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Abstract. With a changing climate, it is becoming increasingly critical to understand vegetation responses to limiting
environmental factors. Here, we investigate the spatial and temporal patterns of light and water limitation on
photosynthesis using an observational framework. Our study is unique in characterizing the nonlinear relationships
between photosynthesis and water and light, acknowledging approximately two regime behavior (no limitation and
varying degreedegrees of limitation). It is also unique in using an observational framework instead of using model-
derived photosynthesis properties. We combine data from three different satellite sensors, i.e., selarsun-induced
chlorophyll fluorescence (SIF) from TROPOMI, surface soil moisture from SMAP, and abeve-ground-eanopy

densityvegetation greenness from MODIS. We find both single-regime and two-regime models describe SIF sensitivity

to soil moisture and photosynthetically active radiation (PAR) across the globe. The distribution and strength of soil
moisture limitation on SIF are mapped in the water-limited environments while the distribution and strength of PAR
limitations are mapped in the energy-limited environments. Two-regime behavior is detected in 73% of the cases for
water limitation on photosynthesis, while two-regime detection is much lower at 3641% for light limitation on
photosynthesis. SIF sensitivity to PAR strongly increases along moisture gradients, reflecting mesic vegetation’s
adaptation to making rapid usage of incoming light availability on the weekly timescales. The transition point detected
between the two regimes is connected to soil type and mean annual precipitation for the SIF-soil moisture relationship
and for the SIF-PAR relationship. These thresholds have therefore an explicit relation to properties of the landscape,
although they may also be related to finer details of the vegetation and soil interactions not resolved by the spatial

scales here. The simple functions and thresholds are emergent behaviors capturing the interaction of many processes.
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The observational thresholds and strength of coupling can be used as benchmark information for-tand-surface-and Earth

system models, especially those that characterize gross primary production mechanisms and vegetation dynamics.

1 Introduction
Vegetation plays a large role in the Earth system, modulating land-atmosphere exchanges of water, carbon, and energy

(Beer et al., 2010; Jasechko et al., 2013). With increasing temperatures and changing precipitations, and possibly more

intense drought and heatwaves, these change-induced factors affeetingthat affect vegetation productivity have impacts

on global carbon budgets and food security

«(Gentine et

al., 2019; Huang et al., 2018; Liang et al., 2017). It is therefore imperative to understand how vegetation function

responds to environmental and-rate-tmiting-factors across the globe. More specifically, it is important to understand
how climatic factors create limitations on vegetation function at large spatial scales (Ahlstrom et al., 2015; Zhang et

al., 2020a,b; Li et al. 2022). Such determinations using observed datasets are key for predicting and validating

terrestrial ecosystem productivity responses in Earth system models (Fisher et al., 2018), ultimately improving our
ability to predict the future land surface conditions in the context of global change.

Remote sensing has proven to be a useful tool for mapping and monitoring vegetation function across the globe.
Satellite observations provide the ability to spatially- integrate over the behavior of whole ecosystems, providing scaled
-up behavior relevant to the global carbon cycle and Earth system models. Observations of sun-induced chlorophyll
fluorescence (or commonly called solar-induced fluorescence; SIF)—radiation emitted at wavelengths of 650 to 800
nm from plant photosystems—are valuable indicators of ecosystem photosynthetic activity. In contrast to traditional
vegetation reflectance indices, SIF is sensitive to diurnal and seasonal photosynthetic dynamics and not only to changes
in greenness (Wang et al., 2020). SIF emission is connected to transpiration and photosynthesis--related processes and
these relationships are controlled by intrinsic water use efficiency (WUE) and light use efficiency (LUE). Recent
studies have shown the value of satellite observations of SIF to monitor ecosystem transpiration (Lu et al. 2018; Shan
et al., 2019; Pagan et al., 2019; Maes et al., 2020) and productivity (gross primary production, GPP) (Joiner et al.,
2014; Zhang et al., 2016; He et al., 2020). Since 2009, surface soil moisture (SM) can also be derived globally from

low-frequency microwave frequeney(L-band; 1.4 GHz) radiometer observations (Kerr et al., 2010; Entekhabi et al.,

2010). While microwave measurements are sensitive to the water in the top 5-10 centimeters of the soil profile, it has

been shown that SM estimates averaged over several days are both physically and statistically correlated to deeper root

zone soil moisture (Short Gianotti et al., 2019b; Akbar et al., 2018b; Feldman et al. 2022).
2
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Using these satellite remote sensing developments, several studies have analyzed the influence of bio-climatic factors
on productivity. Madani et al. (2017) found that reanalysis-derived soil moisture (SM), vapor pressure deficit (VPD),
and minimum daily air temperature are significant control factors influencing ecosystem productivity over the globe.
They showed that SIF was positively correlated with soil moisture on monthly time-scales in dry biomes (e.g., Sahel),
whereas in humid biomes (e.g., Amazonia), SIF was negatively correlated with soil moisture and positively correlated
to VPD. While Global Ozone Monitoring Experiment-2 (GOME-2) satellite SIF observations were used as proxy of
productivity, environmental factors were derived from model reanalysis data, which may have model-prescribed
relationships between one another and with productivity. In addition, factors influencing vegetation growth were
limited to temperature and moisture constraints, but other environmental controls such as light limitation were not
addressed.

