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Abstract. With a changing climate, it is becoming increasingly critical to understand vegetation responses to limiting 

environmental factors. Here, we investigate the spatial and temporal patterns of light and water limitation on 

photosynthesis using an observational framework. Our study is unique in characterizing the nonlinear relationships 

between photosynthesis and water and light, acknowledging approximately two regime behavior (no limitation and 

varying degreedegrees of limitation). It is also unique in using an observational framework instead of using model-20 

derived photosynthesis properties. We combine data from three different satellite sensors, i.e., solarsun-induced 

chlorophyll fluorescence (SIF) from TROPOMI, surface soil moisture from SMAP, and above-ground canopy 

densityvegetation greenness from MODIS. We find both single-regime and two-regime models describe SIF sensitivity 

to soil moisture and photosynthetically active radiation (PAR) across the globe. The distribution and strength of soil 

moisture limitation on SIF are mapped in the water-limited environments while the distribution and strength of PAR 25 

limitations are mapped in the energy-limited environments. Two-regime behavior is detected in 73% of the cases for 

water limitation on photosynthesis, while two-regime detection is much lower at 3641% for light limitation on 

photosynthesis. SIF sensitivity to PAR strongly increases along moisture gradients, reflecting mesic vegetation’s 

adaptation to making rapid usage of incoming light availability on the weekly timescales. The transition point detected 

between the two regimes is connected to soil type and mean annual precipitation for the SIF-soil moisture relationship 30 

and for the SIF-PAR relationship. These thresholds have therefore an explicit relation to properties of the landscape, 

although they may also be related to finer details of the vegetation and soil interactions not resolved by the spatial 

scales here. The simple functions and thresholds are emergent behaviors capturing the interaction of many processes. 
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The observational thresholds and strength of coupling can be used as benchmark information for land surface and Earth 

system models, especially those that characterize gross primary production mechanisms and vegetation dynamics. 35 

1 Introduction 

Vegetation plays a large role in the Earth system, modulating land-atmosphere exchanges of water, carbon, and energy 

(Beer et al., 2010; Jasechko et al., 2013). With increasing temperatures and changing precipitations, and possibly more 

intense drought and heatwaves, these change-induced factors affectingthat affect vegetation productivity have impacts 

on global carbon budgets and food security (Gentine et al., 2019; Huang et al., 2018; Liang et al., 2017).(Gentine et 40 

al., 2019; Huang et al., 2018; Liang et al., 2017). It is therefore imperative to understand how vegetation function 

responds to environmental and rate-limiting factors across the globe. More specifically, it is important to understand 

how climatic factors create limitations on vegetation function at large spatial scales (Ahlström et al., 2015; Zhang et 

al., 2020a,b; Li et al. 2022). Such determinations using observed datasets are key for predicting and validating 

terrestrial ecosystem productivity responses in Earth system models (Fisher et al., 2018), ultimately improving our 45 

ability to predict the future land surface conditions in the context of global change.  

Remote sensing has proven to be a useful tool for mapping and monitoring vegetation function across the globe. 

Satellite observations provide the ability to spatially- integrate over the behavior of whole ecosystems, providing scaled 

-up behavior relevant to the global carbon cycle and Earth system models. Observations of sun-induced chlorophyll 

fluorescence (or commonly called solar-induced fluorescence; SIF)—radiation emitted at wavelengths of 650 to 800 50 

nm from plant photosystems—are valuable indicators of ecosystem photosynthetic activity. In contrast to traditional 

vegetation reflectance indices, SIF is sensitive to diurnal and seasonal photosynthetic dynamics and not only to changes 

in greenness (Wang et al., 2020). SIF emission is connected to transpiration and photosynthesis -related processes and 

these relationships are controlled by intrinsic water use efficiency (WUE) and light use efficiency (LUE). Recent 

studies have shown the value of satellite observations of SIF to monitor ecosystem transpiration (Lu et al. 2018; Shan 55 

et al., 2019; Pagan et al., 2019; Maes et al., 2020) and productivity (gross primary production, GPP) (Joiner et al., 

2014; Zhang et al., 2016; He et al., 2020). Since 2009, surface soil moisture (SM) can also be derived globally from 

low-frequency microwave frequency(L-band; 1.4 GHz) radiometer observations (Kerr et al., 2010; Entekhabi et al., 

2010). While microwave measurements are sensitive to the water in the top 5-10 centimeters of the soil profile, it has 

been shown that SM estimates averaged over several days are both physically and statistically correlated to deeper root 60 

zone soil moisture (Short Gianotti et al., 2019b; Akbar et al., 2018b; Feldman et al. 2022). 
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Using these satellite remote sensing developments, several studies have analyzed the influence of bio-climatic factors 

on productivity. Madani et al. (2017) found that reanalysis-derived soil moisture (SM), vapor pressure deficit (VPD), 

and minimum daily air temperature are significant control factors influencing ecosystem productivity over the globe. 

They showed that SIF was positively correlated with soil moisture on monthly time-scales in dry biomes (e.g., Sahel), 65 

whereas in humid biomes (e.g., Amazonia), SIF was negatively correlated with soil moisture and positively correlated 

to VPD. While Global Ozone Monitoring Experiment-2 (GOME-2) satellite SIF observations were used as proxy of 

productivity, environmental factors were derived from model reanalysis data, which may have model-prescribed 

relationships between one another and with productivity. In addition, factors influencing vegetation growth were 

limited to temperature and moisture constraints, but other environmental controls such as light limitation were not 70 

addressed.  

Similarly, Nemani et al. (2003) have analyzed the impact of global climate changes on vegetation productivity using 

global reanalysis data and a production efficiency model. Their results indicate differential controls of light, water, and 

temperature on vegeation, but with mainly a reduction of climatic constraints to plant growth during the last two 

decades of the past century, with significant increase in net primary production over large regions of Earth such as in 75 

Amazon rain forests. Walker et al. (2020) review theory and evidence suggesting a substantial increase in global 

photosynthesis since pre-industrial times driven at least in part by increased atmospheric carbon dioxide concentration 

leading to increases in plant water use efficiency. 

