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Abstract. Dimethylsulfide (DMS) emitted from the ocean makes a significant global contribution to natural marine aerosol 

and cloud condensation nuclei, and therefore our planet’s climate. Oceanic DMS concentrations show large spatiotemporal 

variability, but observations are sparse, so products describing global DMS distribution rely on interpolation or modelling. 

Understanding the mechanisms driving DMS variability, especially at local scales, is required to reduce uncertainty in large 15 

scale DMS estimates. We present a study of mesoscale and sub-mesoscale (<100 km) seawater DMS variability that takes 

advantage of the recent expansion in high frequency seawater DMS observations and uses all available data to investigate the 

typical distances over which DMS varies in all major ocean basins. These DMS spatial variability lengthscales (VLS) are 

uncorrelated with DMS concentrations. DMS concentrations and VLS can therefore be used separately to help identify 

mechanisms underpinning DMS variability. When data are grouped by sampling campaigns, almost 80% of the DMS VLS 20 

can be explained using the VLS of sea surface height anomalies, density, and chlorophyll-a. Our global analysis suggests that 

both physical and biogeochemical processes play an equally important role in controlling DMS variability, in contrast with 

previous results based on data from the low–mid latitudes. The explanatory power of sea surface height anomalies indicates 

the importance of mesoscale eddies in driving DMS variability, previously unrecognised at a global scale and in agreement 

with recent regional studies. DMS VLS differs regionally, including surprisingly high frequency variability in low latitude 25 

waters. Our results independently confirm that relationships used in the literature to parameterise DMS at large scales appear 

to be considering the right variables. However, regional DMS VLS contrasts highlight that important driving mechanisms 

remain elusive. The role of sub-mesoscale features should be resolved or accounted for in DMS process models and 

parameterisations. Future attempts to map DMS distributions should consider the length scale of variability. 
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1 Introduction 30 

Dimethylsulfide (DMS) is a volatile sulfur gas produced by surface ocean microbial food webs and emitted to the atmosphere 

(Bates et al., 1992). DMS emissions dominate atmospheric biogenic sulfur and form a significant component of natural marine 

aerosol loads (Quinn et al., 2017; Sanchez et al., 2018; Simó, 2001). Aerosols increase light scattering and modify cloud optical 

properties, thereby contributing to a radiative forcing of climate (Carslaw et al., 2013; Charlson et al., 1987; Galí et al., 2021). 

The amount, composition, and distribution of natural aerosol in the atmosphere determines the indirect radiative forcing effect 35 

of anthropogenic aerosols on climate but is poorly constrained by global climate models (Carslaw et al., 2013). DMS derived 

sulfate aerosols are ephemeral (~1 day residence time Boucher et al., 2003) and of greater consequence for cloud modulation 

in remote pristine regions (Halloran et al., 2010). The distribution of natural marine aerosol sources should be represented at 

the resolution required to capture the frequency and magnitude of their variability. This is critical for reducing the large 

uncertainties associated with natural aerosol-cloud interactions. 40 

 

Oceanic DMS production and consumption pathways are complex, and the controls on DMS spatial distribution in the global 

ocean are not fully resolved (Galí & Simó, 2015). The global surface seawater DMS database contains measurements that 

show large scale temporal and spatial variability in DMS concentrations (Hulswar et al., 2022; Lana et al., 2011). In-situ DMS 

measurements are relatively sparse and limited with respect to global distribution, coverage, and spatiotemporal sampling 45 

frequency, which renders the majority of DMS observations insufficient to resolve local and sub-mesoscale variability 

(Belviso, Moulin, et al., 2004; Lana et al., 2011; Tortell et al., 2011). DMS sampling is globally biased towards spring-summer 

months (see Fig. S1, Supplementary Material) and has disproportionally targeted biologically productive areas (e.g., northeast 

Pacific and northwest Atlantic, see Fig. 1), which can lead to an overrepresentation of high DMS concentrations within the 

database (Galí et al., 2018). Monthly and repeat interannual DMS measurements are rare, and generally restricted to DMS 50 

productive areas (Galí et al., 2018; Tesdal et al., 2015). Sparse, infrequent, and seasonally/spatially biased observations of 

highly variable DMS concentrations create uncertainty because it is hard to quantify the representativeness of the 

measurements. Sampling uncertainties inevitably propagate through to DMS concentration and flux climatologies, 

parameterisations, and model outputs (Belviso et al., 2004).  

 55 

Relatively simple extrapolation methods have been used to fill the gaps between sparse observations to provide globally 

representative estimates of DMS (Hulswar et al., 2022; Kettle et al., 1999; Lana et al., 2011). Significant differences in these 

smoothed climatological estimates, and thus uncertainties, have been attributed to the gap filling techniques used, specifically 

the appropriate interpolation/smoothing radius of influence (Hulswar et al., 2022). More complex algorithms have been 

generated at the basin or global scale using parameters such as chlorophyll, light, nutrients, surface temperature, and mixed 60 

layer depth (Anderson et al., 2001; Aranami & Tsunogai, 2004; Aumont et al., 2002; Belviso, Moulin, et al., 2004; Chu et al., 

2003; Galí et al., 2015, 2018; Halloran et al., 2010; Herr et al., 2019; Miles et al., 2009; Simó & Dachs, 2002; Vallina & Simó, 
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2007). More recently, global and regional climatologies have been generated using machine learning approaches (Humphries 

et al., 2012; McNabb & Tortell, 2022, 2023; Wang et al., 2020). The variation in different climatological DMS estimates 

highlights that the scientific community needs to better understand and map the processes controlling its oceanic distribution 65 

(Belviso et al., 2004; Halloran et al., 2010). Modelled seasonal/regional aerosol-cloud interactions and radiative forcing are 

directly sensitive to the accuracy/choice of seawater DMS estimates (Mahajan et al., 2015; Woodhouse et al., 2010, 2013). 

