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Abstract. Dimethylsulfide (DMS) emitted from the ocean makes a significant global contribution to natural marine aerosol
and cloud condensation nuclei, and therefore our planet’s climate. Oceanic DMS concentrations show large spatiotemporal
variability, but observations are sparse, so products describing global DMS distribution rely on interpolation or modelling.
Understanding the mechanisms driving DMS variability, especially at local scales, is required to reduce uncertainty in large
scale DMS estimates. We present a study of mesoscale and sub-mesoscale (<100 km) seawater DMS variability that takes
advantage of the recent expansion in high frequency seawater DMS observations and uses all available data to investigate the
typical distances over which DMS varies in all major ocean basins. These DMS spatial variability lengthscales (VLS) are
uncorrelated with DMS concentrations. DMS concentrations and VLS can therefore be used separately to help identify
mechanisms underpinning DMS variability. When data are grouped by sampling campaigns, almost 80% of the DMS VLS
can be explained using the VLS of sea surface height anomalies, density, and chlorophyll-a. Our global analysis suggests that
both physical and biogeochemical processes play an equally important role in controlling DMS variability, in contrast with
previous results based on data from the low-mid latitudes. The explanatory power of sea surface height anomalies indicates
the importance of mesoscale eddies in driving DMS variability, previously unrecognised at a global scale and in agreement
with recent regional studies. DMS VLS differs regionally, including surprisingly high frequency variability in low latitude
waters. Our results independently confirm that relationships used in the literature to parameterise DMS at large scales appear
to be considering the right variables. However, regional DMS VLS contrasts highlight that important driving mechanisms
remain elusive. The role of sub-mesoscale features should be resolved or accounted for in DMS process models and

parameterisations. Future attempts to map DMS distributions should consider the length scale of variability.
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1 Introduction

Dimethylsulfide (DMS) is a volatile sulfur gas produced by surface ocean microbial food webs and emitted to the atmosphere
(Bates etal., 1992). DMS emissions dominate atmospheric biogenic sulfur and form a significant component of natural marine
aerosol loads (Quinn etal., 2017; Sanchez et al., 2018; Simo, 2001). Aerosols increase light scattering and modify cloud optical
properties, thereby contributing to a radiative forcing of climate (Carslaw et al., 2013; Charlson et al., 1987; Gali et al., 2021).
The amount, composition, and distribution of natural aerosol in the atmosphere determines the indirect radiative forcing effect
of anthropogenic aerosols on climate but is poorly constrained by global climate models (Carslaw et al., 2013). DMS derived
sulfate aerosols are ephemeral (~1 day residence time Boucher et al., 2003) and of greater consequence for cloud modulation
in remote pristine regions (Halloran et al., 2010). The distribution of natural marine aerosol sources should be represented at
the resolution required to capture the frequency and magnitude of their variability. This is critical for reducing the large

uncertainties associated with natural aerosol-cloud interactions.

Oceanic DMS production and consumption pathways are complex, and the controls on DMS spatial distribution in the global
ocean are not fully resolved (Gali & Simo6, 2015). The global surface seawater DMS database contains measurements that
show large scale temporal and spatial variability in DMS concentrations (Hulswar et al., 2022; Lana et al., 2011). In-situ DMS
measurements are relatively sparse and limited with respect to global distribution, coverage, and spatiotemporal sampling
frequency, which renders the majority of DMS observations insufficient to resolve local and sub-mesoscale variability
(Belviso, Moulin, et al., 2004; Lana et al., 2011; Tortell et al., 2011). DMS sampling is globally biased towards spring-summer
months (see Fig. S1, Supplementary Material) and has disproportionally targeted biologically productive areas (e.g., northeast
Pacific and northwest Atlantic, see Fig. 1), which can lead to an overrepresentation of high DMS concentrations within the
database (Gali et al., 2018). Monthly and repeat interannual DMS measurements are rare, and generally restricted to DMS
productive areas (Gali et al., 2018; Tesdal et al., 2015). Sparse, infrequent, and seasonally/spatially biased observations of
highly variable DMS concentrations create uncertainty because it is hard to quantify the representativeness of the
measurements. Sampling uncertainties inevitably propagate through to DMS concentration and flux climatologies,

parameterisations, and model outputs (Belviso et al., 2004).

Relatively simple extrapolation methods have been used to fill the gaps between sparse observations to provide globally
representative estimates of DMS (Hulswar et al., 2022; Kettle et al., 1999; Lana et al., 2011). Significant differences in these
smoothed climatological estimates, and thus uncertainties, have been attributed to the gap filling techniques used, specifically
the appropriate interpolation/smoothing radius of influence (Hulswar et al., 2022). More complex algorithms have been
generated at the basin or global scale using parameters such as chlorophyll, light, nutrients, surface temperature, and mixed
layer depth (Anderson et al., 2001; Aranami & Tsunogai, 2004; Aumont et al., 2002; Belviso, Moulin, et al., 2004; Chu et al.,
2003; Gali et al., 2015, 2018; Halloran et al., 2010; Herr et al., 2019; Miles et al., 2009; Sim6 & Dachs, 2002; Vallina & Simo,
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2007). More recently, global and regional climatologies have been generated using machine learning approaches (Humphries
et al., 2012; McNabb & Tortell, 2022, 2023; Wang et al., 2020). The variation in different climatological DMS estimates
highlights that the scientific community needs to better understand and map the processes controlling its oceanic distribution
(Belviso et al., 2004; Halloran et al., 2010). Modelled seasonal/regional aerosol-cloud interactions and radiative forcing are

directly sensitive to the accuracy/choice of seawater DMS estimates (Mahajan et al., 2015; Woodhouse et al., 2010, 2013).

