

Ideas and perspectives: Errors associated with the gross nitrification rates in

forested catchments calculated from the triple oxygen isotopic composition

$(\Delta^{17}O)$ of stream nitrate

Weitian Ding¹, Urumu Tsunogai¹, Fumiko Nakagawa¹

¹Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-

ku, Nagoya 464-8601, Japan

Corresponding author: Weitian Ding (ding.weitian.v2@s.mail.nagoya-u.ac.jp)

1 Abstract

2	A novel method to quantify the gross nitrification rate (GNR) in each forested
3	catchment using the triple oxygen isotopic composition (Δ^{17} O) of stream nitrate eluted
4	from the catchment has been proposed and used in recent studies. However, the
5	equations used in the calculations assumed homogeneous Δ^{17} O values of nitrate being
6	metabolized through either assimilation or denitrification within the forested soil
7	layers without particular discussions. The GNR estimated from the Δ^{17} O of stream
8	nitrate using the equations was more than six times the actual GNR in our simulated
9	calculation for a forested catchment where the Δ^{17} O values of nitrate being
10	metabolized in the soil were heterogeneous and showed a decreasing trend with
11	increasing depths. Therefore, we should verify that the Δ^{17} O values of nitrate being
12	metabolized are homogeneous in forested soils or estimate the possible range of errors
13	using Δ^{17} O of stream nitrate to estimate the GNR.
14	
15	1 Introduction
16	Nitrate (NO_3^-) is a crucial nutrient in forest ecosystems that often limits primary

- 17 production. Nitrification is the microbial process that generates NO_3^- from the
- 18 ammonium in a forested ecosystem; therefore, the nitrification rate is an important
- 19 parameter to be quantified when evaluating each forest ecosystem's present and future
- 20 states. The total rate of NO₃⁻ production, gross nitrification rate (GNR), reflects
- 21 internal N cycling better than the net nitrification rate (Bengtsson et al., 2003),

- 22 especially in forest ecosystems where the GNR often exceeds the net nitrification rate
- by order of magnitude (Stark and Hart, 1997; Verchot et al., 2001).
- 24 Recently, several studies successfully determined GNR in each water environment
- using the Δ^{17} O values of NO₃⁻ as a conserved tracer for the mixing ratio between the
- 26 atmospheric nitrate (NO_{3⁻atm}) deposited into each water environment and
- 27 remineralized nitrate (NO_{3⁻re}) produced through nitrification therein (Tsunogai et al.,

28 2011, 2018). Although NO₃⁻_{re} always has a Δ^{17} O value close to 0 ‰ because its

- 29 oxygen atoms come from either terrestrial O_2 or H_2O through nitrification, $NO_3^{-}_{atm}$
- 30 displays an anomalous enrichment in ¹⁷O with a Δ^{17} O value being approximately
- 31 +26 ‰ (Tsunogai et al., 2010, 2016) because of oxygen transfers from atmospheric
- ozone (Michalski et al., 2003; Nelson et al., 2018). Additionally, Δ^{17} O is almost stable
- during "mass-dependent" isotope fractionation processes (Michalski et al., 2004;
- 34 Tsunogai et al., 2016); therefore, regardless of partial metabolism through

denitrification or assimilation after deposition, Δ^{17} O can be used as a conserved tracer

- 36 of NO_{3⁻atm} to calculate the mixing ratio of NO_{3⁻atm} within total NO_{3⁻}
- 37 $(NO_{3}^{-}atm/NO_{3}^{-}total)$ using the following equation:

38
$$[NO_3^{-}_{atm}]/[NO_3^{-}_{total}] = [NO_3^{-}_{atm}]/([NO_3^{-}_{re}] + [NO_3^{-}_{atm}]) = \Delta^{17}O_{water}/\Delta^{17}O_{atm}$$
 (1)

- 39 where $\Delta^{17}O_{atm}$ and $\Delta^{17}O_{water}$ denote the $\Delta^{17}O$ values of NO₃⁻_{atm} and NO₃⁻ dissolved in
- 40 each water environment, respectively. Using both the NO_{3⁻atm}/NO_{3⁻total} ratio estimated
- 41 from the Δ^{17} O value of NO₃⁻ in a lake water column and the deposition rate of