 

Recent studies have focussed on local and sub-mesoscale DMS variability, taking advantage of improvements to seawater 

DMS concentration sampling resolution (e.g., Asher et al., 2011; Nemcek et al., 2008; Tortell, 2005a, 2005b; Tortell & Long, 70 

2009; Zindler et al., 2014). This study explores the potential mechanisms that appear to govern DMS variability at the <100 

km scale and investigates whether these align with the variables used within large scale DMS parameterisations. An improved 

understanding of sub-mesoscale DMS variability will aid the development of future climatological flux estimates and the 

appropriate radius of influence that sparse observations should be afforded when smoothing and interpolating in situ 

observations. 75 

 

Variability lengthscale (VLS) analysis is a powerful tool for quantifying sub-mesoscale variability. VLS analysis can be used 

to indicate the lowest sampling resolution necessary to capture most of the spatial variability (Royer et al., 2015). High 

resolution measurements are required to assess small scale variability. For example, to observe variations within 10 km when 

the research ship is travelling at 8 m s-1 requires measurements every 20 mins. Instruments that can observe variability at these 80 

high resolutions have been deployed in recent years and have contributed substantially to the global DMS database (Hulswar 

et al., 2022). A growing number of high frequency DMS measurements offers the opportunity for a global analysis of the 

drivers of DMS variability at small scales.  

 

VLS analysis for DMS has been applied in only a few studies, with most focusing on a specific region and/or a single sampling 85 

campaign (e.g., Ross Sea; (Tortell et al., 2011; Tortell & Long, 2009), northeast subarctic Pacific (Asher et al., 2011; Nemcek 

et al., 2008; Tortell, 2005b)). A larger scale VLS analysis was undertaken on the 7-month low–mid latitude global 

circumnavigation conducted during the Malaspina Expedition 2010 (Royer et al., 2015). Royer et al. (2015) combined their 

VLS analysis with VLS values from 3 high latitude studies (7–15 km, Asher et al., 2011; Nemcek et al., 2008; Tortell et al., 

2011) and reported an inverse relationship between DMS VLS and latitude (R = –0.74, p < 0.005). Royer et al. (2015) also 90 

reported that biological variables dominate over physical variables as drivers of DMS VLS in low latitude regions. While it is 

tempting to draw global conclusions from the similarities and differences between these studies, each study adopts a slightly 

different approach to the data treatment, measurement of interpolation error, and/or classification of VLS (see Table S1, 

Supplementary Material). 

 95 
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This study applies a single, objective VLS analysis to high frequency global DMS observations over the past 15 years (Fig. 1 

& S1). The dataset used includes all available data from previous VLS studies. Our study assesses whether the factors 

controlling DMS variability can be identified using a sub-mesoscale variability analysis across all ocean basins. Sect. 2 

describes the datasets used and the VLS methodology. Sect. 3 presents results including global VLS statistics, regional patterns 

of DMS variability, and drivers of DMS variability. Finally, the findings are discussed in Sect. 4, with conclusions made in 100 

Sect. 5. 

2 Data & methods 

2.1 Seawater DMS data 

The majority of DMS data are sourced from the global surface seawater DMS database (GSSDD; see 

https://saga.pmel.noaa.gov/dms/). Selection criteria are used to identify datasets suitable for sub-mesoscale VLS analysis: a 105 

minimum of 100 data points in total and ≤1 hour between measurements, which excludes all data with a spatial resolution >30 

km. Applying these filters results in 37 eligible datasets (collected between 2004 and 2019). The filters broadly separate the 

DMS database by sampling method, highlighting the rapid shift during the early 2000’s from discrete, low frequency gas 

chromatography analytical systems, to continuous, semi-automated high frequency mass spectrometry (Bell et al., 2012; 

Saltzman et al., 2009). Additional data are from the Malaspina Expedition in 2010-2011 (M10, Royer et al., 2015), the North 110 

Atlantic Aerosol and Marine Ecosystem Study in 2015–2018 (NAAMES; Bell et al., 2021; Fig. 1 & S1, Table S2, campaign 

numbers: 33 (blue), 34 (green), 35 (red), 36 (yellow)), and the Southern oCean SeAsonaL Experiment in 2019 (SCALE; 

Manville et al. In Prep; Fig. 1 & S1, Table S2, campaign number: 37 (green)). The M10 circumnavigation data are split 

spatiotemporally into 3 datasets, each broadly covering different ocean basins (Fig. 1 & S1, Table S2, campaign numbers: 30 

(M10a, black), 31 (M10b, dark red), 32 (M10c, cyan)). 115 

2.2 Ancillary in-situ & coincident satellite measurements 

Ancillary in-situ and remotely sensed data are used to explore the potential mechanisms driving DMS variability. In-situ sea 

surface salinity (hereafter salinity) and temperature (SST) from each DMS dataset are used to derive sea surface density 

(hereafter density) (see Fernandes, 2014).  