Recently, using Orbiting Carbon Observatory-2 (OCO-2) SIF and Soil Moisture Active and Passive (SMAP) SM 

satellite observations, Gonsamo et al. (2019) found that SM was often a primary limiting factor to plant growth in 80 

drylands and croplands. While based on a low number of concurrent SIF and SM data records, the authors observed 

positive and stronger SIF-SM relationships in drier and warmer regions. In their study, nonlinear behaviors were not 

addressed.  

Using satellite observations of SIF and climate data sets, Liu et al. (2020) found that SM has a dominant role in 

determining dryness stress on ecosystem production over most land vegetated areas. However, the study was primarily 85 

interested in moisture effects, having investigated the relative role of SM and VPD in limiting ecosystem production.  

Short Gianotti et al. (2019a) showed that SIF-SM relationships match satellite-derived GPP-SM relationships in both 

time and space, with little-to-no SIF-SM relationship in the light-limited humid regions of the contiguous United States 

and increasing response strength with aridity. Water-limited regions showed strong increases in ecosystem-water use 

efficiency (daily SIF or GPP divided by latent heat flux) during SM dry spells. 90 
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Studies investigating global drivers of photosynthesis tend to focus on linear relationships between these variables, 

which potentially neglects nonlinear conditions where photosynthesis is not-limited (Gonsamo et al., 2019; Teubner 

et al., 2018). For example, the light use efficiency (LUE) model is widely used in Earth system modeling to simulate 

GPP as a linear function of absorbed light (Monteith, 1972). It is becoming more evident that nonlinear plant function 

behavior exists, especially depending on soil moisture (under dry and wet moisture states) (Feldman et al., 2018; Short 95 

Gianotti et al., 2019a; Bassiouni et al., 2020). Those that evaluate nonlinear relationships do so regionally or globally 

and do not evaluate on a per-pixel basis (Madani et al., 2017). The global patterns of SIF relationships with water and 

light across climates and biomes remains under-characterized. Yet, the influence of environmental factors on 

vegetation productivity (and carbon cycle) has both weather timescale and seasonal timescale (relative timing of warm 

and wet seasons). Both timescales are important and exist in nature. Ecosystem responses on these different timescales 100 

are to date not well understood (Linscheid et al., 2020). 

The objective of this study is to evaluate the environmental factors that limit surface water and carbon exchanges over 

vegetated areas. Specifically, we ask: what are the conditions under which SIF is limited by water and light in space 

and time? Can we detect first-order nonlinear controls of water and light on photosynthesis as suggested from theory? 

If so, are there climatic controls on the water and light availability thresholds that divide regimes of SIF nonlinear 105 

responses to environmental variables? Here, we use an observation-based framework to evaluate nonlinear 

relationships between SIF and available water and light. Observations are key to provide benchmark information for 

parameterizing effects of water-stress or light-limitation on ecosystem productivity in Earth system models. Modeled 

vegetation products can implicitly or explicitly parameterize the relationships between SIF and water and light that we 

intend to evaluate. In this observationally driven study, we combine three data streams — sun-induced chlorophyll 110 

fluorescence (SIF) from TROPOMI, surface soil moisture from SMAP, and leaf areanormalized difference vegetation 

index (LAINDVI) from MODIS—to globally monitor observational evidence for seasonal water-limitation and light-

limitation in plant function.  

2 Data 

Satellite-based data were collected and analyzed for our main per-pixel approach for a 2.5-year period from April 2018 115 

to September 2020 (determined by the concurrently available TROPOMI and SMAP data). Climatology information 

from decade-long time series were used as auxiliary datasets. 



 

5 
 

2.1 Global Satellite Data 

2.1.1 TROPOMI Solar-Induced Fluorescence 

Sun-induced chlorophyll fluorescence (SIF, mW m-2 nm-1 sr-1) data are obtained from the TROPOspheric Monitoring 120 

Instrument (TROPOMI) aboard the Sentinel-5 Precursor (Köhler et al., 2018). TROPOMI provides optical 

observations with a spectral resolution of 0.5 nm, a spatial resolution of 7 x 3.5 km² (along track x across track) at 

nadir, and almost global coverage within 1 daysday. Sentinel -5 Precursor has an overpass time near 13:30 local solar 

time. SIF is retrieved in a spectral window ranging from 743 to 758 nm using the method of Köhler et al. (2018). Zero 

values (non-vegetated areas) were filtered out.SIF observations with large cloud cover (cloud fraction larger than 0.8) 125 

were filtered out as described in Köhler et al. (2015). As a robustness test, we additionally use SIF data from the Global 

Ozone Monitoring Experiment-2 (GOME-2) instrument aboard the MetOp-A satellite, on the period of April 2015 and 

March 2019, the longest period for which SMAP and GOME-2 are jointly available (Joiner et al. 2013).  

2.1.2 SMAP Soil Moisture 

Surface soil moisture (SM, cm³ cm-³) data (top 5 cm) are from the L-band (1.4 GHz) microwave radiometer aboard the 130 

NASA Soil Moisture Active/Passive (SMAP) satellite (Entekhabi et al., 2010). Microwave observations from the 6 

a.m. descending overpasses were used with a spatial resolution of 36 x 36 km² and a global coverage within 3 days.  

