sivadas, S., Singh, R., and Nanajkar, M.: Macrofaunal community
519 structure in the western Indian continental margin including the oxygen minimum zone,
520 *Marine Ecology*, 31, 148-166, doi:10.1111/j.1439-0485.2009.00356.x, 2010.

521 Jørgensen, B.: A comparison of methods for the quantification of bacterial sulfate reduction
522 in coastal marine sediments. II. Calculation from mathematical models, *Geomicrobiol.
523 J.*, 1, 29-47, doi:10.1080/01490457809377721, 1978.

524 Jørgensen, B.: Processes at the sediment-water interface, *The major biogeochemical cycles
525 and their interactions*, 477-509, 1983.

526 Jørgensen, B. B., Wenzhöfer, F., Egger, M., and Glud, R. N.: Sediment oxygen
527 consumption: Role in the global marine carbon cycle, *Earth-science reviews*, 228,
528 103987. doi:10.1016/j.earscirev.2022.103987, 2022.

529 Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C., and D'Hondt, S.: Global
530 distribution of microbial abundance and biomass in subseafloor sediment,
531 Proceedings of the National Academy of Sciences, 109(40), 16213-16216, doi:
532 10.1073/pnas.1203849109, 2012.

533 Katsev, S. and Crowe, S. A.: Organic carbon burial efficiencies in sediments: The power
534 law of mineralization revisited, Geology, 43, 607-610, doi:10.1130/G36626.1, 2015.

535 Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P., and Regnier, P.: Dissolved
536 inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates
537 for different shelf environments and sensitivity to global change, Biogeosciences, 10,
538 371-398, doi:10.5194/bg-10-371-2013, 2013.

539 LaRowe, D., Arndt, S., Bradley, J., Estes, E., Hoarfstro, A., Lang, S., Lloyd, K.,
540 Mahmoudi, N., Orsi, W., and Walter, S. S.: The fate of organic carbon in marine
541 sediments-New insights from recent data and analysis, Earth-Science Reviews, 204,
542 103146, doi:10.1016/j.earscirev.2020.103146, 2020a.

543 LaRowe, D. E., Arndt, S., Bradley, J. A., Burwicz, E., Dale, A. W., and Amend, J. P.:
544 Organic carbon and microbial activity in marine sediments on a global scale throughout
545 the Quaternary, *Geochimica et Cosmochimica Acta*, 286, 227-247,
546 doi:10.1016/j.gca.2020.07.017, 2020b.

547 Limpert, E., Stahel, W. A., and Abbt, M.: Log-normal distributions across the sciences:
548 keys and clues: on the charms of statistics, and how mechanical models resembling
549 gambling machines offer a link to a handy way to characterize log-normal distributions,
550 which can provide deeper insight into variability and probability—normal or log-
551 normal: that is the question, *BioScience*, 51, 341-352, doi:10.1641/0006-
552 3568(2001)051[0341:LNDATS]2.0.CO;2, 2001.

553 Luff, R., Wallmann, K., and Aloisi, G.: Numerical modeling of carbonate crust formation
554 at cold vent sites: significance for fluid and methane budgets and chemosynthetic
555 biological communities. *Earth and Planetary Science Letters*, 221, 1-4, 337-353. doi:
556 10.1016/S0012-821X(04)00107-4, 2004.

557 Luff, R., Wallmann, K., Grandel, S., and Schlüter, M.: Numerical modeling of benthic
558 processes in the deep Arabian Sea, *Deep Sea Research Part II: Topical Studies in
559 Oceanography*, 47, 3039-3072, doi:10.1016/S0967-0645(00)00058-8, 2000.

560 Meister, P., Herda, G., Petrishcheva, E., Gier, S., Dickens, G. R., Bauer, C., and Liu, B.:
561 Microbial alkalinity production and silicate alteration in methane charged marine
562 sediments: Implications for porewater chemistry and diagenetic carbonate formation,
563 *Frontiers in Earth Science*, 9: 756591, doi:10.3389/feart.2021.756591, 2022.

564 Meysman, F. J., Middelburg, J. J., Herman, P. M., and Heip, C. H.: Reactive transport in
565 surface sediments. II. Media: an object-oriented problem-solving environment for early
566 diagenesis, *Computers & geosciences*, 29, 301-318, doi:10.1016/S0098-
567 3004(03)00007-4, 2003.

568 Middelburg, J. J.: A simple rate model for organic matter decomposition in marine
569 sediments, *Geochimica et Cosmochimica acta*, 53, 1577-1581, 10.1016/0016-
570 7037(89)90239-1, doi:10.1016/0016-7037(89)90239-1, 1989.

571 Middelburg, J. J., Soetaert, K., and Herman, P. M.: Empirical relationships for use in global
572 diagenetic models, *Deep Sea Research Part I: Oceanographic Research Papers*, 44, 327-
573 344, doi:10.1016/S0967-0637(96)00101-X, 1997.