 120 

Satellite monthly mean chlorophyll-a (Chl) and 5-day sea surface height anomaly (SSHA) data are matched to the average 

date of each DMS sampling cruise. Satellite data pixels are extracted along the coordinates of the DMS cruise track using the 

NASA SeaDAS software (version 7.5.3). NASA MEaSUREs L4 0.17° 5-day SSHA are used to explore the role of eddies in 

driving DMS variability (Zlotnicki et al., 2019). NASA MODIS-Aqua L3 4 km monthly Chl is used as a proxy for plankton 

biomass and biological productivity (NASA Goddard Space Flight Center, 2018).  125 

https://saga.pmel.noaa.gov/dms/
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2.3 Data processing 

Underway data are screened to only include data acquired when ship speed was >1 m s-1, to avoid measurements made when 

ships were sampling on station. Ship speed is calculated from distance and time between measurements. Each DMS dataset 

and all its ancillary data is divided into transects. Transects are defined as continuous data sections with a minimum sampling 

frequency of 1 hour. Most observations (83%) captured by the temporal filter are <2.2 km apart. The minimum transect length 130 

is calculated in two stages: 1) the linear distance between the start and end of a continuous data section must be >100 km to 

avoid campaigns that targeted a specific area multiple times (e.g., a productive bloom or mesoscale eddy); 2) each dataset is 

divided into equal length transects, with an along track distance of at least 100 km. The initial data processing yields 1039 

continuous transects from 37 DMS campaigns, with each transect 100–199 km in cumulative length (Fig. 1).  

2.4 Variability lengthscale (VLS) analysis 135 

Previous DMS VLS studies have not applied a standardised or consistent approach (Asher et al., 2011; Nemcek et al., 2008; 

Royer et al., 2015; Tortell, 2005b; Tortell et al., 2011; Tortell & Long, 2009). The analysis presented here adopts the method 

used to study the VLS of seawater CO2 (Hales & Takahashi, 2004), which was later applied to DMS by Tortell et al. (2011) 

and Nemcek et al. (2008).  

 140 

The highest observational DMS sampling resolution in the datasets is typically between 0.2 and 2.2 km. Each data transect is 

subsampled repeatedly starting from the first data point, at increasingly coarse spacings ranging from 2.2 km to half the length 

of the transect (the lowest possible resolution), increasing in 0.2 km increments. At each subsampling resolution, the first and 

last subsampled points of the data transect define the subsampling window. Subsampled data across the subsampling window 

are linearly interpolated to the resolution of the original data. Where the subsampling window matches the length of the data 145 

transect, the interpolation error associated with the subsampling resolution is calculated as the root mean squared error (RMSE) 

between the original and the interpolated values. Where the subsampling window is not equal to the length of the transect, the 

window is shifted along the transect, incrementing by one data point, and the transect is re-subsampled. Re-subsampled data 

are linearly interpolated across the shifted window, and the RMSE is re-calculated. The subsampling window is repeatedly 

shifted along the data transect and interpolation RMSE re-calculated until the subsampling ends on last data point of the 150 

transect. The error associated with the subsampling resolution is taken as the average of all the RMSE values produced by 

sliding the window across the data transect at that resolution. RMSE is calculated following Eq. (1): 

𝑅𝑀𝑆𝐸 = √(𝑂𝑏𝑠 − 𝐼𝑛𝑡𝑒𝑟𝑝)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅           (1)  

RMSE typically increases in proportion to the coarseness of the subsampling until a maximum error plateau, or asymptote, is 

reached. The maximum error plateau corresponds to the total variance of the dataset (Belviso et al., 2004; Tortell et al., 2011). 155 
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The trend in RMSE as a function of subsampling resolution is well described by a non-linear first-order inverse exponential 

rise function following Eq. (2): 

𝐸𝑥 = 𝐸∞ (1 − ℯ(− 
𝑥

VLS
))            (2) 

where 𝐸𝑥 is the interpolation error at subsampling resolution 𝑥, 𝐸∞ is the asymptotic maximum interpolation error at an infinite 

subsampling resolution, and VLS is the characteristic lengthscale of variability. VLS is determined by the sub-sampling 160 

resolution (interpolation distance) where a tangent of the initial slope intersects with the maximum error (𝐸∞, Fig. 2). VLS 

also corresponds to the intersect on the curve (𝐸𝑥) that is 63% of 𝐸∞, i.e., Eq. (3):  

𝐸𝑥

𝐸∞
= 1 − ℯ(− 

𝑥
VLS

) ≈ 0.63            (3) 

Previous work suggested that a sudden change (or ‘breakpoint’) in the RMSE slope can be used to characterise the DMS VLS 

(Asher et al., 2011; Royer et al., 2015). However, this approach is unreliable, because the data assessed in this study shows 165 

that the breakpoint does not always occur, and its identification is subjective (see Table S1, Supplementary Material). 

 

An inverse exponential rise function (Eq. 2&3) is used here to objectively derive VLS. The objective VLS method is applied 

to all 1039 transects and six variables: DMS, SST, salinity, density, Chl, SSHA. 

2.4.1 Quality assurance and VLS statistics 170 

Two filters are used to identify viable data transects. VLS is rejected if the distance is greater than the maximum subsampling 

/ interpolation distance (equal to half the transect length), which only occurred in very noisy datasets. The second filter is the 

quality of fit to the data using the residual standard error (RSE) (Fig. 2b), which is defined as RSE = √(𝑠𝑠𝑟𝑒𝑠/𝑛) where 𝑛 is 

the number of data points in the transect and 𝑠𝑠𝑟𝑒𝑠  is the sum of the squares of the residuals, i.e., 𝑠𝑠𝑟𝑒𝑠 =

∑(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑓𝑟𝑜𝑚 𝑓𝑖𝑡𝑡𝑒𝑑 𝑐𝑢𝑟𝑣𝑒)2.  175 

 

The RSE is normalised using the maximum RSE of the curve (i.e., (RSE/RSE at the asymptote) × 100) and if the normalised 

RSE exceeds 10%, the curve is deemed to inadequately describe the data and the transect is rejected. The two quality control 

filters reduce the initial 1039 transects to 763 ‘viable’ transects. 