Recent studies have focussed on local and sub-mesoscale DMS variability, taking advantage of improvements to seawater
DMS concentration sampling resolution (e.g., Asher et al., 2011; Nemcek et al., 2008; Tortell, 2005a, 2005b; Tortell & Long,
2009; Zindler et al., 2014). This study explores the potential mechanisms that appear to govern DMS variability at the <100
km scale and investigates whether these align with the variables used within large scale DMS parameterisations. An improved
understanding of sub-mesoscale DMS variability will aid the development of future climatological flux estimates and the
appropriate radius of influence that sparse observations should be afforded when smoothing and interpolating in situ

observations.

Variability lengthscale (VLS) analysis is a powerful tool for quantifying sub-mesoscale variability. VLS analysis can be used
to indicate the lowest sampling resolution necessary to capture most of the spatial variability (Royer et al., 2015). High
resolution measurements are required to assess small scale variability. For example, to observe variations within 10 km when
the research ship is travelling at 8 m s requires measurements every 20 mins. Instruments that can observe variability at these
high resolutions have been deployed in recent years and have contributed substantially to the global DMS database (Hulswar
et al., 2022). A growing number of high frequency DMS measurements offers the opportunity for a global analysis of the

drivers of DMS variability at small scales.

VLS analysis for DMS has been applied in only a few studies, with most focusing on a specific region and/or a single sampling
campaign (e.g., Ross Sea; (Tortell et al., 2011; Tortell & Long, 2009), northeast subarctic Pacific (Asher et al., 2011; Nemcek
et al., 2008; Tortell, 2005b)). A larger scale VLS analysis was undertaken on the 7-month low-mid latitude global
circumnavigation conducted during the Malaspina Expedition 2010 (Royer et al., 2015). Royer et al. (2015) combined their
VLS analysis with VLS values from 3 high latitude studies (715 km, Asher et al., 2011; Nemcek et al., 2008; Tortell et al.,
2011) and reported an inverse relationship between DMS VLS and latitude (R = —-0.74, p < 0.005). Royer et al. (2015) also
reported that biological variables dominate over physical variables as drivers of DMS VLS in low latitude regions. While it is
tempting to draw global conclusions from the similarities and differences between these studies, each study adopts a slightly
different approach to the data treatment, measurement of interpolation error, and/or classification of VLS (see Table S1,

Supplementary Material).
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This study applies a single, objective VLS analysis to high frequency global DMS observations over the past 15 years (Fig. 1
& S1). The dataset used includes all available data from previous VLS studies. Our study assesses whether the factors
controlling DMS variability can be identified using a sub-mesoscale variability analysis across all ocean basins. Sect. 2
describes the datasets used and the VLS methodology. Sect. 3 presents results including global VLS statistics, regional patterns
of DMS variability, and drivers of DMS variability. Finally, the findings are discussed in Sect. 4, with conclusions made in
Sect. 5.

2 Data & methods
2.1 Seawater DMS data

The majority of DMS data are sourced from the global surface seawater DMS database (GSSDD; see

https://saga.pmel.noaa.gov/dms/). Selection criteria are used to identify datasets suitable for sub-mesoscale VLS analysis: a

minimum of 100 data points in total and <1 hour between measurements, which excludes all data with a spatial resolution >30
km. Applying these filters results in 37 eligible datasets (collected between 2004 and 2019). The filters broadly separate the
DMS database by sampling method, highlighting the rapid shift during the early 2000’s from discrete, low frequency gas
chromatography analytical systems, to continuous, semi-automated high frequency mass spectrometry (Bell et al., 2012;
Saltzman et al., 2009). Additional data are from the Malaspina Expedition in 2010-2011 (M10, Royer et al., 2015), the North
Atlantic Aerosol and Marine Ecosystem Study in 2015-2018 (NAAMES; Bell et al., 2021; Fig. 1 & S1, Table S2, campaign
numbers: 33 (blue), 34 (green), 35 (red), 36 (yellow)), and the Southern oCean SeAsonaL Experiment in 2019 (SCALE;
Manville et al. In Prep; Fig. 1 & S1, Table S2, campaign number: 37 (green)). The M10 circumnavigation data are split
spatiotemporally into 3 datasets, each broadly covering different ocean basins (Fig. 1 & S1, Table S2, campaign numbers: 30
(M10a, black), 31 (M10b, dark red), 32 (M10c, cyan)).

2.2 Ancillary in-situ & coincident satellite measurements

Ancillary in-situ and remotely sensed data are used to explore the potential mechanisms driving DMS variability. In-situ sea
surface salinity (hereafter salinity) and temperature (SST) from each DMS dataset are used to derive sea surface density

(hereafter density) (see Fernandes, 2014).

