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Abstract. Separating the components of ecosystem scale carbon exchange is crucial in order to develop better models and

future predictions of the terrestrial carbon cycle. However, there are several uncertainties and unknowns related to current

photosynthesis estimates. In this study, we evaluate four different methods for estimating photosynthesis at a boreal forest at

the ecosystem scale, of which two are based on carbon dioxide (CO2) flux measurements and two on carbonyl sulfide (COS)

flux measurements. The CO2-based methods use traditional flux partitioning and artificial neural networks to separate the5

net CO2 flux into respiration and photosynthesis. The COS-based methods make use of a unique five-year COS flux data set

and involve two different approaches to determine the leaf-scale relative uptake ratio of COS and CO2 (LRU), of which one

(LRUCAP) was developed in this study. LRUCAP was based on a previously-tested stomatal optimization theory (CAP), while

LRUPAR was based on an empirical relation to measured radiation.

For the measurement period 2013–2017, the artificial neural networks method gave a GPP estimate very close to that of10

traditional flux partitioning at all time scales. On average, the COS-based methods gave higher GPP estimates than the CO2-

based estimates on daily (23 and 7 % higher, using LRUPAR and LRUCAP, respectively) and monthly scales (20 and 3 %

higher), as well as a higher cumulative sum over three months in all years (on average 25 and 3 % higher). LRUCAP was

higher than LRU estimated from chamber measurements at high radiation, leading to underestimation of midday GPP relative

to other GPP methods. In general, however, use of LRUCAP gave closer agreement with CO2-based estimates of GPP than use15

of LRUPAR. When extended to other sites, LRUCAP may be more robust than LRUPAR because it is based on a physiological

model whose parameters can be estimated from simple measurements or obtained from the literature. In contrast, the empirical

radiation relation in LRUPAR may be more site-specific. However, this requires further testing at other measurement sites.
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1 Introduction

Photosynthetic carbon uptake (or gross primary production, GPP) is a key component of the global carbon cycle, with the terres-20

trial ecosystems removing approximately 30 % of annual anthropogenic carbon dioxide (CO2) emissions from the atmosphere

(Luo et al., 2015; Friedlingstein et al., 2020). With the current climatic warming it has been suggested that both photosynthesis

and respiration are increasing, due to the CO2 fertilization effect and rising temperatures providing more favourable condi-

tions not only for photosynthesis but also for respiration (Dusenge et al., 2019). However, it is not known at which rate these

two processes are changing and thus the extent to which they offset each other. In addition, their relative importance varies25

seasonally, with photosynthesis predicted to increase more than respiration in spring, leading to greater carbon uptake, while

respiration is predicted to increase more than photosynthesis in autumn, leading to net carbon emission in northern terrestrial

ecosystems (Piao et al., 2008). Methods to measure and study photosynthesis and respiration individually are thus crucial for

future carbon cycle predictions.

Eddy covariance (EC) is widely used to measure the biosphere-atmosphere exchange of CO2 at the ecosystem scale. How-30

ever, EC only measures net ecosystem CO2 flux (NEE), which includes contributions from both CO2 uptake by photosynthesis

(GPP) and ecosystem respiration (R). Traditionally, NEE partitioning into GPP and respiration uses the method of Reichstein

et al. (2005), in which temperature response curves are fitted to nighttime CO2 flux data (respiration). However, this method

relies on nighttime EC flux measurements, which are uncertain and often filtered out due to low turbulence conditions and

possible advective gas transport (Aubinet, 2008). To address this problem, partitioning methods have been developed based35

on a combination of nighttime temperature responses of respiration (as in nighttime method) and daytime radiation responses

of GPP (daytime method) (Lasslop et al., 2010; Kulmala et al., 2019). However, both the nighttime method and the daytime

method assume that respiratory processes operate in the same way during the day and night, and have uncertainties due to

assumptions of functional relationships (Tramontana et al., 2020). These assumptions lead to uncertainties in partitioning be-

cause different biomass compartments (soil organic matter, roots, stems, branches, foliage) could have different drivers and40

respiration responses even within the same ecosystem (Kolari et al., 2009; Keenan et al., 2019). Leaf respiration during the

day may be inhibited by radiation, the so-called Kok effect (Kok, 1949; Wohlfahrt et al., 2005; Heskel et al., 2013; Yin et al.,

2020), and Keenan et al. (2019) and Wehr et al. (2016) suggest that, as a result, global GPP based on the nighttime method has

been overestimated. On the other hand, photorespiration, which is an oxidation process competing with carboxylation under

radiation, might offset inhibition by the Kok effect (Heskel et al., 2013).45

One way to address these uncertainties in flux partitioning is to use machine learning methods, such as artificial neural

networks to separate NEE into respiration and GPP (Tramontana et al., 2020). The advantage of this method is that it makes

no a priori assumptions about responses to environmental drivers but determines these based only on data. In a pioneering

study, Desai et al. (2008) attempted to use artificial neural network to emulate the nighttime partitioning method, but obtained

no significant improvements. More recently, Tramontana et al. (2020) proposed a new approach (NNC−part) involving novel50

methods for implementing the network’s structure and of inferring GPP and R signals from NEE. Both nighttime and daytime

NEE are used for network training, so the dynamics of biophysical processes are accounted for in a comprehensive way.
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Yet another approach to addressing uncertainties in GPP estimates is to use proxies for photosynthetic CO2 uptake. One

such proxy is carbonyl sulfide (COS), which is a sulfur compound with a tropospheric mixing ratio of approximately 500 ppt

(Montzka et al., 2007). While the use of different CO2-based partitioning methods is primarily aimed at more accurate GPP55

estimation, in contrast the use of COS as a proxy for GPP is aimed at a better process understanding of GPP. COS is mainly

produced by oceans and anthropogenic sources (Kettle et al., 2002; Berry et al., 2013; Launois et al., 2015; Whelan et al.,

2018) while vegetation is the largest sink (Sandoval-Soto et al., 2005; Blonquist et al., 2011). COS has been proposed as a

proxy for GPP because it is taken up by plants through the same diffusive pathway as CO2 and transported to the chloroplast

surface. There it is destroyed by a hydrolysis reaction catalyzed by the enzyme carbonic anhydrase (CA, also located within60

the cytoplasm (Polishchuk, 2021)), while CO2 continues its journey inside the chloroplast, where it is assimilated in the Calvin

cycle (Wohlfahrt et al., 2012). It is assumed that COS is completely removed by hydrolysis so that there is no back-flux from

the leaf to the atmosphere (Protoschill-Krebs et al., 1996). Estimates of GPP from COS flux measurements use the leaf relative

uptake ratio (LRU), that is, the ratio of COS and CO2 deposition rates at the leaf scale. While LRU has been treated either as

a global or plant-specific constant (Asaf et al., 2013; Stimler et al., 2012), recent studies have shown that LRU is a function of65

solar radiation because CO2 uptake is highly radiation dependent while COS uptake is not (Stimler et al., 2010; Yang et al.,

