Episodic N₂O emissions following tillage of a legume-grass cover crop mixture

Alison Bressler¹, Jennifer Blesh¹

¹School for Environment and Sustainability, University of Michigan, Ann Arbor, 48104, USA

5 Correspondence to: Alison Bressler (asbressl@umich.edu)

Abstract. Nitrogen (N) fertilizer inputs to agricultural soils are a leading cause of nitrous oxide (N₂O) emissions in the U.S. Legume cover crops are an alternative N source that can reduce agricultural N₂O emissions compared to fertilizer N. However, our understanding of episodic N₂O flux following cover crop incorporation by tillage is limited and has focused on single species cover crops. Our study explores whether increasing cover crop functional diversity with a legume-grass mixture can reduce pulse emissions of N₂O following tillage. In a field experiment, we planted crimson clover (*Trifolium incarnatum L.*), cereal rye (*Secale cereal L.*), a clover-rye mixture, and a no-cover control at two field sites with contrasting soil fertility properties in Michigan. We hypothesized that N₂O flux following tillage of the cover crops would be lower in the mixture and rye compared to the clover treatment, because rye litter can decrease N mineralization rates. We measured N₂O for approximately two weeks following tillage to capture the first peak of N₂O emissions in each site. Across cover crop treatments,

15 the higher fertility site, *CF*, had greater cover crop biomass, twofold higher aboveground biomass N, and higher cumulative N₂O emissions than the lower fertility site, *KBS* (413.4 ± 67.5 g N₂O-N ha⁻¹ vs. 230.8 ± 42.5 g N₂O-N ha⁻¹; *P* = 0.00437). There was a significant treatment effect on daily emissions at both sites. At *CF*, N₂O fluxes were higher following clover than the control 6 days after tillage. At *KBS*, fluxes from the mixture were higher than rye 8 and 11 days after tillage. When controlling for soil fertility properties across sites, clover and mixture led to approximately twofold higher N₂O emissions 20 compared to rye and fallow treatments. We found partial support for our hypothesis that N₂O would be lower following incorporation of the mixture than clover. However, treatment patterns differed by site, suggesting that interactions between

cover crop functional types and background soil fertility influence N₂O emissions during cover crop decomposition.

1 Introduction

10

Nitrogen (N) losses from grain agroecosystems contribute to climate change through nitrous oxide (N₂O) emissions (Robertson and Vitousek, 2009). <u>Globally, N₂O emissions from agricultural soils increased by 11% from 1990 to 2005 and are projected to increase by another 35% between 2005 and 2030 (USEPA, 2012).</u> In the U.S., approximately 75% of N₂O emissions come from agricultural soils (USEPA, 2021), and the amount of N added to soil from synthetic fertilizers is the primary driver of these high emissions (Millar et al., 2010; Han et al., 2017; Eagle et al., 2020). <u>Generally, total N inputs are correlated with N losses from agroecosystems (Robertson and Vitousek 2009)</u>. However, Ddiversified grain rotations with legume N sources,

- 30 which add biologically fixed N₂ to fields, better balance N inputs with harvested exports and have lower potential for N losses compared to<u>-fields with</u>-synthetic fertilizer-inputs (Drinkwater et al., 1998; Blesh and Drinkwater, 2013; Robertson et al., 2014). Legumes can be added to rotations as <u>overwintering</u> cover crops, which are unharvested crops typically planted in the fall and terminated in the spring in temperate regions. As an organic N source, legume litter supplies organic substrates to support microbial processes that can increase soil organic matter (SOM) pools and N retention in SOM (Drinkwater et al., 1998).
- 35 1998; Syswerda et al., 2012; Blesh and Drinkwater, 2013). Further, diversified rotations with legume N sources could reduce or replace the use of synthetic N fertilizers, thereby reducing greenhouse gas emissions associated with fertilizer production and application (Norskov and Chen, 2016).

Two key factors that affect N₂O emissions are soil disturbance through tillage and crop functional traits (Gelfand et al. 2016).