Retrievals of soil moisture were obtained using the multi-temporal dual channel algorithm (MT-DCA) (Feldman et al., 

2021; Konings et al., 2016). The MT-DCA algorithm estimates vegetation attenuation and scattering from an algorithm 

with temporal regularization. It does not use any information on land-use and ecosystem classifications which would 135 

bias the results otherwise. While the microwave measurements are commonly known to reflect the top 5 cm, several 

lines of evidence suggest SM can viably represent relevant root zone dynamics in most cases. First, under wetter 

conditions, SMAP SM is known to closely correlate with rootzone dynamics, especially in the upper 50 cm (Short 

Gianotti et al., 2019b; Akbar et al., 2018b). Under drier conditions, microwave emission depth originates from deeper 

than 5 cm, down to a meter in some cases depending on soil properties (Njoku and Entekhabi 1996). Furthermore, 140 

many plants, especially species in semi-arid grasslands where we mainly evaluate SIF-SM, have rooting distributions 

skewed to the upper layers (<30cm) with preferential uptake of water in the upper soil layers (Flanagan et al., 1992; 

Meinzer et al., 1999; Miguez-Macho and Fan, 2021).(Flanagan et al., 1992; Meinzer et al., 1999; Miguez-Macho and 

Fan, 2021). As such, SMAP, in fact, effectively senses soil layers deeper than 15-25 cm, relevant to global root water 

uptake especially in water-limited ecosystems (Feldman et al. 2022). 145 
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2.1.3 MODIS Leaf AreaNormalized Difference Vegetation Index (NDVI) 

Leaf area index (LAI, m2 m-2Normalized Difference Vegetation Index (NDVI) data come from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Terra satellite. Retrievals of LAINDVI 

data between AprilJanuary 1, 20152003 and September 30, 2019December 31, 2021 were obtained from the Level 3 

MODIS surface reflectances on an 8 days basis and with a spatial resolution of 500 m (MCD15A2H LAI product; 150 

Myneni et al., 2015).  which is a cloud-free 16-day 0.05 degree dataset (MOD13C1, 

https://lpdaac.usgs.gov/products/mod13c1v006/). We linearly resampled the 0.05° grid to the 36 km EASE2 grid. 

Then, we linearly interpolated the 16-day NDVI data to daily values to determine growing season start and end dates 

within each pixel. 

2.2 Ancillary Data for Analyses 155 

2.2.1 Mean Annual Precipitation and Soil Type 

Annual mean precipitation areis obtained by averaging annual means between 2010 and 2020 from NASA’sthe 

Integrated Multi-satellitE Retrievals for GPM (IMERG) final run product combining data from the Global Precipitation 

Measurement (GPM) mission between April 1, 2015 and March 31, 2019satellite constellation (Huffman et al., 

2019)(Huffman et al., 2019). Sand and clay fraction information was also obtained (Kim, 2013)from the 160 

SoilGrids250m database (Hengl et al., 2017). These metrics were used to evaluate climate gradients of spatial maps 

generated in the analysis. 

2.2.2 MERRA-2 Downwelling Photosynthetically Active Radiation 

Daily and downwelling photosynthetically active radiation (PAR, W m-2) data are provided by the NASA Modern-

Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) global reanalysis (GMAO, 2015). 165 

The spatial resolution is 0.5o x 0.625o. While PAR is an observation-driven modelled product, it is not expected to have 

strong relationships with vegetation function prescribed within the model, but rather be because it is driven mainly by 

solar seasonality and assimilated atmospheric fields such as cloud cover. 

2.3 Spatial and Temporal Aggregations 

The SIF, PAR and LAINDVI data were regridded on a linear weighting basis to the EASE-2 SMAP grid (36 x 36 170 

km²). The SIF, SM and PAR data were also aggregated temporally to produce 8-day composites. The temporal 

aggregation was performed to smooth SIF data, with 8-day aggregation selected to match the exact repeat cycle of 
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SMAP. To increase sample size for the correlation maps and the regime classification, the SIF, SM and PAR data at 

36 x 36 km² resolution are pooled in 2 x 2 pixel boxes, for each 8-day period. In the following section, all maps have 

therefore a spatial resolution of 72 x 72 km².  175 

3 Methodology 

3.1 Growing Season Estimation 

Since we analyze the seasonal water-limitation and light-limitation of plant function only during the growing season, 

the growing season for each global pixel was first defined using LAINDVI climatology. The LAINDVI climatology 

was developed by averaging four and a half19 years (April 1, 20152003 to September 30, 20192021) of LAINDVI 180 

data into a mean climatology and smoothing using a 90-day moving average filter (Fig. S1). The growing season was 

then defined as the six-month period centered onby first finding the peak of the LAINDVI climatology. to identify the 

main growing season and then finding the green up and brown down times as when NDVI reaches its median before 

and after this peak. This results in growing seasons centeredwith a peak on DOY between 100 to 275 in the northern 

hemisphere and DOY typically 0 to 50 and 300 to 365 in many regions of the southern hemisphere (Fig. 1). There are 185 

a number of different approaches to estimating plant phenology based on satellite measurements (e.g. see Bush et al., 

2018; Peano et al., 2019; Morellato et al., 2018; Moulin et al., 1997; Zhang et al., 2006). Ultimately the applied 

technique depends on the application needs, and the approach followed here is sufficient to characterize the active 

growing season encompassing the primary water and energy interactions with the carbon cycle. It is worth noting that 

for some regions, several peaks could be observed. The peak with the maximum LAINDVI was selected corresponding 190 
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to the “primary growing season”, such as in the tropics, which are characterized by a smaller seasonal amplitude. We 

additionally tested shorter growing seasons to ensure that shoulder seasons did not influence results.  

 

 

 195 

 

 

 

 

 200 

 

 

Figure 1: Growing season determination based on MODIS satellite leaf areanormalized difference vegetation index. Day of 

the year for the phenological peak based on MODIS LAINDVI climatology. White shading indicates LAINDVI was not 

available (bare-soil or water bodies).  205 
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3.2 Conceptual Basis 

While chlorophyll fluorescence originates from energy partitioning at the photosystem (leaf) level, SIF presents as an 

aggregated landscape variable at large spatial and temporal scales (as considered in this study), SIF appears as an 

aggregated landscape variable.). It is a function of the absorbed PAR (APARChl = PAR .x fPARChl, with fPARChl being 

the fraction of PAR absorbed by chlorophyll pigments and mainly controlled by vegetation cover fraction, LAI, leaf 210 

chlorophyll content, and plant structure) and the fluorescence quantum yield (ϕF, mainly controlled by leaf biochemical 

properties and is dependent on plant health and water status), both correlated with photosynthetic productivity and 

strongly influenced by water and energy (light) availability (Joiner et al., 2014; Jonard et al., 2020; Magney et al., 

2020): 

SIF(λ) = PAR ·x fPARChl ·x ϕF(λ) ·x fesc(λ) ·x τatm(λ) ,       (1) 215 

with fesc being the fraction of SIF (at wavelength λ) emitted by the chloroplast that leaves the canopy and τatm being 

the fraction of SIF that also passes through the atmosphere (τatm).  

