Global analysis of the controls on seawater dimethylsulfide spatial variability

George Manville¹, Thomas G. Bell², Jane P. Mulcahy³, Rafel Simó⁴, Martí Galí^{4,5}, Anoop S. Mahajan⁶, Shrivardhan Hulswar⁶, Paul R. Halloran¹

¹Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4PY, UK

²Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK

³Met Office, Exeter, EX1 3PB, UK

⁴Institut de Ciències del Mar (ICM-CSIC), Barcelona, 08003, Catalonia, Spain

⁵Barcelona Supercomputing Center (BSC-CNS), Barcelona, 08034, Catalonia, Spain

⁶Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, 411008, India

Correspondence to: George Manville (gm441@exeter.ac.uk) and Thomas G. Bell (tbe@pml.ac.uk)

Table S1: Summary of previous VLS studies

Study	Interpolation measure	Characteristic lengthscale	DMS variability lengthscale (range)
Hales & Takahashi, 2004	Absolute error	63% of the asymptotically approached maximum (under)sampling error	_
Tortell, 2005	Correlation coefficient	First zero crossing of autocorrelation function	$15 \pm 4 \text{ km}$
Nemcek et al., 2008	Mean absolute error. Relative standard error	63% of the asymptotically approached maximum (under)sampling error. Error magnitude compared to DMS concentration (as a %)	7.4 km
Tortell & Long, 2009	Standard error	Semivariogram analysis. Distance beyond which samples become uncorrelated	250 km
Tortell et al., 2011	Root mean squared error	63% of the asymptotically approached maximum (under)sampling error	$14.5 \pm 3.4 \text{ km}$
Asher et al., 2011	Mean squared error	Change in slope (heuristic)	7.4 ± 2.2 km
Royer et al., 2015	Mean squared error	Change in slope (by eye) after averaging over increasing bin widths (only binning approach)	(15 – 50 km)

Table S2: Summary of mean DMS concentration (nM) and VLS (km), and metadata for each sampling campaign used in this study. Data are sourced from the global surface seawater DMS database (GSSDD, see <u>https://saga.pmel.noaa.gov/dms/</u> last access: 15 April 2022), Malaspina Expedition in 2010 – split into three subsets (M10 a, b, c, Royer et al., 2015), the four North Atlantic Aerosol and Marine Ecosystem Study campaigns 2015–2018 (NAAMES, Bell et al., 2021), and the Southern oCean SeAsonaL Experiment in 2019 (SCALE, Manville et al. In Prep).

Figure 1 Colour & No.	Data Source (Contribution)	Contributor	Region Period		Geometric Mean DMS conc. (nM)	Geometric Mean DMS VLS (km)
1	GSSDD (164)	Johnson	Gulf of Maine	2004/07/09 - 2004/08/12	2.09	19.99
2	GSSDD (165)	Johnson	Gulf of Mexico	2006/08/23 - 2006/09/11	2.25	16.72
3	GSSDD (166)	Johnson	E Equatorial Pacific	2006/10/14 - 2006/10/26	1.85	24.19
4	GSSDD (173)	Johnson	Atlantic Ocean	2007/10/09 - 2007/10/12	1.19	24.83
5	GSSDD (174)	Johnson	E Tropical Pacific	2007/10/16 - 2007/11/11	2.30	25.21
6	GSSDD (175)	Johnson	N Atlantic	2008/03/21 - 2008/04/24	1.27	22.57
7	GSSDD (196)	Archer	Southern Ocean	2008/03/03 - 2008/04/07	1.44	14.09
8	GSSDD (233)	Saltzman	N Atlantic	2007/07/17 - 2007/07/24	3.80	29.34
9	GSSDD (243)	Johnson	E Equatorial Pacific	2008/10/20 - 2008/11/22	2.57	23.38
10	GSSDD (244)	Johnson	California coast	2010/05/14 - 2010/06/07	5.10	29.00
11	GSSDD (246)	Bell	N Atlantic	2011/06/30 - 2011/07/14	2.82	4.11
12	GSSDD (247)	Bell	Southern Ocean	2012/02/15 - 2012/03/06	5.13	7.47
13	GSSDD (248)	Herr	NE Pacific	2004/08/12 - 2004/08/19	2.96	18.73
14	GSSDD (249)	Herr	NE Pacific	2007/06/01 - 2007/06/16	2.33	21.94
15	GSSDD (250)	Herr	NE Pacific	2007/08/16 - 2007/08/30	4.28	19.80
16	GSSDD (251)	Herr	NE Pacific	2008/06/01 - 2008/06/15	3.64	12.61
17	GSSDD (252)	Herr	NE Pacific	2008/08/14 - 2008/08/30	5.22	13.58
18	GSSDD (253)	Herr	NE Pacific	2010/07/22 - 2010/08/15	7.39	19.71
19	GSSDD (254)	Herr	NE Pacific	2010/06/01 - 2010/06/04	2.51	24.45
20	GSSDD (256)	Herr	NE Pacific	2014/08/29 - 2014/08/31	3.99	13.24
21	GSSDD (257)	Herr	NE Pacific	2016/07/12 - 2016/07/27	2.50	14.75
22	GSSDD (258)	Herr	NE Pacific	2017/08/12 - 2017/08/27	2.80	16.26
23	GSSDD (259)	Jarnikova	Southern Ocean	2009/01/07 - 2009/01/19	4.49	9.30
24	GSSDD (260)	Jarnikova	Southern Ocean	2005/12/27 - 2006/01/17	5.05	15.76