Satellite monthly mean chlorophyll-a (Chl) and 5-day sea surface height anomaly (SSHA) data are matched to the average
date of each DMS sampling cruise. Satellite data pixels are extracted along the coordinates of the DMS cruise track using the
NASA SeaDAS software (version 7.5.3). NASA MEaSUREs L4 0.17° 5-day SSHA are used to explore the role of eddies in
driving DMS variability (Zlotnicki et al., 2019). NASA MODIS-Aqua L3 4 km monthly Chl is used as a proxy for plankton
biomass and biological productivity (NASA Goddard Space Flight Center, 2018).


https://saga.pmel.noaa.gov/dms/
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2.3 Data processing

Underway data are screened to only include data acquired when ship speed was >1 m s, to avoid measurements made when
ships were sampling on station. Ship speed is calculated from distance and time between measurements. Each DMS dataset
and all its ancillary data is divided into transects. Transects are defined as continuous data sections with a minimum sampling
frequency of 1 hour. Most observations (83%) captured by the temporal filter are <2.2 km apart. The minimum transect length
is calculated in two stages: 1) the linear distance between the start and end of a continuous data section must be >100 km to
avoid campaigns that targeted a specific area multiple times (e.g., a productive bloom or mesoscale eddy); 2) each dataset is
divided into equal length transects, with an along track distance of at least 100 km. The initial data processing yields 1039

continuous transects from 37 DMS campaigns, with each transect 100-199 km in cumulative length (Fig. 1).

2.4 Variability lengthscale (VLS) analysis

Previous DMS VLS studies have not applied a standardised or consistent approach (Asher et al., 2011; Nemcek et al., 2008;
Royer et al., 2015; Tortell, 2005b; Tortell et al., 2011; Tortell & Long, 2009). The analysis presented here adopts the method
used to study the VLS of seawater CO, (Hales & Takahashi, 2004), which was later applied to DMS by Tortell et al. (2011)
and Nemcek et al. (2008).

The highest observational DMS sampling resolution in the datasets is typically between 0.2 and 2.2 km. Each data transect is
subsampled repeatedly starting from the first data point, at increasingly coarse spacings ranging from 2.2 km to half the length
of the transect (the lowest possible resolution), increasing in 0.2 km increments. At each subsampling resolution, the first and
last subsampled points of the data transect define the subsampling window. Subsampled data across the subsampling window
are linearly interpolated to the resolution of the original data. Where the subsampling window matches the length of the data
transect, the interpolation error associated with the subsampling resolution is calculated as the root mean squared error (RMSE)
between the original and the interpolated values. Where the subsampling window is not equal to the length of the transect, the
window is shifted along the transect, incrementing by one data point, and the transect is re-subsampled. Re-subsampled data
are linearly interpolated across the shifted window, and the RMSE is re-calculated. The subsampling window is repeatedly
shifted along the data transect and interpolation RMSE re-calculated until the subsampling ends on last data point of the
transect. The error associated with the subsampling resolution is taken as the average of all the RMSE values produced by

sliding the window across the data transect at that resolution. RMSE is calculated following Eqg. (1):

RMSE = /(Obs — Interp)? 1)

RMSE typically increases in proportion to the coarseness of the subsampling until a maximum error plateau, or asymptote, is

reached. The maximum error plateau corresponds to the total variance of the dataset (Belviso et al., 2004; Tortell et al., 2011).
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The trend in RMSE as a function of subsampling resolution is well described by a non-linear first-order inverse exponential

rise function following Eq. (2):
E,=E, (1 — e(‘ %)) 2

where E, is the interpolation error at subsampling resolution x, E, is the asymptotic maximum interpolation error at an infinite
subsampling resolution, and VLS is the characteristic lengthscale of variability. VLS is determined by the sub-sampling
resolution (interpolation distance) where a tangent of the initial slope intersects with the maximum error (E,,, Fig. 2). VLS

also corresponds to the intersect on the curve (E,) that is 63% of E,, i.e., Eq. (3):

Ex _ 1—6(_%) ~ (0.63 (3)

Eoo

Previous work suggested that a sudden change (or ‘breakpoint’) in the RMSE slope can be used to characterise the DMS VLS
(Asher et al., 2011; Royer et al., 2015). However, this approach is unreliable, because the data assessed in this study shows

that the breakpoint does not always occur, and its identification is subjective (see Table S1, Supplementary Material).

An inverse exponential rise function (Eq. 2&3) is used here to objectively derive VLS. The objective VLS method is applied
to all 1039 transects and six variables: DMS, SST, salinity, density, Chl, SSHA.

2.4.1 Quality assurance and VLS statistics

Two filters are used to identify viable data transects. VLS is rejected if the distance is greater than the maximum subsampling
[ interpolation distance (equal to half the transect length), which only occurred in very noisy datasets. The second filter is the
quality of fit to the data using the residual standard error (RSE) (Fig. 2b), which is defined as RSE = ,/(ss¢s/n) Where n is
the number of data points in the transect and ss,.s is the sum of the squares of the residuals, i.e., sS,..s =

Y. (residuals from fitted curve)?.

The RSE is normalised using the maximum RSE of the curve (i.e., (RSE/RSE at the asymptote) x 100) and if the normalised
RSE exceeds 10%, the curve is deemed to inadequately describe the data and the transect is rejected. The two quality control

filters reduce the initial 1039 transects to 763 ‘viable’ transects.

The distributions of VLS from the 763 transects are skewed for all parameters (Fig. 3 & S2). The geometric mean and geometric
standard deviation (GSD) are computed to assess central tendency and spread while accounting for skew in the data. Note that
the geometric mean is regularly referred to as the ‘average’ within this manuscript to aid readability. All significance testing
uses the non-parametric Mann-Whitney U Test. Transects are grouped and averaged by sampling campaign to assess

underlying spatial and temporal (regional and seasonal) patterns of variability. Average VLS distances are calculated for each
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sampling campaign and for all variables (VLSpwms, VLSsst, VL Ssaiinity, V'L Sdensitys VLSchi, VLSssna). A minimum threshold of
four transects was necessary before calculating a campaign average VLS. Exclusion of campaigns with <4 transects reduced

the total number of campaigns from 37 to 35.