The behavior of the factors in Eq. (1) differ strongly throughout the globe. For instance, annual croplands tend to show 

large variations in fPARChl and fesc during the growing season, while these factors are expected to remain more constant 

over evergreen forests. The value of ϕF is expected to react to the ambient stress conditions. Water- or light limitation 220 

comprises the combination of all these components. Light- and water limited photosynthesis will first impact the 

photosynthetic machinery, affecting ϕF. A prolonged water or light limited regime will manifest in primary production 

and biomass growth, and therefore on fPARChl and on fesc. Evaluating the combination of the parameters in Eq. (1) 

provides insights on the limiting factors of the plant growth. Futhermore, it is expected that many of these parameters 

are nonlinearly related to water and light limitation (Xu et al., 2021). 225 

We emphasize that it is not our goal to investigate all possible limiting factors on photosynthesis (e.g., temperature, 

nutrient limitation), nor how they interact to create states where one or both variables is limiting. A more 

comprehensive analysis can classify states along multiple axes of climatic factors. Our single axes classification 

provides a first step towards such classifications in detecting globally where, to a first-order, nonlinear relationships 

between SIF and water and/or light emerge. It also determines observed spatial variations of the types of climatic factor 230 

relationships with SIF. The effects of water and light are at least expected to capture the major global limiting pathways 

based on previous work (Madani et al. 2017). 
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3.3 Correlation Maps 

As a zeroth-order analysis motivating our subsequent evaluation of SIF, we first evaluate the Pearson correlation 

coefficient between SIF and SM (Fig. 2) and SIF and PAR (Fig. 3) using our 8-day aggregations of each variable. Only 235 

values from the growing season are used. In this case, factors that directly limit SIF appear as positively correlated 

with SIF (in blue in Fig. 2 and 3). Ultimately, the correlation maps guide subsequent analysis of more detailed two-

regime behavior. The SIF-SM correlation map (Fig. 2) shows large regions of water limitation (blue regions), such as 

the Sahel, Eastern and Southern Africa, Eastern Brazil, Southern Asia, and Eastern Australia. The SIF-PAR correlation 

map (Fig. 3) shows large regions of positive correlation (blue regions), such as much of the United States, Southern 240 

Brazil, Europe, and Russia, which are negatively correlated with SM in Fig. 2. Green et al. (2017) provide a more in-

depth analysis of linear correspondences between vegetation growth and land/atmosphere variables among others. 

Low SIF-SM correlations occur mainly in densely forested regions where soil moisture estimation uncertainty is largest 

and potentially surface soil moisture is less of a control on vegetation function than other factors. Regions in blue in 

Fig. 2 are generally in red in Fig. 3, revealing that SM and PAR are typically negatively correlated (Fig. S2). This is 245 

due to synoptic-scale correlations between cloud cover and 1) soil moisture (positive) and 2)between cloud cover and 

shortwave radiation (negative), as well as seasonal-scale alignment of growing-season peaks with peaks in the 

primarily-limiting component: light or water. Given these considerations, in the remainder of our analysis, we do not 

evaluate negative relationships between SM (or PAR, separately) and SIF, which could reflect a spurious relationship 

due to limitation from the other variable. We expect that positive correlations between SM (or PAR) and SIF reflect 250 

causal relationships from SM (or PAR) to photosynthesis in limiting environments. We similarly hypothesize that 

negative correlations between SM and SIF indicate light-limitation or a lagged response of root uptake and increased 

PAR following precipitation events.  

 

 255 
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Figure 2: TROPOMI sun-induced chlorophyll fluorescence (SIF) and SMAP MT DCA soil moisture (SM) growing season 

correlation. Pearson correlation coefficient of 8-day averages. Regions of statistical significance (P < 0.05) are indicated with 

stippling. The stippling corresponds to distributed areas of statistically significant grid points and therefore each statistically 275 

significant pixel may not have its own stipple symbol. 
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Figure 3: TROPOMI sun-induced chlorophyll fluorescence (SIF) and MERRA-2 photosynthetically active radiation (PAR) 

growing season correlation. Same conventions as Fig. 2. 

  290 
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3.4 Regime classification 

Pearson correlation provides information about the degree to which a variable linearly limits SIF. However, in many 

cases, nonlinear relationships are present where the strength of limitation may decrease above a certain threshold of 

soil moisture or photosynthetically active radiation (e.g., see Fig. 45). This therefore can bias linear correlations and 

obscure their interpretation in Figs. 2 and 3 as well as previous studies (Gonsamo et al. 2019). We approximate this 295 

relationship here as a two-regime linear model to characterize conditions when water or light limit SIF. In some 

instances, only one regime may be observed for either water or light. Therefore, three distinct models were tested 

representing three scenarios for each limitation (water and light) (Fig. 54) as in previous studies that evaluated surface 

energy fluxes (Akbar et al. 2018a; Feldman et al. 2019).  

The following models are used for SM and PAR separately and independently. Only model selections are completed 300 

in the pixels where the given variable is positively correlated with SIF (Figs. 2 and 3). If a given pixel shows a positive 

SIF correlation with both SM and PAR, then models for both SM and PAR are estimated. The first model is the linear 

model representing the water- or light-limited regime (Fig. 4a and d). Here, the conditions are always characterized by 

water- or light-limitation without another regime of behavior detected. An increment of SM or PAR always impacts 

photosynthesis and therefore the SIF. The second model is the full two-regime model representing the two-regimes of 305 

water- and light-limitation (Fig. 4b and e). Only when this regime is determined a moisture or light threshold will be 

estimated. Below this threshold, the given variable limits SIF. Above the threshold, an increment of SM or PAR will 

not affect photosynthesis. The third model is the zero-slope model for the no water or no light limitation regime (Fig. 