2018; Kooijmans et al., 2019; Spielmann et al., 2019), and may also vary with vapour pressure deficit (Sun et al., 2018b;

Kooijmans et al., 2019). In addition to uncertainties related to variation in LRU, COS-based GPP estimates are uncertain

because ecosystem-scale COS flux measurements typically have a low signal-to-noise ratio and high random uncertainty at 30

min timescale, although this is reduced when fluxes are averaged over longer time periods (Kohonen et al., 2020).70

In this study, we compare the annual, seasonal, daily and sub-daily variation of i) a traditional GPP estimate (GPPNLR,

NLR referring to non-linear regressions) based on a combination of daytime and nighttime methods, ii) a neural network

GPP estimate based on NEE and NNC−part (GPPANN), iii) a GPP estimate based on COS flux measurements using the

radiation-dependent LRU function from Kooijmans et al. (2019) (GPPCOS,PAR) and iv) a GPP estimate based on COS flux

measurements using a previously-published stomatal optimization model (CAP) to calculate LRU (GPPCOS,CAP) in a boreal75

evergreen needle-leaf forest during years 2013–2017. Our aim is to study potential inconsistencies in diel or seasonal patterns

of GPP that may arise from extrapolating nighttime temperature responses to daytime, and to discuss the limitations and

uncertainties of all four methods. We also make recommendations for improving COS-based GPP estimates.

2 Materials and methods

2.1 Site description80

Measurements were conducted at the Hyytiälä forest Station for Measuring Ecosystem Atmosphere Relations (SMEAR) II

measurement site (61◦51’N, 24◦17’E), where the forest stand is already more than 50 years old (Hari and Kulmala, 2005). The

stand is dominated by Scots Pine (Pinus Sylvestris L.) with some Norway spruce (Picea abies L. Karst.) and deciduous trees

(e.g. Betula sp., Populus tremula, Sorbus aucuparia). The daytime flux footprint covers c. 50 ha area of the forest. The canopy
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height increased from approximately 18 to 20 m during the measurement period (2013–2017) and the all-sided leaf area index85

(LAI) was c. 8 m2 m−2.

2.2 Measurements

2.2.1 Eddy covariance fluxes and environmental measurements

EC measurements were made on a 23 m high tower. The setup consisted of a Gill HS (Gill Instruments Ltd., England, UK)

sonic anemometer measuring horizontal and vertical wind velocities and sonic temperature, and a quantum cascade laser (QCL;90

Aerodyne Research Inc., Billerica, MA, USA) for measuring COS, CO2 and H2O mixing ratios at 10 Hz frequency. The setup

is described in more detail in Kohonen et al. (2020) and flux data are presented in Vesala et al. (2022). Flux processing was done

using EddyUH software (Mammarella et al., 2016) following the methods presented by Kohonen et al. (2020). Fluxes were

corrected for storage change and filtered according to friction velocity. Storage change fluxes of COS were calculated from the

COS profile measurements in 2015–2017 and from concentration measurements at one height in other years, as described in95

Kohonen et al. (2020); CO2 storage change fluxes were calculated from CO2 concentration profile measurements. The friction

velocity threshold was determined from CO2 fluxes (Papale et al., 2006) and a threshold of 0.3 m s−1 was applied to the entire

data set to exclude periods of low turbulence. COS flux processing was done similarly to CO2 processing, but time lag and

spectral corrections were determined from CO2 measurements and applied to COS as recommended by Kohonen et al. (2020).

Gap-filling of the COS flux was done using empirical formulas based on photosynthetically active radiation (PAR) and vapor100

pressure deficit (VPD), as described by Kohonen et al. (2020). CO2 fluxes were gap-filled and partitioned using a procedure to

be explained in more detail in Sect. 2.3.1.

Environmental measurements used in the study include air temperature (Ta) at 16.8 m (measured with a Pt100 temperature

sensor inside a ventilated custom shield), PAR above the canopy (Li-190SZ quantum sensor, LI-COR, Lincoln, NE, USA),

relative humidity (RH) at 16.8 m height (Rotronic MP102H, Rotronic Instrument Corp., NY, USA), soil temperature (Tsoil) at105

2–5 cm depth (KTY81-110 temperature sensor, Philips, The Netherlands) as a mean of five locations and soil water content

(SWC) in the humus layer (Delta-T ML2 soil moisture sensor, Delta-T Devices, Cambridge, UK).

2.3 GPP calculations

This section describes each of the four methods for estimating GPP. Daily average GPP was only calculated if more than 50%

of the measured 30-min flux data was available for each day, and monthly averages were calculated from the daily means.110

In Vesala et al. (2022), COS fluxes were found to have 52% data availability on average. While setting a 50% threshold is

somewhat subjective, it ensures that the analyzed daily estimates of GPPs reflect measured fluxes rather than the gap-filling

procedure. Gap-filled flux data were used in estimating diurnal variation and cumulative GPP. All comparisons between the

methods used measured (non gap-filled) data only, when both CO2 and COS flux data were available.
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2.3.1 GPP from traditional CO2 flux partitioning115

NEE was partitioned into respiration (R) and GPPNLR as

NEE = R−GPPNLR (1)

where R was estimated as in the nighttime method

R=RCQ
Tsa/10
10 (2)

where RC is the respiration at a reference temperature (T=0 ◦C), Q10 is the temperature sensitivity of R and Tsa is the120

arithmetic mean between the air temperature at 16.8 m height and soil temperature at 5 cm depth. Previous studies have shown

Tsa to be a good choice of respiration driver at Hyytiälä forest (Kolari et al., 2009; Lasslop et al., 2012).

When NEE measurements were not available, the GPP model followed the formula

GPPNLR =
αPAR+Pmax−

√
(αPAR+Pmax)2 − 4ΘPAR ·Pmax

2Θ
f(Ta) (3)

where α, Pmax and Θ are fitting parameters and f(Ta) is an instantaneous temperature response that brings GPP gradually125

towards zero at freezing temperatures, given by

f(Ta) =
1

1+ e(2(T0−Ta))
(4)

where T0=-2◦C is the inflection point (Kolari et al., 2014).

Parameters α, Pmax andRC were estimated for 15-day periods whileQ10 was estimated from the weighted mean of monthly

Q10 values from June–August over several years. Weights were the inverse of the confidence interval of each Q10 estimate. Θ130

was determined as the value that gave the best model fit when the partitioning was run during summer months (June–August)

over several years (Kulmala et al., 2019). The parameters of Eq. 3 were estimated from GPP partitioned with the nighttime

method in Eq. 1. The modeled NEE from Eqs. (3) and (2) was compared with the measured NEE in Fig. B1a.