Correlation and multiple linear regression (MLR) are used to explore the global controls on VLSpwms (see Sect. 3.3.1 and 3.3.2;
Table 1). The campaign average VLS used in each correlation and regression analysis only includes transects where coincident
VLS can be calculated from the DMS and non-DMS variables. MLR models with two input variables contain 20-26 datasets,
and MLR models with three input variables contain 11-15 datasets (see Table 1). The relative importance of the input variables
in each MLR model are calculated based on the incremental R? used to determine interactional dominance (defined as the

incremental R? contribution of each predictor to the complete model; Azen & Budescu, 2003).

3 Results
3.1 Global VLS statistics

The global average DMS concentration and geometric standard deviation (GSD) for the viable transects covered in this study
are 2.23 nM (average) and 2.29 (GSD), which is similar to the global average and GSD from the GSSDD (2.66 nM (average),
2.88 (GSD); date of last access 15 April 2022). The similarity between the two datasets suggests that the data used in this study
is representative of global observations. The global average and GSD of VLSpwms from all 763 transects are 12.57 km and 2.33,
respectively (Fig. 3). Global average VLSpwms is the smallest of the six variables tested, with VLSssna the most similar (15.76
km, 1.77 GSD) (Fig. 3). Global average VLScn is slightly larger (20.89 km, 1.67 GSD) and similar to global average VL Sgensity
(20.21 km, 1.76 GSD), and its components VLSsst (21.23 km, 1.73 GSD) and VL Ssaiinity (19.52 km, 1.84 GSD) (Fig. 3 & S1).
Global average VLSpms and VLSssha are significantly different (p <0.01) from each other and the global average VLS of all

other parameters. Global average VLSchi, VLS¢ensity, VLSsst, and VL Ssainity are not significantly different from one another.

All six variables have an average spatial variability that is tens of kilometres in all regions. Global average VLSssna is similar
(within 4 km) to global average VLSpwms. Global average VLS for all other parameters are within 9 km of global average
VLSpms. Campaign average VLSpws ranges from 2 to 30 km, which is the same order of magnitude as the range of 7-50 km
reported by other DMS variability studies (Asher et al., 2011; Nemcek et al., 2008; Royer et al., 2015; Tortell, 2005b; Tortell
et al., 2011). Note that a detailed comparison between studies should be treated with caution because each have used different
methods to identify the VLS.

3.2 Regional patterns of DMS variability

VLSpwms is generally small in the subtropical gyres, specifically the equatorial and subtropical South Pacific and South Atlantic

(Fig. 4; see Table S2 for each sampling campaign average VLSpws, €.9., campaign numbers: 30, M10a, black; 31, M10b, dark
7
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red; and 32, M10c, cyan). The average VLSpms from all transects in the three M10 low-mid latitude circumnavigation
campaign datasets (mean = 6.34 km, GSD = 2.59) is consistently smaller than the global value (mean = 12.57 km, GSD =
2.33) (Fig. 4). The relative homogeneity of small VLSpwms in these oligotrophic domains is not replicated in the VLS of any
other variables (Fig. S3). The Southern Hemisphere subtropical gyres are permanently stratified biomes, bounded to the south
by a band of seasonally stratified biomes (Fay & McKinley, 2014). At the boundary transitions from permanently to seasonally
stratified conditions there are some notable exceptions to the low VLSpwms, €.9., the Benguela upwelling (southeast Atlantic)

and South Australia upwelling (Fig. 4).

In contrast, the average (mean = 22.06 km, GSD = 1.60) of VLSpws in the Peruvian upwelling (East equatorial Pacific) is
consistently larger than the global average (mean = 12.57 km, GSD = 2.33) (Fig. 4). Larger VLSpws is also found along parts
of the Pacific and Atlantic coastlines of North America, with smaller VLSpws further offshore (Fig. 4, inset). VLSpwms in the
Acrctic, northeast Pacific, northwest Atlantic, and southeast Indian open ocean regions are highly variable. The Southern Ocean
has VLSpms generally below the global average and features some localised pockets with larger VLS (Fig. 4). DMS
concentration variability in mid-high latitude regions is seasonal (Hulswar et al., 2022) and VVLSpws could be influenced by

the season / time of year.

3.3 Drivers of DMS variability
3.3.1 Transect and campaign average VLS regressions

Simple linear regressions are used to explore the relationship between VLSpms and VLS for SST, salinity, density, Chl and
SSHA. The possibility of a relationship with latitude (as discussed in Royer et al. (2015)) is also investigated. Transect and
campaign average VLSpwms do not vary with latitude (R? = 0.02, n = 35, p > 0.05; Table 1). No significant relationships are
observed between transect VLSpms and VLS for SST, SSS, density, Chl and SSHA. Averaging transect VLS data into
campaign averages reduces the noise and enables statistically significant relationships to be identified. Campaign average
VL Saensiy €xplains 37% of the variations in VLSpwms (Table 1; Fig. 5a). VLSssua (used as an indicator of the dynamic eddy
field in the open ocean) and VLScn each explain approximately half of the campaign average VLSpms (46% and 47%,

respectively; Table 1; Fig. 5h&c).