4c and f). In this case, plant growth is not sensitive to water or light within the variability observed at that location.  

A model is selected based on the Bayesian Information Criterion (BIC) in order to avoid over-fitting among models 310 

shown in Fig. 4. Example pixels are shown in Fig. 5 where the two-regime model model is selected by this method. 

Note that we only perform the analysis on pixels with at least 20 pairs of SIF-SM or SIF-PAR.  
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Figure 4: Schematics of model types for the SIF-SM and SIF-PAR regimes. Bayesian Information Criterion (BIC) is used 

to avoid over-fitting among models during statistical selection. 

 315 

 

 

Figure 5: Example SIF relationships with water and light with model estimation from Fig. 4 demonstrated. Scatter plot of 

(a) sun-induced chlorophyll fluorescence (SIF, [mW m−2 nm−1 sr−1]) and soil moisture (SM, [m3 m-3]) data and (b) SIF and 

photosynthetically active radiation (PAR, [W m-2]) data for the primary growing season and for a single 72 x 72 km² pixel 320 

located in (a) Sahel region (Mali) and (b) Spain (SegoviaZamora). Data are fitted with a two-regime model.    

a b 

a         b               c   

d         e               f   
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4 Results and Discussion 

In this section, we present the results of the selection of the best-fit model (based on the Bayesian information criterion) 

among the three model types described above (linear, two-regime or zero-slope model) for each limitationfactor’s 

(water and light).) limitation on SIF. 325 

4.1 Water-limited regimes 

The spatial distribution of the selected model types, the corresponding model slopes, and the frequency distribution of 

model threshold for the SIF-SM relationship are shown in Fig. 6. Several regions with a two-regime water-limitation 

can be clearly identified, such as most of sub-Saharan Africa (except the Congo Basin), Southern Asia, Eastern 

Australia, Eastern Brazil, and Mexico. Few regions are identified as having no water-limitation meaning that while 330 

their growing season SIF-SM correlation is positive, it does not aid the fit in model estimation to have a non-zero 

slope. This likely means that the SIF-SM slope is positive, but near zero. Among the pixels showing a water limitation 

on photosynthesis, 73.5% were characterized by a two-regime behavior. Arid and semi-arid regions, with sparsely 

vegetated areas, show expected water limitation patterns. Among the pixels showing a water limitation on 

photosynthesis, 72.5% were characterized by a two-regime behavior, suggesting widespread nonlinearity of the soil 335 

moisture controls on vegetation. Therefore, at a given water-limited location, a unit loss of soil moisture typically 

confers more plant water stress when soil moisture is drier on average than when it is wetter.  

Slope values are the highest (up to 10 [mW m−2 nm−1 sr−1] per volumetric water content [m3 m-3]) in the Sahel region, 

Miombo woodlands south of the Congo Basin (Angola, Zambia, Mozambique), India, the Mekong Basin, and Eastern 

Brazil. These regions correspond well to the tropical climate, sub-climate savannah, of the Köppen-Geiger climate 340 

classification (Beck et al., 2018). In these regions, in the water-limited regime, a small incrementincremental increase 

of water in the soil moisture corresponds to a large increase in vegetation productivity and therefore the expected 8-

day mean fluorescence emission. The high slope values of the regression between SIF and SM in drylands is mainly 

due to the clear relationship between photosynthetic efficiency, and therefore also ϕF, and water availability. As a 

feedback of the increase in photosynthetic activity, the plant green biomass increases, leading to an increase in fPARChl. 345 

The latter effects are especially determined by the water supply over drylands (Moreno-de las Heras et al., 2015). SIF 

observations allows to monitormonitoring of the combined biomass and photosynthetic efficiency effect. Values of the 

modelsoil moisture threshold are between 0 and 0.45 m3 m-3 with a median around 0.1-0.2 m3 m-3 (Fig. 6c and Fig. S3a 

for the spatial distribution).  When the soil moisture state is above this threshold, SIF has minimal to no water 
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limitation. It is worth noting that the threshold value might be harder to detect for regions with a low slope value. 350 

Furthermore, the SM thresholds are correlated (across space) with mean annual precipitation ( = 0.25, P < 0.01, and 

 = 0.29, P < 0.01 when considering only regions below 1,000 mm yr-1) as well as with soil texture ( = 0.32, P < 0.01 

with clay fraction;  = -0.37, P < 0.01 with sand fraction).soil texture ( = 0.37, P < 0.01 with clay fraction;  = -0.40, 

P < 0.01 with sand fraction). Suchs correlations were similarly observed by Denissen et al. (2020) over Europe. SM 

thresholds were also broadly assessed based on vegetation types using International Geosphere-Biosphere Program 355 

(IGBP) land cover classification information. There is a tendency for the forested and tree covered IGBP classifications 

to have higher soil moisture thresholds (Fig. S6a), though it is still unclear whether the drivers of the soil moisture 

threshold are dominated by vegetation characteristics or characteristics of wetter mean climate conditions. 
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Figure 6: Estimated SIF-soil moisture relationship features. (a) Model type (W.-L.: Water-Limited; 2-R. W.-L.: Two-

Regime Water-Limited; No W. L.: No Water Limitation), (b) model slope [mW m−2 nm−1 sr−1] in the water -limited regime, 390 

and (c) model threshold [m3 m-3] for the SIF-SM relationship. White shading denotes areas where the SIF-SM correlation 

is not positive—i.e., where SIF is not increasing with SM—or areas where no collocated SIF, SM, and PARSM records are 

available. 

