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Abstract. Understanding mechanisms of tree mortality and geometric patterns of canopy gaps is relevant for robust estimates 

of carbon stocks and balance in tropical forests, and for assessing how they are responding to climate change. We combined 

monthly RGB images acquired from an unmanned aerial vehicle with field surveys to identify gaps in an 18-ha permanent plot 

in an old-growth Central Amazon forest over a period of 28 months. In addition to detecting, we measured the size and shape 15 

of gaps, and analyzed their temporal variation and correlation with rainfall. We further described associated modes of tree 

mortality or branch fall and quantified associated losses of biomass. Overall, the sensitivity of gap detection differed between 

field surveys and imagery data. In total, we detected 32 gaps either in the images and field, ranging in area from 9 m2 to 835 

m2. Relatively small gaps (< 39 m2) associated with branch fall were the most frequent (11 gaps). Out of 18 gaps for which 

both field and imagery data were available, three could not be detected remotely. This result shows that a considerable fraction 20 

of tree mortality and branch-fall events (~ 17 %) affect only the lower canopy and the understory of the forest and thus, are 

likely neglected by assessments of top of the canopy. Regardless the detection method, the size distribution of gaps in our 

study region was better captured by a Weibull function. As confirmed by our detailed field surveys, we believe that this pattern 

was not biased by gaps possibly undetected from image data. Although not related to differences in gap size, the main modes 

of tree mortality partially explained associated losses of biomass. The rate of gap area formation expressed as the percent per 25 

month was positively correlated with the frequency of extreme rainfall events, which may be related to a higher frequency of 

storms propagating destructive wind gusts. Our results demonstrate the importance of combining field observations with 

remote sensing methods for monitoring gap dynamics in dense forests. The correlation between modes of tree mortality and 

gap geometry with associated losses of biomass provide evidence on the importance of small-scale events of tree mortality 

and branch fall as processes that contribute to landscape patterns of carbon balance and species diversity in Amazon forests. 30 

Regional assessments of the dynamics and geometry of canopy gaps formed from branch fall and individual tree-mortality 

(e.g., from few to hundreds of m2) up to catastrophic blowdowns associated with extreme rain and wind (e.g., from hundreds 

of m2 to thousands of ha) can reduce the uncertainty of landscape assessments of carbon balance, especially as the frequency 

and intensity of storms causing these events is likely to change with future Amazon climate. 
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1 Introduction 35 

Tropical forests store ~25 % of terrestrial biomass carbon stocks (Pan et al., 2013). The maintenance of these stocks depends 

on multi-scale and -temporal processes regulating the growth and mortality of trees (Brienen et al., 2015; McDowell et al., 

2018; Frelich, 2016). Reports of increased tree mortality in tropical and temperate regions raise questions about the influence 

of climate change on the dynamics and functioning of old-growth forests (Laurance et al., 2004; Phillips and Gentry, 1994; 

Allen et al., 2015). In the tropics, climate change is related to increased frequency and intensity of extreme events, such as 40 

convective storms (Gloor et al., 2013; Tan et al., 2015; IPCC, 2021) that can increase rates of tree mortality and/or branch fall, 

thereby altering patterns of forest biomass and carbon (Laurance et al., 2004; Chambers et al., 2013; McDowell et al., 2018). 

In this context, understanding mechanisms of disturbance and forest response is fundamental to improve estimates of carbon 

stocks and balance from the stand to the landscape scale, and to anticipate the response of forests to varying climate scenarios 

(Clark et al., 2017; Leitold et al., 2018). 45 

Gaps are natural openings in the forest canopy caused by falling trees and/or branches (Brokaw, 1982; Whitmore, 1989). Such 

disturbances exert great influence on the dynamics and functioning of tropical forests, as they alter structure (Kellner et al., 

2009), natural regeneration (Grubb, 1977; Kellner and Asner, 2014), species diversity and composition (Denslow, 1987; 

Magnabosco Marra et al., 2014a, 2018), soil carbon stocks and nutrients (Santos et al., 2016; Vitousek and Denslow, 1986), 

and productivity (Baker et al., 2004). The size of gaps can vary from a few square meters to thousands of hectares, depending 50 

on the mechanism of formation (Nelson et al., 1994; Fontes et al., 2018; Magnabosco Marra et al., 2018; Esquivel-Muelbert 

et al., 2020; Araujo et al., 2017, 2021). The size and shape of gaps define the amount of light and other key resources during 

succession (Denslow, 1980, 1987; Schliemann and Bockheim, 2011). Apart from related to mechanisms of formation, the size 

and shape of gaps can be influenced by local climate and topography, soil and forest structure and species composition 

(Denslow, 1987; Araujo et al., 2021; Cushman et al., 2022). Thus, assessing the size distribution of gaps provides information 55 

on key processes regulating forest structure and diversity, and related functions (Jucker, 2022). 

Traditionally, studies of gap dynamics and geometry (e.g., area, perimeter and shape) have relied on observations made as part 

of forest inventories (Brokaw, 1982; Hubbell et al., 1999). However, gap-forming events can be stochastic and obtaining robust 

information on their frequency and geometry from often relatively low number of plots surveyed infrequently is a challenging 

task. In recent years, studies of gap frequency and geometry have been conducted using fine-scale remote sensing, which 60 

allows for inferences across larger spatial scales (Getzin et al., 2014; Araujo et al., 2021; Asner et al., 2013; Dalagnol et al., 

2021). Variations in the sensitivity of detection and spatial scales addressed using remote-sensing methods allowed for 

revisiting classic definitions of gap, as well as the importance and applicability of different metrics. In the field, a gap can be 

defined by an opening in the forest canopy extending from the upper stratum to an average height of two meters above ground 