2.3.2 GPP from artificial neural networks

GPPANN from the data driven model was estimated by applying the NNC-part algorithm (Tramontana et al., 2020). NNC-part135

is a customized neural network that emulates the bio-physical processes driving both GPP and R at ecosystem scale and has

been applied to several vegetation types distributed globally. The network consists of two subnetworks, which simulate GPP

and R, respectively. The two subnetworks are connected in the last node of the overall structure, in which the GPP and R

signals are combined to calculate NEE. The GPP subnetwork consists of three layers and estimates the ecosystem-level gross

photosynthesis using a light-use efficiency (LUE) approach; in particular, instantaneous LUE is estimated by the first two layers140

while GPP is calculated as the product between LUE and incoming shortwave radiation in the third layer. NNC-part has a hybrid

nature and gross photosynthesis is partially constrained by emulating the LUE concept.
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Each subnetwork relies on specific predictors. Distinguishing features of this model are a) GPP and R derived by other

models are not used, b) functional relationships are derived directly from the data and c) the network’s weights are tuned by

training the machine learning only on NEE measurements. In this experiment we used the same predictors (VPD, incoming145

shortwave radiation, potential incoming radiation, Ta, Tsoil, SWC, wind speed and wind direction) and network structure as

applied by Tramontana et al. (2020). However, to ensure the viability of this method, which is limited by the availability of

both predictors and NEE measurements, we set lower requirements for the minimum percentage of measured data for both

predictors and half hourly NEE. Moreover, data from all available years were pooled for use in a unique multi-year training

process. In particular, we applied the following setting: for each year, less than 55% of predictors were gap-filled and at least150

365 half-hourly NEE should be measured for both nighttime and daytime. Despite the high percentage of missing data in

observations, gaps had generally short duration with limited effects on the uncertainty of predicted outputs. The final GPPANN

products were derived by applying trained networks on meteorological inputs, and thus do not include NEE data after network

training. The modeled NEE from NNC-part was compared with the measured NEE in Fig. B1b.

2.3.3 GPP from COS flux measurements and an empirical LRU radiation relation155

Based on previous soil chamber measurements at Hyytiälä forest it is known that the soil COS flux was -2.7 pmol m−2 s−1

on average with a variation of only 1 pmol m−2 s−1 during the growing season and a negligible diurnal variation (Kooijmans

et al., 2017; Sun et al., 2018a). The average soil flux was thus first subtracted from the quality filtered and gap-filled COS EC

fluxes in order to derive the vegetation contribution to the ecosystem COS exchange. GPP was then calculated from the canopy

COS fluxes (FCOS) using the formula (Sandoval-Soto et al., 2005; Blonquist et al., 2011)160

GPPCOS =
−FCOS
LRU

[CO2]a
[COS]a

(5)

where [CO2]a and [COS]a denote the atmospheric concentrations of CO2 and COS (in mol m−3), respectively, at the EC

measurement height, measured by the QCL.

LRU was calculated as a function of PAR (LRUPAR) as described by the empirical equation of Kooijmans et al. (2019):

LRUPAR =
607.26

PAR
+0.57 (6)165

This LRU equation was derived from field chamber measurements (LRUch) of pine branch CO2 and COS fluxes with two

chambers placed at the top of the canopy in 2017 at the same site and were thus independent from the EC flux measurements

(Kooijmans et al., 2019).

2.3.4 GPP from COS flux measurements and LRU from stomatal optimization model

Finally, we estimated GPP from Eq. (5) using a new theoretical expression for LRU (LRUCAP) derived from the stomatal170

optimization model CAP (Dewar et al., 2018). Full details of the derivation are given in Appendix A. The LRUCAP formulation

6



was based on the following general expression for LRU given by Eqs. (10-11) of Wohlfahrt et al. (2012):

LRU=
1

1− ci
ca

1
1.21 +

1
1.14

gCOS
s

gCOS
b

1+
gCOS
s

gCOS
b

+
gCOS
s

gCOS
m

(7)

where gCOSx (x= b,s,m) are, respectively, the boundary layer, stomatal and mesophyll conductances for COS, ca is the atmo-

spheric CO2 molar mixing ratio (mol mol−1), ci is the leaf intercellular CO2 molar mixing ratio (mol mol−1), and the numerical175

factors 1.21 and 1.14 are the ratios of the conductances of CO2 to COS for stomata and the boundary layer (Wohlfahrt et al.,

2012). If it is assumed that the boundary layer and mesophyll conductances are infinite (as done by Dewar et al. (2018)), Eq.

(7) reduces to

LRU=
1

1.21

(
1− ci

ca

)−1

. (8)

An analytical expression for ci was derived from the stomatal optimization model CAP by Dewar et al. (2018), according to180

which stomatal conductance maximise leaf photosynthesis, reflecting a trade-off between stomatal limitations to CO2 diffusion

and non-stomatal limitations (NSLs) to carboxylation capacity. The CAP model predicts the value of ci as an analytical function

of various environmental and physiological factors. Inserting this function into Eq. (8), LRUCAP can then be expressed as

LRUCAP =
1

1.21

ca
ca−Γ∗

(
1+

√
Ksl|ψc|

1.6gcV PD

√
1+

2Γ∗gc
αPAR

)
, (9)

where Γ∗ is the CO2 photorespiratory compensation point (mol mol−1), Ksl the soil-to-leaf hydraulic conductance (mol185

m−2 s−1 MPa−1), ψc is the assumed critical leaf water potential (MPa) at which NSLs reduce photosynthesis to zero, gc

is the carboxylation conductance in the absence of NSLs (mol m−2 s−1) and α is the photosynthetic quantum yield (mol

mol−1) in the absence of NSLs (Duursma et al., 2008; Dewar et al., 2018). While Γ∗ and α vary seasonally with temperature,

for simplicity we used fixed values representing the growing season averages 50×10−6 mol mol−1 and 0.05 mol mol−1,

respectively (Bernacchi et al., 2001; Leverenz and Öquist, 1987; Mäkelä et al., 2008). In addition to PAR (mol m−2s−1) and190

VPD measurements (mol mol−1), LRUCAP requires soil moisture measurements through its dependence on the soil component

of Ksl. All parameter definitions and values are listed in Table 1.

LRUCAP is based on a generic physiological model of stomatal function whose predictions have been successfully tested

previously (e.g. Lintunen et al. (2020); Salmon et al. (2020); Dewar et al. (2021); Gimeno et al. (2019)). The model parameters

are all physiologically meaningful, and can be measured independently or obtained from the literature. This formulation there-195

fore represents a clear advance on previous COS-based methods based on empirical fitting (LRUPAR), because it provides a

physiological explanation for variations in LRU that may be more robust when extrapolating to other sites.

In addition, LRUCAP was calculated using a combination of literature values and fitted parameters by fitting the parameter

combinationsX = |ψc|
1.6gc

(MPa m2 s mol−1) and Y = 2Γ∗gc
α (mol m−2 s−1) to Eq. (9). This analysis was aimed at assessing the

parameter sensitivity of LRUCAP. While the literature-based parameter values gave X = 2.5 and Y = 0.001, the fitting values200
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Table 1. Explanations, literature values and sources of the parameters used in the LRUCAP formulation for Hyytiälä forest. ca was derived

from the measurements in Kooijmans et al. (2019), SWC, PAR and VPD form measurements done in this study. Soil-related values (Ksoil,sat,

rcyl, SWCsat and b) are for soil horizon B (which was considered to be representative of the rooting zone), where the SWC measurements

were also made.