4.2 Light-limited regimes 

The spatial distribution of the selected model types, the corresponding model slopes, and the frequency distribution of 395 

model threshold for the SIF-PAR relationship are shown in Fig. 7. In contrast to the SIF-SM relationship, a light-

limitation regime is observed in many parts of the northern hemisphere, mainly in Southern Canada, the Western U.S., 

the U.S. East coast, Western and Central Russia, the Balkans, and the Baltic region. Several regions are identified as 

having a break point between two-regimes of light (non-) limitation, such as Western Europe (France, Germany, Spain, 

Italy, Great-britain), Northern Russia, the U.S. Corn Belt, South-Eastern South America and South-Eastern Africa. 400 

Among the pixels showing a light limitation on photosynthesis, only 36.140.5% were characterized by a two-regime 

behavior. These regions of two-regime light limitation and threshold behavior is novel given that two-regime light 

influences on photosynthesis has not been observed or considered at large-scales previously. 

Slope values are highest (up to 0.015 [mW m−2 nm−1 sr−1] per [W m-2]) in the midlatitudes, specifically in the Great 

Lakes regions of North America, most of Europe, Southern Russia, Northern Argentina, and Southern Brazil. These 405 

regions correspond well to the cold and temperate climates, sub-climate without dry season (hot or warm summer), of 

the Köppen-Geiger climate classification (Beck et al., 2018). A large proportion of these regions is used for annual 

crop cultivation. Their green biomass, and therefore the fPARChl, is strongly affected by the (cumulative) PAR of the 

growing season. This explains a large part of the SIF-PAR relationship over these regions. In these regions, a small 

increment of light will substantially increase the vegetation productivity and therefore the expected fluorescence 410 

emission. This suggests that the Calvin cycle of these plants are adapted to strongly respond to light availability 

compared to other regions. By contrast, in the high latitudes of the northern hemisphere, slope values are the lowest, 

probably due to low vegetation densities or the presencelower temperatures and limited seasonal changes in biomass 

of boreal evergreen forestsecosystems. Values of the estimated PAR threshold are between 0 and 140 [W m-2] with a 

maximum occurrence around 100-110 [W m-2] (Fig. 7C and Fig. S3b for the spatial distribution). When light 415 

availability is above this threshold, SIF has minimal to no light limitation. Such threshold behavior is theoretically 

expected based on the nonlinear relationship between incoming shortwave radiation and plant carbon fixation (Jones, 
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2014). Specifically, nonlinear relationships between SIF and PAR are expected because many plant cellular processes 

are strongly light-limited in low light environments, but become maximized in brighter environments (Jones, 2014). 

For example, the light response curve fundamentally defines the rate of leaf-level carbon fixation that is limited under 420 

low light environments, but becomes Calvin cycle limited (i.e., carboxylation limiting) in brighter environments where 

more light on marginally produces more carbon uptake (Hermann et al., 2020). Laboratory experiments have shown a 

decrease in leaf-level fluorescence yield in high light environments (Wang et al., 2018). Similarly, De Cannière et al. 

(2022) observed a near-linear behaviour of canopy-level SIF emission under low light conditions, while saturating at 

higher light values. Our threshold and slope estimates here are some of the first large scale observations of these 425 

fundamental light-limiting photosynthesis processes. 

The PAR thresholds are additionally correlated (across space) with mean annual precipitation ( = 0.31, P < 0.01, and 

 = 0.39,  < 0.01 when considering only regions below 1,000 mm yr-1) and with soil texture ( = 0.2825, P < 0.01 with 

clay fraction;  = -0.06, P < 0.01 with sand fraction). We note that PAR may relate strongly with surface temperature 

at seasonal scales in the northern hemisphere and thus relationships here may include the influence of surface 430 

temperature (Buermann et al., 2018; Zhang et a., 2020a). For example, the high SIF slope in the northern hemisphere 

midlatitudes may be inflated because we do not partition temperature limitation, which requires future investigation. 
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Figure 7:  Estimated SIF-photosynthetically active radiation relationship features. Model type (L.-L.: Light-Limited; 2-R. 

L.-L.: Two-Regime Light-Limited; No W. L.: No Light Limitation), model slope [10-3 nm−1 sr−1] in the light-limited regime 480 

and model threshold [W m-2] for the SIF-PAR relationship. Same format as Fig. 6White shading denotes areas where the 

SIF-PAR correlation is not positive—i.e., where SIF is not increasing with PAR—or areas where no collocated SIF and PAR 

records are available. 

 

4.3 Relationships of SIF limitation characteristics with mean moisture availability  485 

SIF sensitivity to soil moisture shows a relationship with mean annual precipitation (Fig. 8a;  = 0.2232, P < 0.01 with 

slopes corresponding to sloped part of the two-regime model and the one-regime linear model). Locations with peak 

slopes occur in the wetter environments such as in India, Southeastern Asia, Angola, and Mozambique. These larger 

slopes are likely related to the degree to which vegetation responds to mean moisture and individual storms, given the 

weekly timescales of this analysis (Feldman et al., 2018; Maurer et al., 2020).(Feldman et al., 2018). It also indicates 490 

that these wetter regions may have a stronger plant water stress response when the land surface becomes drier below 

the soil moisture threshold. 

SIF sensitivity to PAR shows an even stronger relationship with annual precipitation (Fig. 8b;  = 0.4244, P < 0.01), 

especially for regions below 1,000 mm yr-1 (Fig. 8b; R = 0.4946, P < 0.01). Sensitivities also peak at approximately 

1,000 mm yr-1. The increasing sensitivities may similarly be an adaptation of the vegetation to utilize light availability, 495 

given that moisture is typically less limited in these regions.   

Furthermore, both SM and PAR thresholds are correlated (across space) with mean annual precipitation (Fig. 8c and 

d;  = 0.31 and 0.29, respectively, P < 0.01;   = 0.14 and 0.37, respectively, P < 0.01, when considering only regions 

below 1,000 mm yr-1). 
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Figure 8:  (a) SIF-SM slopes [mW m−2 nm−1 sr−1] and], (b) SIF-PAR slopes [10-3 nm−1 sr−1], (c) SIF-SM threshold [m3 m−3] 

and (d) SIF-PAR thresholds [W m−2] binned as a function of mean annual precipitation [mm yr-1] obtained from the Global 

Precipitation Measurement (GPM) satellite mission. Slopes value correspondsconstellation. Slope values correspond to 

sloped part of the two-regime model and the linear model. (see Fig. 4). Each boxplot bin includes the same number of data 

points (1102915, 1548, 664 and 1459629 data points for the boxplots with the SIF-SM slopes(a), (b), (c), and the SIF-PAR 535 

slopes,(d), respectively). Box edges are the 25th and 75th percentiles of the distribution bounding the median (red line), and 

a b 

c d 
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whiskers extend to extrema (maximum and minimum). Both theThe median SIF-SM slopeand SIF-PAR slopes and the 

median SIF-SM and SIF-PAR slopethresholds all increase with increasing mean annual precipitation.  