25	GSSDD (261)	Jarnikova	Southern Ocean	2006/11/03 - 2006/12/11	4.93	13.22
26	GSSDD (262)	Jarnikova	Southern Ocean	2010/11/30 - 2010/12/14	1.40	18.87
27	GSSDD (263)	Jarnikova	Southern Ocean	2013/11/22 - 2013/12/13	7.18	13.39
28	GSSDD (264)	Jarnikova	Labrador Sea	2015/07/13 - 2015/08/18	2.03	13.05
29	GSSDD (265)	Zhang	Southern Ocean, E Indian, W Pacific	2014/02/07 - 2014/04/11	2.17	13.47
30	M10 (a)	Mahajan & Simo	S Atlantic	2010/12/17 - 2011/02/18	1.09	5.93
31	M10 (b)	Mahajan & Simo	S Indian, S Australia coast, Tasman Sea	2011/03/03 - 2011/04/12	1.00	6.67
32	M10 (c)	Mahajan & Simo	Tropical & sub-tropical Pacific	2011/04/19 - 2011/07/12	0.93	1.86
33	NAAMES (1)	Bell	N Atlantic	2015/11/11 - 2015/11/29	1.28	11.93
34	NAAMES (2)	Bell	N Atlantic	2016/05/14 - 2016/06/03	2.02	18.40
35	NAAMES (3)	Bell	N Atlantic	2017/09/06 - 2017/09/23	2.98	20.89
36	NAAMES (4)	Bell	N Atlantic	2018/03/21 - 2018/04/12	3.20	21.94
37	SCALE	Manville	Southern Ocean	2019/10/18 - 2019/11/18	3.28	3.78

Figure S1: (a) Global extent of the 37 high frequency DMS campaigns included in this analysis (coloured and numbered), (b) spatiotemporal distribution of DMS campaigns, highlighting acute seasonal sampling bias, (c) spatiotemporal distribution of 763 transects coloured by VLS_{DMS} (km, log scale) (see Table S2 for metadata relating to each sampling campaign).

Figure S2: All panes: Frequency distribution of variability lengthscales (VLS, km) for all DMS transects (grey bars), with the global geometric mean VLS_{DMS} (dark blue line). Panes b–f: Frequency distribution of transect VLS for each variable (light blue bars), normalised to the maximum transect frequency of the VLS_{DMS} and superimposed on the VLS_{DMS} frequency distribution. Vertical coloured lines correspond to global geometric mean from all transects for (a) VLS_{DMS} (blue), (b) VLS_{SSHA} (red), (c) VLS_{Chl} (green), (d) VLS_{density} (yellow), (e) VLS_{salinity} (purple), (f) VLS_{SST} (orange).