 180 

The distributions of VLS from the 763 transects are skewed for all parameters (Fig. 3 & S2). The geometric mean and geometric 

standard deviation (GSD) are computed to assess central tendency and spread while accounting for skew in the data. Note that 

the geometric mean is regularly referred to as the ‘average’ within this manuscript to aid readability. All significance testing 

uses the non-parametric Mann-Whitney U Test. Transects are grouped and averaged by sampling campaign to assess 

underlying spatial and temporal (regional and seasonal) patterns of variability. Average VLS distances are calculated for each 185 



7 

 

sampling campaign and for all variables (VLSDMS, VLSSST, VLSsalinity, VLSdensity, VLSChl, VLSSSHA). A minimum threshold of 

four transects was necessary before calculating a campaign average VLS. Exclusion of campaigns with <4 transects reduced 

the total number of campaigns from 37 to 35.  

 

Correlation and multiple linear regression (MLR) are used to explore the global controls on VLSDMS (see Sect. 3.3.1 and 3.3.2; 190 

Table 1). The campaign average VLS used in each correlation and regression analysis only includes transects where coincident 

VLS can be calculated from the DMS and non-DMS variables. MLR models with two input variables contain 20-26 datasets, 

and MLR models with three input variables contain 11-15 datasets (see Table 1). The relative importance of the input variables 

in each MLR model are calculated based on the incremental R2 used to determine interactional dominance (defined as the 

incremental R2 contribution of each predictor to the complete model; Azen & Budescu, 2003). 195 

3 Results 

3.1 Global VLS statistics 

The global average DMS concentration and geometric standard deviation (GSD) for the viable transects covered in this study 

are 2.23 nM (average) and 2.29 (GSD), which is similar to the global average and GSD from the GSSDD (2.66 nM (average), 

2.88 (GSD); date of last access 15 April 2022). The similarity between the two datasets suggests that the data used in this study 200 

is representative of global observations. The global average and GSD of VLSDMS from all 763 transects are 12.57 km and 2.33, 

respectively (Fig. 3). Global average VLSDMS is the smallest of the six variables tested, with VLSSSHA the most similar (15.76 

km, 1.77 GSD) (Fig. 3). Global average VLSChl is slightly larger (20.89 km, 1.67 GSD) and similar to global average VLSdensity 

(20.21 km, 1.76 GSD), and its components VLSSST (21.23 km, 1.73 GSD) and VLSsalinity (19.52 km, 1.84 GSD) (Fig. 3 & S1). 

Global average VLSDMS and VLSSSHA are significantly different (p <0.01) from each other and the global average VLS of all 205 

other parameters. Global average VLSChl, VLSdensity, VLSSST, and VLSsalinity are not significantly different from one another. 

 

All six variables have an average spatial variability that is tens of kilometres in all regions. Global average VLSSSHA is similar 

(within 4 km) to global average VLSDMS. Global average VLS for all other parameters are within 9 km of global average 

VLSDMS. Campaign average VLSDMS ranges from 2 to 30 km, which is the same order of magnitude as the range of 7–50 km 210 

reported by other DMS variability studies (Asher et al., 2011; Nemcek et al., 2008; Royer et al., 2015; Tortell, 2005b; Tortell 

et al., 2011). Note that a detailed comparison between studies should be treated with caution because each have used different 

methods to identify the VLS.  

3.2 Regional patterns of DMS variability 

VLSDMS is generally small in the subtropical gyres, specifically the equatorial and subtropical South Pacific and South Atlantic 215 

(Fig. 4; see Table S2 for each sampling campaign average VLSDMS, e.g., campaign numbers: 30, M10a, black; 31, M10b, dark 
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red; and 32, M10c, cyan). The average VLSDMS from all transects in the three M10 low–mid latitude circumnavigation 

campaign datasets (mean = 6.34 km, GSD = 2.59) is consistently smaller than the global value (mean = 12.57 km, GSD = 

2.33) (Fig. 4). The relative homogeneity of small VLSDMS in these oligotrophic domains is not replicated in the VLS of any 

other variables (Fig. S3). The Southern Hemisphere subtropical gyres are permanently stratified biomes, bounded to the south 220 

by a band of seasonally stratified biomes (Fay & McKinley, 2014). At the boundary transitions from permanently to seasonally 

stratified conditions there are some notable exceptions to the low VLSDMS, e.g., the Benguela upwelling (southeast Atlantic) 

and South Australia upwelling (Fig. 4). 

 

In contrast, the average (mean = 22.06 km, GSD = 1.60) of VLSDMS in the Peruvian upwelling (East equatorial Pacific) is 225 

consistently larger than the global average (mean = 12.57 km, GSD = 2.33) (Fig. 4). Larger VLSDMS is also found along parts 

of the Pacific and Atlantic coastlines of North America, with smaller VLSDMS further offshore (Fig. 4, inset). VLSDMS in the 

Arctic, northeast Pacific, northwest Atlantic, and southeast Indian open ocean regions are highly variable. The Southern Ocean 

has VLSDMS generally below the global average and features some localised pockets with larger VLS (Fig. 4). DMS 

concentration variability in mid–high latitude regions is seasonal (Hulswar et al., 2022) and VLSDMS could be influenced by 230 

the season / time of year.  