3.3.2 Multiple linear regression of VLSpms

Multiple linear regression (MLR) is used on the campaign average VLS for SST, salinity, density, Chl and SSHA to explore
VLSpwms variance (Table 1; see Table S4, Supplementary Material for regression coefficients). Eleven MLR combinations were
tested, and all results are significant (p <0.01) except for the combination of VLSch, VLSssua and VLSsst (Model 17, Table
1). Note that the number of available datasets is reduced in the MLR models that have more input variables, which results in

the contribution of fewer data (campaigns) to the result. The number of input data is substantially increased if campaign
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averages are calculated without filtering the data prior to correlation so they only contain data where the two or more correlated
variables are co-located. Relaxing the criteria such that the transects need not be coincident increases the number of campaigns
that can be included in each MLR model. The ‘relaxed criterion’ approach is less robust but gives similar results to those
presented here (see Table S3, Supplementary Material).

Individual VLSch and/or VLSssua regressions with VLSpwms are outperformed (i.e., R? >0.47) by four MLR combinations
(Models 7-10, Table 1). The combination of VLSgensity and VLScn (Model 9, Table 1) substantially improves the regression
with VLSpws (adjusted R? increases to 0.63). MLR Model 9 has the most campaigns (n = 26) of any model, and the third
highest number of available data transects (n = 224). VLScn (54%) and VLSgensiy (46%) make approximately equal
contributions to the changes in VLSpus described by Model 9.

The largest amount of VLSpus variability explained by the MLR models uses the combination of VLSssha, VLScn and
VL Sgensity, improving the adjusted R? to 0.77 (Model 7, Table 1; Fig. 5d). VLSssna is the dominant parameter in Model 7 (52%
of the explained variance), with VLScn and VLSgensiy accounting for 34% and 14%, respectively. Combining VLScn and
VLSssha (MLR Model 11) reduces the available input data (n = 20) and does not increase the explained variance in VLSpms
compared to using only one or other of the input parameters. VLSssua and VLScn dominate the explained variance in MLR

models when paired with one other variable (Models 12-16, Table 1).

4 Discussion
4.1 Global statistics

This is the first study of sub-mesoscale seawater DMS variability from a global perspective. Spatial variability lengthscale
analysis is applied to every ocean basin, and at different times of year, using a consistent methodology. Characteristic spatial
variability in all six variables (DMS, SST, salinity, density, Chl, SSHA) occurs at the low mesoscale (in the tens of kilometres)
in all regions. Campaign average VLSpus ranges from 2-30 km (Table S2, Supplementary Material), in general agreement
with previous work (Asher et al., 2011; Nemcek et al., 2008; Royer et al., 2015; Tortell, 2005b; Tortell et al., 2011; Tortell &
Long, 2009). There is no correlation between campaign average DMS concentration and VLSpwms (R? = 0.01, p > 0.05), which
suggests that understanding the variability may be a helpful and independent approach to understanding the processes that

control surface ocean DMS.

4.2 Regional patterns of DMS variability

VLSpwms is generally above average at the edge of ocean basins e.g., parts of northwest Atlantic, northeast Pacific, the California
coast (Fig. 4, inset). It may be possible that the longer lengthscales of coastal DMS spatial variability are driven by large
phytoplankton blooms, which previous local/regional studies suggest can dominate coastal domains (Asher et al., 2011;

Nemcek et al., 2008). This work does not investigate the detail of drivers of DMS variability in individual regions or domains.

9
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Open ocean domains such as the sub-tropical gyres in the Southern Hemisphere have generally small VVLSpwms, a feature not
evident in the VLS of the other parameters (Fig. 4 & S2). Short lengthscales of DMS variability in stable stratified biomes
offers the opportunity for future work to re-examine these regions for as yet unidentified drivers of variability. Most low
latitude DMS data used in this study originate from a single sampling campaign (e.g., Malaspina Expedition 2010; Royer et
al., 2015). To test if small VLSpws is a persistent feature in under-sampled sub-tropical open oceans, more high-resolution

observations are needed.

Factors driving temporal DMS variability are not explored in this study. However, complex VLSpwms fluctuations at high
latitudes (e.g., northwest Atlantic, northeast Pacific, Southern Ocean; Fig. 4) may be capturing variations in both space and
time. VLSpws in high latitude dynamic regions could be related to the seasonality of biological productivity and eddy activity
(see Asher et al., 2011; Behrenfeld et al., 2019; Bell et al., 2021; Fox et al., 2020; Gaube et al., 2019; Herr et al., 2019; Lana
etal., 2011; McGillicuddy, 2016). Additionally, it is plausible that VL Spwms in the polar regions may be sensitive to the seasonal
impact of sea ice on biogeochemical processes (see Gali et al., 2021; Lannuzel et al., 2020; Stefels et al., 2018). There are not
enough repeat measurements made in high latitude (high seasonal variability) regions to establish the impact of seasonality on
VLSpwms. In this study, the only region sampled during different seasons is the northwest Atlantic (4 Atlantic NAAMES
campaigns; Bell et al., 2021) and there is not yet compelling evidence of a temporal difference between the VLSpus of these
cruises/seasons. VLSpwms of the NAAMES 1 transects (November; average = 11.93 km, GSD = 1.76) are significantly different
(p <0.01) from the transect VLSpms of NAAMES 3 (U = 99, p <0.01; September; average = 20.89 km, GSD = 1.69) and
NAAMES 4 (U =89, p <0.01; March/April; average = 21.94 km, GSD = 1.57), but not from NAAMES 2 (U =108, p = 0.014;
May/June; average = 18.4 km, GSD = 1.56). VLSpwms of the NAAMES 2, 3 & 4 transects are not significantly different from
each other (all p >0.2).