Figure S4: Cruise tracks of the DMS data sampling campaigns included in multiple linear regression (MLR) models (a) Model 7: 12 datasets, (b) Model 8: 15 datasets, (c) Model 11: 20 datasets, (d) Model 10: 25 datasets, (e) Model 9: 26 datasets. See Table S1 for metadata regarding each sampling campaign.

Model 9

Model no.	Input parameters	R ²	Adj. R ²	р	Relative importance (%)	N (no. of campaigns)	No. transects used to calculate campaign averages (of 760)
Linear Regres	sion						
1	VLS _{Chl}	0.2	—	< 0.01*	100	35	361
2	VLS _{SSHA}	0.31	_	<0.01*	100	34	387
3	VLS _{density}	0.41	_	< 0.01*	100	35	486
4	VLS _{salinity}	0.25	_	<0.01*	100	35	496
5	VLS _{SST}	0.25	_	< 0.01*	100	35	462
6	Latitude (abs.)	0.02	_	0.375	100	35	760
Multiple Line	ar Regression						
	VLS _{Chl}				21		361
7	VLS _{SSHA}	0.61	0.58	<0.01*	37	34	387
	VLS _{density}				42		486
	VLS _{Chl}		0.4	<0.01*	26	34	361
8	VLS _{SSHA}	0.46			54		387
	VLS _{salinity}				20		496
0	VLS _{Chl}	0.5	0.47	<0.01*	29	35	361
9	VLS _{density}	0.5			71	55	486
10	VLS _{salinity}	0.44	0.41	<0.01*	49	35	496
10	VLS _{SST}	0.44			51		462
1.1	VLS _{Chl}	0.45	0.41	<0.01*	35	34	361
11	VLS _{SSHA}	0.45			65		387
12	VLS _{Chl}	0.2	0.25	<0.01*	42	35	361
12	VLS _{salinity}	0.5			58		496
12	VLS _{SSHA}	0.27	0.33	<0.01*	65	34	387
15	VLS _{salinity}	0.37			35		496
14	VLS _{Chl}	0.41	0.28	<0.01*	44	35	361
14	VLS _{SST}	0.41	0.58	<0.01**	56		462
15	VLS _{SSHA}	0.42	0.20	<0.01*	60	34	387
	VLS _{SST}	0.42	0.39	<0.01*	40		462
16	VLS _{SSHA}	0.52	0.5	<0.01*	45	34	387
	VLS _{density}	0.52			55		486
	VLS _{Chl}				27		361
17	VLS _{SSHA}	0.56	0.51	< 0.01*	44	35	387
	VLS _{SST}				29		462

Table S3: Regression results for the prediction of campaign average VLS_{DMS}, equivalent to Table 1 in the main text but using the 'relaxed criterion' approach (see main text Section 3.3.2 for details). Models that are significant (p < 0.01) are denoted using *.

Figure S5: The importance of consistent transect lengths for analysing VLS. (a) VLS_{DMS} in this study is not significantly correlated to transect length for the 763 consistent (100-200 km) transects, (b) VLS of all parameters is dependent on transect length from both Nemcek et al. (2008) (~50-150 km, green box) and Royer et al. (2015) (~100-1100 km, red box).

Table S4 – Regression results for the prediction of campaign average VLS_{DMS}, equivalent to Table 1 in the main text but including regression coefficients. Input variables and coefficients can be applied for the prediction of VLS_{DMS} following Eq. (S1):

$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

where β corresponds to the coefficient for each input variable *x*, and β_0 is the constant.