- 42 NO_{3⁻atm} into the lake, past studies successfully estimated GNR therein (Tsunogai et
- 43 al., 2011, 2018).
- In addition to water environments, the Δ^{17} O method has been further applied to
- 45 forested catchments to determine GNR (Fang et al., 2015; Hattori et al., 2019; Huang
- 46 et al., 2020; Riha et al., 2014). By using the deposition flux of NO_{3⁻atm} into the
- 47 catchment as well as the elution flux of both unprocessed $NO_{3}^{-}atm$ and $NO_{3}^{-}re$ via
- 48 stream, which can be determined from the Δ^{17} O values of NO₃⁻ in stream water eluted
- 49 from the catchment, GNR in each forested catchment has been determined in a
- 50 manner similar to the water environments (Fang et al., 2015). Applying the Δ^{17} O
- 51 method to forested soils, where the Δ^{17} O values of NO₃⁻ are often heterogeneous
- 52 (Costa et al., 2011; Hattori et al., 2019), should be done with extreme caution, in
- 53 contrast to water environments where the Δ^{17} O values of nitrate were largely
- 54 homogeneous. We present an accurate relationship between the Δ^{17} O and GNR
- 55 starting from the basic isotope mass balance equations to explain the problem of using
- 56 the Δ^{17} O method in such heterogeneous environments.
- 57

58 2 Calculation

59 The total mass balance equation of NO_3^- including GNR in each catchment can be

60 expressed as follows:

61
$$NO_3^-$$
 deposition + GNR = NO_3^- leaching + NO_3^- uptake + GDR (2)

- 62 where NO_{3⁻deposition}, GNR, NO_{3⁻leaching}, NO_{3⁻uptake}, and GDR denote the deposition flux
- 63 of NO₃⁻ into each catchment, the gross nitrification rate in each catchment, the
- leaching flux of NO_3^- from each catchment, the uptake rate of NO_3^- in each
- 65 catchment, and the gross denitrification rate in each catchment, respectively.
- 66 The isotope mass balance for each Δ^{17} O value of NO₃⁻ in the catchment can also be
- 67 calculated using the same method:

68 NO₃⁻deposition ×
$$\Delta^{17}O(NO_3^{-})_{atm}$$
 + GNR × $\Delta^{17}O(NO_3^{-})_{nitrification}$ = NO₃⁻leaching × $\Delta^{17}O(NO_3^{-})_{nitrification}$

 $69 \quad {}_{3}^{-})_{\text{stream}} + \text{NO}_{3}^{-}{}_{\text{uptake}} \times \Delta^{17} O(\text{NO}_{3}^{-})_{\text{uptake}} + \text{GDR} \times \Delta^{17} O(\text{NO}_{3}^{-})_{\text{denitrification}}$ (3)

70 where $\Delta^{17}O(NO_3^-)_{atm}$, $\Delta^{17}O(NO_3^-)_{nitrification}$, $\Delta^{17}O(NO_3^-)_{stream}$, $\Delta^{17}O(NO_3^-)_{uptake}$, and

71 $\Delta^{17}O(NO_3^{-})_{denitrification}$ denote the $\Delta^{17}O$ value of $NO_3^{-}_{atm}$ deposited in each catchment,

That of NO_3^- reproduced through nitrification, that of NO_3^- eluted from each

- 73 catchment, that of NO₃⁻ assimilated by plants and other organisms in each catchment,
- and that of NO_3^- decomposed through denitrification in each catchment, respectively.

