Supplementary information

Station	Distance from river mouth [km]	SSS	Ba/Ca [μmol mol ⁻¹]
Anemone's Garden	22	32.3	4.41
Eve's Garden	12	32.3	4.38
S1	10	32.3	4.47
S2	8	32.1	4.73
S3	6	32.8	4.7
S4	4	32.7	4.73
S5	2	19.2	17.68
S6	0	7.8	59.58

Table S1: Distance from river mouth, sea surface salinity and Ba/Ca ratio of each seawater sample (average of duplicates) on the transect between Anemone's Garden and the Miri River's mouth.

Figure S1: Satellite images of the study site and surrounding region in (a) 1990 and in (b) 2019 (Data SIO, NOAA, U.S. Navy, GEBCO. Image: Landsat/Copernicus). Notice the forest surface cover difference south of the Baram River and increase in anthropogenic land use (plantations).

Figure S2: Monthly averages of $\delta^{18}O_{sw}$ in pink (AG1-2) and purple (EG3) and SSS in black. Monthly standard deviations shown as error bars.

Figure S3: Monthly averages of $\delta^{18}O_{sw}$ in pink (AG1-2), rainfall in blue and river discharge in black. Monthly standard deviations shown as error bars. Note that the y axis on the left is reversed.

Fig~S4.~Monthly~averages~of~all~five~Ba/Ca~records.~Monthly~standard~deviations~shown~as~error~bars.

Figure S4: Monthly interpolated Ba/Ca composites time series (filtered using a low pass filter with a 5-month frequency cut off) as well as the records used for each one (a) EG15 in light blue, EG3 in purple, EG4 in dark purple, (b) AG1-2 in pink, AG5 in red and both C1 and C2 in grey.

Figure S5: Change point analysis based on significant arithmetic mean change (vertical dashed line) of (a) the $\delta^{18}O_{sw}$ record from EG in 1998 and (b) the EN4 SSS record in 2007.

Figure S6: Ba/Ca values of seawater across a transect from both coral colonies' sites and the Miri River located approximately 11 and 21 km away from Eve's Garden and Anemone's Garden, respectively.

Figure S7: Trend in the rainfall average record of six stations throughout the catchment using Sen's non-parametric method. The increasing trends are indicated by the Mann-Kendall tau-b statistic next to each record, results are not significant at the 0.05 level (p = 0.866).

Satellite imaging

To create the annual deforestation time-series for Sarawak, the Global Forest Change (GFC) dataset (Hansen et al., 2013) was projected into the local coordinate system (UTM 49 N, WGS 1984 – WKID 32649) and then clipped via the boundaries of a Baram catchment shapefile, within the GIS software ArcMap 10.8 (ESRI, 2022). The deforestation time-series was converted from a raster to a vector format and the shapefile table was exported as a csv to calculate deforestation area statistics using Python within the PyCharm IDE (JetBrains, 2022).

Below is the script used to calculate annual deforestation and to plot them in a bar graph as well as the corresponding map.

Listing 1: Python code for deforestation graph and map

```
# import libraries#system
commands import os

# data manipulation import pandas as
pd import geopandas as gpdimport
numpy as np import rasterio
from rasterio.plot import show
```

```
from rasterio.plot import show hist
import rasterstats

# graphing
import matplotlib.pyplot as plot
from mpl toolkits.axes grid1 import make axes locatable
import seaborn
import contextily as ctx

# specify and change directory
Dir = r'C:\Sarawak\datasets'os.chdir(Dir
)
```

```
# read in
               shapefiles
  gfc shapefile = gpd.read file('_
      gfc 2001 2019 baram 32649 vector ErasedRivers.shp'
                                        ).drop(['Shape Leng', 'Id', '
                                            OBJECTID'], axis = 1)
   rivers shapefile = gpd.read file('_
      hotosm mys waterways Baram 32649.shp')
  basin shapefile = gpd.read file('Baram River Basin.shp')
  # read in
               raster
         is used as a forest basemap in the map
  raster = rasterio.open('GFC 2000 TreeCover Baram 3857 nodata_
      . tif ')
  # read in as csv
                      for graphing
  rivers = r'gfc 2001 2019 Baram 32649 vector1KmRiver.csv'whole basin = r'
      gfc 2001 2019 Baram 32649 vector Erased Rivers.csv'
  # all
          basin deforestation graph
  # convert m2 to km2
  gfc shapefile ['areakm2'] = gfc shapefile ['aream2'] / (1000 *
       1000)
  bar = seaborn.barplot(x = gfc shapefile['gridcode'], y =gfc shapefile[
      'areakm2'], data = gfc shapefile,
                              ci = None,
                              estimator = np.sum,
                              facecolor = 'white',
```

```
edgecolor = 'black'
                            )
plot.xticks(rotation = 30)
plot.xlabel('Year', weight = 'bold')
plot.ylabel('Deforestation Area (Km$^{2}$)', weight = 'bold'
plot.title('Deforestation _ within Sarawak Baram River_
   Catchment, Malaysia')
plot.tight layout()
Dir = r'C:\Sarawak\outputs'os.chdir
(Dir)
plot.savefig(
     fname = 'graph.png',dpi =
     1200,
     format = 'png'
)
plot.show()
# map creation
fig , ax = plot.subplots(1)
# convert
            dfs to 3857 prj to overlay with contextily basemapprj
gfc shapefilePrj = gfc shapefile.to crs(epsg_= 3857)
rivers shapefilePrj = rivers shapefile.to crs(epsg = 3857)basin shapefile
Prj = basin shapefile.to crs(epsg = 3857)
# add categorical
                     class to df so matplotlib cmap accepts
                                                                        f orl
     egend
```

```
rivers shapefilePrj['class'] = 'Baram basin _ _ rivers'
#footwork for neater fitting
                                    colour ramp
divider = make axes_locatable(ax)
cax = divider.append axes('bottom', size = '5%', pad = 0.2)
# rivers
rivers shapefilePrj.plot(column = 'class',
                               ax = ax,
                               legend = True ,cmap = '
                               cool',
                               linewidth = 0.6,
                               zorder = 4)
# basemap for area outside
                                of Baram Basin
ctx.add basemap(ax = ax,
                    source = ctx.providers.CartoDB.Voyager,zorder = 1)
# forest
         cover
rasterio.plot.show(raster,
                       ax = ax,
                       cmap = 'Greens',zorder = 3
                       alpha = 0.5)
# deforestation
gfc _shapefilePrj . plot(column = 'gridcode',
                           ax = ax,
                           cax = cax,
                           legend = True,
                           legend kwds = {'label': 'Annualde
                               forestation',
```

```
'orientation':
                                                               'horiz
                                                  ontal',
                                              'shrink': 0.8, 'pad':0.04},
                           cmap = 'plasma',zorder = 5)
# Baram basin outline
basin shapefilePrj.plot(ax = ax,
                              facecolor = 'none',edgecolor
                              ='black',zorder = 2)
ax. set xticklabels ([])ax. set ytickl
abels ([])
plot.suptitle('Deforestation within the Baram River Basin, Malaysia', y =
   0.95)
Dir = r'C:\Sarawak\outputs'os.chdir(Dir)
plot.savefig(
     fname = 'map.png',
     dpi = 1200, format = 'png')
plot.show()
```