Similarly, Nemani et al. (2003) have analyzed the impact of global climate changes on vegetation productivity using

global reanalysis data and a production efficiency model. Their results indicate differential controls of light, water, and

temperature on vegeation, but with mainly a reduction of climatic constraints to plant growth during the last two

decades of the past century, with significant increase in net primary production over large regions of Earth such as in
Amazon rain forests. Walker et al. (2020) review theory and evidence suggesting a substantial increase in global
photosynthesis since pre-industrial times driven at least in part by increased atmospheric carbon dioxide concentration
leading to increases in plant water use efficiency.

Recently, using Orbiting Carbon Observatory-2 (OCO-2) SIF and Soil Moisture Active and Passive (SMAP) SM
satellite observations, Gonsamo et al. (2019) found that SM was often a primary limiting factor to plant growth in
drylands and croplands. While based on a low number of concurrent SIF and SM data records, the authors observed
positive and stronger SIF-SM relationships in drier and warmer regions. In their study, nonlinear behaviors were not
addressed.

Using satellite observations of SIF and climate data sets, Liu et al. (2020) found that SM has a dominant role in
determining dryness stress on ecosystem production over most land vegetated areas. However, the study was primarily
interested in moisture effects, having investigated the relative role of SM and VPD in limiting ecosystem production.
Short Gianotti et al. (2019a) showed that SIF-SM relationships match satellite-derived GPP-SM relationships in both
time and space, with little-to-no SIF-SM relationship in the light-limited humid regions of the contiguous United States
and increasing response strength with aridity. Water-limited regions showed strong increases in ecosystem-water use

efficiency (daily SIF or GPP divided by latent heat flux) during SM dry spells.
3
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Studies investigating global drivers of photosynthesis tend to focus on linear relationships between these variables,
which potentially neglects nonlinear conditions where photosynthesis is not-limited (Gonsamo et al., 2019; Teubner
et al., 2018). For example, the light use efficiency (LUE) model is widely used in Earth system modeling to simulate
GPP as a linear function of absorbed light (Monteith, 1972). It is becoming more evident that nonlinear plant function
behavior exists, especially depending on soil moisture (under dry and wet moisture states) (Feldman et al., 2018; Short
Gianotti et al., 2019a; Bassiouni et al., 2020). Those that evaluate nonlinear relationships do so regionally or globally

and do not evaluate on a per-pixel basis (Madani et al., 2017). The global patterns of SIF relationships with water and

light across climates and biomes remains under-characterized._Yet, the influence of environmental factors on

vegetation productivity (and carbon cycle) has both weather timescale and seasonal timescale (relative timing of warm

and wet seasons). Both timescales are important and exist in nature. Ecosystem responses on these different timescales

are to date not well understood (Linscheid et al., 2020).

The objective of this study is to evaluate the environmental factors that limit surface water and carbon exchanges over
vegetated areas. Specifically, we ask: what are the conditions under which SIF is limited by water and light in space
and time? Can we detect first-order nonlinear controls of water and light on photosynthesis as suggested from theory?
If so, are there climatic controls on the water and light availability thresholds that divide regimes of SIF nonlinear
responses to environmental variables? Here, we use an observation-based framework to evaluate nonlinear
relationships between SIF and available water and light. Observations are key to provide benchmark information for
parameterizing effects of water-stress or light-limitation on ecosystem productivity in Earth system models. Modeled
vegetation products can implicitly or explicitly parameterize the relationships between SIF and water and light that we
intend to evaluate. In this observationally driven study, we combine three data streams — sun-induced chlorophyll

fluorescence (SIF) from TROPOMI, surface soil moisture from SMAP, and leafareanormalized difference vegetation

index (FEAINDVI) from MODIS—to globally monitor observational evidence for seasonal water-limitation and light-

limitation in plant function.

2 Data

Satellite-based data were collected and analyzed for our main per-pixel approach for a 2.5-year period from April 2018

to September 2020 (determined by the concurrently available TROPOMI and SMAP data). Climatology information

from decade-long time series were used as auxiliary datasets.
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2.1 Global Satellite Data

2.1.1 TROPOMI Solar-Induced Fluorescence

Sun-induced chlorophyll fluorescence (SIF, mW m= nm! sr'!") data are obtained from the TROPOspheric Monitoring
Instrument (TROPOMI) aboard the Sentinel-5 Precursor (Kohler et al., 2018). TROPOMI provides optical
observations with a spectral resolution of 0.5 nm, a spatial resolution of 7 x 3.5 km? (along track x across track) at
nadir, and almost global coverage within 1 daysday. Sentinel--5 Precursor has an overpass time near 13:30 local solar

time. SIF is retrieved in a spectral window ranging from 743 to 758 nm using the method of Kohler et al. (2018). Zere

values(non-vegetated-areas)were-filtered-out-SIF observations with large cloud cover (cloud fraction larger than 0.8)

were filtered out as described in Kohler et al. (2015). As a robustness test, we additionally use SIF data from the Global

Ozone Monitoring Experiment-2 (GOME-2) instrument aboard the MetOp-A satellite, on the period of April 2015 and

March 2019, the longest period for which SMAP and GOME-2 are jointly available (Joiner et al. 2013).