If the Δ^{17} O values of NO₃⁻ were homogeneous in forested soils where NO₃⁻ was

- 76 metabolized through either assimilation (by plants and other organisms) or
- 77 denitrification, Eq. 4 can be expressed as follows:

78
$$\Delta^{17}O(NO_3^{-})_{\text{stream}} = \Delta^{17}O(NO_3^{-})_{\text{uptake}} = \Delta^{17}O(NO_3^{-})_{\text{denitrification}}$$
(4)

80 relationship:

81
$$NO_3^-$$
 deposition $\times \Delta^{17}O(NO_3^-)_{atm} + GNR \times \Delta^{17}O(NO_3^-)_{nitrification} = (NO_3^-)_{leaching} + NO_3^-)_{uptak}$

82
$$e + GDR$$
 × $\Delta^{17}O(NO_3^{-})_{stream}$ (5)

- 83 We could estimate GNR using Eq. 6 obtained from Eqs. 2 and 5 because we can
- approximate the Δ^{17} O values of NO₃⁻_{re} produced through nitrification
- 85 $(\Delta^{17}O(NO_3^{-})_{nitrification})$ to be 0 (Michalski et al., 2003; Tsunogai et al., 2010):
- 86 GNR = NO₃⁻_{deposition} × ($\Delta^{17}O(NO_3^{-})_{atm} \Delta^{17}O(NO_3^{-})_{stream}$)/ $\Delta^{17}O(NO_3^{-})_{stream}$ (6)

The Eq. 6 corresponds to that used in previous studies for quantifying GNR in each forested catchment (Fang et al., 2015; Hattori et al., 2019; Huang et al., 2020; Riha et

89 al., 2014).

90

91 3 Results and Discussion

92 The Δ^{17} O values of NO₃⁻ metabolized in each catchment should be homogeneous 93 and therefore correspond with those of NO₃⁻ in the stream, as presented in Eq. 4 to obtain Eq. 6. However, many of the forested catchments do not satisfy this condition 94 needed to obtain Eqs. 4-6. In the studied forested soils, Hattori et al. (2019) found a 95 decreasing trend in the Δ^{17} O values of NO₃⁻ together with the depth, from more than 96 +20‰ at the surface soil to less than +3‰ at depths of 25 to 90 cm from the soil 97 surface. Furthermore, most of the Δ^{17} O values of soil NO₃⁻ differed from those in the 98 stream eluted from the catchment (+2.2‰ on average) in Hattori et al. (2019). 99 To demonstrate the possible change in GNR per the variation in the Δ^{17} O values of 100 NO₃⁻ in forested soils, we estimated GNR for two simulated forested soils: that with a 101 vertically heterogeneous Δ^{17} O of NO₃⁻ (Fig. 1a) and that with a vertically 102 homogeneous Δ^{17} O of NO₃⁻ (Fig. 2a). Because Hattori et al. (2019) reported the 103

104	NO_3^- deposition to be 7.0 kg of N ha ⁻¹ y ⁻¹ , NO_3^- leaching to be 2.6 kg of N ha ⁻¹ y ⁻¹ ,
105	$\Delta^{17}O(NO_3^-)_{atm}$ to be +28.0 ‰, and $\Delta^{17}O(NO_3^-)_{stream}$ to be +2.2 ‰ in the forested
106	catchment, we adopted the same parameter in the simulated calculation in this study.
107	We divided the soils in the heterogeneous forest soils into 10 layers in the vertical
108	direction simulating the soils observed by Hattori et al. (2019), where the Δ^{17} O values
109	of NO ₃ ⁻ gradually decreased with increasing depths, showing the Δ^{17} O values from
110	+28.0 to +2.2 $\%$ with a decrease rate of +2.58 $\%$ for each step (Fig. 1b). Similarly,
111	we assumed gradual decrease with increasing depths in the leaching flux of NO_3^- , i.e.,
112	from 7 to 2.6 kg of N ha ⁻¹ y ⁻¹ with a decrease rate of 0.44 kg of N ha ⁻¹ y ⁻¹ for each
113	step (Fig. 1c). In the homogeneous forest soils, we also divided the forested soils into
114	10 layers in the vertical direction. The vertical changes in the leaching flux of NO_3^-
115	were the same as those in the heterogeneous soils (Fig. 2c), whereas the Δ^{17} O values
116	of NO_3^- were constant to be +2.2 ‰ in the soil layers (Fig. 2b).
117	Applying the total mass balance and isotope mass balance of NO_3^- shown in Eqs. 2
118	and 3 to each layer, we estimated both GNR (Figs. 1e and 2e) and total metabolic rate
119	of NO ₃ ⁻ (GDR + uptake) (Figs. 1d and 2d) in each layer assuming that: (1) the $\Delta^{17}O$
120	values of NO_3^- were constant in each layer, (2) the vertical flow of NO_3^- in the soil
121	layers was only downward from surface to the water layer with a uniform residence
122	time in each layer, and (3) the GNR and metabolic rate of NO_3^- (GDR + uptake) was
123	zero in the water layer (the layers beyond the no. 10 soil layer). Then, by integrating
124	the GNR determined for each layer, we can estimate the total GNR in each forested

