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Abstract 1 

A novel method to quantify the gross nitrification rate (GNR) in each forested 2 

catchment using the triple oxygen isotopic composition (Δ17O) of stream nitrate eluted 3 

from the catchment has been proposed and used in recent studies. However, the 4 

equations used in the calculations assumed homogeneous Δ17O values of nitrate being 5 

metabolized through either assimilation or denitrification within the forested soil 6 

layers without particular discussions. The GNR estimated from the Δ17O of stream 7 

nitrate using the equations was more than six times the actual GNR in our simulated 8 

calculation for a forested catchment where the Δ17O values of nitrate being 9 

metabolized in the soil were heterogeneous and showed a decreasing trend with 10 

increasing depths. Therefore, we should verify that the Δ17O values of nitrate being 11 

metabolized are homogeneous in forested soils or estimate the possible range of errors 12 

using Δ17O of stream nitrate to estimate the GNR. 13 

 14 

1 Introduction 15 

Nitrate (NO3−) is a crucial nutrient in forest ecosystems that often limits primary 16 

production. Nitrification is the microbial process that generates NO3− from the 17 

ammonium in a forested ecosystem; therefore, the nitrification rate is an important 18 

parameter to be quantified when evaluating each forest ecosystem’s present and future 19 

states. The total rate of NO3− production, gross nitrification rate (GNR), reflects 20 

internal N cycling better than the net nitrification rate (Bengtsson et al., 2003), 21 
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especially in forest ecosystems where the GNR often exceeds the net nitrification rate 22 

by order of magnitude (Stark and Hart, 1997; Verchot et al., 2001).  23 

Recently, several studies successfully determined GNR in each water environment 24 

using the Δ17O values of NO3− as a conserved tracer for the mixing ratio between the 25 

atmospheric nitrate (NO3−atm) deposited into each water environment and 26 

remineralized nitrate (NO3−re) produced through nitrification therein (Tsunogai et al., 27 

2011, 2018). Although NO3−re always has a Δ17O value close to 0 ‰ because its 28 

oxygen atoms come from either terrestrial O2 or H2O through nitrification, NO3−atm 29 

displays an anomalous enrichment in 17O with a Δ17O value being approximately 30 

+26 ‰ (Tsunogai et al., 2010, 2016) because of oxygen transfers from atmospheric 31 

ozone (Michalski et al., 2003; Nelson et al., 2018). Additionally, Δ17O is almost stable 32 

during “mass-dependent” isotope fractionation processes (Michalski et al., 2004; 33 

Tsunogai et al., 2016); therefore, regardless of partial metabolism through 34 

denitrification or assimilation after deposition, Δ17O can be used as a conserved tracer 35 

of NO3−atm to calculate the mixing ratio of NO3−atm within total NO3− 36 

(NO3−atm/NO3−total) using the following equation: 37 

[NO3−atm]/[NO3−total] = [NO3−atm]/([NO3−re] + [NO3−atm]) = Δ17Owater/Δ17Oatm        (1) 38 

where Δ17Oatm and Δ17Owater denote the Δ17O values of NO3−atm and NO3− dissolved in 39 

each water environment, respectively. Using both the NO3−atm/NO3−total ratio estimated 40 

from the Δ17O value of NO3− in a lake water column and the deposition rate of 41 
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NO3−atm into the lake, past studies successfully estimated GNR therein (Tsunogai et 42 

al., 2011, 2018). 43 

In addition to water environments, the Δ17O method has been further applied to 44 

forested catchments to determine GNR (Fang et al., 2015; Hattori et al., 2019; Huang 45 

et al., 2020; Riha et al., 2014). By using the deposition flux of NO3−atm into the 46 

catchment as well as the elution flux of both unprocessed NO3−atm and NO3−re via 47 

stream, which can be determined from the Δ17O values of NO3− in stream water eluted 48 

from the catchment, GNR in each forested catchment has been determined in a 49 

manner similar to the water environments (Fang et al., 2015). Applying the Δ17O 50 

method to forested soils, where the Δ17O values of NO3− are often heterogeneous 51 