3.3 Drivers of DMS variability 

3.3.1 Transect and campaign average VLS regressions 

Simple linear regressions are used to explore the relationship between VLSDMS and VLS for SST, salinity, density, Chl and 

SSHA. The possibility of a relationship with latitude (as discussed in Royer et al. (2015)) is also investigated. Transect and 235 

campaign average VLSDMS do not vary with latitude (R2 = 0.02, n = 35, p > 0.05; Table 1). No significant relationships are 

observed between transect VLSDMS and VLS for SST, SSS, density, Chl and SSHA. Averaging transect VLS data into 

campaign averages reduces the noise and enables statistically significant relationships to be identified. Campaign average 

VLSdensity explains 37% of the variations in VLSDMS (Table 1; Fig. 5a). VLSSSHA (used as an indicator of the dynamic eddy 

field in the open ocean) and VLSChl each explain approximately half of the campaign average VLSDMS (46% and 47%, 240 

respectively; Table 1; Fig. 5b&c).  

3.3.2 Multiple linear regression of VLSDMS  

Multiple linear regression (MLR) is used on the campaign average VLS for SST, salinity, density, Chl and SSHA to explore 

VLSDMS variance (Table 1; see Table S4, Supplementary Material for regression coefficients). Eleven MLR combinations were 

tested, and all results are significant (p <0.01) except for the combination of VLSChl, VLSSSHA and VLSSST (Model 17, Table 245 

1). Note that the number of available datasets is reduced in the MLR models that have more input variables, which results in 

the contribution of fewer data (campaigns) to the result. The number of input data is substantially increased if campaign 
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averages are calculated without filtering the data prior to correlation so they only contain data where the two or more correlated 

variables are co-located. Relaxing the criteria such that the transects need not be coincident increases the number of campaigns 

that can be included in each MLR model. The ‘relaxed criterion’ approach is less robust but gives similar results to those 250 

presented here (see Table S3, Supplementary Material).  

Individual VLSChl and/or VLSSSHA regressions with VLSDMS are outperformed (i.e., R2 >0.47) by four MLR combinations 

(Models 7-10, Table 1). The combination of VLSdensity and VLSChl (Model 9, Table 1) substantially improves the regression 

with VLSDMS (adjusted R2 increases to 0.63). MLR Model 9 has the most campaigns (n = 26) of any model, and the third 

highest number of available data transects (n = 224). VLSChl (54%) and VLSdensity (46%) make approximately equal 255 

contributions to the changes in VLSDMS described by Model 9. 

 

The largest amount of VLSDMS variability explained by the MLR models uses the combination of VLSSSHA, VLSChl and 

VLSdensity, improving the adjusted R2 to 0.77 (Model 7, Table 1; Fig. 5d). VLSSSHA is the dominant parameter in Model 7 (52% 

of the explained variance), with VLSChl and VLSdensity accounting for 34% and 14%, respectively. Combining VLSChl and 260 

VLSSSHA (MLR Model 11) reduces the available input data (n = 20) and does not increase the explained variance in VLSDMS 

compared to using only one or other of the input parameters. VLSSSHA and VLSChl dominate the explained variance in MLR 

models when paired with one other variable (Models 12–16, Table 1).  

4 Discussion 

4.1 Global statistics  265 

This is the first study of sub-mesoscale seawater DMS variability from a global perspective. Spatial variability lengthscale 

analysis is applied to every ocean basin, and at different times of year, using a consistent methodology. Characteristic spatial 

variability in all six variables (DMS, SST, salinity, density, Chl, SSHA) occurs at the low mesoscale (in the tens of kilometres) 

in all regions. Campaign average VLSDMS ranges from 2-30 km (Table S2, Supplementary Material), in general agreement 

with previous work (Asher et al., 2011; Nemcek et al., 2008; Royer et al., 2015; Tortell, 2005b; Tortell et al., 2011; Tortell & 270 

Long, 2009). There is no correlation between campaign average DMS concentration and VLSDMS (R2 = 0.01, p > 0.05), which 

suggests that understanding the variability may be a helpful and independent approach to understanding the processes that 

control surface ocean DMS.  

4.2 Regional patterns of DMS variability 

VLSDMS is generally above average at the edge of ocean basins e.g., parts of northwest Atlantic, northeast Pacific, the California 275 

coast (Fig. 4, inset). It may be possible that the longer lengthscales of coastal DMS spatial variability are driven by large 

phytoplankton blooms, which previous local/regional studies suggest can dominate coastal domains (Asher et al., 2011; 

Nemcek et al., 2008). This work does not investigate the detail of drivers of DMS variability in individual regions or domains. 
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Open ocean domains such as the sub-tropical gyres in the Southern Hemisphere have generally small VLSDMS, a feature not 280 

evident in the VLS of the other parameters (Fig. 4 & S2). Short lengthscales of DMS variability in stable stratified biomes 

offers the opportunity for future work to re-examine these regions for as yet unidentified drivers of variability. Most low 

latitude DMS data used in this study originate from a single sampling campaign (e.g., Malaspina Expedition 2010; Royer et 

al., 2015). To test if small VLSDMS is a persistent feature in under-sampled sub-tropical open oceans, more high-resolution 

observations are needed.  285 

 

Factors driving temporal DMS variability are not explored in this study. However, complex VLSDMS fluctuations at high 

latitudes (e.g., northwest Atlantic, northeast Pacific, Southern Ocean; Fig. 4) may be capturing variations in both space and 

time. VLSDMS in high latitude dynamic regions could be related to the seasonality of biological productivity and eddy activity 

(see Asher et al., 2011; Behrenfeld et al., 2019; Bell et al., 2021; Fox et al., 2020; Gaube et al., 2019; Herr et al., 2019; Lana 290 

et al., 2011; McGillicuddy, 2016). Additionally, it is plausible that VLSDMS in the polar regions may be sensitive to the seasonal 

impact of sea ice on biogeochemical processes (see Galí et al., 2021; Lannuzel et al., 2020; Stefels et al., 2018). There are not 

enough repeat measurements made in high latitude (high seasonal variability) regions to establish the impact of seasonality on 