2.1.2 SMAP Soil Moisture

Surface soil moisture (SM, cm?® cm™) data (top 5 cm) are from the L-band (1.4 GHz) microwave radiometer aboard the
NASA Soil Moisture Active/Passive (SMAP) satellite (Entekhabi et al., 2010). Microwave observations from the 6
a.m. descending overpasses were used with a spatial resolution of 36 x 36 km? and a global coverage within 3 days.
Retrievals of soil moisture were obtained using the multi-temporal dual channel algorithm (MT-DCA) (Feldman et al.,
2021; Konings et al., 2016). The MT-DCA algorithm estimates vegetation attenuation and scattering from an algorithm
with temporal regularization. It does not use any information on land-use and ecosystem classifications which would
bias the results otherwise. While the microwave measurements are commonly known to reflect the top 5 cm, several
lines of evidence suggest SM can viably represent relevant root zone dynamics in most cases. First, under wetter
conditions, SMAP SM is known to closely correlate with rootzone dynamics, especially in the upper 50 cm (Short
Gianotti et al., 2019b; Akbar et al., 2018b). Under drier conditions, microwave emission depth originates from deeper
than 5 cm, down to a meter in some cases depending on soil properties (Njoku and Entekhabi 1996). Furthermore,
many plants, especially species in semi-arid grasslands where we mainly evaluate SIF-SM, have rooting distributions
skewed to the upper layers (<30cm) with preferential uptake of water in the upper soil layers (Elanagan-et-al;1992:

als - My : ; an; ((Flanagan et al., 1992: Meinzer et al., 1999: Miguez-Macho and

Fan, 2021). As such, SMAP, in fact, effectively senses soil layers deeper than 15-25 cm, relevant to global root water

uptake especially in water-limited ecosystems (Feldman et al. 2022).

5
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2.1.3 MODIS EeafAreaNormalized Difference Vegetation Index (NDVI)

Leaf-area—index (LAl —m> m~Normalized Difference Vegetation Index (NDVI) data come from the Moderate

Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Terra satellite. Retrievalsof EAINDVI

data between ApritJanuary 1, 260452003 and September30;,2649December 31, 2021 were obtained from the Level 3

MODIS

product;

Myneni—et—al—2045)—  which is a cloud-free 16-day 0.05 degree dataset (MODI3CI1,

https://Ipdaac.usgs.gov/products/mod13c1v006/). We linearly resampled the 0.05° grid to the 36 km EASE2 grid.

Then, we linearly interpolated the 16-day NDVI data to daily values to determine growing season start and end dates

within each pixel.

2.2 Ancillary Data for Analyses
2.2.1 Mean Annual Precipitation and Soil Type

Annual mean precipitation areis obtained by averaging annual means between 2010 and 2020 from NASA’sthe

Integrated Multi-satellitE Retrievals for GPM (IMERG) final run product combining data from the Global Precipitation

Measurement (GPM) mission—betweenAprit—2015—and-Mareh-31,2019satellite constellation (Huffman—etals
2049y(Huffman et al., 2019). Sand and clay fraction information was also obtained im;,—2643)from the

SoilGrids250m database (Hengl et al., 2017). These metrics were used to evaluate climate gradients of spatial maps

generated in the analysis.

2.2.2 MERRA-2 Downwelling Photosynthetically Active Radiation

Daily and downwelling photosynthetically active radiation (PAR, W m-2) data are provided by the NASA Modern-
Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) global reanalysis (GMAO, 2015).
The spatial resolution is 0.5°x 0.625°. While PAR is an observation-driven modelled product, it is not expected to have
strong relationships with vegetation function prescribed within the model;-butrather-be because it is driven mainly by

solar seasonality and assimilated atmospheric fields such as cloud cover.

2.3 Spatial and Temporal Aggregations

The SIF, PAR and EAINDVI data were regridded on a linear weighting basis to the EASE-2 SMAP grid (36 x 36
km?). The SIF, SM and PAR data were also aggregated temporally to produce 8-day composites. The temporal
aggregation was performed to smooth SIF data, with 8-day aggregation selected to match the exact repeat cycle of

6
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SMAP. To increase sample size for the correlation maps and the regime classification, the SIF, SM and PAR data at
36 x 36 km? resolution are pooled in 2 x 2 pixel boxes, for each 8-day period. In the following section, all maps have

therefore a spatial resolution of 72 x 72 km?.

3 Methodology
3.1 Growing Season Estimation
Since we analyze the seasonal water-limitation and light-limitation of plant function only during the growing season,

the growing season for each global pixel was first defined using EAINDVI climatology. The EAINDVI climatology

was developed by averaging fourand-a-halfl9 years (Aprit1520452003 to September30,20492021) of EAINDVI

data into a mean climatology and smoothing using a 90-day moving average filter (Fig. S1). The growing season was

then-defined as-the six-monthperiod-centered-onby first finding the peak of the EAINDVI climatology- to identify the

main growing season and then finding the green up and brown down times as when NDVI reaches its median before

and after this peak. This results in growing seasons eenteredwith a peak on DOY between 100 to 275 in the northern

hemisphere and DOY typically 0 to 50 and 300 to 365 in many regions of the southern hemisphere (Fig. 1). There are
a number of different approaches to estimating plant phenology based on satellite measurements (e.g. see Bush et al.,
2018; Peano et al., 2019; Morellato et al., 2018; Moulin et al., 1997; Zhang et al., 2006). Ultimately the applied
technique depends on the application needs, and the approach followed here is sufficient to characterize the active
growing season encompassing the primary water and energy interactions with the carbon cycle. It is worth noting that

for some regions, several peaks could be observed. The peak with the maximum EAINDVI was selected corresponding
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to the “primary growing season”, such as in the tropics, which are characterized by a smaller seasonal amplitude. We

additionally tested shorter growing seasons to ensure that shoulder seasons did not influence results.