4.3 Drivers of DMS variability

The variance in campaign average VLSpwms data explained by physical processes (represented by VLSssna) is as important as
biogeochemical processes (represented by VL Scni), with each parameter able to explain just under half of the VLSpms (Models
1&2, Table 1; Fig. 5). This conclusion contrasts with the findings of Royer et al. (2015) who find in the low—mid latitudes the
majority of VLSpwms (65%) are more similar to the VLS of biological variables that represent biomass and physiology (Chl and
fluorescence) than to the VLS of physical variables. These contrasting conclusions potentially reflect the fact that length scales
of physical oceanographic variability increase towards the equator, due to the effects of the Earth's rotation. The Coriolis
parameter and therefore Rossby radius are intrinsically latitudinal dependent (Jacobs et al., 2001). The longer transects used
by Royer et al. (2015) at low-mid latitudes enable them to capture scales of variability that may be associated with large

physical features. This point is discussed further in in Section 4.5.
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A larger proportion of campaign average VLSpwms Vvariability (77%) can be explained using VLSch, VLSssha and VL Sgensity
(Model 7, Table 1) compared to just VLSssna Or VLSch. The data included in the VLSssHa-chi-pensiy MLR (Model 7, Table 1)
is a subset but includes at least one campaign from each major ocean basin (Fig. S4, Supplementary Material) and is thus a
significant relationship with global applicability. VLSssHa explains the majority of VLSpwms in the VLSssHa-chi-pensiy MLR
(52%) (Model 7, Table 1) and improves the prediction of changes in VLSpms compared to using just VLScn and VLSgensity
(Model 9, Table 1). The VLSssHa-chi-pensity MLR (Model 7, Table 1) includes measurements from the NAAMES4 (2018) cruise,
which targeted a substantive eddy and observed a persistent high Chl feature coincident with elevated DMS levels (Bell et al.,
2021). The water mass within an eddy tends to be retained by the circulation, such that plankton within the eddy are
accumulated under relatively stable physics (upwelling or downwelling) and consistent biogeochemical conditions (Bell et al.,
2021). Eddies may thus drive conditions where DMS variability is closely associated with biological activity and a clear co-
variation in VLS is observed, even if the relationship between DMS and Chl concentration is less obvious (della Penna &
Gaube, 2019). The relationship between eddy structure, biogeochemistry and DMS may explain the link between changes in
VLSpwms, VLSssHa, and VLScni. The importance of VLSsswa for predicting VLSpwms is consistent with results recently reported
by McNabb & Tortell (2022), who apply two independent machine learning techniques to analyse DMS in the northeast
Pacific. McNabb & Tortell (2022) demonstrate the power of mesoscale eddies for predicting DMS variability (Spearman
correlation coefficients = 0.35 and 0.42, depending on the machine learning method employed), using the same SSHA product
used in this study (using only summertime measurements, 1997 — 2017). The VLSssHa-ch-pensiy MLR model coefficients
(Model 7, Table S4, Supplementary Material) are used to predict VLSpms for the target input data subset (Fig. 5d). The

residuals of predicted VLSpwms are not systematically biased within the full range of the data (5 — 25 km).

4.4 Implications for global DMS parameterisation

Low resolution measurements have previously been used to predict mean spatiotemporal patterns of DMS, both regionally and
globally. Several studies have parameterised DMS as a function of surface mixed layer depth (MLD), light, and Chl (Anderson
et al., 2001; Aranami & Tsunogai, 2004; Aumont et al., 2002; Belviso, Moulin, et al., 2004; Gali et al., 2018; Sim6 & Dachs,
2002; Vallina & Simo, 2007). For example, Sim6 & Dachs (2002) use climatological MLD and remotely sensed Chl to estimate
average DMS concentrations, while Vallina & Simé (2007) use climatological MLD, surface irradiance and light attenuation
to estimate surface DMS from the ‘solar radiation dose’. Gali et al. (2018) employ an algorithm driven by climatological Argo
MLD and satellite derived Chl, SST, and photosynthetically active radiation (PAR). Only the latter algorithm was additionally
validated at finer resolution using non-climatological data to enable regional timeseries studies (Gali et al., 2019). SSHA
reflects surface mixing and changes to the MLD (Gaube et al., 2019). This study supports the choice of key variables used in
existing empirical parameterisations by demonstrating that, even on small scales, physical mixing (SSHA, density) and

biological activity (Chl) explain a large portion of surface seawater DMS spatial variability in the global ocean.
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DMS parameterisations with global coverage that rely on remote and autonomous observations predict spatially and seasonally
averaged surface seawater DMS reasonably well (e.g., Gali et al., 2018; Simé & Dachs, 2002; Vallina & Simé, 2007).
However, some studies have questioned whether such parameterisations are overly reliant on spatial/temporal averaging, often
to 1°/monthly resolution (e.g., Derevianko etal., 2009). The spatiotemporal averaging used to develop global parameterisations
may lead to an over-confidence in current predictive capabilities because key parameters are not included. Statistically
significant MLR relationships in this study are obtained once the transect data are averaged by campaign, and the average VLS
for all six variables in our study is tens of kilometres. Using VLS analysis to assess the covariation of parameters at the sub-
mesoscale provides insights that can help to improve global parameterisations. Our results indicate that patterns of mesoscale
and sub-mesoscale DMS variability, particularly those associated with SSHA, will be obscured at the 1° resolution of most
global parameterisations, highlighting the importance of modelling work at finer resolutions (e.g., Gali et al., 2019; McNabb
& Tortell, 2022, 2023). Regional studies have tested empirical predictive relationships for DMS with varying degrees of
success (Asher et al., 2011; Bell et al., 2006, 2021; Royer et al., 2015).