VLSDMS. In this study, the only region sampled during different seasons is the northwest Atlantic (4 Atlantic NAAMES 

campaigns; Bell et al., 2021) and there is not yet compelling evidence of a temporal difference between the VLSDMS of these 295 

cruises/seasons. VLSDMS of the NAAMES 1 transects (November; average = 11.93 km, GSD = 1.76) are significantly different 

(p <0.01) from the transect VLSDMS of NAAMES 3 (U = 99, p <0.01; September; average = 20.89 km, GSD = 1.69) and 

NAAMES 4 (U = 89, p <0.01; March/April; average = 21.94 km, GSD = 1.57), but not from NAAMES 2 (U = 108, p = 0.014; 

May/June; average = 18.4 km, GSD = 1.56). VLSDMS of the NAAMES 2, 3 & 4 transects are not significantly different from 

each other (all p >0.2). 300 

4.3 Drivers of DMS variability 

The variance in campaign average VLSDMS data explained by physical processes (represented by VLSSSHA) is as important as 

biogeochemical processes (represented by VLSChl), with each parameter able to explain just under half of the VLSDMS (Models 

1&2, Table 1; Fig. 5). This conclusion contrasts with the findings of Royer et al. (2015) who find in the low–mid latitudes the 

majority of VLSDMS (65%) are more similar to the VLS of biological variables that represent biomass and physiology (Chl and 305 

fluorescence) than to the VLS of physical variables. These contrasting conclusions potentially reflect the fact that length scales 

of physical oceanographic variability increase towards the equator, due to the effects of the Earth's rotation. The Coriolis 

parameter and therefore Rossby radius are intrinsically latitudinal dependent (Jacobs et al., 2001). The longer transects used 

by Royer et al. (2015) at low–mid latitudes enable them to capture scales of variability that may be associated with large 

physical features. This point is discussed further in in Section 4.5. 310 
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A larger proportion of campaign average VLSDMS variability (77%) can be explained using VLSChl, VLSSSHA and VLSdensity 

(Model 7, Table 1) compared to just VLSSSHA or VLSChl. The data included in the VLSSSHA-Chl-Density MLR (Model 7, Table 1) 

is a subset but includes at least one campaign from each major ocean basin (Fig. S4, Supplementary Material) and is thus a 

significant relationship with global applicability. VLSSSHA explains the majority of VLSDMS in the VLSSSHA-Chl-Density MLR 315 

(52%) (Model 7, Table 1) and improves the prediction of changes in VLSDMS compared to using just VLSChl and VLSdensity 

(Model 9, Table 1). The VLSSSHA-Chl-Density MLR (Model 7, Table 1) includes measurements from the NAAMES4 (2018) cruise, 

which targeted a substantive eddy and observed a persistent high Chl feature coincident with elevated DMS levels (Bell et al., 

2021). The water mass within an eddy tends to be retained by the circulation, such that plankton within the eddy are 

accumulated under relatively stable physics (upwelling or downwelling) and consistent biogeochemical conditions (Bell et al., 320 

2021). Eddies may thus drive conditions where DMS variability is closely associated with biological activity and a clear co-

variation in VLS is observed, even if the relationship between DMS and Chl concentration is less obvious (della Penna & 

Gaube, 2019). The relationship between eddy structure, biogeochemistry and DMS may explain the link between changes in 

VLSDMS, VLSSSHA, and VLSChl. The importance of VLSSSHA for predicting VLSDMS is consistent with results recently reported 

by McNabb & Tortell (2022), who apply two independent machine learning techniques to analyse DMS in the northeast 325 

Pacific. McNabb & Tortell (2022) demonstrate the power of mesoscale eddies for predicting DMS variability (Spearman 

correlation coefficients = 0.35 and 0.42, depending on the machine learning method employed), using the same SSHA product 

used in this study (using only summertime measurements, 1997 – 2017). The VLSSSHA-Chl-Density MLR model coefficients 

(Model 7, Table S4, Supplementary Material) are used to predict VLSDMS for the target input data subset (Fig. 5d). The 

residuals of predicted VLSDMS are not systematically biased within the full range of the data (5 – 25 km). 330 

4.4 Implications for global DMS parameterisation 

Low resolution measurements have previously been used to predict mean spatiotemporal patterns of DMS, both regionally and 

globally. Several studies have parameterised DMS as a function of surface  mixed layer depth (MLD), light, and Chl (Anderson 

et al., 2001; Aranami & Tsunogai, 2004; Aumont et al., 2002; Belviso, Moulin, et al., 2004; Galí et al., 2018; Simó & Dachs, 

2002; Vallina & Simó, 2007). For example, Simó & Dachs (2002) use climatological MLD and remotely sensed Chl to estimate 335 

average DMS concentrations, while Vallina & Simó (2007) use climatological MLD, surface irradiance and light attenuation 

to estimate surface DMS from the ‘solar radiation dose’. Galí et al. (2018) employ an algorithm driven by climatological Argo 

MLD and satellite derived Chl, SST, and photosynthetically active radiation (PAR). Only the latter algorithm was additionally 

validated at finer resolution using non-climatological data to enable regional timeseries studies (Galí et al., 2019). SSHA 

reflects surface mixing and changes to the MLD (Gaube et al., 2019). This study supports the choice of key variables used in 340 

existing empirical parameterisations by demonstrating that, even on small scales, physical mixing (SSHA, density) and 

biological activity (Chl) explain a large portion of surface seawater DMS spatial variability in the global ocean. 
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DMS parameterisations with global coverage that rely on remote and autonomous observations predict spatially and seasonally 

averaged surface seawater DMS reasonably well (e.g., Galí et al., 2018; Simó & Dachs, 2002; Vallina & Simó, 2007). 345 