Symbol Definition Default value or formula and unit Source

ca Atmospheric CO2 molar mixing ratio 415×10−6 mol mol−1 Measured

Γ∗ Photorespiratory compensation point 50×10−6 mol mol−1 Bernacchi et al. (2001)

of CO2

gc Carboxylation conductance in the absence 0.5 mol m−2 s−1 Dewar et al. (2018)

of non-stomatal limitations

ψc Critical leaf water potential -2 MPa Dewar et al. (2018)

α Photosynthetic quantum yield 0.05 mol mol−1 Leverenz and Öquist (1987)

Ksl Leaf-specific soil-to-leaf KsoilKx

Ksoil+Kx
; mol m−2s−1MPa−1

hydraulic conductance

Kx Leaf-specific root-to-leaf 0.78×10−3 mol m−2s−1MPa−1 Duursma et al. (2008)

xylem hydraulic conductance

Ksoil Leaf-specific soil hydraulic conductance R1
LAI

2πksoil

log
( rcyl

rroot

) ; mol m−2s−1MPa−1

ksoil Soil hydraulic conductivity ksoil,sat
(

SWC
SWCsat

)2b+3

; mol m−1s−1MPa−1

ksoil,sat Saturated soil hydraulic conductivity 5.7 mol m−1s−1MPa−1 Duursma et al. (2008)

R1 Root length index 5300 m−1 Nikinmaa et al. (2013)

LAI Leaf area index, all-sided 8 m2m−2 Measured

rcyl Radius of the cylinder of soil 0.00458 m Duursma et al. (2008)

accessible to a root

rroot Fine root radius 0.3×10−3 m Nikinmaa et al. (2013)

SWCsat Saturation soil water content 0.52 m3 m−3 Duursma et al. (2008)

SWC Soil water content m3 m−3 Measured

b Parameter of the soil water 4.46 Duursma et al. (2008)

retention curve

VPD Vapor pressure deficit mol mol−1 Measured

PAR Photosynthetically active radiation mol m−2s−1 Measured

were X = 2.64 and Y = 0.0033 and gave a slightly better agreement of LRUCAP with LRUch (RMSE=1.89, while without

fitting RMSE=2.01, Fig. B2). However, we emphasise that this fitting procedure was conducted purely in order to assess the

model performance and is not a requirement for applying LRUCAP in practice when literature-based parameter values are

available. Moreover, the results presented in this article are not based on fitted parameter values, but on literature values only.
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3 Results and discussion205

3.1 Environmental conditions

March 2013 was colder than other years (average -7.0 ◦C), and also had the highest average PAR (207.3 µmol m−2 s−1) and

lowest soil moisture (0.23 m3 m−3) (Fig. 1). A clear increase in VPD and decrease in soil moisture were seen in August 2013,

with soil moisture decreasing from 0.24 in July to 0.19 m3 m−3 in August and afternoon median VPD increasing to 1.00 kPa.

July 2014 was warmer (19.0 ◦C) and dryer (VPD 0.88 kPa) than other years but soil moisture remained high at 0.25 m3 m−3.210

In 2015, VPD increased from 0.44 in July to 0.62 kPa in August and soil moisture decreased from 0.31 in July to 0.24 m3 m−3

in August. May 2017 had high amounts of radiation (monthly average PAR of 478.4 µmol m−2 s−1) and soil temperature was

low (3.4 ◦C), while soil moisture and VPD were at a normal level at 0.28 m3 m−3 and 0.47 kPa, respectively. Soil moisture in

September–December in 2017 was 10 % higher than other years, while no significant differences between years were found in

other environmental variables in late autumn.215
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Figure 1. Median diurnal variation of Ta, Tsoil, PAR, SWC and VPD in different months during the measurement period 2013–2017.
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3.2 GPP comparison from sub-daily to seasonal scales

Midday GPPANN was on average 12 % higher than midday GPPNLR during the summer months (May–July) in 2014 and 2017

(Figs. 2,3,4a), opposite to the result found by Tramontana et al. (2020) in a comparison of GPPANN with standard FLUXNET

partitioning during summer months at multiple sites. The difference between GPPNLR and GPPANN during other months was

negligible. We compared the more common use of air temperature as the respiration driver, GPPairT , (instead of the average of220

soil and air temperatures) against GPPNLR and found that the two methods agreed very well with each other at all time scales

(Fig. B3). The small differences in the diurnal variations of GPPNLR and GPPANN are thus not due to the choice of temperature

measurement as respiration driver. During the measurement period 2013–2017, 30 min, daily and monthly GPPANN did not

differ statistically from GPPNLR (tested with the ANOVA test; Fig. B4-B6). However, on 30 min time scale the GPPANN was

on average 15 % lower than GPPNLR. The lower agreement of 30 min GPPANN and GPPNLR than on longer time scales may225

have resulted from the NNC−part method restricting GPPANN to only positive values while GPPNLR may take on negative

values due to random noise in the NEE measurements. The relative and absolute differences of GPPANN to GPPNLR are,

however, very small when averaging over longer time periods (relative difference 2 % on average during summer months, Fig.

5).

GPPCOS,PAR was very similar to GPPNLR especially during morning and early evening (Figs. 2 and 3), but showed higher230

midday values than GPPNLR, especially during summer months (May–August) in all years. At the daily scale, GPPCOS,PAR

was on average 23 % higher than GPPNLR (Figs. 4e and 5) and also differed from GPPNLR and GPPANN statistically (p<0.01)

on 30 min and daily scales (ANOVA test). On monthly scale, there was no statistical difference to any of the other GPP

methods.

Based on the CAP stomatal optimisation model, LRUCAP requires PAR, SWC and VPD as well as ecosystem specific235

literature values for some parameters as input variables. In contrast, LRUPAR by Kooijmans et al. (2019) only uses PAR.

LRUCAP therefore takes into account additional effects of drought and air humidity on LRU. In spring, the diurnal variation of

GPPCOS,CAP closely follows that of GPPNLR and GPPANN until June (Figs. 2 and 3). Especially in June and July GPPCOS,CAP

is lower than the other GPP estimates. On 30 min time scale GPPCOS,CAP is on average 12 % lower than GPPNLR, but there

is large scatter due to noisy FCOS measurements, as for GPPCOS,PAR. However, there is less scatter in GPPCOS,CAP than240

GPPCOS,PAR (Fig. 4d,g), indicating that some of the scatter is due to LRU estimation. On daily scales GPPCOS,CAP is 7%

higher than GPPNLR and on monthly scales the difference decreases to 3%. However, there is no statistically significant

difference between the 30 min and monthly values of GPPNLR and GPPCOS,CAP (ANOVA test). The relative and absolute

difference between GPPCOS,CAP and GPPNLR is also generally smaller than between GPPCOS,PAR and GPPNLR throughout

the year (Fig. 5). In addition, GPPCOS,CAP reproduces the same two distinctive probability density function peaks as GPPNLR245

and GPPANN at 1.7 and 6.6 µmol m−2s−1 while GPPCOS,PAR finds weaker peaks at 2.4 and 7.4 µmol m−2s−1 (Fig. 6). In

summary, GPPCOS,CAP gives better agreement with traditional GPPNLR partitioning than GPPCOS,PAR. However, LRUCAP

was higher than LRUch and LRUPAR at high radiation (PAR > 1000 µmol m−2s−1, Fig. B7a). This may reflect intrinsic
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differences in the dependence of LRUPAR and LRUCAP on environmental drivers (PAR, VPD, SWC), as both estimates of