(Costa et al., 2011; Hattori et al., 2019), should be done with extreme caution, in 52 

contrast to water environments where the Δ17O values of nitrate were largely 53 

homogeneous. We present an accurate relationship between the Δ17O and GNR 54 

starting from the basic isotope mass balance equations to explain the problem of using 55 

the Δ17O method in such heterogeneous environments. 56 

 57 

2 Calculation 58 

The total mass balance equation of NO3− including GNR in each catchment can be 59 

expressed as follows: 60 

NO3−deposition + GNR = NO3−leaching + NO3−uptake + GDR                             (2) 61 
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where NO3−deposition, GNR, NO3−leaching, NO3−uptake, and GDR denote the deposition flux 62 

of NO3− into each catchment, the gross nitrification rate in each catchment, the 63 

leaching flux of NO3− from each catchment, the uptake rate of NO3− in each 64 

catchment, and the gross denitrification rate in each catchment, respectively. 65 

The isotope mass balance for each Δ17O value of NO3− in the catchment can also be 66 

calculated using the same method: 67 

NO3−deposition × Δ17O(NO3−)atm + GNR × Δ17O(NO3−)nitrification = NO3−leaching × Δ17O(NO68 

3−)stream + NO3−uptake × Δ17O(NO3−)uptake + GDR × Δ17O(NO3−)denitrification            (3) 69 

where Δ17O(NO3−)atm, Δ17O(NO3−)nitrification, Δ17O(NO3−)stream, Δ17O(NO3−)uptake, and 70 

Δ17O(NO3−)denitrification denote the Δ17O value of NO3−atm deposited in each catchment, 71 

that of NO3−re produced through nitrification, that of NO3− eluted from each 72 

catchment, that of NO3− assimilated by plants and other organisms in each catchment, 73 

and that of NO3− decomposed through denitrification in each catchment, respectively. 74 

If the Δ17O values of NO3− were homogeneous in forested soils where NO3− was 75 

metabolized through either assimilation (by plants and other organisms) or 76 

denitrification, Eq. 4 can be expressed as follows: 77 

Δ17O(NO3−)stream = Δ17O(NO3−)uptake = Δ17O(NO3−)denitrification                       (4) 78 

Consequently, by combining Eqs. 3 and 4, we could obtain the following 79 

relationship: 80 

NO3−deposition × Δ17O(NO3−)atm + GNR × Δ17O(NO3−)nitrification = (NO3−leaching + NO3−uptak81 

e + GDR) × Δ17O(NO3−)stream                                                      (5) 82 
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We could estimate GNR using Eq. 6 obtained from Eqs. 2 and 5 because we can 83 

approximate the Δ17O values of NO3−re produced through nitrification 84 

(Δ17O(NO3−)nitrification) to be 0 (Michalski et al., 2003; Tsunogai et al., 2010): 85 

GNR = NO3−deposition × (Δ17O(NO3−)atm − Δ17O(NO3−)stream)/Δ17O(NO3−)stream       (6) 86 

The Eq. 6 corresponds to that used in previous studies for quantifying GNR in each 87 

forested catchment (Fang et al., 2015; Hattori et al., 2019; Huang et al., 2020; Riha et 88 

al., 2014). 89 

 90 

3 Results and Discussion 91 

The Δ17O values of NO3− metabolized in each catchment should be homogeneous 92 

and therefore correspond with those of NO3− in the stream, as presented in Eq. 4 to 93 

obtain Eq. 6. However, many of the forested catchments do not satisfy this condition 94 

needed to obtain Eqs. 4–6. In the studied forested soils, Hattori et al. (2019) found a 95 

decreasing trend in the Δ17O values of NO3− together with the depth, from more than 96 

+20‰ at the surface soil to less than +3‰ at depths of 25 to 90 cm from the soil 97 

surface. Furthermore, most of the Δ17O values of soil NO3− differed from those in the 98 

stream eluted from the catchment (+2.2‰ on average) in Hattori et al. (2019). 99 

To demonstrate the possible change in GNR per the variation in the Δ17O values of 100 

NO3− in forested soils, we estimated GNR for two simulated forested soils: that with a 101 

vertically heterogeneous Δ17O of NO3− (Fig. 1a) and that with a vertically 102 

homogeneous Δ17O of NO3− (Fig. 2a). Because Hattori et al. (2019) reported the 103 
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NO3−deposition to be 7.0 kg of N ha−1 y−1, NO3−leaching to be 2.6 kg of N ha−1 y−1, 104 

Δ17O(NO3−)atm to be +28.0 ‰, and Δ17O(NO3−)stream to be +2.2 ‰ in the forested 105 

catchment, we adopted the same parameter in the simulated calculation in this study.  106 

We divided the soils in the heterogeneous forest soils into 10 layers in the vertical 107 

direction simulating the soils observed by Hattori et al. (2019), where the Δ17O values 108 

of NO3− gradually decreased with increasing depths, showing the Δ17O values from 109 