However, some studies have questioned whether such parameterisations are overly reliant on spatial/temporal averaging, often 

to 1°/monthly resolution (e.g., Derevianko et al., 2009). The spatiotemporal averaging used to develop global parameterisations 

may lead to an over-confidence in current predictive capabilities because key parameters are not included. Statistically 

significant MLR relationships in this study are obtained once the transect data are averaged by campaign, and the average VLS 

for all six variables in our study is tens of kilometres. Using VLS analysis to assess the covariation of parameters at the sub-350 

mesoscale provides insights that can help to improve global parameterisations. Our results indicate that patterns of mesoscale 

and sub-mesoscale DMS variability, particularly those associated with SSHA, will be obscured at the 1° resolution of most 

global parameterisations, highlighting the importance of modelling work at finer resolutions (e.g., Galí et al., 2019; McNabb 

& Tortell, 2022, 2023). Regional studies have tested empirical predictive relationships for DMS with varying degrees of 

success (Asher et al., 2011; Bell et al., 2006, 2021; Royer et al., 2015).  355 

4.5 Study limitations and unidentified drivers of DMS variability 

This work provides as comprehensive assessment of DMS variability across the global ocean as existing data allow, yet many 

regions have not yet been sampled at high enough resolution to permit an assessment of VLSDMS. For example, only seven of 

the 37 campaigns in this study have made high resolution DMS measurements in low latitude waters (30ºN–30ºS). There is a 

seasonal sampling bias within the DMS database, and the northwest Atlantic is the only region to have been assessed for VLS 360 

throughout the seasonal cycle (Bell et al., 2021). More data are needed. 

 

Satellite-derived VLSChl and VLSSSHA have been used to predict VLSDMS (e.g., Model 7, Table 1), but this relies on the 

assumption that the satellite-retrieved data are representative of phytoplankton productivity and eddy activity throughout the 

research cruise/campaign. Satellite retrievals for Chl with higher than monthly temporal resolution or, in the case of SSHA, 365 

higher than 0.17º spatial resolution, may improve the ability to explain variance in VLSDMS. 

 

Transect lengths between 100 and 199 km are used to ensure comparability between datasets/regions because VLS results 

from previous studies appear to be sensitive to the length of data transect (see Fig. S5, Supplementary Material). However, by 

limiting the transect length, it is difficult to identify large eddies using VLSSSHA. Eddy length scales are typically larger at low 370 

latitudes due to the dependence of the Coriolis parameter on latitude (Chelton et al., 1998). The maximum VLS in this study 

is between 50 and 99.5 km (half the transect length), which is long enough to capture the eddy variability at latitudes where 

the eddy length scale is related to the Rossby radius of deformation, i.e., poleward of 30º where the deformation radius is < 30 

km (Eden, 2007). Equatorward of 30º eddy length scales are not well predicted by the Rossby radius of deformation and can 

exceed 50 km (Eden, 2007; Klocker et al., 2016; Rhines, 1975; Scott & Wang, 2005; Tulloch et al., 2011). The VLSSSHA 375 

analysis approach used in this study is designed to identify the dominant scale of variability in physical features up to 50–99.5 
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km, therefore it may not capture the full extent of variability associated with large eddies at low latitudes. Large eddies will 

however still be captured in the VLSSSHA analysis where a transect segments an eddy without passing through its centre. We 

also note that although SSHA is used to represent eddy features, at the equator stratification and strong westward currents tend 

to dominate SSHA variability rather than rotation and eddy transport (Williams & Follows, 2011). 380 

 

VLSDMS in the subtropical gyres is typically small (<10 km; Fig. 4), which is qualitatively consistent with the short (days) 

response time of DMS to perturbations in the dynamic equilibrium of DMS production and consumption in these waters (Galí 

& Simó, 2015). VLSDMS in subtropical waters does not correspond well with the VLS of any of the other parameters (Fig. S3, 

Supplementary Material). Cycling of reduced sulfur compounds in sub-tropical waters is well-documented to be part of a 385 

different biogeochemical regime compared to productive, higher latitude waters (e.g., Galí & Simó, 2015; Toole & Siegel, 

2004). In stable oligotrophic regions where there is less variability in physical mixing and phytoplankton productivity, VLSDMS 

could thus be dominated by alternative parameters that drive variability in the biological cycling of DMS such as zooplankton 

grazing (Simó et al., 2018) and microbial organosulfur metabolism (Alcolombri et al., 2015; Cui et al., 2015; Nowinski et al., 

2019). 390 

 

The so-called ‘summer paradox’ describes the seasonal misalignment between maximum concentrations of phytoplankton 

biomass and DMS in low latitude waters and has been challenging to model (e.g., Galí & Simó, 2015; Polimene et al., 2012; 

Toole et al., 2008; Vallina et al., 2008). In these areas, characterized by low seasonal amplitude in phytoplankton biomass, 

changes in phytoplankton species succession and physiological stress control DMS production yields and rates, and ultimately 395 

DMS seasonality. By contrast, aggregated loss processes exhibit low seasonal variability and are insufficient to explain large-

scale DMS seasonality in ‘summer paradox’ areas (Galí & Simó, 2015). Previous studies observed important short-term 

variations in the balance between DMS sources and sinks in oligotrophic waters, concomitant with meteorological forcing 

(Royer et al., 2016). Hence, it is plausible to hypothesize that subtle changes in this balance can explain some of the variance 

in VLSDMS. Light exposure in surface waters influences plankton physiological production and stress, photochemical reactions, 400 

and bacterial activity, and thus has a significant impact on the cycling of reduced sulfur in oligotrophic regions (see Toole & 

Siegel, 2004; Vallina et al., 2008). These factors have not been included in the present study. 