4.34 Robustness, and Limitations, and Future Work  

These results are on a six-month period for the growing season. We did not find seasonality and choice of season length 540 

impact the analysis in major ways because similar spatial patterns and qualitative results occur for a range of growing 

lengths (not shown).  

We emphasize that we use the two-regime modelThe main sources of uncertainty in this study include: 1) observation 

errors from the data streams (SIF, SM, PAR), 2) growing season definition errors, 3) model structural and parameter 

estimation errors, and 4) lack of consideration of all SIF-limiting factors. Here, we discuss each of these error sources 545 

and conduct several tests to evaluate the robustness of results to these errors including repeating the analysis on a 

different satellite SIF dataset, on alternative growing season definitions and on deseasonalized variables. 

To assess the effect of observation errors, we first repeat the analysis with GOME-2 SIF data, which resulted in 

comparable spatial patterns and thus robustness of the TROPOMI-based results (see Fig. S4). However, the main 

differences are reduced classification of the regimes with more parameters where the linear and two-regime models 550 

are selected less often. This is mainly because GOME-2 SIF results in fewer data pairs which reduces the ability for 

the model selection to select more parameterized models. TROPOMI was used as the main dataset given that its higher 

spatiotemporal coverage and lower retrieval noise were essential for the regime classification. We avoid evaluating 

alternative soil moisture and PAR datasets given that the study would result in a combinatorial analysis which we wish 

to avoid. Furthermore, it is more appropriate to evaluate alternative SIF measurements because SIF is a weak signal 555 

with relatively larger measurement errors given its retrieval from noisy atmospheric properties compared to lower error 

microwave remote sensing techniques for soil moisture, for example (Jonard et al., 2020; Köhler et al., 2018).  

These results are based on a growing season with the start and end defined using the median NDVI (accounting for 

asymmetrical growing season with dynamic length of about six months). We found that spatial patterns of results were 

qualitatively the same when repeating the analysis considering a fixed growing season of 3 and 4 months centered on 560 

the peak of the NDVI climatology (not shown). Therefore, the results are not a strong function of the growing season 

definition and are not greatly influenced by transitional time periods before and after the growing season that may be 

included in our definition. The fact that we condition on the growing season and do not assess the full year removes 

some influence of seasonality on th results, where too much influence of seasonality may amplify the determined 
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connections between SIF with water and light. We acknowledge that this approach may miss secondary growing 565 

seasons in some regions. 

Uncertainties from retrieval error can also be evaluated by calculating the coefficient of determination (R2) and the 

coefficient of variation (CV) of the model fit as shown in Fig. S5. The R2 values are generally well above 0.5 in regions 

where linear and two-regime models are found, and are especially higher in regions with high SIF sensitivity to SM or 

PAR (higher slopes in Figs. 6b and 7b). 570 

There is potential for structural errors and consequent parameter estimation errors in assuming a piecewise linear model 

fits a more complex non-linear relationship that has curvature. As such, this creates uncertainties in soil moisture 

thresholds, for example. Indeed, soil moisture threshold variances determined using the same piecewise linear 

approaches show robustness of the method with bootstrapped standard deviations less than 0.01 m3/m3 suggesting the 

relationship curvature may not bias thresholds greatly (Feldman et al. 2019). Nevertheless, we emphasize the 575 

importance of the threshold detection, apart from its numerical value, which occurs despite the presence of curvature. 

The two-regime model is appropriate given known nonlinear relationships that drive environmental influence on plant 

function (Jarvis, 1976). As such, studies that do not acknowledge the different regimes and assume linear SIF 

relationships with the environment would bias estimations of SIF-SM or SIF-PAR relationships. We therefore 

emphasize first detecting a breakpoint threshold before estimating slopes.Our results here suggest that with widespread 580 

detection of nonlinear SIF relationships with SM and PAR, the commonly used linear correlations and slopes between 

these variables, ignoring the nonlinearity, will create biases in evaluating water and light limitation. Finally, we repeat 

the results using AIC rather than BIC to test the selection frequency of the more complex model forms (i.e., linear 

model and two-regime model). We find that our use of BIC is conservative in selecting more complex models. AIC 

finds a much more frequent detection of more complex models at a greater risk of overfitting the data over that of BIC 585 

(not shown).  

WeNot assessing all limiting variables including temperature and nutrient limitations is a drawback of the analysis. 

Our analysis indeed misses some limitations on plant function. For instance, no water- and no light-limitation can be 

seen in the same region (such as tropical forests) where other bio-climatic factors (such as nutrient limitation) could 

influence plant growth. Predominance of water versus light limiting regime might also shift over the growing season 590 

and between years, particularly in transitional climate regions (Seneviratne et al., 2010). However, we also note that 

the raw SIF-SM relationships, and not their deseasonalized relationships, include coupling from many factors beyond 

just water-limitation on SIF. We repeat the computation of linear slopes in the limiting regime using deseasonalized 
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variables and find that the relationships are still positive, but are reduced (not shown). Because deseasonalized 

variables will show a more direct, isolated connection between SIF and each of these limited variables, this analysis 595 

indicates that SM and PAR do have direct influences on SIF. However, the higher magnitude slopes in their raw 

interactions indicate that other factors and their interactions with water and light limitation are included in the SIF-SM 

and SIF-PAR relationships in addition to the influence of SM and PAR alone. As such, we argue in favor of determining 

the SIF-SM and SIF-PAR relationships with the raw (non-deseasonalized) variables to assess the state dependence and 

coupling of multiple limiting factors on SIF. These overall relationships provide a test for model emergent behavior 600 

and coupled coevolution of multiple variables and their influence on SIF. 