+28.0 to +2.2 ‰ with a decrease rate of +2.58 ‰ for each step (Fig. 1b). Similarly, 110 

we assumed gradual decrease with increasing depths in the leaching flux of NO3−, i.e., 111 

from 7 to 2.6 kg of N ha−1 y−1 with a decrease rate of 0.44 kg of N ha−1 y−1 for each 112 

step (Fig. 1c). In the homogeneous forest soils, we also divided the forested soils into 113 

10 layers in the vertical direction. The vertical changes in the leaching flux of NO3− 114 

were the same as those in the heterogeneous soils (Fig. 2c), whereas the Δ17O values 115 

of NO3− were constant to be +2.2 ‰ in the soil layers (Fig. 2b).  116 

Applying the total mass balance and isotope mass balance of NO3− shown in Eqs. 2 117 

and 3 to each layer, we estimated both GNR (Figs. 1e and 2e) and total metabolic rate 118 

of NO3− (GDR + uptake) (Figs. 1d and 2d) in each layer assuming that: (1) the Δ17O 119 

values of NO3− were constant in each layer, (2) the vertical flow of NO3− in the soil 120 

layers was only downward from surface to the water layer with a uniform residence 121 

time in each layer, and (3) the GNR and metabolic rate of NO3− (GDR + uptake) was 122 

zero in the water layer (the layers beyond the no. 10 soil layer). Then, by integrating 123 

the GNR determined for each layer, we can estimate the total GNR in each forested 124 
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catchment. Although the GNR simulated for the catchment with the homogeneous 125 

Δ17O values of NO3− in the forested soils showed a value of 83.6 kg of N ha−1 y−1 126 

equal to that estimated by Hattori et al. (2019) (Fig. 2e), the total GNR became a 127 

much smaller value of 13.0 kg of N ha−1 y−1 simulated for the catchment with the 128 

heterogeneous Δ17O values of NO3− in the forested soils (Fig. 1e). As a result, we 129 

conclude that the distribution of the Δ17O values of NO3− in the forested soils can 130 

significantly affect the overall GNR in forested catchments as calculated from the 131 

Δ17O of stream NO3−. 132 

If we estimated the downward water flux at each soil layer, together with the 133 

concentration and Δ17O value of NO3− in each soil layer using a tension-free lysimeter 134 

(Inoue et al., 2021), we could estimate the vertical changes in the leaching flux of 135 

NO3− for each soil layer together with the Δ17O value of each NO3−. Then, applying 136 

the mass balance and isotope mass balance shown in Eqs. 2 and 3 in each layer, we 137 

can estimate a more accurate GNR of the forested catchment by integrating the GNR 138 

estimated for each soil layer together with the more accurate metabolic rate of NO3− 139 

(GDR + uptake) of the forested catchment. However, without such observation on the 140 

distribution of the Δ17O value of NO3−, it is difficult to assume that the Δ17O values of 141 

NO3− were homogeneous in forested soils where NO3− was metabolized, so that the 142 

GNR should be reported with errors in which possible variations in the Δ17O values of 143 

soil NO3− have been considered. 144 

 145 
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4 Conclusion 146 

Past studies proposed the Δ17O method to determine GNR in each forested 147 

catchment. The equations used in the calculation presupposed that the Δ17O values of 148 

NO3− in forested soils were homogeneous, however, they are often heterogeneous and 149 

showing a decreasing trend with increasing depths. It must be essential to 150 

clarify/verify the distribution of the Δ17O values of NO3− in forested soils before 151 

applying the Δ17O values of stream NO3− to estimate GNR. 152 

 153 
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Figure. 1. Distribution of NO3−atm in the simulated forested soil where the distribution 240 

of the Δ17O values of NO3− is heterogeneous (a). Vertical distribution of the following 241 

parameters in the forested soil: the simulated Δ17O values of NO3− (b), simulated 242 

leaching flux of NO3− (c), estimated NO3− consumption rate (GDR + uptake) (d), and 243 

estimated GNR (e).  244 

 245 

Figure. 2. Distribution of NO3−atm in the simulated forested soil where the distribution 246 

of the Δ17O values of NO3− is homogeneous (a). Vertical distribution of the following 247 

parameters in the forested soil: the simulated Δ17O values of NO3− (b), simulated 248 

leaching flux of NO3− (c), estimated NO3− consumption rate (GDR + uptake) (d), and 249 

estimated GNR (e). 250 
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