4.5 Study limitations and unidentified drivers of DMS variability

This work provides as comprehensive assessment of DMS variability across the global ocean as existing data allow, yet many
regions have not yet been sampled at high enough resolution to permit an assessment of VLSpwms. For example, only seven of
the 37 campaigns in this study have made high resolution DMS measurements in low latitude waters (30°N—-30°S). There is a
seasonal sampling bias within the DMS database, and the northwest Atlantic is the only region to have been assessed for VLS

throughout the seasonal cycle (Bell et al., 2021). More data are needed.

Satellite-derived VLScn and VLSssua have been used to predict VLSpwms (€.9., Model 7, Table 1), but this relies on the
assumption that the satellite-retrieved data are representative of phytoplankton productivity and eddy activity throughout the
research cruise/campaign. Satellite retrievals for Chl with higher than monthly temporal resolution or, in the case of SSHA,

higher than 0.17° spatial resolution, may improve the ability to explain variance in VLSpwms.

Transect lengths between 100 and 199 km are used to ensure comparability between datasets/regions because VLS results
from previous studies appear to be sensitive to the length of data transect (see Fig. S5, Supplementary Material). However, by
limiting the transect length, it is difficult to identify large eddies using VLSssna. Eddy length scales are typically larger at low
latitudes due to the dependence of the Coriolis parameter on latitude (Chelton et al., 1998). The maximum VLS in this study
is between 50 and 99.5 km (half the transect length), which is long enough to capture the eddy variability at latitudes where
the eddy length scale is related to the Rossby radius of deformation, i.e., poleward of 30° where the deformation radius is < 30
km (Eden, 2007). Equatorward of 30° eddy length scales are not well predicted by the Rossby radius of deformation and can
exceed 50 km (Eden, 2007; Klocker et al., 2016; Rhines, 1975; Scott & Wang, 2005; Tulloch et al., 2011). The VLSssna

analysis approach used in this study is designed to identify the dominant scale of variability in physical features up to 50-99.5
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km, therefore it may not capture the full extent of variability associated with large eddies at low latitudes. Large eddies will
however still be captured in the VLSssua analysis where a transect segments an eddy without passing through its centre. We
also note that although SSHA is used to represent eddy features, at the equator stratification and strong westward currents tend

to dominate SSHA variability rather than rotation and eddy transport (Williams & Follows, 2011).

VLSpwms in the subtropical gyres is typically small (<10 km; Fig. 4), which is qualitatively consistent with the short (days)
response time of DMS to perturbations in the dynamic equilibrium of DMS production and consumption in these waters (Gali
& Simo, 2015). VLSpwms in subtropical waters does not correspond well with the VLS of any of the other parameters (Fig. S3,
Supplementary Material). Cycling of reduced sulfur compounds in sub-tropical waters is well-documented to be part of a
different biogeochemical regime compared to productive, higher latitude waters (e.g., Gali & Simé, 2015; Toole & Siegel,
2004). In stable oligotrophic regions where there is less variability in physical mixing and phytoplankton productivity, VLSpms
could thus be dominated by alternative parameters that drive variability in the biological cycling of DMS such as zooplankton
grazing (Simo et al., 2018) and microbial organosulfur metabolism (Alcolombri et al., 2015; Cui et al., 2015; Nowinski et al.,
2019).

The so-called ‘summer paradox’ describes the seasonal misalignment between maximum concentrations of phytoplankton
biomass and DMS in low latitude waters and has been challenging to model (e.g., Gali & Simo, 2015; Polimene et al., 2012;
Toole et al., 2008; Vallina et al., 2008). In these areas, characterized by low seasonal amplitude in phytoplankton biomass,
changes in phytoplankton species succession and physiological stress control DMS production yields and rates, and ultimately
DMS seasonality. By contrast, aggregated loss processes exhibit low seasonal variability and are insufficient to explain large-
scale DMS seasonality in ‘summer paradox’ areas (Gali & Sim6, 2015). Previous studies observed important short-term
variations in the balance between DMS sources and sinks in oligotrophic waters, concomitant with meteorological forcing
(Royer et al., 2016). Hence, it is plausible to hypothesize that subtle changes in this balance can explain some of the variance
in VLSpws. Light exposure in surface waters influences plankton physiological production and stress, photochemical reactions,
and bacterial activity, and thus has a significant impact on the cycling of reduced sulfur in oligotrophic regions (see Toole &
Siegel, 2004; Vallina et al., 2008). These factors have not been included in the present study.

5 Conclusions

This study presents a comprehensive and objective analysis of DMS variability based on a large global dataset of high
frequency observations at the local/regional scale. The work shows that the variability lengthscale for DMS is typically small
(< 30 km) and that a substantial proportion of the campaign average variance can be explained by the VLS of key biological
(Chl) and physical (density, SSHA) observations (Model 7, Table 1). The results improve confidence in the validity of the
biological and physical parameters used to currently parameterise seawater DMS at large scales and used in many global
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climate models (e.g., Bock et al., 2021; Gali et al., 2018; Mulcahy et al., 2020; Sim6 & Dachs, 2002). However, there is
substantial variability in VLSpms When assessing individual transects, which suggests that unaccounted-for variables are also
important (e.g., light, wind speed, microbial diversity and activity). Making high frequency measurement of these parameters

at the same time as high frequency DMS measurements may help elucidate their role in DMS cycling.