574 Mollenhauer, G., Eglinton, T. I., Ohkouchi, N., Schneider, R. R., Müller, P. J., Grootes, P.
575 M., and Rullkötter, J.: Asynchronous alkenone and foraminifera records from the
576 Benguela Upwelling System, *Geochimica et cosmochimica acta*, 67, 2157-2171,
577 doi:10.1016/S0016-7037(03)00168-6, 2003.

578 Müller, P. J. and Suess, E.: Productivity, sedimentation rate, and sedimentary organic
579 matter in the oceans—I. Organic carbon preservation, *Deep Sea Research Part A.*
580 *Oceanographic Research Papers*, 26, 1347-1362, doi:10.1016/0198-0149(79)90003-7,
581 1979.

582 Munhoven, G.: Glacial–interglacial rain ratio changes: Implications for atmospheric CO₂
583 and ocean–sediment interaction, *Deep Sea Research Part II: Topical Studies in*
584 *Oceanography*, 54, 722-746, doi:10.1016/j.dsr2.2007.01.008, 2007.

585 Nöthen, K., Kasten, S.: Reconstructing changes in seep activity by means of pore water
586 and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo
587 Fan, *Marine Geology*, 287(1-4): 1-13, doi:10.1016/j.margeo.2011.06.008, 2011.

588 Pika, P., Hülse, D., and Arndt, S.: OMEN-SED (-RCM)(v1. 1): a pseudo-reactive
589 continuum representation of organic matter degradation dynamics for OMEN-SED,
590 *Geoscientific Model Development*, 14, 7155-7174, doi:10.5194/gmd-14-7155-2021,
591 2021.

592 Regnier, P., Dale, A. W., Arndt, S., LaRowe, D. E., Mogollón, J., and Van Cappellen, P.:
593 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A
594 modeling perspective, *Earth-Science Reviews*, 106(1-2), 105-130,
595 doi:10.1016/j.earscirev.2011.01.002, 2011.

596 Rowe, G. T. and Staresinic, N.: Sources of organic matter to the deep-sea benthos, *Ambio*
597 Special Report, 19-23, doi:10.2307/25099603, 1979.

598 Seiter, K., Hensen, C., Schröter, J., and Zabel, M.: Organic carbon content in surface
599 sediments—defining regional provinces, *Deep Sea Research Part I: Oceanographic*
600 *Research Papers*, 51, 2001-2026, doi:10.1016/j.dsr.2004.06.014, 2004.

601 Smith, S. and Hollibaugh, J.: Coastal metabolism and the oceanic organic carbon balance,
602 *Reviews of Geophysics*, 31, 75-89, doi:10.1029/92RG02584, 1993.

603 Volz, J. B., Mogollón, J. M., Geibert, W., Arbizu, P. M., Koschinsky, A., and Kasten, S.:
604 Natural spatial variability of depositional conditions, biogeochemical processes and
605 element fluxes in sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean, *Deep*
606 *Sea Research Part I: Oceanographic Research Papers*, 140, 159-172,
607 doi:10.1016/j.dsr.2018.08.006, 2018.

608 Westrich, J. T. and Berner, R. A.: The role of sedimentary organic matter in bacterial
609 sulfate reduction: The G model tested 1, *Limnology and oceanography*, 29, 236-249,
610 doi:10.4319/lo.1984.29.2.0236, 1984.

611 Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial formation and
612 oxidation of methane. *Chemical geology*, 161, 291–314. doi: 10.1016/S0009-
613 2541(99)00092-3, 1999.

614 Zonneveld, K. A., Versteegh, G. J., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C.,
615 Koch, B. P., de Lange, G. J., de Leeuw, J. W., and Middelburg, J. J.: Selective
616 preservation of organic matter in marine environments; processes and impact on the
617 sedimentary record, *Biogeosciences*, 7, 483-511, doi:10.5194/bg-7-483-2010, 2010.

618

619 **Acknowledges**

620 This study was supported by National Key Basic Research and Development Program of
621 China (2022YFC2805400; 2016YFA0601100), the Natural Science Foundation of China
622 (41976057; 42276059). Sinan Xu gratefully acknowledges the financial support by the
623 China Scholarship Council (contract N. 201906260048) for a research stay at AWI,
624 Germany. Bo Liu and Sabine Kasten acknowledge the BMBF MARE: N project
625 “Anthropogenic impacts on particulate organic carbon cycling in the North Sea (APOC)”
626 (03F0874A).

627 **Author contributions**

628 S.X. and B.L. designed the study and performed the research with S.A., S.K., and Z.W.;
629 All authors discussed the results and commented on the manuscript.

630 **Competing interests**

631 The authors declare that they have no competing interests.