- 40 In agroecosystems, even small increases in crop functional diversity (e.g., 2-3 species cover crop mixtures with complementary traits) can substantially impact ecosystem functions such as SOM accrual, N cycling processes, and weed suppression (Drinkwater et al., 1998; McDaniel et al., 2014; Tiemann et al., 2015; Blesh, 2017). For example, The timing and rate of N release from different cover crop functional types (i.e., C4 vs C3 grasses, N fixing legumes) during decomposition affects the potential for N losses (Millar et al., 2004; White et al., 2017); through effects on soil N availability. Interactions between the
- 45 <u>biochemical composition of fresh litter inputs and background soil properties, including the microbial community, are key</u> <u>drivers of microbial decomposition dynamics and N mineralization rates (Cheng, 2009; Kallenbach et al., 2019).</u> It is well established that the biochemical composition of plant litter is a key driver of microbial decomposition dynamics and N mineralization rates (*i.e.*, lignin, cellulose and protein content; C:N; *sensu* Melillo et al., 1982). Consequently, legume cover crops, which have a high N concentration, may result in higher production of N₂O after disturbances like tillage compared to
- 50 cover crops that include non-legume species (Alluvione et al., 2010; Huang et al., 2004; Millar et al., 2004; Gomes et al., 2009). The effects of <u>litter C</u>:N on N mineralization and N₂O flux may be particularly evident when comparing sole legumes with lower ratios (e.g., C:N < 15) to grass cover crops with higher C:N (e.g., > 30) (Baggs et al., 2003). For example, pPrior research on legume-grass mixtures which can have residues of intermediate C:N (e.g., 15-25) revealed that they reduced N leaching compared to sole legumes, while enhancing N supply compared to sole grasses, providing multiple ecosystem functions (Kaye et al., 2019). However, there is limited data on N₂O losses following cover crops in organically managed
- agroecosystems, and the effects of mixtures of complementary functional types on N_2O emissions are poorly understood.

Understanding the timing of N₂O emissions is also key to reducing N losses from crop rotations (Wagner-Riddle et al., 2020).
Millar et al. (2004) found that N₂O fluxes are episodic in <u>a cropping system with</u> corn rotations with <u>and</u> legume <u>cover crops</u>
as the sole source of new N. Specifically, 65-90% of N₂O emissions occurred during the first 28 days following tillage of legume cover crops, over an 84-day measurement period. <u>Similarly, Gomes et al. (2009) found greater N₂O emissions during the first 45 days after terminating cover crops with a roller cutter and herbicide compared to the rest of the year. <u>Similarly, Gelfand et al. (2016) observed high temporal variability in N₂O fluxes measured for 20 years in different temperateannual
</u></u>

grain cropping systems and suggested that emissions following tillage were a primary driver of this variation in the two agroecosystems with cover crops. Therefore, there is a need to measure N₂O in the weeks following cover crop termination to understand pulse N₂O fluxes, particularly when legumes are the sole, or primary, source of N additions. Further, to our knowledge no studies have tested whether legume-grass mixtures reduce pulse N₂O during this critical period compared to sole-legume cover crops.

- Variability in soil conditions also plays an important role in soil N₂O flux. Edaphic characteristics, such as soil texture (Gaillard et al., 2016), <u>soil organic carbon (SOC)</u> (Bouwman et al., 2002; Dhadli et al., 2016), and interannual rainfall patterns can often explain more variation in N₂O emissions than treatment differences (Basche et al., 2014; Ruser et al., 2017). One study with synthetic N fertilizer additions on clayey Oxisols in Brazil found higher N₂O losses from more intensively managed fields with lower labile SOM fractions and total C content (de Figueiredo et al., 2017). In fields with organic N sources, SOM fractions
- 75 with relatively short turnover times (i.e., years to decades) likely influence N mineralization following cover crop incorporation and resulting N₂O emissions. Free particulate organic matter (fPOM) and occluded particulate organic matter (oPOM), which is physically protected in soil aggregates, are both indicators of nutrient cycling capacity in soil (Marriott and Wander, 2006). Prior studies have found that POM N concentrations are positively correlated with potential N mineralization rates (Blesh, 2019), and that this relationship varies with soil texture and management history (Luce, 2016). It is therefore critical to assess
- 80 N₂O emissions in <u>soils with</u> different <u>propertiessoil conditions</u>, such as SOM, POM, and nutrient stocks, which reflect land management histories.

In this field experiment, we assessed the effects of a legume-grass cover crop mixture on agroecosystem N cycling processes compared to either species grown alone during the first flux of N₂O following tillage. The experiment was conducted at two sites in Michigan with contrasting soil fertility properties. Our specific objectives were to: (1) quantify cover crop functional traits, including C:N and legume N inputs from biological N fixation (BNF) and (2) test the effects of cover crop treatment on pulse N₂O fluxes following spring tillage, when emissions are expected to be greatest in agroecosystems that rely on legume N sources. Our hypothesis was that the legume-grass mixture would result in lower pulse N₂O fluxes than the sole-planted legume due to a higher C:N and a smaller new N input to soil from BNF.