LRU are based on conditions at the top of the canopy.250

LRUCAP was also calculated based on a combination of literature values and the fitted parameters X and Y (Sect. 2.3.4

and A1) in order to assess the sensitivity to parameter values. While literature values gave X = 2.5 MPa m2 s mol−1 and

Y = 0.001 mol m−2 s−1, fitting gaveX = 2.64 MPa m2 s mol−1 and Y = 0.0033 mol m−2 s−1 and a slightly better agreement

of LRUCAP with measured LRU (RMSE=1.89, while without fitting RMSE=2.01). Thus, while X was close to its literature

value, Y was estimated three times higher. This mismatch suggests there may be scope for further model improvement, such255

as the inclusion of dark respiration and/or finite mesophyll and boundary layer conductances in the LRUCAP model. However,

as the difference between fitted LRUCAP and literature-based LRUCAP (statistical significance tested with Student’s t-test,

p<0.01) was not large, with a median difference of 4 %, and the applicability of the model without fitting is better, we decided

to use the literature-based parameterisation of LRUCAP in this study, without fitting to LRUch.

LRUCAP was also calculated assuming finite mesophyll conductance as a further comparison (Sect. A2). The agreement260

of this method was better than assuming infinite mesophyll conductance at high PAR, but worse at low PAR (Fig. B7d), very

similar to the results from Maignan et al. (2021), who modelled LRU at Hyytiälä using the ORCHIDEE model. This version

of LRUCAP was also fitted to measured LRU in terms of parameters X and Y (Sect. A2) to make the low PAR LRUCAP

better, which resulted in X = 3.45 and Y = 0.0057, both higher than their expected literature values. We thus concluded that

the assumption of infinite gm gives an estimate that is closest to LRUch, although the assumption in itself is physiologically265

unrealistic. Kooijmans et al. (2019) found that internal conductance (a combination of mesophyll conductance and biochemical

reactions) might limit leaf-scale FCOS during daytime. We find a better agreement of LRUCAP with LRUch if gm is assumed

infinite, but there is a mismatch at high PAR, supporting the possibility that gm might indeed be a limiting factor under high

radiation. In CAP, infinite or finite gm represent two contrasting hypotheses, in which NSLs act either entirely on photosynthetic

capacity, or entirely on gm, respectively. In reality, NSLs may act on both photosynthetic capacity and gm, with one or the other270

effect being dominant depending on environmental conditions. The contrasting abilities of each hypothesis to explain LRUch at

low vs. high light might be explained by a shift in the action of NSLs from the photosynthetic capacity to gm as light increases.

However, verifying this possibility lies beyond the scope of the present study.

We calculated the cumulative GPP estimates over May–July, 13 weeks around the peak growing season for each year.

Cumulative GPPCOS,PAR was on average 25 % higher than cumulative GPPNLR in all studied years. This is higher than the275

4.3 % difference reported in Spielmann et al. (2019) and 3.5 % agreement reported in Commane et al. (2015). In contrast,

cumulative GPPCOS,CAP varied from 17 % higher in 2014 to 15 % lower in 2015, and on average was only 3 % higher than

cumulative GPPNLR. Cumulative GPPANN varied from 10 % higher in 2014 to 9 % lower in 2016 than GPPNLR, and on average

was 0.1 % lower than GPPNLR. As stated above, overall GPPANN was closest to GPPNLR out of the three other GPP estimates.

GPPCOS,CAP was closer to both of CO2-based GPP estimates than GPPCOS,PAR. However, at high PAR, LRUCOS,CAP was280

higher than chamber-based measurements, leading to a lower GPP. Nevertheless, no firm conclusions can be drawn here, as the

LRU observations only cover measurements at the top of the canopy, and may not reflect LRU over the whole canopy.
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Table 2. Cumulative GPP (gC m−2) over May–July with different GPP estimates. All sums are calculated from same data coverage and the

fraction of gap-filled flux data (CO2 flux for GPPNLR, COS flux for GPPCOS,PAR and GPPCOS,CAP) is presented in parentheses. GPPANN

does not include gap-filled NEE data, since it is based on meteorological variables. ∗In 2015, the cumulative sum covers only July.

Year GPPNLR GPPANN GPPCOS,PAR GPPCOS,CAP

2013 481 (0.16) 473 597 (0.28) 510 (0.28)

2014 294 (0.20) 324 414 (0.24) 343 (0.24)

2015 193 (0.23)∗ 188∗ 212 (0.31)∗ 165 (0.31)∗

2016 623 (0.40) 565 722 (0.43) 599 (0.43)

2017 387 (0.35) 399 522 (0.34) 428 (0.34)

It has been suggested that, due to the Kok effect, leaf respiration is inhibited under radiation (Kok, 1949). This inhibition

has been estimated to be approximately 13 % in the evergreen needle-leaf forests during summer (Keenan et al., 2019). Mea-

surements of CO2 isotope fluxes support the conclusion that, due to the Kok effect, GPP from traditional CO2 flux partitioning285

using the nighttime method is overestimated (Wehr et al., 2016). However, ecosystem respiration at the Hyytiälä forest site is

dominated by soil respiration (Ilvesniemi et al., 2009), so that the Kok effect may be of limited importance in this ecosystem

(Keenan et al. (2019); Yin et al. (2020)). Reduced leaf respiration under radiation would be visible as a break point around the

compensation point with a change of the slope of NEE against radiation. However, such a break point was not detected in our

observations, as is demonstrated in Fig. B8. While it is possible that less radiated needles experience less inhibition than well290

radiated, that cancel out at the ecosystem scale (Wohlfahrt et al., 2005), this test provides some insight to the problem. It is thus

not expected that independent GPP estimates in Hyytiälä would necessarily result in lower GPP than the traditional methods.

Moreover, Tramontana et al. (2020) showed that uncertainties and biases in NEE (and COS flux) measurements exceed those

resulting from the possible Kok effect.

3.3 GPP responses to environmental conditions295

All four GPP estimates responded similarly to environmental forcing (PAR, Ta, VPD) both in spring and summer (Fig. 7). In

spring, all GPP estimates increased with increasing radiation levels, while in summer a saturation point was found at PAR>500

µmol m−2s−1, that could be linked to VPD limitation on stomatal conductance in the afternoon (Kooijmans et al., 2019).