Model no	Input parameters (x_1, x_2, x_3)	R ²	Adj. R ²	р	Coefficients $(\beta_1, \beta_2, \beta_3)$	Constant (β_0)
Linear Regressi	on				β_1	
1	VLS _{Chl}	0.2	_	< 0.01*	0.8099	-2.991
2	VLS _{SSHA}	0.31		<0.01*	0.642	2.8003
3	VLS _{density}	0.41		<0.01*	0.6524	1.1319
4	VLS _{salinity}	0.25		< 0.01*	0.7393	0.0703
5	VLS _{SST}	0.25		<0.01*	0.6055	1.8129
6	Latitude (abs.)	0.02		0.375	-0.0703	19.0409
Multiple Linear	Regression				$\beta_1, \beta_2, \beta_3$	
	VLS _{Chl}		0.58		0.3262	
7	VLS _{SSHA}	0.61		<0.01*	0.8791	-11.0697
	VLS _{density}				0.1725	
	VLS _{Chl}				0.6863	-9.5223
8	VLS _{SSHA}	0.46	0.4	<0.01*	0.5683	
	VLS _{salinity}				0.0153	
0	VLS _{Chl}	0.5	0.47	<0.01*	0.6256	-7.178
9	VLS _{density}				0.3953	
10	VLS _{salinity}	0.44	0.41	<0.01*	0.9182	-7.1162
10	VLS _{SST}				0.1269	
11	VLS _{Chl}	0.45	0.41	<0.01*	0.2456	-0.5942
11	VLS _{SSHA}				0.5247	
10	VLS _{Chl}	0.3	0.25	<0.01*	0.6606	2 5/70
12	VLS _{salinity}				0.1557	-3.3472
13	VLS _{SSHA}	0.27	0.22	<0.01*	0.5444	1 2005
	VLS _{salinity}	0.37	0.35		0.1747	1.3003
14	VLS _{Chl}	0.41	0.38	<0.01*	0.6509	7 6643
14	VLS _{SST}	0.41			0.3517	-7.0043
15	VLS _{SSHA}	0.42	0.39	<0.01*	0.5456	-2.5339
	VLS _{SST}	0.42			0.3233	
16	VLS _{SSHA}	0.52	0.5	<0.01*	0.5475	0.6278
	VLS _{density}	0.32			0.2495	-0.0270
	VLS _{Chl}			<0.01*	1.028	
17	VLS _{SSHA}	0.56	0.51		-0.7187	7.282
	VLS _{SST}				-0.2228	

References

- Asher, E. C., Merzouk, A., & Tortell, P. D. (2011). Fine-scale spatial and temporal variability of surface water dimethylsufide (DMS) concentrations and sea-air fluxes in the NE Subarctic Pacific. *Marine Chemistry*, 126(1–4), 63– 75. https://doi.org/10.1016/j.marchem.2011.03.009
- Bell, T. G., Porter, J. G., Wang, W. L., Lawler, M. J., Boss, E., Behrenfeld, M. J., & Saltzman, E. S. (2021). Predictability of Seawater DMS During the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES). *Frontiers in Marine Science*, 7, 1200. https://doi.org/10.3389/FMARS.2020.596763/BIBTEX
- Hales, B., & Takahashi, T. (2004). High-resolution biogeochemical investigation of the Ross Sea, Antarctica, during the AESOPS (U. S. JGOFS) Program. *Global Biogeochemical Cycles*, 18(3). https://doi.org/10.1029/2003GB002165
- Nemcek, N., Ianson, D., & Tortell, P. D. (2008). A high-resolution survey of DMS, CO2, and O2/Ar distributions in productive coastal waters. *Global Biogeochemical Cycles*, 22(2). https://doi.org/10.1029/2006GB002879
- Royer, S. J., Mahajan, A. S., Galí, M., Saltzman, E., & Simõ, R. (2015). Small-scale variability patterns of DMS and phytoplankton in surface waters of the tropical and subtropical Atlantic, Indian, and Pacific Oceans. *Geophysical Research Letters*, 42(2), 475–483. https://doi.org/10.1002/2014GL062543
- Tortell, P. D. (2005). Small-scale heterogeneity of dissolved gas concentrations in marine continental shelf waters. *Geochemistry, Geophysics, Geosystems, 6*(11). https://doi.org/10.1029/2005GC000953
- Tortell, P. D., Guéguen, C., Long, M. C., Payne, C. D., Lee, P., & DiTullio, G. R. (2011). Spatial variability and temporal dynamics of surface water pCO2, δO2/Ar and dimethylsulfide in the Ross Sea, Antarctica. *Deep-Sea Research Part I: Oceanographic Research Papers*, 58(3), 241–259. https://doi.org/10.1016/j.dsr.2010.12.006
- Tortell, P. D., & Long, M. C. (2009). Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom. *Geophysical Research Letters*, 36(1). https://doi.org/10.1029/2008GL035819