90 2 Materials and Methods

2.1 Site description and experimental design

The study was conducted on two sites in two regions of Michigan, USA. The first site (*CF*) was located at the University of Michigan's Campus Farm (Lat/Long: N 42° 17' 47", W 83° 39' 19" Elevation: 259.08 m), was previously in a grass fallow with periodic mowing for over 45 years. The experiment at *CF* was conducted in the 2017-2018 overwintering cover crop

- 95 season. The site resides on a glacial till plain with well drained sandy loam soils in the Fox series which are mixed, superactive, mesic Typic Hapludalfs. The soil had 2.5% organic matter, 21.5% clay, and a pH of 6.35. The site received 1030 mm of rainfall during the experiment (August 2017 September 2018) with an average temperature of 10.2 °C. The second site (*KBS*) was located in the biologically-based cropping system in the Main Cropping System Experiment (MCSE) of the Kellogg Biological Station Long-Term Ecological Research site (Lat/Long: N 42° 14' 24", W 85° 14' 24" Elevation: 288 m). The field has been
- 100 in a corn-soy-winter wheat rotation managed using organic practices for over 30 years. The experiment at *KBS* was conducted in the 2019-2020 overwintering cover crop season. *KBS*'s soil reside This site is on a glacial outwash plain with well drained loam, sandy loam, and sandy clay loam soils in the Kalamazoo and Oshtemo series which are mixed, mesic Typic Hapludalfs (Crum and Collins, 1995). The soil had 1.74% organic matter, 19.4% clay, and a pH of 6.59. The site receives an average of 933 mm yr⁻¹ with an average temperature of 9.2 °C. Neither field received any fertilizer or manure applications before or
- 105 during the experiment.

In a randomized complete block design, we planted four cover crop treatments in 4.5 x 6 m plots <u>atim</u> *CF*: (1) cereal rye (seeding rate: 168 kg ha⁻¹), (2) crimson clover (seeding rate: 34 kg ha⁻¹), (3) clover-rye mixture (seeding rate: 67 kg ha⁻¹ rye, 17 kg ha⁻¹ clover) (4) and a weedy fallow control, in four blocks by broadcasting seed on 16 August 2017. We planted four

- 110 cover crop treatments into 3.1 x 12.2 m plots <u>atim KBS</u>: (1) cereal rye (seeding rate: 100.9 kg ha⁻¹), (2) crimson clover (seeding rate: 16.8 kg ha⁻¹), (3) clover-rye mixture (seeding rate: 50.4 kg ha⁻¹ rye, 9.0 kg ha⁻¹ clover) (4) and a weedy fallow control, in four blocks with a grain drill on 31 July 2019. Seeding rates were reduced for the site planted with a grain drill due to higher likelihood of germination. The cover crops overwintered and were rototilled into the soil on 24 May 2018 (*CF*) and on 26 May 2020 (*KBS*) followed by corn planting on 14 June 2018 (*CF*) and on 1 June 2020 (*KBS*). Cover crops had 4,501 growing degree
- 115 days at *KBS* and 3,898 at *CF*.

2.2 Baseline Soil Sampling

Prior to planting, we collected a composite, baseline soil sample from for each replicate block at *CF*, and from for each treatment plot within each replicate block at *KBS*, to determine initial soil conditions and characterize soil fertility status at both experimental sites. In each plot, we estimated bulk density from the fresh mass of 10 composited soil cores (2 x 20 cm) and adjusted for soil moisture, determined gravimetrically. Subsamples of ~ 50 g were also analysed for soil texture using the hydrometer method. Air-dried soil was mixed and soaked with 100 mL of sodium hexametaphosphate and blended for 5 min. The mixture was transferred to a glass sedimentation cylinder and filled to the 1L mark-with tap water. The slurry was mixed with a metal plunger and hydrometer readings were taken 40 seconds and 2 hours after the plunger was removed. Percent sand was calculated from the 40 second reading and percent clay from the 2-hour reading.

125

At sampling, we sieved a subsample of fresh soil to 2 mm and measured extractable and potentially mineralizable N in triplicate for each soil sample. We immediately extracted inorganic N ($NO_3^- + NH_4^+$) in 2 mol/L KCl. The amount of $NO_3^- + NH_4^+$ in

each sample was analysed colorimetrically on a discrete analyser (AQ2; Seal Analytical, Mequon, WI). We also performed a 7-day anaerobic N incubation and then extracted NH_4^+ in 2 mol/L KCl. Soil weights for extractions and incubations were

130 adjusted for soil moisture. Potentially mineralizable N (PMN) was calculated by subtracting the initial amount of NH_4^+ in the soil from the NH_4^+ released during the 7-day incubation (Drinkwater et al., 1996).

Particulate organic matter (POM) (> 53 µm) was separated from triplicate 40-g subsamples of unsieved, air-dried soil based on size and density (Marriott and Wander, 2006; Blesh, 2019). To isolate the light fraction POM (also called free POM or 135 fPOM), the subsamples were gently shaken for 1 hour in sodium polytungstate (1.7 g/cm3), allowed to settle for 16 hours, and free POM floating on top of the solution was removed by aspiration. To separate the physically protected, or occluded, POM fraction (oPOM), the remaining soil sample was shaken with 10% sodium hexametaphosphate to disperse soil aggregates and then rinsed through a 53-µm filter (Marriott and Wander, 2006). Protected POM was then separated from sand by decanting. The C and N of both POM fractions (fPOM and oPOM) were measured on an ECS 4010 CHNSO Analyzer (Costech Analytical Technologies, Valencia, California, USA). Total soil C and N (to 20 cm) were measured by dry combustion on a Leco TruMac CN Analyzer (Leco Corporation, St. Joseph, Michigan, USA) (Blesh, 2019).