GPPCOS,PAR was higher than GPPCOS,CAP at PAR>400 µmol m−2s−1 while at low PAR values they agreed well with each

other both in spring and summer, as well as with GPPNLR and GPPANN. GPPCOS,PAR thus has a stronger radiation response300

than the other GPP estimates, due to lower empirical LRU estimate than LRUCAP at high PAR (Fig. B7). A similar PAR

response was found in Spielmann et al. (2019), who studied GPPCOS,PAR with a traditional GPP partitioning method in

four different sites in Europe. Although GPPCOS,CAP agrees well with both GPPNLR and GPPANN at high PAR, it is likely

underestimated due to high LRUCAP at high PAR (Fig. B7).
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Figure 2. Median diurnal variation of GPP partitioned using a combined nighttime-daytime method (GPPNLR, purple line), GPP from

artificial neural networks (GPPANN, pink line), GPP from COS flux measurements with LRU determined according to Kooijmans et al.

(2019) (GPPCOS,PAR, dark blue line) and GPP from COS flux measurements using a new approach for LRU (Sect. ??, GPPCOS,CAP, light

blue line) in different months during the measurement period 2013–2017. Averaging was done to the same data points and only months with

more than 55 % of data coverage were included.

In spring, increasing air temperature increased all GPP estimates similarly until Ta reached 17◦C. However, again GPPCOS,PAR305

was higher than other GPP estimates. In summer, air temperature did not have a notable effect on any GPP estimate. Responses

to VPD were similar for each GPP estimates both in spring and summer. In spring, decreasing air humidity (increasing VPD)

was associated with increased GPP until VPD>0.7 kPa after which VPD had little or no effect. The apparent increase in GPP

with VPD in spring may be caused by the correlation of Ta with VPD, coinciding with the start of the growing season, as the

trees are not water-limited after snow melt. In summer, dryness started to limit GPP at VPD>1 kPa. We found that similar to310
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Figure 3. Diurnal variation of the difference of GPPANN (pink), GPPCOS,PAR (dark blue) and GPPCOS,CAP (light blue) to the reference

GPPNLR in different months during the measurement period 2013–2017. Averaging was done to the same data points and only months with

more than 55 % of data coverage were included.

PAR and Ta responses, GPPCOS,PAR was higher than other GPP estimates at low VPD values, but decreased to similar levels

at high VPD (1 kPa) both in spring and summer. GPPCOS,PAR gives higher GPP at low VPD than the CO2-based methods, as

does GPPCOS,CAP in spring (Fig. 7). This may indicate that some factor is limiting the photosynthesis reaction (e.g. biochem-

ical limitations in CO2 assimilation) even though the diffusion into the leaf is not limited.

315
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Figure 4. Scatter plots of GPPANN, GPPCOS,PAR and GPPCOS,CAP against GPPNLR in 30 min, daily and monthly time scales. The color

of data points in 30 min and daily scatter plots indicate the data density, lighter colors indicating higher point density than dark.

3.4 Uncertainties and limitations of the GPP methods

Because ANN fitting is purely based on the provided examples, GPPANN could be more sensitive to the uncertainty of (training)

data with respect to the parametric partitioning methods. Moreover, it is sensitive to missing data especially in the case of long

data gaps (Tramontana et al., 2020). The method also requires large data sets for training NNC−part, which may not be available
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Figure 5. Relative (a) and absolute (b) difference of daily GPPANN (pink), GPPCOS,PAR (dark blue) and GPPCOS,CAP (light blue) to

GPPNLR in different months, averaged over the whole measurement period 2013–2017. Bars represent the median difference, and whiskers

show the 25th and 75th percentiles. Numbers on top of the bars indicate how many daily flux data points have been used for calculating the

medians. Median differences have been calculated using the same number of data points for each method in each month.

at all measurement sites. However, GPPANN does not require prescribed relationships of GPP to environmental data making it320

an attractive method for sites with good data availability.

GPPCOS,PAR uses an empirical PAR relation that is based on measurements at Hyytiälä forest. This PAR relation is site

specific and different compared to the one found by Yang et al. (2018). For this reason it is not known if and how it can be used

in other sites, where it is suggested to retrieve it directly from observations. The choice of empirical LRU-PAR relation at any

given site is to some extent arbitrary. While the LRUPAR function is simple, and thereby attractive, it does not take into account325

the different light conditions inside the canopy, stomatal regulation during drought, or the effects of non-stomatal limitations

on photosynthesis. Moreover, being an empirical model, it does not provide a process-based understanding for LRU. While

the results of GPPCOS,PAR are promising, we found a 25% difference in midday GPP during summer, similar to that found

by Kooijmans et al. (2019). We did not find as good agreement with CO2-based GPP estimates as Asaf et al. (2013), who

found an agreement within 15% using a constant LRU of 1.6 in Mediterranean pine forests and crop fields. However, they also330
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Figure 6. Distribution (bars) and probability density functions (lines) of daily average (a) GPPNLR, (b) GPPANN, (c) GPPCOS,PAR and (d)

GPPCOS,CAP. All probability density functions are combined in (e) for better comparison.

reported higher GPPCOS assumed to be related to soil COS uptake, which was not measured or taken into account in their GPP

calculations. In our study, we subtracted an average measured soil flux (Sun et al., 2018a) from the ecosystem COS uptake.

As the diurnal variation in soil COS exchange was small (less than 1 pmol m−2s−1) throughout the season, averaging did not

make a large difference, and thus soil does not explain the differences found here. However, as soil COS flux measurements

are not necessarily available at all sites, this may be one source of uncertainty in wider application. Yang et al. (2018) studied335

COS flux components and GPPCOS in a Mediterranean citrus orchard and found GPPCOS to be on average 7 % lower than

traditionally partitioned GPP. They also presented a light-dependent and seasonally varying LRU which, however, could not be
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Figure 7. Responses of the different GPP estimates (GPPNLR (purple), GPPANN (pink), GPPCOS,PAR (dark blue) and GPPCOS,CAP, light

blue) to environmental parameters – photosynthetically active radiation (a,d), air temperature (b,e) and vapor pressure deficit (c,f) – in spring

(a–c) and summer (d–f). Data are binned to 12 equal sized bins (same number of data points in each bin) and all GPPs have the same

data coverage. Only measured (non-gap-filled) 30 min flux data was used and GPP was filtered to include only PAR>700 µmol m2s−1 in

responses to Ta and VPD to avoid simultaneous correlation with PAR.
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applied to Hyytiälä COS fluxes due to the very different ecosystem types studied, indicating that the PAR responses may differ

between ecosystems.

GPPCOS,CAP may be more applicable at other sites than GPPCOS,PAR because it is based on a generic physiological model340

of stomatal behaviour, which requires only literature-based parameter values and simple meteorological variables as inputs.

However, as for LRUPAR, LRUCAP should also be tested at other sites against measured LRU, to verify its applicability at other

ecosystems. The version of LRUCAP assuming infinite mesophyll conductance, while giving reasonable results in comparison

with LRUch, is clearly physiologically unrealistic. The formulation of LRUCAP with finite gm did not compare as well with

LRUch at Hyytiälä forest (RMSE=2.58, median difference to LRUch 22%), especially during low light conditions, but may345

compare better at other measurement sites.