(Brokaw, 1982). Optical remote sensing allows for the monitoring of relatively larger areas at high accuracy and spatial 65 

resolution (Senf, 2022; Frolking et al., 2009). However, it is limited to the detection of disturbances in the upper canopy layer. 
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In the Amazon, studies using intermediate spatial-resolution remote-sensing data have shown that small gaps are more frequent 

than relatively larger events, such as large gaps associated with convective storms (Nelson et al., 1994; Chambers et al., 2013; 

Araujo et al., 2017). However, the use of these data such as Landsat (30 m x 30 m pixel, 0.09 ha) do not allow mapping the 

smaller and more frequent disturbances (e.g., < 0.1 ha), including those only affecting the lower canopy of the forest. As 70 

demonstrated for the region of Manaus (Brazil), Landsat images are only sensitive in detecting mortality events involving from 

6 to 8 fallen trees (Negrón-Juárez et al., 2011; Chambers et al., 2013). This mismatch between the monitoring of gap dynamics 

using forest inventory and satellite data highlights the lack of knowledge on mechanisms of formation of relatively smaller 

and more frequent gaps, and thus of their influence on landscape patterns of forest dynamics and biomass balance. 

An alternative to assess the full gradient of gap size and geometry is the photogrammetry computed from unmanned aerial 75 

vehicle (UAV) imagery, commonly known as drones. In addition to a more detailed description of size and geometry, 

successive imaging acquired with UAVs makes it possible to monitor gap dynamics at higher spatial and temporal resolutions 

than that provided by satellite imagery (Getzin et al., 2014; Araujo et al., 2021; Senf, 2022). Still, the monitoring of gap 

dynamics using high spatial and temporal resolution imagery must be validated with field data. When combined with 

continuous forest inventories, UAV imagery may allow for the quantification of the relative contribution of mechanisms of 80 

gap formation such as different modes of tree mortality and branch fall, and to compute associated losses of biomass. The 

combination of high spatial-resolution imagery and field data also offers an unique opportunity to describe the seasonality of 

tree-mortality events and possible interactions with extreme weather events and their relevance for the maintenance of carbon 

stocks (Esquivel-Muelbert et al., 2020). 

In this study, we combined high-resolution photogrammetry with detailed forest inventory data to quantify the size distribution 85 

and geometry of gaps, the relative contribution of different modes of tree-mortality and branch fall, and associated losses of 

biomass in an 18-ha Amazon forest. We addressed the following questions: i) How sensitive is RGB photogrammetry acquired 

with UAV for the detection of gaps compared with forest inventory data? ii) Is there a difference in the size distribution and 

geometry of gaps measured with photogrammetry and forest inventory? iii) Are gap geometry and biomass losses influenced 

by traceable modes of tree mortality? iv) Is the rate and size of gap formation related to rainfall? 90 

2 Methods 

2.1 Study area 

The study was conducted on a permanent plot (2°36′47″ S; 60°08′41″ W) monitored within the Project Interação Vento-Árvore 

na Amazônia (INVENTA), which is part of the Amazon Tall Tower Observatory (ATTO) (Fig. 1a). This plot (hereafter referred 

to as INVENTA plot) is located at the Estação Experimental de Silvicultura Tropical (EEST) from the Instituto Nacional de 95 

Pesquisas da Amazônia (INPA), a reserve with 21,000 ha of contiguous old-growth forest (Fig. 1b). The EEST is accessible 

via the local road ZF-2, located at km 50 of the BR-174 highway north of Manaus, Brazil (Fig. 1c). The INVENTA plot has a 

size of 18 ha (600 m x 300 m) and is divided into 20 m x 20 m subplots (total of 450 subplots), which are subdivided into four 
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10 m x 10 m quadrats (total of 1,800 quadrats). The INVENTA plot was established in 2000 as part of the Jacaranda Project 

(Pinto et al., 2003). At the time it started, all trees, palms and lianas with DBH (diameter at breast height, 1.3 m) ≥5 cm were 100 

recorded. In 2017, prior to the start of INVENTA, all trees and palms with DBH ≥ 10 cm were remeasured. 

The canopy trees in our study region are 28.65 m ± 0.46 m tall (mean ± standard deviation) (Araujo, 2019). The forest 

understory and canopy are dense and closed. The richness of 10 cm DBH trees can exceed 280 species ha-1 (Oliveira and Mori, 

1999). The INVENTA plot has an undulating topography typical of the region, including areas of plateau, slope and valley. 

The mean annual precipitation and temperature in the Manaus region are 2,231 ± 118 mm year -1 (mean ± 95 % confidence 105 

interval) and 26.9 ± 0.17 °C, respectively (1970-2016 period) (Magnabosco Marra et al., 2018). The region experiences three 

consecutive months (mostly commonly from July to September) with less than 100 mm of rainfall (Negrón-Juárez et al., 2017; 

Wu et al., 2016). 

 

Figure 1: Study area (INVENTA plot) with an area of 18 ha (300 m x 600 m), located ~50 km north of Manaus, Central Amazon, 110 

Brazil. Elevation refers to the canopy surface model generated from photogrammetry of images obtained with UAV. 
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2.2 Acquisition and processing of remote sensing data  

Imagery data were collected monthly, between September 2018 and January 2021 (28 months), using a digital RGB camera 

deployed on DJI Phantom 3 and 4 UAVs (see collection period in Table S1). The flight plans were programmed using the DJI 

Ground Station application installed on a tablet device (Apple, model A1489), which was connected to the aircraft remote 115 

control and configured for automated flight from predefined waypoints. The camera lens has a Field of View (FOV) angle of 

94°, and the pictures generated have a resolution of 12 Mp, with maximum dimensions of 4,000 pixels x 3,000 pixels. The 

overflights were performed at 100 m height above the ground, with an approximate speed of 9.9 m s-1 in order to generate 

images with ~100 m width at canopy height. Photographs were captured every 2 seconds with 85 % longitudinal overlap, and 

70 % lateral overlap with respect to the ground. The camera was calibrated on each flight to reduce the effects of varying 120 

illumination within and between flights. To ensure homogeneous images and diffuse lighting conditions throughout the studied 

period, whenever possible, flights were performed in mid-morning and/or late afternoon.  