Data availability
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Figure 1: Global extent of the 37 high frequency DMS campaigns included in this analysis (coloured). Data are only shown for the
underway transects used in the VLS analysis (see Sect. 2.3). Insets show detail for northeast Pacific and northwest Atlantic regions
670 with multiple sampling campaigns (see Table S2 and Fig. S1 in the Supplementary Material for metadata relating to each sampling

campaign and the spatiotemporal distribution, respectively).
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Figure 2: (a) Example seawater DMS concentration (nM) data transect (sampled from the northwest Atlantic during the NAAMES1
(November 2015) campaign; see Bell et al., 2021), analysed to find the variability lengthscale (VLS). (b) Asymptotic error curve
(dashed black) fitted to interpolation errors (RMSE, nM; dotted cyan) plotted as a function of increasingly coarse interpolation
distance (km). The 95% prediction intervals (PI) of the non-linear regression fit, i.e., £ 2 X residual standard errors (RSE), are
shaded blue. The VLS (km) is characterised as the intercept (dashed red) on the curve at 63% of the asymptotically approached
maximum interpolation error (nM). Method adapted from Hales & Takahashi (2004).
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Figure 3: Frequency distribution of variability lengthscales (VLS, km) for all DMS transects (grey bars). Vertical coloured lines
correspond to the global geometric mean (and geometric standard deviation, GSD) from all transects for VLSpwms (dark blue),
VLSssHa (beige), VL Seensity (Cyan), VLScn (magenta).
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Figure 4: Global distribution of 763 transects coloured by VLSpwms (km, log scale). The colour bar diverges at the global geometric
mean VLSpwms (12.57 km). See Fig. S3 in the Supplementary Material for equivalent VLS distribution maps of Chl, density, SSHA,
690 salinity and SST, and Fig. S1 for the spatiotemporal distribution of VLSpwms.
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Figure 5: Campaign geometric mean VLSpwms (km) plotted versus (a) VLSdensity, (b) VLSssHa, and (c) VLScni. Error bars indicate 1
GSD of the data within each campaign. (d) Campaign geometric mean VLSpwms predicted using coefficients from the VLSssna-chi-
pensity Multiple linear regression model (Model 7, Table 1; Supplementary Material, Table S4; Fig. S4) versus observed VL Spws, for
the subset of 12 DMS campaigns included in the multiple linear regression model. The 1:1 line is shown.
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Table 1: Regression results for the prediction of campaign average VLSpwms, using different combinations of input parameters.
Models are ranked in order of how much VLSpwms variance is explained. Models that are significant (p < 0.01) are denoted using *.

No. transects

. used to
Relative N (no. of calculate
Model no. Input parameters R? Adj. R? p importance campaigns) -
(%) campaign
averages
(of 760)
Linear Regression
1 VLSchi 0.47 - <0.01* 100 29 351
2 VLSssHa 0.46 - <0.01* 100 24 361
3 VL Sgensity 0.37 - <0.01* 100 32 480
4 VL Sqalinity 0.33 - <0.01* 100 32 490
5 VLSsst 0.21 - 0.014 100 28 445
6 Latitude (abs.) 0.02 - 0.375 100 35 760
Multiple Linear Regression
VLSch 34
7 VLSssHa 0.83 0.77 <0.01* 52 12 87
VLSdensity 14
VLSchi 58
8 VLSssHa 0.77 0.71 <0.01* 41 15 100
VL Ssalinity 1
9 VL Sen 0.66 0.63 <0.01* >4 26 224
VLSdensity . ' ' 46
VLSsaIinity 85
: . <0.01*
10 VL Seer 0.62 0.59 0.01 15 25 322
VLSchi 35
: . <0.01*
11 VL Sssiin 0.51 0.46 0.01 65 20 177
VLSchi 70
12 0.50 0.45 <0.01* 22 211
VLSsaIinity 30
VLS 91
13 SsnA 0.49 0.44 <0.01* 23 234
VLSsaIinity 9
VLSch 73
. . <0.01*
14 VL Seer 0.46 0.4 0.01 27 22 204
VLSssHa 75
. . <0.01*
15 VL Sser 0.43 0.36 0.01 25 20 189
VLSSSHA 84
16 0.41 0.35 <0.01* 22 213
VLSdensity 16
VLSchi 84
17 VLSssHa 0.50 0.29 0.156 15 11 77
VLSsst 1

28



	1 Introduction
	2 Data & methods
	2.1 Seawater DMS data
	2.2 Ancillary in-situ & coincident satellite measurements
	2.3 Data processing
	2.4 Variability lengthscale (VLS) analysis
	2.4.1 Quality assurance and VLS statistics


	3 Results
	3.1 Global VLS statistics
	3.2 Regional patterns of DMS variability
	3.3 Drivers of DMS variability
	3.3.1 Transect and campaign average VLS regressions
	3.3.2 Multiple linear regression of VLSDMS


	4 Discussion
	4.1 Global statistics
	4.2 Regional patterns of DMS variability
	4.3 Drivers of DMS variability
	4.4 Implications for global DMS parameterisation
	4.5 Study limitations and unidentified drivers of DMS variability

	5 Conclusions
	Data availability
	Supplement
	Author Contributions
	Competing Interests
	Acknowledgements
	References