One source of uncertainty in GPP estimates based on LRUCAP and LRUPAR is that both LRU predictions are calculated

from radiation measurements at the top of the canopy, where there is no shading by foliage, although the theoretical dependence

of LRUCAP on radiation is more generally applicable throughout the canopy. The branch chamber measurements (on which

the empirical LRUPAR function is based) were also made at the top of the canopy. The measured needles were thus well-350

adjusted to high radiation conditions. Therefore, we did not take into account light penetration and scattering through canopy.

However, the needles and leaves within the canopy are also well adjusted to low light conditions and may be more efficient

with their stomatal control in varying light conditions than needles on top of the canopy. Thus, this may not be a large source

of uncertainty. However, it is also possible that LRU varies throughout the canopy due to different light conditions.

4 Conclusions355

Daily GPPANN and GPPNLR did not differ significantly, and differences were also small on sub-daily and seasonal time scales.

GPPCOS,PAR was higher than GPPNLR on all time scales studied, including the estimate of three-month cumulative GPP

during the peak growing season. In contrast, GPPCOS,CAP, a new method based on stomatal optimization theory, gave better

agreement with GPPNLR on all time scales, and was also less scattered than GPPCOS,PAR on a 30-min time scale.

The LRUCAP function provides a new theoretical underpinning for COS-based GPP estimates that can be used at other360

measurement sites, potentially without requiring additional branch chamber measurements. LRUCAP represents a significant

improvement on previous LRU functions based on site-specific empirical regressions. However, LRUCAP overestimated LRU

at high radiation, when compared to LRU observations at the top of the canopy, leading to a lower midday GPPCOS,CAP, espe-

cially in summer. This discrepancy may result from the assumption of infinite mesophyll conductance, or the absence of dark

respiration, in the underlying stomatal optimization model. LRUCAP would benefit from further testing at other measurement365

sites with COS and CO2 branch flux measurements, including measurements inside the canopy for better canopy-integrated

LRU estimates.

Although COS flux measurements are noisier, more expensive and more difficult than those of CO2, they provide an oppor-

tunity for better process-based understanding of photosynthesis, in comparison with more traditional CO2-based estimates of

GPP. In addition to COS, other proxies such as solar induced fluorescence and isotopic flux measurements should be tested370
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simultaneously to properly investigate their deficiencies and advantages in estimating GPP and processes underlying photo-

synthesis.

The establishment of large long-term ecosystem Research Infrastructures (e.g. ICOS, NEON, TERN, see Papale (2020)) –

involving sites equipped with eddy covariance systems that could potentially also host COS, SIF and isotope sensors – together

with the planned launch of the FLEX satellite in 2025 (https://earth.esa.int/eogateway/missions/flex) that will provide global375

vegetation fluorescence measurements, open up a new phase in monitoring and understanding plant photosynthesis. Our results

also underline the important role of small-scale ecophysiological measurements and models in underpinning these larger-scale

initiatives.

Data availability. The flux data and all GPP estimates used in this study are available from https://doi.org/10.5281/zenodo.6940750 (Koho-

nen et al., 2022). Environmental data used in the study are available from http://urn.fi/urn:nbn:fi:att:a8e81c0e-2838-4df4-9589-74a4240138f8380

(Aalto et al., 2019). The most recent version of the data is available from https://smear.avaa.csc.fi (last access: 9 June 2020).
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Appendix A: LRU predicted by the CAP stomatal optimization model

A1 LRUCAP assuming infinite mesophyll conductance

The general expression for the leaf relative uptake ratio (LRU) derived from the diffusion laws for COS and CO2 (Wohlfahrt

et al., 2012) is385

LRU=
1

1− ci
ca

1
1.21 +

1
1.14

gCOS
s

gCOS
b

1+
gCOS
s

gCOS
b

+
gCOS
s

gCOS
m

. (A1)

where gCOSx (x= b,s,m) are the boundary layer, stomatal and mesophyll conductances for COS, respectively, ca and ci are

the atmospheric and leaf intercellular CO2 molar mixing ratios (mol mol−1), respectively, and the numerical factors 1.21 and

1.14 are the ratios of the conductances of CO2 to COS for stomata and the boundary layer, respectively.

If it is assumed that boundary layer and mesophyll conductances are infinite, Eq. (A1) reduces to390

LRU=
1

1.21

(
1− ci

ca

)−1

(A2)

We derived ci from the CAP stomatal optimization model (Dewar et al., 2018), according to which stomatal conductance

adjusts to maximise the rate of leaf photosynthesis (A) through a trade-off between stomatal and non-stomatal limitations.

Our photosynthesis model is based on that of Thornley and Johnson (1990) (their Eq. 9.12i), modified to include non-stomatal

limitations (NSLs):395

A=

(
1− ψleaf

ψc

)
αQgc(ci−Γ∗)

αQ+ gc(ci+Γ∗)
, (A3)

where α is the photosynthetic quantum yield (mol mol−1) in the absence of NSLs,Q (mol m−2s−1) is photosynthetically active

radiation (PAR), gc (mol m−2 s−1) is the initial slope of the A− ci reponse curve in the absence of NSLs, Γ∗ (mol mol−1) is

the photorespiratory CO2 compensation point, ψleaf (MPa) is the leaf water potential and ψc (MPa) is the critical leaf water

potential at which NSLs reduce photosynthesis to zero. In Eq. (A3), NSLs are represented as an apparent downregulation of400

the A− ci response curve by a factor that decreases with decreasing leaf water potential, as has been observed in numerous

experiments (e.g. Lintunen et al. (2020); Salmon et al. (2020)). Consequently, as stomatal conductance increases there is a

trade-off between increased CO2 supply and increased NSLs, such that A has a maximum at some optimal value of stomatal

conductance.

We used Eq. (A3) rather than the Farquhar photosynthesis model (Farquhar et al., 1980) because, in the latter, the abrupt405

switch from Rubisco- to electron transport limitation introduces artificial discontinuities in the CAP solution for optimal stom-

atal conductance (Dewar et al., 2018), whereas in Eq. (A3) there is a smooth transition from CO2- to light limitation and no

such discontinuities occur. The parameter gc is equivalent to Vcmax/(km+Γ∗) in the Farquhar model.

The CAP solution for optimal stomatal conductance (Dewar et al., 2018) predicts that

ci−Γ∗

ca−Γ∗ =
1

1+β
, (A4)410
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where

β =

√
1.6D

Ksl|ψc|

(
1

gc
+

2Γ∗

αQ

)−1

, (A5)

in which D is vapor pressure deficit (VPD; mol mol−1) and Ksl is the leaf-specific soil-to-leaf hydraulic conductance (mol

m−2s−1MPa−1). Writing Eq. (A2) in the equivalent form

LRU=
1

1.21

ca
ca−Γ∗

(
1− ci−Γ∗

ca−Γ∗

)−1

(A6)415

and substituting the CAP prediction from Eqs. (A4) and (A5) then gives

LRUCAP =
1

1.21

ca
ca−Γ∗

(
1+

√
Ksl|ψc|
1.6Dgc

√
1+

2Γ∗gc
αQ

)
(A7)

In Eq. (A7) all the parameters are physiologically meaningful and can be measured independently or obtained from the lit-

erature, because the underlying CAP model is based entirely on such parameters. This contrasts with use of the stomatal

optimization model of Medlyn et al. (2011), for example, which contains an undetermined parameter (λ, interpreted as the420

marginal water cost of carbon gain) that must be empirically fitted.