The acquired photos were processed using Agisoft Metashape (Version 1.5.2) (AGISOFT LLC., St. Petersburgh, Russia). This 

software aligns photos using the Scale Invariant Feature Transformation (SIFT) algorithm (Lowe, 2004), which allows for 

ratifying photos with a bending angle greater than three degrees. Through this procedure photos were aligned from overlapping 125 

common features (i.e., textures). Further, these aligned points were given X, Y, Z coordinates and the parallax effect seen on 

the overlapping photos was used for reproducing the stereoscopic (3D) view based on the Structure from Motion (SfM) method. 

After creating the 3D point network, a dense cloud of XYZ points was generated to fill empty spaces (i.e., Dense Point Cloud). 

From the Dense Point Cloud, a digital surface model (DSM) and an orthomosaic were generated. The DSM is a digital 

geographic dataset that represents surface elevations with horizontal and vertical (X, Y, Z) coordinates (Iglhaut et al., 2019). 130 

The orthomosaic reproduces the real dimensions of objects (Araujo et al., 2020), with horizontal spatial resolution ranging 

from 3 cm to 7 cm. 

The orthomosaic and DSM were aligned vertically and horizontally using the georeferencing process from LiDAR data 

collected along transects as part of the EBA project (Ometto et al., 2021), which covered the INVENTA plot. The workflow 

consisted of creating a georeferenced project based on control points extracted from LiDAR. Subsequential flights were 135 

matched using the ‘Align Chunks’ tool available in Agisoft Metashape (more detail on the process in Text S1). 

2.2.1 Detection of canopy gaps 

Canopy gaps within the UAV images were identified through the combination of DSM change analysis, visual interpretation 

of the orthomosaics (Fig. 2) and field data. Initially, we resampled the pixel resolution of photos to 1 m, and the difference-

image was calculated for all pairs to obtain a raster product (i.e., difference-image) describing changes in canopy height among 140 

time intervals. 

In order to compare our data with previous studies, the area of the identified gaps was computed as the region where the canopy 

lost more than 10 m in height over continuous areas larger than 5 m2. This was also the smallest gap size reported in previous 
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studies (Brokaw, 1982; Hubbell et al., 1999), with an area/perimeter ratio greater than 0.6. By computing the area/perimeter 

ratio, we were able to remove artifacts associated with slight changes on the positions of individual trees in subsequential pairs 145 

of images, both due to wind-driven canopy shifts and changes in tree alignment. Therefore, the criterion for gap identification 

was based on the analysis of gap size and shape. 

Finally, successive pairs of orthomosaics covering subplots (400 m2) were visually checked. When necessary, we edited the 

pre-delineated polygons by removing false gaps related to image noise (Araujo et al., 2021). 

Figure 2: Canopy gaps identified from surface models and orthomosaics computed from photogrammetric analyses of UAV imagery. 150 

Elevation model for a studied gap on two successive flights from 29th September 2020 (a) and 26th October 2020 (b). The difference 

in surface elevation between flights (black area) indicates a reduction in canopy height (c). RGB orthomosaics from the same dates 

(d, e).  
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2.3 Field surveys for evaluating remotely sensed gaps  155 

Field data were collected bimonthly (section 2.3.1) and included the identification and description of gaps formed between 

November 2019 and January 2021 (14 months) (see collection period in Table S1). Initially, we identified all gaps formed 

before the studied period on the images and marked them in the field to create a reference baseline. The identification and 

description of gaps in the field were conducted by walking the entire plot. This task was always carried out by the same team 

using existing trails 10 m distant from each other to ensure precise counting and description of gaps. For field measurements, 160 

we adopted the definition of canopy gap by Brokaw (1982) - an opening in the forest canopy extending from the upper stratum 

to an average height of two meters above ground. In addition to confirming the gaps identified in the images, the field surveys 

included detailed walking of the entire plot to identify gaps possibly not detected in the images. The delimitation of gaps in 

the field was made by taking the coordinates (distance and azimuth) from the near center to the edge of the gap. We defined 

the boundaries of gaps by projecting the canopy aperture to the ground. For distance and azimuth measurements, a TruPulse 165 

360B laser rangefinder (Laser Technology) was used. The center of the gap was defined in the field, and coordinates were 

collected by averaging Global Navigation Satellite System (GNSS) navigation points. From the center of the gap, the 

acquisition of eight directions and distances to the gap boundary was done counterclockwise, with the first measurement 

pointing north (360º/0º). The data from each gap was vectorized in QGIS Geographic Information System (version 3.4.13) 

(Open Source Geospatial Foundation Project. http://qgis.osgeo.org) environment from the center point. We then calculated 170 

geometric features, including gap area, perimeter, and shape complexity index. 

2.3.1 Mechanisms of gap formation and biomass estimation 

After delimiting gaps, we measured forest-structure attributes. For dead trees, the tag number, number of plot and sub-plot, 

diameter at breast height (DBH, 1.3 m above the ground) and the mode of mortality were recorded. We described modes of 

tree mortality based on previous studies conducted in our study region (Magnabosco Marra et al., 2014a; Ribeiro et al., 2016): 175 

(i) Standing dead - trees without leaves and/or presence of sap in the trunk; standing-dead trees can form or expand gaps 

through falling branches or the later breakage of the main stem; (ii) Snapping – trees that died from the mechanical rupture of 

the stem, with sap often still present at the portion connected to the roots, exposed wood fibers and no clear damaged or 

exposed roots; (iii) Uprooting - uprooted trees with the main trunk usually intact and still connected to the crown. 