195
200
Figure 1: Growing season determination based on MODIS satellite leafareanormalized difference vegetation index. Day of
the year for the phenological peak based on MODIS EAINDVI climatology. White shading indicates EAINDVI was not
205 available (bare-soil or water bodies).
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3.2 Conceptual Basis
While chlorophyll fluorescence originates from energy partitioning at the photosystem (leaf) level, SIF presents as an

aggregated landscape variable at large spatial and temporal scales (as considered in this study), SH-appears-as-an

ageregated-landseape-variable:). It is a function of the absorbed PAR (APARcn = PAR -x fPARcp, with fPARch being
the fraction of PAR absorbed by chlorophyll pigments and mainly controlled by vegetation cover fraction, LAI, leaf
chlorophyll content, and plant structure) and the fluorescence quantum yield (¢r, mainly controlled by leaf biochemical
properties and is dependent on plant health and water status), both correlated with photosynthetic productivity and
strongly influenced by water and energy (light) availability (Joiner et al., 2014; Jonard et al., 2020; Magney et al.,
2020):

SIF(A) = PAR -x fPARcH X ¢r(h) X fese(h) “X Tam(R) , M

with f.,c being the fraction of SIF (at wavelength A) emitted by the chloroplast that leaves the canopy and Tam being
the fraction of SIF that also passes through the atmosphere (Tam).

The behavior of the factors in Eq. (1) differ strongly throughout the globe. For instance, annual croplands tend to show
large variations in fPARcy and fe,c during the growing season, while these factors are expected to remain more constant
over evergreen forests. The value of ¢r is expected to react to the ambient stress conditions. Water- or light limitation
comprises the combination of all these components. Light- and water limited photosynthesis will first impact the
photosynthetic machinery, affecting ¢r. A prolonged water or light limited regime will manifest in primary production
and biomass growth, and therefore on fPARcy and on fe.. Evaluating the combination of the parameters in Eq. (1)
provides insights on the limiting factors of the plant growth. Futhermore, it is expected that many of these parameters
are nonlinearly related to water and light limitation (Xu et al., 2021).

We emphasize that it is not our goal to investigate all possible limiting factors on photosynthesis (e.g., temperature,
nutrient limitation), nor how they interact to create states where one or both variables is limiting. A more
comprehensive analysis can classify states along multiple axes of climatic factors. Our single axes classification
provides a first step towards such classifications in detecting globally where, to a first-order, nonlinear relationships
between SIF and water and/or light emerge. It also determines observed spatial variations of the types of climatic factor
relationships with SIF. The effects of water and light are at least expected to capture the major global limiting pathways

based on previous work (Madani et al. 2017).



235

240

245

250

255

260

3.3 Correlation Maps

As a zeroth-order analysis motivating our subsequent evaluation of SIF, we first evaluate the Pearson correlation
coefficient between SIF and SM (Fig. 2) and SIF and PAR (Fig. 3) using our §-day aggregations of each variable. Only
values from the growing season are used. In this case, factors that directly limit SIF appear as positively correlated
with SIF (in blue in Fig. 2 and 3). Ultimately, the correlation maps guide subsequent analysis of more detailed two-
regime behavior. The SIF-SM correlation map (Fig. 2) shows large regions of water limitation (blue regions), such as
the Sahel, Eastern and Southern Africa, Eastern Brazil, Southern Asia, and Eastern Australia. The SIF-PAR correlation
map (Fig. 3) shows large regions of positive correlation (blue regions), such as much of the United States, Southern
Brazil, Europe, and Russia, which are negatively correlated with SM in Fig. 2. Green et al. (2017) provide a more in-
depth analysis of linear correspondences between vegetation growth and land/atmosphere variables among others.
Low SIF-SM correlations occur mainly in densely forested regions where soil moisture estimation uncertainty is largest
and potentially surface soil moisture is less of a control on vegetation function than other factors. Regions in blue in
Fig. 2 are generally in red in Fig. 3, revealing that SM and PAR are typically negatively correlated (Fig. S2). This is

due to synoptic-scale correlations between cloud cover and H-soil moisture (positive) and 2)between cloud cover and

shortwave radiation (negative), as well as seasonal-scale alignment of growing-season peaks with peaks in the
primarily-limiting component: light or water. Given these considerations, in the remainder of our analysis, we do not
evaluate negative relationships between SM (or PAR, separately) and SIF, which could reflect a spurious relationship
due to limitation from the other variable. We expect that positive correlations between SM (or PAR) and SIF reflect
causal relationships from SM (or PAR) to photosynthesis in limiting environments. We similarly hypothesize that
negative correlations between SM and SIF indicate light-limitation or a lagged response of root uptake and increased

PAR following precipitation events.

10
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Figure 2: TROPOMI sun-induced chlorophyll fluorescence (SIF) and SMAP MT DCA soil moisture (SM) growing season
correlation. Pearson correlation coefficient of 8-day averages. Regions of statistical significance (P < 0.05) are indicated with
275 stippling. The stippling corresponds to distributed areas of statistically significant grid points and therefore each statistically

significant pixel may not have its own stipple symbol.
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Figure 3: TROPOMI sun-induced chlorophyll fluorescence (SIF) and MERRA-2 photosynthetically active radiation (PAR)
growing season correlation. Same conventions as Fig. 2.
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3.4 Regime classification

Pearson correlation provides information about the degree to which a variable linearly limits SIF. However, in many
cases, nonlinear relationships are present where the strength of limitation may decrease above a certain threshold of
soil moisture or photosynthetically active radiation (e.g., see Fig. 45). This therefore can bias linear correlations and
obscure their interpretation in Figs. 2 and 3 as well as previous studies (Gonsamo et al. 2019). We approximate this
relationship here as a two-regime linear model to characterize conditions when water or light limit SIF. In some
instances, only one regime may be observed for either water or light. Therefore, three distinct models were tested
representing three scenarios for each limitation (water and light) (Fig. 54) as in previous studies that evaluated surface
energy fluxes (Akbar et al. 2018a; Feldman et al. 2019).

