Supplementary Material

Iron “Ore” Nothing: Benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters

De’Marcus Robinson1*, Anh L.D. Pham1, David J. Yousavich2, Felix Janssen3, Frank Wenzhöfer3, Eleanor C. Arrington4, Kelsey M. Gosselin5, Marco Sandoval-Belmar1, Matthew Mar1, David L. Valentine4, Daniele Bianchi1, Tina Treude1,2*

1Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA, USA
2Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA
3HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
4Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
5Interdepartment Graduate Program in Marine Science, University of California, Santa Barbara, CA 93106, USA

*Correspondence: De'Marcus Robinson, demarcus1.robinson@atmos.ucla.edu; Tina Treude, ttreude@g.ucla.edu
Figure S1. Development of dissolved Fe(II) concentration in the supernatant water of benthic flux chambers (BFC) deployed at the studied stations in the Santa Barbara Basin during the AT42-19 expedition (see also data in Table 1). The increase (slope) in Fe(II) over time was used for the calculation of benthic Fe(II) fluxes.
Figure S1. Continued.
Figure S1. Continued.
Figure S2. Scatter plot for the dissolved iron concentrations in the upper 100 m of the ocean from field measurements along the US West Coast (y-axis) and from the ROMS-BEC model, where we have field measurements (x-axis). Model data are sampled seasonally according to field measurements. $R = 0.5$
Figure S3. Modeled oxygen concentration throughout the domain where 80 percent of the oxygen concentration is between 20 to 100 µM.
Figure S4. Dissolved iron (dFe) concentrations averaged between 100-200 m: (a) measured data (see manuscript section 2.4), (b) model results.
Figure S5. Atmospheric dFe deposition into the surface ocean of the CCS (32-48N). Higher atmospheric dFe deposition is observed north of 42°N.
Figure S6. (a) Surface dFe anomalies, (b) surface NO$_3^-$ anomalies, and (c) vertically integrated net primary production (NPP) throughout the domain from the Low Oxygen Threshold-100 model run relative to the Control model run. Graphs focus on areas around the SBB.
Figure S7. Benthic dFe flux anomalies with relative to the Control run throughout the domain from (a) Low Oxygen Threshold-100, (b) Low Oxygen Threshold-65, and (c) High-flux model experiments.
Figure S8. (a) Surface dFe anomalies, (b) Surface NO$_3^-$ anomalies, and (c) vertically integrated net primary production (NPP) in the full domain from the High Flux model run relative to the Control model run.
Figure S9. (a) Surface dissolved Fe, (b) surface NO$_3^-$ anomalies, and (c) vertically integrated net primary production (NPP) for the full domain from the Dust-off model run relative to the Control model run.
Table S1. Full model domain of benthic Fe flux (mmol d\(^{-1}\)), mean surface dFe concentration (nM), and total integrated NPP (mmol C d\(^{-1}\)) from different model simulations.

<table>
<thead>
<tr>
<th>Model simulations</th>
<th>Benthic Fe flux [mol d(^{-1})]</th>
<th>Mean surface dFe [nM]</th>
<th>NPP [mmol C d(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.22e+13</td>
<td>0.245</td>
<td>37.85</td>
</tr>
<tr>
<td>Hypoxia100</td>
<td>1.13e+13</td>
<td>0.228</td>
<td>37.88</td>
</tr>
<tr>
<td>Hypoxia65</td>
<td>2.05e+13</td>
<td>0.239</td>
<td>37.86</td>
</tr>
<tr>
<td>High-flux</td>
<td>7.56e+13</td>
<td>0.275</td>
<td>37.85</td>
</tr>
<tr>
<td>Dust</td>
<td>3.22e+13</td>
<td>0.203</td>
<td>37.36</td>
</tr>
</tbody>
</table>