Tree biomass was estimated using a simple-entry allometric equation calibrated locally (Magnabosco Marra et al., 2016). For 180 

branches with diameter ≥5 cm, the volume was obtained by cubing combining the Smalian (measuring diameters at the base 

and top) and Hohenald (relative section length division) cubing methods (Lima et al., 2012; Gimenez et al., 2017). Most of the 

branches had no fresh vegetative material that allowed taxonomical identification to the species level. Thus, we estimated 

branch biomass by multiplying the measured volume of branches by the mean wood-density value compiled for our study 

region (0.735 [0.480,1.000], being mean wood density (g cm-3) and minimum and maximum, respectively) (Magnabosco 185 

Marra et al., 2016). 
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2.4 Rainfall data 

Rainfall data covering the studied period were acquired from a rain gauge installed at the EEST/INPA and located about 2 km 

from the INVENTA plot. Total daily precipitation was annotated manually. The dry season was defined as the months in which 

total rainfall was lower than the monthly average throughout the monitored period. For that, we used a threshold rainfall of < 190 

200 mm (July, August, September, and October) because there were no consecutive months with rainfall ≤ 100 mm (Negrón-

Juárez et al., 2017; Wu et al., 2016) (Fig. S1) during the period of this study. We also identified days with extreme rain events, 

which were defined as those when the accumulated precipitation was higher than the 99th percentile calculated for the entire 

studied period. 

2.5 Data analysis 195 

2.5.1 Remote sensing and field detection of gaps 

We used a confusion matrix to assess the accuracy of our remote method of gap detection. We calculated the percentiles of 

accuracy (a), precision (p), recall (r), and F1 Score (F) (Eqs. 1 − 4) (Dalagnol et al., 2021), where TP is true positive, TN is 

true negative, FP is false positive and FN is false negative:  

Accuracy (a) = ((TP+TN) /n) *100     (1) 200 

Precision (p) = (TP/(TP+FP)) *100   (2) 

              Recall (r) = (TP/(TP+FN)) *100                                (3) 

Score F1 (F) = (((2*p*r) / (p + r))) *100   (4) 

 

The a percentile represents the total number of correct detections. The p percentile indicates the ratio of positive predictions 205 

performed correctly based on all positive predictions (including false ones). The r percentile is used to access the ratio of 

correct positive-predictions in relation to all positive predictions. The F1 Score (F) is the harmonic mean between p and r, i.e., 

the mean between the errors of commission and omission; higher F values indicate higher agreement between gaps identified 

in the imagery data (observed value) and that were validated in the field (true value). 

2.5.2 Gap geometry   210 

We quantified gap height and area from the three-dimensional structure of the forest canopy. Gaps formed during the period 

for which only the UAV monitoring was available, were validated during a single field-campaign. The area of these gaps was 

also measured according to Brokaw's (1982) method. We tested how height loss was correlated with the area of the gaps using 

Pearson's correlation. We used paired t-test to compare gap geometry calculated from our UAV imagery and field data. 

We used both UAV imagery and field data to describe the size distribution of gaps. We then fitted three probability 215 

distributions: Exponential, Power-law (or Pareto), and Weibull to determine which best described the size distribution of 

observed gaps. The parsimony of the fitted models was assessed using the Akaike information criterion (AIC) (Burnham and 
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Anderson, 2002). We also assessed the best fit using the Kolmogorov-Smirnov statistic to compare the maximum difference 

in the cumulative probability distributions between the observed and the fitted data (Carvalho, 2015). Fits were obtained by 

using absolute values of frequency (Araujo et al., 2021a). We tested the size class distributions from the smallest gap size 220 

found in both methods (9 m2 and 10 m2, for field data and UAV imagery, respectively). We also fitted the distribution model 

only for gaps ≥ 25 m2 to test for possible differences related to the relatively higher proportion of small-sized gaps in our data 

set. 

2.5.3 Mechanisms of gap formation, biomass losses and structure of gaps 

Combining high-resolution remote sensing with forest inventory data allowed us to identify and differentiate between gaps 225 

formed by the death of single trees, tree clusters and branch fall. We counted and determined the area of gaps formed by each 

of these mechanisms. The main mode of tree mortality was determined from detailed observations as described in subsection 

2.3.1. We tested for possible differences in area and released biomass among mechanisms of gap formation using Analysis of 

Variance (ANOVA); p-values were computed based on two-tailed. 

2.5.4 Correlations between gap frequency and area with precipitation 230 

We assessed the correlation of gap frequency and area with cumulative precipitation and extreme rainfall events using the 

imagery data. Initially, we calculated the rate of gap area formation by dividing the summed area of all gaps by the duration 

(in days) of respective time intervals during which the gaps were observed (11-80 days). We further adjusted these to express 

the rate of gap area formation in hectares per month. Gap frequency rate was also computed from the summed area over the 

different time intervals, and was expressed in hectares per month. The temporal variation of gap area and frequency were 235 

normalized by the time in months between each pair of images. We correlated these variables using Pearson correlation. 