The following models are used for SM and PAR separately and independently. Only model selections are completed
in the pixels where the given variable is positively correlated with SIF (Figs. 2 and 3). If a given pixel shows a positive
SIF correlation with both SM and PAR, then models for both SM and PAR are estimated. The first model is the linear
model representing the water- or light-limited regime (Fig. 4a and d). Here, the conditions are always characterized by
water- or light-limitation without another regime of behavior detected. An increment of SM or PAR always impacts
photosynthesis and therefore the SIF. The second model is the full two-regime model representing the two-regimes of
water- and light-limitation (Fig. 4b and e). Only when this regime is determined a moisture or light threshold will be
estimated. Below this threshold, the given variable limits SIF. Above the threshold, an increment of SM or PAR will
not affect photosynthesis. The third model is the zero-slope model for the no water or no light limitation regime (Fig.
4c and f). In this case, plant growth is not sensitive to water or light within the variability observed at that location.

A model is selected based on the Bayesian Information Criterion (BIC) in order to avoid over-fitting among models
shown in Fig. 4. Example pixels are shown in Fig. 5 where the two-regime model meodelis selected by this method.

Note that we only perform the analysis on pixels with at least 20 pairs of SIF-SM or SIF-PAR.

12
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Figure 4: Schematics of model types for the SIF-SM and SIF-PAR regimes. Bayesian Information Criterion (BIC) is used
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4 Results and Discussion
In this section, we present the results of the selection of the best-fit model (based on the Bayesian information criterion)
among the three model types described above (linear, two-regime or zero-slope model) for each hmitationfactor’s

(water and light):) limitation on SIF.

4.1 Water-limited regimes

The spatial distribution of the selected model types, the corresponding model slopes, and the frequency distribution of
model threshold for the SIF-SM relationship are shown in Fig. 6. Several regions with a two-regime water-limitation
can be clearly identified, such as most of sub-Saharan Africa (except the Congo Basin), Southern Asia, Eastern
Australia, Eastern Brazil, and Mexico. Few regions are identified as having no water-limitation meaning that while

their growing season SIF-SM correlation is positive, it does not aid the fit in model estimation to have a non-zero

slope. This likely means that the SIF-SM slope is positive, but near zero. Amengthe pixelsshowingawater imitation

—Arid and semi-arid regions, with sparsely

vegetated areas, show expected water limitation patterns._ Among the pixels showing a water limitation on

photosynthesis, 72.5% were characterized by a two-regime behavior, suggesting widespread nonlinearity of the soil

moisture controls on vegetation. Therefore, at a given water-limited location, a unit loss of soil moisture typically

confers more plant water stress when soil moisture is drier on average than when it is wetter.

Slope values are the highest (up to 10 [mW m ™2 nm™' sr™!] per volumetric water content [m* m™]) in the Sahel region,

Miombo woodlands south of the Congo Basin (Angola, Zambia, Mozambique), India, the Mekong Basin, and Eastern

Brazil. These regions correspond well to the tropical climate, sub-climate savannah, of the Képpen-Geiger climate

classification (Beck et al., 2018). In these regions, in the water-limited regime. a small inerementincremental increase

of water-in-the-soil moisture corresponds to a large increase in vegetation productivity and therefore the expected 8-
day mean fluorescence emission. The high slope values of the regression between SIF and SM in drylands is mainly
due to the clear relationship between photosynthetic efficiency, and therefore also ¢r, and water availability. As a
feedback of the increase in photosynthetic activity, the plant green biomass increases, leading to an increase in fPARcy.
The latter effects are especially determined by the water supply over drylands (Moreno-de las Heras et al., 2015). SIF
observations allows te-menitermonitoring of the combined biomass and photosynthetic efficiency effect. Values of the
modelsoil moisture threshold are between 0 and 0.45 m* m™ with a median around 0.1-0.2 m* m- (Fig. 6¢ and Fig. S3a
for the spatial distribution). -When the soil moisture state is above this threshold, SIF has minimal to no water

14
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limitation. It is worth noting that the threshold value might be harder to detect for regions with a low slope value.

Furthermore, the SM thresholds are correlated (across space) with mean-annual-precipitation{p—025P<0.01and

with-elay-fraction; p—=—037-P-<0.01-with-sand fraetion).soil texture (p = 0.37, P <0.01 with clay fraction; p = -0.40,
P <0.01 with sand fraction). Suchs correlations were similarly observed by Denissen et al. (2020) over Europe. SM

thresholds were also broadly assessed based on vegetation types using International Geosphere-Biosphere Program

(IGBP) land cover classification information. There is a tendency for the forested and tree covered IGBP classifications

to have higher soil moisture thresholds (Fig. S6a), though it is still unclear whether the drivers of the soil moisture

threshold are dominated by vegetation characteristics or characteristics of wetter mean climate conditions.
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Figure 6: Estimated SIF-soil moisture relationship features. (a) Model type (W.-L.: Water-Limited; 2-R. W.-L.: Two-
Regime Water-Limited; No W. L.: No Water Limitation), (b) model slope [nW m™ nm™! sr™!] in the water--limited regime,
and (c) model threshold [m* m™3] for the SIF-SM relationship. White shading denotes areas where the SIF-SM correlation
is not positive—i.e., where SIF is not increasing with SM—or areas where no collocated SIF;-SM; and PARSM records are

available.