125	catchment. Although the GNR simulated for the catchment with the homogeneous
126	$\Delta^{17}O$ values of NO_3^- in the forested soils showed a value of 83.6 kg of N ha^{-1} y^{-1}
127	equal to that estimated by Hattori et al. (2019) (Fig. 2e), the total GNR became a
128	much smaller value of 13.0 kg of N ha ^{-1} y ^{-1} simulated for the catchment with the
129	heterogeneous Δ^{17} O values of NO ₃ ⁻ in the forested soils (Fig. 1e). As a result, we
130	conclude that the distribution of the $\Delta^{17}O$ values of NO_3^- in the forested soils can
131	significantly affect the overall GNR in forested catchments as calculated from the
132	Δ^{17} O of stream NO ₃ ⁻ .
133	If we estimated the downward water flux at each soil layer, together with the
134	concentration and $\Delta^{17}O$ value of NO_3^- in each soil layer using a tension-free lysimeter
135	(Inoue et al., 2021), we could estimate the vertical changes in the leaching flux of
136	NO_3^- for each soil layer together with the $\Delta^{17}O$ value of each NO_3^- . Then, applying
137	the mass balance and isotope mass balance shown in Eqs. 2 and 3 in each layer, we
138	can estimate a more accurate GNR of the forested catchment by integrating the GNR
139	estimated for each soil layer together with the more accurate metabolic rate of NO_3^-
140	(GDR + uptake) of the forested catchment. However, without such observation on the
141	distribution of the $\Delta^{17}O$ value of NO3 ⁻ , it is difficult to assume that the $\Delta^{17}O$ values of
142	NO_3^- were homogeneous in forested soils where NO_3^- was metabolized, so that the
143	GNR should be reported with errors in which possible variations in the Δ^{17} O values of
144	soil NO ₃ ⁻ have been considered.

145

8

146 **4 Conclusion**

- 147 Past studies proposed the Δ^{17} O method to determine GNR in each forested
- 148 catchment. The equations used in the calculation presupposed that the Δ^{17} O values of
- 149 NO₃⁻ in forested soils were homogeneous, however, they are often heterogeneous and
- 150 showing a decreasing trend with increasing depths. It must be essential to
- 151 clarify/verify the distribution of the Δ^{17} O values of NO₃⁻ in forested soils before
- 152 applying the Δ^{17} O values of stream NO₃⁻ to estimate GNR.
- 153
- 154 Data availability. All data are presented in the Supplement.
- 155
- 156 Author contributions. WD, UT, and FN designed the study. WD and UT performed
- 157 data analysis and wrote the paper.
- 158
- 159 Competing interests. The authors declare that they have no conflict of interest.
- 160

161 Acknowledgments

- 162 The authors are grateful to the members of the Biogeochemistry Group, Nagoya
- 163 University, for their valuable support throughout this study. This work was supported
- 164 by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
- 165 Sports, Science, and Technology of Japan under grant numbers 22H00561,
- 166 17H00780, 22K19846, the Yanmar Environmental Sustainability Support

167	Association,	and the	river fund	l of the	river	foundation,	Japan.	Weitian	Ding	would
-----	--------------	---------	------------	----------	-------	-------------	--------	---------	------	-------

- 168 like to take this opportunity to thank the "Nagoya University Interdisciplinary Frontier
- 169 Fellowship" supported by Nagoya University and JST, the establishment of university
- 170 fellowships towards the creation of science technology innovation, Grant Number
- 171 JPMJFS2120.
- 172
- 173 **References**
- 174 Bengtsson, G., Bengtson, P. and Månsson, K. F.: Gross nitrogen mineralization-,
- 175 immobilization-, and nitrification rates as a function of soil C/N ratio and microbial
- 176 activity, Soil Biol. Biochem., 35(1), 143–154, doi:10.1016/S0038-0717(02)00248-1,

177 2003.