3 Results 

3.1 Sensitivity of gap detection 

We detected 32 gaps formed between September 2018 and January 2021 (Fig. 3). Out of that, 14 gaps were formed during the 

monitoring period for which no simultaneous field data were acquired. Another 18 gaps were formed during the period for 240 

which we conducted both remote and field monitoring (November 2019 to January 2021). 
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Figure 3: Map including the location of canopy gaps identified with UAV photogrammetry and inventory plot surveys (“field data”) 

in the INVENTA plot (total area of 18-ha) located in Central Amazon, Brazil, during the period from 18th September 2018 to 19th 

January 2021. 245 

 

For the 18 gaps for which field (true value) and UAV data were available, 14 gaps were detected using both methods; three 

gaps were only detected in the field and one was only detected in the imagery (Table S2). The accuracy, precision, recall 

sensitivity and F1 score obtained with our remote sensing UAV method were 77.78 %, 93.33 %, 82.36 % and 87.50 %, 

respectively.  250 

The three gaps detected exclusively from field data were formed by the fall of standing dead trees (total area of 15 m2 and 26 

m2) and branches (20 m2). These gaps were not visible on either the difference images or the orthomosaics, which indicates 

that there was no traceable change in the upper canopy of the forest. The single gap only detected from imagery data was 

formed by the partial loss of the crown of a standing dead tree. Importantly, this gap does not fit the definition by Brokaw 

(1982), in which gaps are considered as openings that extends from the upper canopy to the understory (i.e., at least two meters 255 

above the ground). 
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3.2 Patterns of gap geometry 

The size of gaps identified from imagery and field data varied from 10.37 m2 to 834.65 m2 and from 9.59 m2 to 580.65 m2, 

respectively (Table 1, Fig. S2a). The differences between the smallest and largest gaps detected with the two methods were 

1.39 m2 and 254 m2, respectively. Our data provide no evidence for strong differences in gap area between methods (p= 260 

0.8544). Nonetheless, gap perimeter and shape complexity index (GSCI) varied significantly between methods (p= 0.01019 

and p ≤ 0.001, respectively) (Table S3). 

Approximately 50 % of gaps described within the 28 months for which field and imagery data were available had total area ≤ 

40 m2. This result indicates that in our study site, relatively small gaps are the most frequent canopy disturbance (Fig. 4, and 

Table S4). Although more frequent, these relatively small disturbances accounted for only ~16 % of the cumulated gap area.  265 

Gap size was positively related to reductions in canopy height (Pearson r= 0.64; p= 0.0003) (Fig. 5). The two most discrepant 

gaps (area of 36.76 m2 and 14.02 m2 and mean height loss of 1.13 m and 2.13 m, respectively) were only detected in the field 

and without prior systematic classification. 

 

Table 1. Geometric attributes of gaps detected over a period of 28 months in the INVENTA plot, Central Amazon, Brazil.   270 

Method 

Number of 

gaps 

Size range 

(m2) 

Mean gap 

size (m2) ± IC 

(95 %) 

Median 

gap 

size (m2) 

Mean gap 

perimeter  

(m) ± IC 

(95%) 

GSCI1 

Mean/Max 

Gap 

fraction2 

(%) 

Annualized 

gap fraction 

(% year-1)3 

Field Data 31 9.59 - 580.65 68.50 ± 37.91 44.88 29.86 ± 6.92 1.13/1.35 1.09 

0.60 

UAV Imagery 30 10.37 - 834.65 80.07 ± 56.81 37.43 35.42 ± 9.22 1.28/1.6 1.36 

1- Gap Shape Complexity Index (GSCI = perimeter / sqrt (area 4 π)), whose smallest reference value is 1.0 for describing a 

circle (Getzin et al., 2012, 2014); 2- Gap fraction is given by the sum of the area of gaps identified over the studied period of 

28 months divided by the total monitored area (i.e., INVENTA plot / 18 ha); 3- Annual gap fraction is given by the sum of the 

area of identified gaps in an annual basis, (i.e., INVENTA plot / 18 ha / duration of study). 

 275 
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Figure 4: Size distribution of gaps formed in the INVENTA plot, Central Amazon, Brazil, over the period from 18th September 2018 

to 19th January 2021. Gaps were measured from inventory plot surveys (red) and UAV imagery data (blue). Both data sets were fit 

using a Weibull function (dotted lines). 

 280 

Figure 5: Relationship between mean canopy height loss and gap area for gaps formed in the INVENTA plot, Central Amazon, 

Brazil, over the period from 18th September 2018 to 19th January 2021. Gap area was calculated from the UAV Imagery data. The 

x-axis is log-scaled. 
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For both imagery and field data, the distribution of gaps larger than 25 m2 was better described by Weibull and Power-law 285 

functions (Table 2, Fig. 4). The Weibull function also captured more precisely the size distribution of gaps larger than 9 m2 

(field data) and 10 m2 (UAV data) (Table 2, Fig. 4, Fig S2b, Fig S2d).  

 

Table 2. Summary of fitting measures of the exponential, Power-law, and Weibull functions describing the size distribution 

of gaps identified on the INVENTA plot, Central Amazon, Brazil.  290 

Detection 

method 

Minimum 

size (m²) 
Distribution λ (95 % CI) α (95 % CI) K-S 

Log 

likelihood 
∆AIC 

UAV 

imagery 

10 Exponential 
0.014 (0.008 - 

0.031) 
 0.2489 -152.989 7.8113 

10 Power-law 
1.650 (1.529 - 

1.831) 
 0.2242 -152.035 5.9038 

10 Weibull 
0.512 (0.266 - 

1.460) 
21.544 (0.770 - 65.311) 0.1167 -148.08 0 

25 Exponential 
0.013 (0.007 - 

0.032) 
 0.2879 -117.622 13.41204 

25 Power 
2.094 (1.901 - 

2.501) 
 0.07605 -110.92 0 

25 Weibull 
0.157 (0.078 - 

1.685) 
0.0002 (0.0000 - 62.147) 