4.2 Light-limited regimes

The spatial distribution of the selected model types, the corresponding model slopes, and the frequency distribution of
model threshold for the SIF-PAR relationship are shown in Fig. 7. In contrast to the SIF-SM relationship, a light-
limitation regime is observed in many parts of the northern hemisphere, mainly in Southern Canada, the Western U.S.,
the U.S. East coast, Western and Central Russia, the Balkans, and the Baltic region. Several regions are identified as
having a break point between two-regimes of light (non-) limitation, such as Western Europe (France, Germany;-Spain,

Italy, Great-britain), Northern Russia, the U.S. Corn Belt, South-Eastern South America and South-Eastern Africa.

Among the pixels showing a light limitation on photosynthesis, only 36-+40.5% were characterized by a two-regime
behavior. These regions of two-regime light limitation and threshold behavior is novel given that two-regime light
influences on photosynthesis has not been observed or considered at large-scales previously.

Slope values are highest (up to 0.015 [mW m ™2 nm™! sr™'] per [W m?]) in the midlatitudes. specifically in the Great

Lakes regions of North America, most of Europe, Southern Russia, Northern Argentina, and Southern Brazil. These
regions correspond well to the cold and temperate climates, sub-climate without dry season (hot or warm summer), of
the Koppen-Geiger climate classification (Beck et al., 2018). A large proportion of these regions is used for annual
crop cultivation. Their green biomass, and therefore the fPARcp, is strongly affected by the (cumulative) PAR of the
growing season. This explains a large part of the SIF-PAR relationship over these regions. In these regions, a small
increment of light will substantially increase the vegetation productivity and therefore the expected fluorescence

emission. This suggests that the Calvin cycle of these plants are adapted to strongly respond to light availability

compared to other regions. By contrast, in the high latitudes of the northern hemisphere, slope values are the lowest,

probably due to lew-vegetation-densities-or-the-presencelower temperatures and limited seasonal changes in biomass

of boreal evergreen-forestsecosystems. Values of the estimated PAR threshold are between 0 and 140 [W m?] with a

maximum occurrence around 100-110 [W m?] (Fig. 7C and Fig. S3b for the spatial distribution). When light
availability is above this threshold, SIF has minimal to no light limitation. Such threshold behavior is theoretically

expected based on the nonlinear relationship between incoming shortwave radiation and plant carbon fixation (Jones,
17
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2014). Specifically, nonlinear relationships between SIF and PAR are expected because many plant cellular processes

are strongly light-limited in low light environments, but become maximized in brighter environments (Jones, 2014).

For example, the light response curve fundamentally defines the rate of leaf-level carbon fixation that is limited under

low light environments, but becomes Calvin cycle limited (i.e., carboxylation limiting) in brighter environments where

more light on marginally produces more carbon uptake (Hermann et al., 2020). Laboratory experiments have shown a

decrease in leaf-level fluorescence yield in high light environments (Wang et al., 2018). Similarly, De Canniére et al.

(2022) observed a near-linear behaviour of canopy-level SIF emission under low light conditions, while saturating at

higher light values. Our threshold and slope estimates here are some of the first large scale observations of these

fundamental light-limiting photosynthesis processes.

The PAR thresholds are additionally correlated (across-space)-with-mean-annual-preeipitation{(p—=031,P <001 and

#)-and-with soil texture (p = 0.2825, P < 0.01 with

clay fraction;p=—0-06,-P<0.01-with-sand-fraction). We note that PAR may relate strongly with surface temperature
at seasonal scales in the northern hemisphere and thus relationships here may include the influence of surface
temperature (Buermann et al., 2018; Zhang et a., 2020a). For example, the high SIF slope in the northern hemisphere

midlatitudes may be inflated because we do not partition temperature limitation, which requires future investigation.
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Figure 7: Estimated SIF-photosynthetically active radiation relationship features. Model type (L.-L.: Light-Limited; 2-R.
L.-L.: Two-Regime Light-Limited; No W. L.: No Light Limitation), model slope [10~ nm™! sr™!] in the light-limited regime

and model threshold [W m?] for the SIF-PAR relationship. Same format-as Fig. 6White shading denotes areas where the

SIF-PAR correlation is not positive—i.e., where SIF is not increasing with PAR—or areas where no collocated SIF and PAR

records are available.

4.3 Relationships of SIF limitation characteristics with mean moisture availability

SIF sensitivity to soil moisture shows a relationship with mean annual precipitation (Fig. 8a; p =0.2232, P <0.01 with
slopes corresponding to sloped part of the two-regime model and the one-regime linear model). Locations with peak
slopes occur in the wetter environments such as in India, Southeastern Asia, Angola, and Mozambique. These larger
slopes are likely related to the degree to which vegetation responds to mean moisture and individual storms, given the

weekly timescales of this analysis (Feldman-et-al; 2018 Mauvrer-et-al52020).(Feldman et al., 2018). It also indicates

that these wetter regions may have a stronger plant water stress response when the land surface becomes drier below

the soil moisture threshold.

SIF sensitivity to PAR shows an even stronger relationship with annual precipitation (Fig. 8b; p = 0.4244, P <0.01),
especially for regions below 1,000 mm yr-1 (Fig. 8b; R = 0.4946, P < 0.01). Sensitivities also peak at approximately
1,000 mm yr'!. The increasing sensitivities may similarly be an adaptation of the vegetation to utilize light availability,
given that moisture is typically less limited in these regions.