4.5 Future Work  

Finally, we aimed to only detect and observe the emerging relationships in nature on how photosynthesis is limited by 

water and light. The procedure was purposefully naïve and required few assumptions, allowing the observations alone 

to drive the results. This is a first step in the process of using detection procedures that include interactive effects of 605 

water and light with other variables. One can also obtain more mechanistic understanding of physiological behavior 

by estimating parameters, such as from Eq. (1), from the observed behavior in Figs. 6 and 7. However, these future 

approaches require more assumptions, which have the added challenge of detecting natural emerging behavior without 

biasing the results with restrictive assumptions. 

The observation-only approach is chosen to best identify the naturally occurring and emerging plant function response 610 

to the environment. Such a study informs others that use model or reanalysis frameworks that have built-in assumptions 

that may confound the results. Nevertheless, the use of PAR from reanalysis here should be updated in the future with 

globally available shortwave radiation observations. Ultimately, we expect that MERRA-2 PAR is not largely 

influenced by built-in interactions with land surface behavior given that it is driven mostly by the atmospheric model 

scheme and assimilation of soundings. 615 

Our analysis may not capture the range of limitations on plant function. For instance, no water- and no light-limitation 

can be seen in the same region (such as tropical forests) where other bio-climatic factors (such as nutrient limitation) 

could influence plant growth. Predominance of water versus light limiting regime might also shift over the growing 

season and between years, particularly in transitional climate regions (Seneviratne et al., 2010). While our analysis is 

not exhaustive in evaluating all possible factors (e.g., vapor pressure deficit, air temperature, nutrients) and their 620 

interactions, it highlights that vegetation function exhibits widespread, nonlinear dependencies on bio-climatic factors 
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that are highly spatially variable. Given that we show vegetation existing in limited and non-limiting states depending 

on the water or light condition, linear correlations of photosynthesis with specific resources provide limited views of 

landscape-scale photosynthesis.  

Note that we repeated results with GOME-2 and OCO-2 SIF, which resulted in similar spatial patterns (not shown). 625 

However, TROPOMI was used given that its higher spatiotemporal coverage was essential for the regime classification 

here. 

5 SummarySumary and Conclusion 

In this study, we map observational evidence for seasonal water-limitation and light-limitation in plant function at the 

ecosystem scale. We analyzed data from three different satellite sensors, namely solarsun-induced chlorophyll 630 

fluorescence from TROPOMI, surface soil moisture from SMAP, and leaf areanormalized difference vegetation index 

from MODIS. In this purely observationally driven study, the combination of the three data streams allowed us to test 

a set of hypotheses on the types and extent of bio-climatic regions that should be classified as under each seasonal 

water- or light limitation. 

To detect where nonlinear controls of water and light on photosynthesis occur, three distinct models were tested 635 

representing three scenarios for each limitation (water and light). The first model is the linear model representing the 

water- or light-limited regime. The second model is the nonlinear two-regime model representing the situation where 

the rate limitation ceases above a certain threshold of soil moisture or photosynthetically active radiation. The 

conditions to select this model are conservative and thus we exhibit confidence in the detection of nonlinear controls 

when this model is selected. The third model is the zero-slope model for the no water or no light limitation regime.  640 

The main results show that soil moisture limits on SIF are found primarily in drier environments while PAR limitations 

are found in intermediately wet regions. Nonlinear two-regime behavior is observed in 73.672.5% of the cases for 

water limitation on photosynthesis, while two-regime detection is much lower at 36.240.5% for light limitation on 

photosynthesis. Nevertheless, these nonlinear relationships are theoretically expected and widely observed across the 

globe for light limitation for the first time here. The widespread nonlinear control of water availability on SIF indicates 645 

that dry anomalies will differentially influence plant function: plants are buffered from reductions in water availability 

when soil moisture is higher, but will strongly respond to unit reduction in water availability under drought conditions. 

SIF sensitivity to PAR strongly increases along moisture gradients, reflecting mesic vegetation’s adaptation to making 

rapid usage of incoming light availability on the weekly timescales investigated here. The transition point detected 
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between the two regimes is connected to soil type and mean annual precipitation for both the SIF-soil moisture and 650 

SIF-PAR relationships. These thresholds have therefore an explicit relation to properties of the landscape, although 

they may also be related to finer details of the vegetation and soil interactions not resolved by the spatial scales here. 

Future work can account for interactions between more variables and more explicit characterization of the nonlinear 

relationships in each pixel. Successful, systematic detection of nonlinear controls of individual environmental variables 

on photosynthesis with the statistical relationships is a first step here. 655 

While our analysis is not exhaustive in not directly evaluating all possible factors (e.g., vapor pressure deficit, air 

temperature, nutrients) and their interactions, it highlights that vegetation function exhibits widespread, nonlinear 

dependencies on bio-climatic factors that are highly spatially variable. Given that we show vegetation existing in 

limited and non-limiting states depending on the water or light condition, linear correlations of photosynthesis with 

specific resources provide limited views of landscape-scale photosynthesis. OurAt the same time, many land-surface 660 

variables are tightly coupled and thus SM and PAR contain significant information about current meteorological 

conditions (Feldman et al., 2019). Thus the information captured in bivariate SIF-SM and SIF-PAR relationships 

represents the real-world coevolution of photosynthesis with these limiting variables as they typically co-evolve with 

strongly-covarying temperature, VPD, etc.  

As such, our study is unique in evaluating (1) the state-dependent, coupled controls on SIF, (2) in detecting the 665 

nonlinear relationships between plant function and water and light, major controls on global photosynthesis. The 

approach is also unique in using, and (3) in being an observational framework instead of using model-derived 

parameters, and can . Our spatial  maps therefore can serve as a benchmark to directly assess the validate the model-

emergent controls on terrestrial gross primary production outputs of from Earth System models. 
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