5 Conclusions 

This study presents a comprehensive and objective analysis of DMS variability based on a large global dataset of high 

frequency observations at the local/regional scale. The work shows that the variability lengthscale for DMS is typically small 405 

(< 30 km) and that a substantial proportion of the campaign average variance can be explained by the VLS of key biological 

(Chl) and physical (density, SSHA) observations (Model 7, Table 1). The results improve confidence in the validity of the 

biological and physical parameters used to currently parameterise seawater DMS at large scales and used in many global 
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climate models (e.g., Bock et al., 2021; Galí et al., 2018; Mulcahy et al., 2020; Simó & Dachs, 2002). However, there is 

substantial variability in VLSDMS when assessing individual transects, which suggests that unaccounted-for variables are also 410 

important (e.g., light, wind speed, microbial diversity and activity). Making high frequency measurement of these parameters 

at the same time as high frequency DMS measurements may help elucidate their role in DMS cycling. 
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Figure 1: Global extent of the 37 high frequency DMS campaigns included in this analysis (coloured). Data are only shown for the 

underway transects used in the VLS analysis (see Sect. 2.3). Insets show detail for northeast Pacific and northwest Atlantic regions 

with multiple sampling campaigns (see Table S2 and Fig. S1 in the Supplementary Material for metadata relating to each sampling 670 
campaign and the spatiotemporal distribution, respectively). 
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Figure 2: (a) Example seawater DMS concentration (nM) data transect (sampled from the northwest Atlantic during the NAAMES1 

(November 2015) campaign; see Bell et al., 2021), analysed to find the variability lengthscale (VLS). (b) Asymptotic error curve 675 
(dashed black) fitted to interpolation errors (RMSE, nM; dotted cyan) plotted as a function of increasingly coarse interpolation 

distance (km). The 95% prediction intervals (PI) of the non-linear regression fit, i.e.,  2 × residual standard errors (RSE), are 

shaded blue. The VLS (km) is characterised as the intercept (dashed red) on the curve at 63% of the asymptotically approached 

maximum interpolation error (nM). Method adapted from Hales & Takahashi (2004).  
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 680 

Figure 3: Frequency distribution of variability lengthscales (VLS, km) for all DMS transects (grey bars). Vertical coloured lines 

correspond to the global geometric mean (and geometric standard deviation, GSD) from all transects for VLSDMS (dark blue), 

VLSSSHA (beige), VLSdensity (cyan), VLSChl (magenta).  
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Figure 4: Global distribution of 763 transects coloured by VLSDMS (km, log scale). The colour bar diverges at the global geometric 

mean VLSDMS (12.57 km). See Fig. S3 in the Supplementary Material for equivalent VLS distribution maps of Chl, density, SSHA, 

salinity and SST, and Fig. S1 for the spatiotemporal distribution of VLSDMS.  690 
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Figure 5: Campaign geometric mean VLSDMS (km) plotted versus (a) VLSdensity, (b) VLSSSHA, and (c) VLSChl. Error bars indicate 1 

GSD of the data within each campaign. (d) Campaign geometric mean VLSDMS predicted using coefficients from the VLSSSHA-Chl-

Density multiple linear regression model (Model 7, Table 1; Supplementary Material, Table S4; Fig. S4) versus observed VLSDMS, for 

the subset of 12 DMS campaigns included in the multiple linear regression model. The 1:1 line is shown. 695 
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Table 1: Regression results for the prediction of campaign average VLSDMS, using different combinations of input parameters. 

Models are ranked in order of how much VLSDMS variance is explained. Models that are significant (p < 0.01) are denoted using *. 

Model no. Input parameters R2 Adj. R2 p 

Relative 

importance 

(%) 

N (no. of 

campaigns) 

  

No. transects 

used to 

calculate 

campaign 

averages 

(of 760) 

Linear Regression 

1 VLSChl 0.47 – <0.01* 100 29 351 

2 VLSSSHA 0.46 – <0.01* 100 24 361 

3 VLSdensity 0.37 – <0.01* 100 32 480 

4 VLSsalinity 0.33 – <0.01* 100 32 490 

5 VLSSST 0.21 – 0.014 100 28 445  

6 Latitude (abs.) 0.02 – 0.375 100 35 760 

Multiple Linear Regression 

7 

VLSChl 

0.83 0.77 <0.01* 

34 

12 87 VLSSSHA 52 

VLSdensity 14 

8 

VLSChl 

0.77 0.71 <0.01*  

58 

15 100 VLSSSHA 41 

VLSsalinity 1 

9 
VLSChl 

0.66 0.63 <0.01* 
54 

26 224 
VLSdensity 46 

10 
VLSsalinity 

0.62 0.59 <0.01* 
85 

25 322 
VLSSST 15 

11 
VLSChl 

0.51 0.46 <0.01* 
35 

20 177 
VLSSSHA 65 

12 
VLSChl 

0.50 0.45 <0.01* 
70 

22 211 
VLSsalinity 30 

13 
VLSSSHA 

0.49 0.44 <0.01* 
91 

23 234 
VLSsalinity 9 

14 
VLSChl 

0.46 0.4 <0.01* 
73 

22 204 
VLSSST 27 

15 
VLSSSHA 

0.43 0.36 <0.01* 
75 

20 189 
VLSSST 25 

16 
VLSSSHA 

0.41 0.35 <0.01* 
84 

22 213 
VLSdensity 16 

17 

VLSChl 

0.50 0.29 0.156  

84 

11 77 VLSSSHA 15 

VLSSST 1 
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