0.08685

2 
-110.747 1.661607 

Field data 

9 Exponential 
0.017 (0.009 - 

0.032) 
 0.1658 -146.783 0.3429 

9 Power-law 
1.614 (1.494 - 

1.766) 
 0.2659 -153.006 12.7899 

9 Weibull 
0.744 (0.487 - 

2.236) 
40.370 (17.893 - 68.309) 0.1462 -145.61 0 

25 Exponential 
0.017 (0.008 - 

0.0418) 
 

0.21470

1 
-111.135 3.714302 

25 Power-law 
2.137 (1.797 - 

2.710) 
 

0.15781

1 
-109.306 0.056485 

25 Weibull 
0.414 (0.131 - 

3.004) 
4.703 (0.000 - 68.937) 0.14364 -108.28 0 
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ΔAIC- AIC (Akaike information criterion) differences to the best model; The best fit models for each data-set are highlighted 

in bold. 

3.3 Mechanisms of gap formation and structure, and released biomass 

Branch fall was the most frequent mechanism of gap formation, accounting for 34.38 % (n= 11) of all detected gaps (Table 3). 

However, the total area accumulated by these gaps accounted for only 17.01 % of the total disturbed area. While gaps formed 295 

by tree snapping had the second highest frequency (n= 8 or 25 % of the total number of detected gaps) (Table 3), this 

mechanism accounted for 59.1 % of the total disturbed area. This result indicates that tree snapping was the most important 

mechanism of gap formation in respect to the overall disturbed area (Table 3). Uprooting and the fall of standing dead trees 

were the third and fourth most frequent mechanism of gap formation accounting for 16.53 % (n= 7) and 7.37 % (n= 6) of the 

total disturbed area, respectively (Table 3). 300 

Branch fall, uprooting, snapping and standing dead trees accounted for the 52.9 %, 10 %, 6.7 % and 10 % of number of gaps 

detected on the imagery, respectively. For gaps only identified from field data, these mechanisms accounted for 60 %, 10.3 %, 

6.9 % and 3.4 %, respectively. 

We found no clear differences in the area attributed to gaps formed by branch fall and the described tree-mortality modes (p= 

0.179) (Fig. 6a). However, we found strong evidence that the biomass released in gaps formed by tree snapping was higher 305 

than that associated with gaps formed by branch fall (p= 0.0133) (Fig. 6b). 

 

 

Table 3. Relative contribution of the different mechanisms of gap formation observed in the INVENTA plot, Central Amazon, 

Brazil, between September 2018 and January 2021.  310 

 Gaps  

(number) 

Proportion of 

gaps  

(%) 

Total area 

(m²) 

Proportion of 

total area (% 

m²) 

Branch fall 11 34.38 414.57 17.01 

Snapped dead 8 25.00 1440.58 59.10 

Uprooted dead 7 21.88 402.90 16.53 

Standing dead 6 18.75 179.55 7.37 

 32  2437.60  
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Figure 6: Gap area (a) and biomass loss (b) for mechanisms of gap formation studied in the INVENTA plot, Central Amazon, Brazil, 315 

over the period from 18th September to 19th January 2021. The area of gaps was calculated from the UAV Imagery data. We detected 

significant differences in biomass loss only for branch fall and snapping (panel b).  

3.4 Rainfall seasonality and gap formation 

The gap frequency and area rates were calculated using all 32 gaps identified during the studied period. Although gap frequency 

and area rate varied among the 28-month-period of monitoring, our data do not support that monthly rainfall influenced these 320 

metrics (p= 0.8081 and p= 0.4193; Fig. 7a and b, respectively). However, our data show that monthly gap-formation was 

marginally correlated with gap area rate for days with extreme rainfall events (i.e., above the 99th percentile, 67.08 mm day-1) 

(r= 0.37 and p= 0.058) (Fig. 8). The time interval accumulating the largest gap area (October 24, 2018 to December 27, 2018) 

included two extreme rainfall events: 104 mm day-1 on 20th October, and 76 mm day-1 on 8th November 2018 (Fig. 8). 
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 325 

 

Figure 7: Seasonality of canopy gaps formed in INVENTA plot, Central Amazon, Brazil, during the period from 18th September to 

19th January 2021. Gap frequency (a) and the cumulative rate of gap area formed over the observation period (expressed as % of 

the 18-ha study area per month) (b). The y2 axis (right) is the cumulative precipitation for each pair of time intervals between images 

(straight line with dots). The blue shading indicates the rainy season (September to June) for each year. The total area of each green 330 

rectangle is proportional to the total area of the gaps formed during the respective interval. 

https://doi.org/10.5194/bg-2022-251
Preprint. Discussion started: 12 January 2023
c© Author(s) 2023. CC BY 4.0 License.



17 

 

 

 

Figure 8: Cumulative area of gap formation per observation interval (gap area rate per month), expressed as the percentage of the 

total study area area normalized to a 30-days interval; (a) and frequency of extreme rainfall events per month (b) at the INVENTA 335 

plot, Central Amazon, Brazil, during the period from 18th September 2018 to 19th January 2021. The blue shading indicates the 

rainy seasons (September to June) each year. The frequency of extreme rain events is given as absolute values normalized to a 

monthly rate for a 30-days interval. The area of the green rectangle (a) is the proportional to the total area of gaps formed between 

respective observation dates. 

4 Discussion 340 

4.1 Imagery and field data have different sensitivity for detecting small gaps 

We detected 17 and 16 gaps from field and imagery data, respectively; 14 gaps were identified from both methods. However, 

it is still possible that our approach underestimated the frequency of canopy disturbances smaller than the size threshold we 

analyzed (i.e., 5 m2). In a few cases, gaps detected from UAV imagery data (i.e., losses of canopy height) could not be detected 
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from field surveys and did not fit the classical definition proposed by Brokaw (1982). If exclusively based on this definition, 345 

our results would have overestimated gap frequency by 11.7 %.  