- 178 Costa, A. W., Michalski, G., Schauer, A. J., Alexander, B., Steig, E. J. and Shepson,
- 179 P. B.: Analysis of atmospheric inputs of nitrate to a temperate forest ecosystem from
- 180 δ^{17} O isotope ratio measurements, Geophys. Res. Lett., 38(15), 1–6,
- 181 doi:10.1029/2011GL047539, 2011.
- 182 Fang, Y., Koba, K., Makabe, A., Takahashi, C., Zhu, W., Hayashi, T., Hokari, A. A.,
- 183 Urakawa, R., Bai, E., Houlton, B. Z., Xi, D., Zhang, S., Matsushita, K., Tu, Y., Liu,
- 184 D., Zhu, F., Wang, Z., Zhou, G., Chen, D., Makita, T., Toda, H., Liu, X., Chen, Q.,
- 185 Zhang, D., Li, Y. and Yoh, M.: Microbial denitrification dominates nitrate losses from
- 186 forest ecosystems, Proc. Natl. Acad. Sci. U. S. A., 112(5), 1470–1474,
- 187 doi:10.1073/pnas.1416776112, 2015.

- 188 Hattori, S., Nuñez Palma, Y., Itoh, Y., Kawasaki, M., Fujihara, Y., Takase, K. and
- 189 Yoshida, N.: Isotopic evidence for seasonality of microbial internal nitrogen cycles in
- 190 a temperate forested catchment with heavy snowfall, Sci. Total Environ., 690, 290-
- 191 299, doi:10.1016/j.scitotenv.2019.06.507, 2019.
- 192 Huang, S., Wang, F., Elliott, E. M., Zhu, F., Zhu, W., Koba, K., Yu, Z., Hobbie, E.
- 193 A., Michalski, G., Kang, R., Wang, A., Zhu, J., Fu, S. and Fang, Y.: Multiyear
- 194 Measurements on Δ^{17} O of Stream Nitrate Indicate High Nitrate Production in a
- 195 Temperate Forest, Environ. Sci. Technol., 54(7), 4231–4239,
- 196 doi:10.1021/acs.est.9b07839, 2020.
- 197 Inoue, T., Nakagawa, F., Shibata, H. and Tsunogai, U.: Vertical Changes in the Flux
- 198 of Atmospheric Nitrate From a Forest Canopy to the Surface Soil Based on Δ^{17} O
- 199 Values, J. Geophys. Res. Biogeosciences, 126(4), 1–18, doi:10.1029/2020JG005876,
- 200 2021.
- 201 Michalski, G., Scott, Z., Kabiling, M. and Thiemens, M. H.: First measurements and
- 202 modeling of Δ^{17} O in atmospheric nitrate, Geophys. Res. Lett., 30(16), 3–6,
- 203 doi:10.1029/2003GL017015, 2003.
- 204 Michalski, G., Meixner, T., Fenn, M., Hernandez, L., Sirulnik, A., Allen, E. and
- 205 Thiemens, M.: Tracing Atmospheric Nitrate Deposition in a Complex Semiarid
- Ecosystem Using Δ^{17} O, Environ. Sci. Technol., 38(7), 2175–2181,
- 207 doi:10.1021/es034980+, 2004.