Furthermore, both SM and PAR thresholds are correlated (across space) with mean annual precipitation (Fig. 8c and

d: p=0.31 and 0.29, respectively, P <0.01; p=0.14 and 0.37, respectively, P <0.01, when considering only regions

below 1.000 mm yr').
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Figure 8: (a) SIF-SM slopes [mW m™2 nm™! sr™!}-and], (b) SIF-PAR slopes [10-> nm™! sr™!], (¢) SIF-SM threshold [m* m~3]

and (d) SIF-PAR thresholds [W m~’] binned as a function of mean annual precipitation [mm yr'] obtained from the Glehal

PreecipitationMeasurement(GPM) satellite mission—Slopes—value—correspondsconstellation. Slope values correspond to

sloped part of the two-regime model and the linear model-_(see Fig. 4). Each boxplot bin includes the same number of data

points (3102915, 1548, 664 and 1459629 data points for the-boxplots with-the SHE-SM-slopes(a), (b). (c), and the- SH-PAR

slopes;(d). respectively). Box edges are the 25th and 75th percentiles of the distribution bounding the median (red line), and

21




540

545

550

555

560

whiskers extend to extrema (maximum and minimum). Beth-theThe median SIF-SM slepeand SIF-PAR slopes and the

median SIF-SM and SIF-PAR slepethresholds all increase with increasing mean annual precipitation.

4.34 Robustness; and Limitations;-and Future Werk

We-emphasize-that-we-tse-the-two-regime-model The main sources of uncertainty in this study include: 1) observation

errors from the data streams (SIF, SM, PAR), 2) growing season definition errors, 3) model structural and parameter

estimation errors, and 4) lack of consideration of all SIF-limiting factors. Here, we discuss each of these error sources

and conduct several tests to evaluate the robustness of results to these errors including repeating the analysis on a

different satellite SIF dataset, on alternative growing season definitions and on deseasonalized variables.

To assess the effect of observation errors, we first repeat the analysis with GOME-2 SIF data, which resulted in

comparable spatial patterns and thus robustness of the TROPOMI-based results (see Fig. S4). However, the main

differences are reduced classification of the regimes with more parameters where the linear and two-regime models

are selected less often. This is mainly because GOME-2 SIF results in fewer data pairs which reduces the ability for

the model selection to select more parameterized models. TROPOMI was used as the main dataset given that its higher

spatiotemporal coverage and lower retrieval noise were essential for the regime classification. We avoid evaluating

alternative soil moisture and PAR datasets given that the study would result in a combinatorial analysis which we wish

to avoid. Furthermore, it is more appropriate to evaluate alternative SIF measurements because SIF is a weak signal

with relatively larger measurement errors given its retrieval from noisy atmospheric properties compared to lower error

microwave remote sensing techniques for soil moisture, for example (Jonard et al., 2020; Kohler et al., 2018).

These results are based on a growing season with the start and end defined using the median NDVI (accounting for

asymmetrical growing season with dynamic length of about six months). We found that spatial patterns of results were

qualitatively the same when repeating the analysis considering a fixed growing season of 3 and 4 months centered on

the peak of the NDVI climatology (not shown). Therefore, the results are not a strong function of the growing season

definition and are not greatly influenced by transitional time periods before and after the growing season that may be

included in our definition. The fact that we condition on the growing season and do not assess the full year removes

some influence of seasonality on th results, where too much influence of seasonality may amplify the determined
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connections between SIF with water and light. We acknowledge that this approach may miss secondary growing

seasons in some regions.

Uncertainties from retrieval error can also be evaluated by calculating the coefficient of determination (R?) and the

coefficient of variation (CV) of the model fit as shown in Fig. S5. The R? values are generally well above 0.5 in regions

where linear and two-regime models are found, and are especially higher in regions with high SIF sensitivity to SM or

PAR (higher slopes in Figs. 6b and 7b).

There is potential for structural errors and consequent parameter estimation errors in assuming a piecewise linear model

fits a more complex non-linear relationship that has curvature. As such, this creates uncertainties in soil moisture

thresholds, for example. Indeed, soil moisture threshold variances determined using the same piecewise linear

approaches show robustness of the method with bootstrapped standard deviations less than 0.01 m?/m? suggesting the

relationship curvature may not bias thresholds greatly (Feldman et al. 2019). Nevertheless, we emphasize the

importance of the threshold detection, apart from its numerical value, which occurs despite the presence of curvature.

The two-regime model is appropriate given known nonlinear relationships that drive environmental influence on plant

function (Jarvis, 1976). As such, studies that do not acknowledge the different regimes and assume linear SIF
relationships with the environment would bias estimations of SIF-SM or SIF-PAR relationships. We—therefore

-Our results here suggest that with widespread

detection of nonlinear SIF relationships with SM and PAR, the commonly used linear correlations and slopes between

these variables, ignoring the nonlinearity, will create biases in evaluating water and light limitation. Finally, we repeat

the results using AIC rather than BIC to test the selection frequency of the more complex model forms (i.e., linear

model and two-regime model). We find that our use of BIC is conservative in selecting more complex models. AIC

finds a much more frequent detection of more complex models at a greater risk of overfitting the data over that of BIC

(not shown).

WeNot assessing all limiting variables including temperature and nutrient limitations is a drawback of the analysis.