Gaps observed in the field but not captured on the imagery were relatively small and mainly formed by the fall of branches 

from live and standing dead trees. It is important to note that the mechanism of gap formation is related to the sensitivity of 

detection (Putz et al., 1983; Chao et al., 2009). In particular, branch fall of live and standing dead trees impacted relatively 

smaller areas. 350 

Detecting small gaps mainly affecting the forest understory is challenging. Nonetheless, continuous forest inventory surveys 

allow for the detection of these gaps. Thus, even if no clear signs of opening in the upper canopy are visible from imagery 

data, minor disturbances can be accounted for with detailed forest inventory. Although understory gaps have lower associated 

losses of biomass, they can promote changes in light quality and availability, which lead to effective and persistent effects on 

the natural regeneration, structure and species composition of tropical forests (dos Santos et al., 2020; Romell et al., 2009; 355 

Dupuy and Chazdon, 2008; Magnabosco Marra et al., 2014b). 

To our knowledge, this is the first study quantifying biomass losses associated with understory gaps. Here we demonstrated 

that these gaps contribute relatively little to landscape patterns of biomass. Still, future studies are required to address their 

importance to processes regulating patterns of species distribution and diversity.  

4.2 UAV photogrammetry is a robust method for monitoring gap dynamics in Amazon forests 360 

Our tests comparing gaps detected from UAV photogrammetry and field data are rarely found in the literature (Yue et al., 

2019), especially for dense tropical forest. Although understory gaps can be missed, the results of our research confirm the 

suitability and robustness of UAV photogrammetry for monitoring canopy dynamics in closed-canopy forests. When combined 

with continuous forest inventory, UAV photogrammetry at high temporal and spatial resolution can also reveal associated 

mechanisms of gap formation and released biomass.  365 

However, the differences we found in perimeter and GSCI between imagery and field data indicate that geometric attributes 

of gaps identified remotely and in the field can diverge. In our study, the differences between these methods are likely due to 

describing field-identified gaps as polygons that always had eight vertices. This contrasts with our remote estimates, on which 

losses of height (z value) and gap geometry were computed from 1 m2 pixels and for polygons which had a varying number of 

vertices. The shape of gaps measured in the field tended to be elliptical (Runkle, 1981) and triangular (Eysenrode et al., 1998). 370 

To date, most methods describing the shape and area of gaps focused on a two-dimensional projection of the canopy to the 

forest floor. In these two-dimensional assessments, there are three main assumptions: (i) most of the gaps have an uniform 

elliptical shape; (ii)  the shape of irregular gaps can be approximated with several measurements; and (iii) the area of irregular-

shaped gaps can be only be calculated from hemispherical photos (Schliemann and Bockheim, 2011). Here, we applied high-

resolution imagery to assess gap geometry more detailed and beyond the number of vertices commonly applied in traditional 375 

field measurements. Vepakomma et al., (2008) combined LiDAR point cloud and field data from a boreal forest and also 
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reported great differences in the shape of gaps derived from these two approaches. According to these authors, the more 

complex the shape and perimeter, the greater is the difference between the remote and field measurements (i.e., ground truth).  

Although the area of the gaps did not vary between our two methods, the reported variations in perimeter and GSCI revealed 

that imagery data allow for more complex shapes that can better represent natural disturbances (Lertzman and Krebs, 1991; 380 

Gagnon et al., 2004). This was true for our study region, for which gaps detected from imagery data had a greater variety of 

shapes, often irregular. The shape is an important feature for understanding the structure and dynamics of tropical forests 

(Jucker, 2022), which is important for determining microsite resource availability (Canham et al., 1994) from the center to 

edge of gaps (Gagnon et al., 2004). For the Amazon, there is still little research on how the shape of gaps varies across 

environmental and disturbance gradients (Malhi and Román-Cuesta, 2008). 385 

The higher frequency of relatively small gaps we report here corroborates other studies that used different detection and 

classification methods (Lawton and Putz, 1988; Brokaw, 1982; Yavitt et al., 1995; Vepakomma et al., 2008; Asner et al., 2013; 

Leitold et al., 2018; Dalagnol et al., 2021). A Power-law exponent (λ) < 2 reflects a large proportion of smaller gaps (Asner et 

al., 2013). Our results indicate that remotely detected gaps larger than 25 m2 follow a Power-law distribution (λ = 2.137 ± 

0.913, mean ± CI 95 %, respectively). This agrees with studies that focused on the size distribution of relatively larger gaps 390 

detected from coarser-scale remote sensing data (Fisher et al., 2008; Chambers et al., 2009). Regardless of differences in forest 

structure, climate, and disturbance history among the regions on which these studies were conducted, λ appears to converge 

on a narrow set of values for different tropical forests (Jucker, 2022). Using LiDAR data from 421 sites in the Brazilian 

Amazon, Reis et al. (2021) showed that λ varies between 1.66 and 2.50 across the basin, mainly reflecting gradients in 

underlying tree mortality, canopy height, and human disturbances. However, prior to our study, no model supported with field 395 

data had yet been fitted for Amazon. 

In our study site, however, the frequency of gaps larger than 10 m² was better captured by a Weibull function. This can be 

explained by the size threshold we use for defining our gaps. The relative lower density of small canopy disturbances compared 

to what would be expected under a power function may be partially explained by lower detection frequencies, i.e., measurement 

bias (Araujo et al., 2021). This may be more important for gaps < 10 m². Still, our results show that independent of the detection 400 

method, the best fit describing the size frequency of gaps from 9 m2 to 835 m2 in our study region was achieved with Weibull. 