- 208 Nakagawa, F., Tsunogai, U., Obata, Y., Ando, K., Yamashita, N., Saito, T.,
- 209 Uchiyama, S., Morohashi, M. and Sase, H.: Export flux of unprocessed atmospheric
- 210 nitrate from temperate forested catchments: A possible new index for nitrogen
- saturation, Biogeosciences, 15(22), 7025–7042, doi:10.5194/bg-15-7025-2018, 2018.
- 212 Nelson, D. M., Tsunogai, U., Ding, D., Ohyama, T., Komatsu, D. D., Nakagawa, F.,
- 213 Noguchi, I. and Yamaguchi, T.: Triple oxygen isotopes indicate urbanization affects
- sources of nitrate in wet and dry atmospheric deposition, Atmos. Chem. Phys., 18(9),
- 215 6381–6392, doi:10.5194/acp-18-6381-2018, 2018.
- 216 Riha, K. M., Michalski, G., Gallo, E. L., Lohse, K. A., Brooks, P. D. and Meixner, T.:
- 217 High Atmospheric Nitrate Inputs and Nitrogen Turnover in Semi-arid Urban
- 218 Catchments, Ecosystems, 17(8), 1309–1325, doi:10.1007/s10021-014-9797-x, 2014.
- 219 Stark, J. M. and Hart, S. C.: High rates of nitrification and nitrate turnover in
- 220 undisturbed coniferous forests, Nature, 385(6611), 61-64, doi:10.1038/385061a0,
- 221 1997.
- 222 Tsunogai, U., Komatsu, D. D., Daita, S., Kazemi, G. A., Nakagawa, F., Noguchi, I.
- 223 and Zhang, J.: Tracing the fate of atmospheric nitrate deposited onto a forest
- ecosystem in Eastern Asia using Δ^{17} O, Atmos. Chem. Phys., 10(4), 1809–1820,
- doi:10.5194/acp-10-1809-2010, 2010.
- 226 Tsunogai, U., Daita, S., Komatsu, D. D., Nakagawa, F. and Tanaka, A.: Quantifying
- nitrate dynamics in an oligotrophic lake using Δ^{17} O, Biogeosciences, 8(3), 687–702,
- doi:10.5194/bg-8-687-2011, 2011.

- 229 Tsunogai, U., Miyauchi, T., Ohyama, T., Komatsu, D. D., Nakagawa, F., Obata, Y.,
- 230 Sato, K. and Ohizumi, T.: Accurate and precise quantification of atmospheric nitrate
- in streams draining land of various uses by using triple oxygen isotopes as tracers,
- 232 Biogeosciences, 13(11), 3441–3459, doi:10.5194/bg-13-3441-2016, 2016.
- 233 Tsunogai, U., Miyauchi, T., Ohyama, T., Komatsu, D. D., Ito, M. and Nakagawa, F.:
- 234 Quantifying nitrate dynamics in a mesotrophic lake using triple oxygen isotopes as
- 235 tracers, Limnol. Oceanogr., 63, S458–S476, doi:10.1002/lno.10775, 2018.
- 236 Verchot, L. V., Holmes, Z., Mulon, L., Groffman, P. M. and Lovett, G. M.: Gross vs
- 237 net rates of N mineralization and nitrification as indicators of functional differences
- between forest types, Soil Biol. Biochem., 33(14), 1889–1901, doi:10.1016/S0038-
- 239 0717(01)00095-5, 2001.

Figure. 1. Distribution of NO_{3-atm} in the simulated forested soil where the distribution

of the Δ^{17} O values of NO₃⁻ is heterogeneous (a). Vertical distribution of the following

parameters in the forested soil: the simulated Δ^{17} O values of NO₃⁻ (b), simulated

- leaching flux of NO_3^- (c), estimated NO_3^- consumption rate (GDR + uptake) (d), and
- 244 estimated GNR (e).
- 245

Figure. 2. Distribution of NO_{3⁻atm} in the simulated forested soil where the distribution

```
247 of the \Delta^{17}O values of NO<sub>3</sub><sup>-</sup> is homogeneous (a). Vertical distribution of the following
```

- 248 parameters in the forested soil: the simulated Δ^{17} O values of NO₃⁻ (b), simulated
- leaching flux of NO₃⁻ (c), estimated NO₃⁻ consumption rate (GDR + uptake) (d), and

²⁵⁰ estimated GNR (e).