Nevertheless, to assess the performance of LRUCAP obtained from literature-based parameter values, we compared it with

LRUCAP obtained by fitting the two key parameter combinations X = |ψc|
1.6gc

and Y = 2Γ∗gc
α in terms of which Eq. (A7) may

be written as

LRUCAP =
1

1.21

ca
ca−Γ∗

(
1+

√
KslX

D

√
1+

Y

Q

)
. (A8)425

Parameters X and Y were optimized to minimize the RMSE of log(LRUCAP) to measured log(LRU), due to the logarithmic

nature of LRU, with Matlab’s fminsearch function. However, we emphasise that this fitting procedure was conducted purely

in order to assess the model performance and is not a requirement for applying LRUCAP in practice when literature-based

parameter values are available. Moreover, the results presented in this study are not based on the optimized values, but on

literature values only.430

A2 LRUCAP assuming finite mesophyll conductance

In the case that mesophyll conductance is not assumed infinite (but boundary layer conductance is infinite), Eq. (A1) becomes

LRU=
1

1.21

1

1+
gCOS
s

gCOS
m

(
1− ci

ca

)−1

. (A9)

If we further assume that the ratios of stomatal to mesophyll conductances are the same for CO2 and COS, then from

gCO2
s (ca−ci) = gCO2

m (ci−cc), where cc is the chloroplast CO2 molar mixing ratio (mol mol−1), we can make the substitution435

gCOSs

gCOSm

=
gCO2
s

gCO2
m

=
ci− cc
ca− ci

, (A10)

22



in Eq. (A9) to obtain

LRU=
1

1.21

(
1− cc

ca

)−1

, (A11)

which reduces to Eq. (A2) when mesophyll conductance is infinite (since then cc = ci). As noted above, CAP represents NSLs440

in terms of an apparent downregulation of the A− ci response curve (Eq. A3). This empirical observation may be interpreted

in various ways: as a downregulation of photosynthetic efficiencies (α and gc) in the chloroplast, or a downregulation of

mesophyll conductance (gCO2
m ), or some combination of the two. In the case where NSLs act entirely on gCOSm with no effect

on the biochemical efficiencies, A is given by as a function of the chloroplast CO2 concentration by (cf. Eq. A3)

A=
αQgc(cc−Γ∗)

αQ+ gc(cc+Γ∗)
. (A12)445

In this case, since Eq. (A3) still holds, we obtain the same optimal CAP solution for stomatal conductance and ci (Eq. A4)

as before, but now with an additional prediction for the finite (but variable) mesophyll conductance as implied by Eq. (A12),

which links the chloroplast CO2 concentration (cc) to the CAP solution of A. From Eq. (A12),

cc−Γ∗ =

(
αQ
gc

+2Γ∗
)
A

αQ−A
. (A13)

The CAP solution for stomatal conductance is given by (Dewar et al., 2018)450

gs =
αQ

αQ
gc

+2Γ∗

xθ

xβ2 +(1−x)(xw+1)
(A14)

where

θ = 1− ψsoil
ψc

(A15)

w =
ca−Γ∗

αQ
gc

+2Γ∗
(A16)

x=
ci−Γ∗

ca−Γ∗ =
1

1+β
(A17)455

in which ψsoil (MPa) is the soil water potential. Substituting x as a function of β into Eq. (A14) and simplifying gives

gs =
αQ

αQ
gc

+2Γ∗

θ

β(1+β+ w
1+β )

. (A18)

We then find the CAP solution for A as follows:

A= gs(ca− ci)

= gs(ca−Γ∗)(1−x)

= gs(ca−Γ∗)
β

1+β

=
αQ(ca−Γ∗)
αQ
gc

+2Γ∗

θ

(1+β)2 +w
. (A19)460
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Substituting this into Eq. (A13) and simplifying then gives

cc−Γ∗

ca−Γ∗ =
θ

(1+β)2 +(1− θ)w

=
θ

(1+β)2 +(1− θ) gc(ca−Γ∗)
αQ+2Γ∗gc

(A20)

which can be combined with Eq. (A11) to give the solution of LRUCAP with finite mesophyll conductance.

As for LRUCAP with infinite mesophyll conductance, we also fitted this version with respect to parametersX and Y in order465

to compare with the performance of the model using literature-based values. For this procedure, β and w were expressed in

terms of X and Y ,

β =
1√

KslX
D

(
1+ Y

Q

) (A21)

and

w =
ca−Γ∗

2Γ∗
1

Q
Y +1

(A22)470

and then substituted into Eq. (A20). However, as for the infinite gm solution, this fitting procedure was conducted purely

in order to assess the model performance and is not a requirement for applying LRUCAP in practice when literature-based

parameter values are available.
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Appendix B: Additional figures
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Figure B1. Modeled against measured NEE using (a) NLR and (b) ANN models for modeling NEE.
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Figure B2. Scatter plots of LRUCAP using the literature values against LRUCAP using the optimized parameter values when assuming (a)

infinite or (b) finite mesophyll conductance.
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Figure B3. Scatter plots of GPPairT that uses only air temperature as the driver for respiration against GPPNLR that uses an average of air

and soil temperatures as the respiration driver on 30 min, daily and monthly time scales. Black solid line is the least-squares linear fit to the

data.
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Figure B4. ANOVA test results for 30 min GPP data. Gray bars indicate no difference to the reference (blue) and red bars indicate statistical

difference to the reference. The results show that only GPPCOS,PAR differs statistically from GPPNLR on 30 min time scale.
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Figure B5. ANOVA test results for daily GPP data. Gray bars indicate no difference to the reference (blue) and red bars indicate statistical

difference to the reference. The results show that both GPPCOS,PAR and GPPCOS,CAP differ statistically from both GPPNLR and GPPANN

on daily scale. GPPCOS,PAR and GPPCOS,CAP do not differ from each other.
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Figure B6. ANOVA test results for monthly GPP data. Gray bars indicate no difference to the reference (blue) and red bars indicate statistical

difference to the reference. The results show that all GPPs are statistically the same on monthly scale.
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Figure B7. LRU derived from chamber measurements (gray) and modelled LRUPAR (blue) and LRUCAP (red) assuming infinite (a-c) or

finite (d-f) mesophyll conductance (gm) in LRUCAP against PAR and VPD. Subplots c and d compare the chamber measured LRU against

modelled LRUPAR and LRUCAP.

31



Figure B8. Net ecosystem exchange (NEE) against photosynthetically active radiation (PAR) close to the compensation point during May,

June, July and August. Data are binned to different air temperature classes: 5◦C < Ta < 10◦C (blue), 10◦C < Ta < 15◦C (orange) and Ta >

15◦C (yellow).
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