As confirmed by our detailed forest inventories over the imaged period, we believe that this pattern was not biased by gaps 

eventually not detected from imagery data. 

4.3 Small-scale disturbances dominate canopy dynamics and associated biomass losses in Central Amazon 

Repeated and field measurements provide allow for quantifying the relative importance of mechanisms of gap formation in 405 

Amazon forests. Our results resemble a previous study using repeated high-density Lidar data on another location in Central 

Amazon, Santarém, Pará (Leitold et al., 2018). These authors showed that biomass losses due to single and multiple events of 

branch fall events accounted for only 20% of the total estimated biomass loss from canopy and understory trees. In Panama, 
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branch fall accounted for 43.5 % of the gap density over a period of five years, but only for 23 % of the total disturbed area 

(Araujo et al., 2021). Like in our study region, this pattern highlights that the size and shape of gaps is largely influenced by 410 

modes of tree mortality. In tropical forests, the mortality rate of trees from 1 cm to 10 cm DBH was unrelated to tree biomass 

losses among trees > 10 cm DBH (Gora and Esquivel-Muelbert, 2021). Still, there is a relative contribution of different tree 

mortality factors across a continuum of tree sizes (Gora and Esquivel-Muelbert, 2021). Zuleta et al. 2022 showed that uprooted 

trees have significantly larger size (i.e., DBH). However, snapping was a more frequent mode of tree mortality compared with 

standing dead or uprooting. Although of less importance among large trees, falling branches can affect small trees differently 415 

and promote changes or filter out saplings of canopy and also understory species. 

Crown damage and/or loss is one of the most impactful risky aspects leading to tree mortality (Zuleta et al., 2022). If climate 

change results in a higher frequency of storms and extreme winds, branch fall and thus tree mortality rates can also be expected 

to increase. This may affect carbon stocks and dynamics, as well as the functional composition of these forests at the landscape 

level (Magnabosco Marra et al., 2018; Denslow et al., 1998). 420 

4.4 Extreme rainfall-events control gap formation 

In our study site, the gap area and frequency rates varied over time. The gaps formed during a single period of less than a 

month (21st October to 1st November 2020) accounted for 20.4 % of the total disturbed area. Still, we did not find a correlation 

between gap area and frequency rates with the accumulated precipitation over time. Fontes et al. (2018) reported a strong 

positive correlation (r= 0.85) of cumulative precipitation and tree mortality over a 1-year period on a plot contiguous to our 425 

study site, which may be related to interannual variability of the rainfall (Marengo et al., 2009). Nonetheless, we found a 

positive correlation between gap area rate and the frequency of extreme rainfall events. As in our study site, the frequency of 

rainfall events above the 98th percentile (24.3 mm hour1) explained a large fraction of the variation in rates of gap area over 

measurement intervals (r = 0.46) for a tropical forest in Panama (Araujo et al., 2021).  

As recently reported for the Amazon, areas with stronger winds and more frequent lightning have larger gaps (Reis et al., 430 

2021). Extreme winds and rain can cause extensive damage (single gaps >10 ha) in the forest (Negrón-Juárez et al., 2018; 

Espírito-Santo et al., 2014; Magnabosco Marra et al., 2014a), but the size distribution and landscape effects of small-scale 

storm-related disturbances are more challenging to study. Convective rainfall and extreme wind gusts promote crown damage, 

snapping and uprooting from individual to large clusters of trees (Magnabosco Marra et al. 2014a; Negrón-Juárez et al. 2011; 

Nelson et al. 1994). The vulnerability of trees to extreme wind and rainfall vary across Amazon regions (Negrón-Juárez et al., 435 

2018; Urquiza Muñoz et al., 2021). Thus, projected shifts on the intensity and frequency of these events can also be expected 

to have particular effects on current patterns of tree mortality and biomass. 

In addition to seasonal patterns of rainfall and wind, gap formation is also affected by local topography and soil (De Toledo et 

al., 2011). In Central Amazon forests, despite little variation associated directly with soil and slope, tree mortality due to 

uprooting and snapping can increase with more frequent storms (De Toledo et al., 2012). As climate change is expected to 440 
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alter the frequency and intensity of tropical storms, soil attributes and topography may become more useful to improve 

estimates of tree mortality and biomass losses over large areas in Amazonia. 

5 Conclusion 

By combining high temporal and spatial resolution UAV imagery with detailed field data on the mechanisms of gap formation, 

we could reliably assess the geometry and relative importance of canopy gaps for a closed-canopy Amazon forest. Furthermore, 445 

this integrated approach allowed us to relate geometry and size patterns with different mechanisms of gap formation. Although 

a larger proportion of canopy gaps could be detected from orthomosaics, their mechanisms of formation could only be 

distinguished using field data. Thus, our study supports that detailed forest inventories are fundamental for evaluating remote 

sensing products and metrics. 

The Weibull was the most appropriate function for describing the frequency distribution of gaps in our study region. However, 450 

the relative importance of mechanisms of gap formation may change as a function of climate change, and consequent shifts in 

the rainfall and extreme wind gusts. The patterns described here may vary from region to region and along topographic 

gradients, which was beyond the goals of our study. Although our sampling effort was sufficient to detect and describe major 

mechanisms of gap formation, further studies are required to generate proxies for distinguishing mechanisms of gap formation 

related to extreme weather events such as storms and lightning increasing rates of snapped and uprooted trees, or severe 455 

droughts that are more related to standing dead mortality. These can improve current estimates of carbon balance, in tropical 

forests, as well as reducing the uncertainty of models of vegetation dynamics. 
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