Our analysis indeed misses some limitations on plant function. For instance, no water- and no light-limitation can be
seen in the same region (such as tropical forests) where other bio-climatic factors (such as nutrient limitation) could
influence plant growth. Predominance of water versus light limiting regime might also shift over the growing season
and between years, particularly in transitional climate regions (Seneviratne et al., 2010). However, we also note that

the raw SIF-SM relationships, and not their deseasonalized relationships, include coupling from many factors beyond

just water-limitation on SIF. We repeat the computation of linear slopes in the limiting regime using deseasonalized
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variables and find that the relationships are still positive, but are reduced (not shown). Because deseasonalized

variables will show a more direct, isolated connection between SIF and each of these limited variables, this analysis

indicates that SM and PAR do have direct influences on SIF. However, the higher magnitude slopes in their raw

interactions indicate that other factors and their interactions with water and light limitation are included in the SIF-SM

and SIF-PAR relationships in addition to the influence of SM and PAR alone. As such, we argue in favor of determining

the SIF-SM and SIF-PAR relationships with the raw (non-deseasonalized) variables to assess the state dependence and

coupling of multiple limiting factors on SIF. These overall relationships provide a test for model emergent behavior

and coupled coevolution of multiple variables and their influence on SIF.

4.5 Future Work

Finally, we aimed to only detect and observe the emerging relationships in nature on how photosynthesis is limited by
water and light. The procedure was purposefully naive and required few assumptions, allowing the observations alone
to drive the results. This is a first step in the process of using detection procedures that include interactive effects of
water and light with other variables. One can also obtain more mechanistic understanding of physiological behavior
by estimating parameters, such as from Eq. (1), from the observed behavior in Figs. 6 and 7. However, these future
approaches require more assumptions, which have the added challenge of detecting natural emerging behavior without
biasing the results with restrictive assumptions.

The observation-only approach is chosen to best identify the naturally occurring and emerging plant function response
to the environment. Such a study informs others that use model or reanalysis frameworks that have built-in assumptions
that may confound the results. Nevertheless, the use of PAR from reanalysis here should be updated in the future with
globally available shortwave radiation observations. Ultimately, we expect that MERRA-2 PAR is not largely

influenced by built-in interactions with land surface behavior given that it is driven mostly by the atmospheric model

scheme and assimilation of soundings.
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5 SummarySumary and Conclusion

In this study, we map observational evidence for seasonal water-limitation and light-limitation in plant function at the
ecosystem scale. We analyzed data from three different satellite sensors, namely selarsun-induced chlorophyll

fluorescence from TROPOMI, surface soil moisture from SMAP, and leafareanormalized difference vegetation index

from MODIS. In this purely observationally driven study, the combination of the three data streams allowed us to test
a set of hypotheses on the types and extent of bio-climatic regions that should be classified as under each-seasonal
water- or light limitation.

To detect where nonlinear controls of water and light on photosynthesis occur, three distinct models were tested
representing three scenarios for each limitation (water and light). The first model is the linear model representing the
water- or light-limited regime. The second model is the nonlinear two-regime model representing the situation where
the rate limitation ceases above a certain threshold of soil moisture or photosynthetically active radiation. The
conditions to select this model are conservative and thus we exhibit confidence in the detection of nonlinear controls
when this model is selected. The third model is the zero-slope model for the no water or no light limitation regime.
The main results show that soil moisture limits on SIF are found primarily in drier environments while PAR limitations
are found in intermediately wet regions. Nonlinear two-regime behavior is observed in 73-672.5% of the cases for
water limitation on photosynthesis, while two-regime detection is much lower at 36:240.5% for light limitation on
photosynthesis. Nevertheless, these nonlinear relationships are theoretically expected and widely observed across the

globe for light limitation for the first time here. The widespread nonlinear control of water availability on SIF indicates

that dry anomalies will differentially influence plant function: plants are buffered from reductions in water availability

when soil moisture is higher, but will strongly respond to unit reduction in water availability under drought conditions.

SIF sensitivity to PAR strongly increases along moisture gradients, reflecting mesic vegetation’s adaptation to making

rapid usage of incoming light availability on the weekly timescales investigated here. The transition point detected
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between the two regimes is connected to soil type and mean annual precipitation for both the SIF-soil moisture and
SIF-PAR relationships. These thresholds have therefore an explicit relation to properties of the landscape, although
they may also be related to finer details of the vegetation and soil interactions not resolved by the spatial scales here.
Future work can account for interactions between more variables and more explicit characterization of the nonlinear
relationships in each pixel. Successful, systematic detection of nonlinear controls of individual environmental variables
on photosynthesis with the statistical relationships is a first step here.

While our analysis is not exhaustive in not directly_evaluating all possible factors (e.g., vapor pressure deficit, air

temperature, nutrients) and their interactions, it highlights that vegetation function exhibits widespread, nonlinear

dependencies on bio-climatic factors that are highly spatially variable. Given that we show vegetation existing in

limited and non-limiting states depending on the water or light condition, linear correlations of photosynthesis with

specific resources provide limited views of landscape-scale photosynthesis. OurAt the same time, many land-surface

variables are tightly coupled and thus SM and PAR contain significant information about current meteorological

conditions (Feldman et al., 2019). Thus the information captured in bivariate SIF-SM and SIF-PAR relationships

represents the real-world coevolution of photosynthesis with these limiting variables as they typically co-evolve with

strongly-covarying temperature, VPD, etc.

As such. our study is unique in evaluating (1) the state-dependent, coupled controls on SIF, (2) in detecting the

nonlinear relationships between plant function and water and light, major controls on global photosynthesis-—TFhe

appreach—is—also—unigue—n—using, and (3) in being an observational framework instead of using model-derived

parameters;-and-can-. Our spatial maps therefore can serve as a benchmark to directly assess-the-validate the model-

emergent controls on terrestrial gross primary production eutputs-ef-from Earth System models.
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