2.3 Aboveground biomass sampling and analysis

We sampled aboveground biomass from all treatments on 22 May 2018 (*CF*) and on 26 May 2020 (*KBS*), from one 0.25 m² quadrat randomly placed in each plot, avoiding edges. Shoot biomass was cut at the soil surface, separated by species (with much separated to each error defection) dried at 60 %C for 48 hours precised and escenable ground ((22 mm)) in a Willow will. We excluded

145 weeds grouped together), dried at 60 °C for 48 hours, weighed, and coarsely ground (< 2 mm) in a Wiley mill. We analyzed the biomass for total C and N by dry combustion on a Leco TruMac CN Analyzer (Leco Corporation, St. Joseph, MI).

2.4 Legume N fixation by natural abundance

We estimated BNF by crimson clover using the natural abundance method (Shearer & Kohl, 1986). <u>BShoot b</u>iomass from the clover in monoculture and mixture and rye in monoculture (the non-N₂ fixing reference plant), were collected in the field,
dried, weighed, and finely ground (<0.5 mm). Samples were analyzed for total N and δ¹⁵N enrichment using a continuous flow Isotope Ratio Mass Spectrometer at the UC Davis Stable Isotope Facility. The percent N derived from the atmosphere (i.e., %Ndfa) was calculated using the following mixing model Eq. (1):

$$\% Ndfa = 100 \times \left(\left(\delta^{15} N_{ref} - \delta^{15} N_{legume} \right) / \left(\delta^{15} N_{ref} - B \right) \right), \tag{1}$$

where $\delta^{15}N_{ref}$ is the $\delta^{15}N$ signature of the reference plant (rye), $\delta^{15}N_{legume}$ is the $\delta^{15}N$ signature of the clover and B is defined as

155 the δ¹⁵N signature of a legume when dependent solely on atmospheric N₂. B values were determined by growing crimson clover species in the greenhouse in a N-free medium following methods in Blesh (2018). After conducting two B-value experiments with crimson clover (one per site), we found an average B-value of -1.57, which we used in our calculation of %Ndfa. We estimated BNF (kg N ha⁻¹) by multiplying field values for aboveground biomass by shoot % N, and then by %Ndfa. The natural abundance method is generally considered reliable when the δ¹⁵N signature of the legume and reference plants are

160 separated by 2 ‰ (Unkovich et al., 2008). At the *KBS* site, this criterion was met; however, we did not find adequate separation between the legume and reference species at *CF*. We therefore estimated BNF at *CF* using the mean %Ndfa values from *KBS* for clover in mixture and monoculture. Given this, we also conducted a sensitivity analysis to <u>determinetest</u> how variation in %Ndfa at *CF* would affect model outcomes.

2.5 N₂O flux following soil disturbance

- We used the static chamber method (Kahmark et al., 2018) to measure the first pulse of N₂O emissions in each field following tillage of all experimental plots. All measurements occurred between 9 am and noon. <u>AtIn</u> *CF*, we measured N₂O once before and five times after cover crop incorporation over 18 days. <u>AtIm</u> *KBS*, we measured N₂O seven times after cover crop incorporation over 18 days. <u>AtIm</u> *KBS*, we measured N₂O seven times after cover crop incorporation over 18 days. <u>AtIm</u> *KBS*, we measured N₂O seven times after cover crop incorporation over 18 days. <u>AtIm</u> *KBS*, we measured N₂O seven times after cover crop incorporation over 15 days. These periods captured the main episode of N₂O flux following tillage and initial decomposition of cover crop residues. During the N₂O measurement period, each site received the same amount of precipitation (15 mm) and had the same average temperature (20.6 °C).
- 170 had the same average temperature (20.0 C).

Static chambers at *KBS* were made from stainless steel cylinders (diameter: 28.5 cm) and chambers at *CF* were made from Letica 3.5-gallon pails with the bottom removed to create a cylinder (diameter at top: 28.5 cm, diameter at bottom: 26 cm). Chamber lids were fitted with O-ring seals to create an airtight container during sampling. Each lid was equipped with a rubber

septa port for extraction of gas samples. Before each sampling date, static chambers were installed in the ground and allowed to rest for at least 24 hours to reduce the impact of soil disturbance on measured emissions. The morning before each sampling event, the depth from the lip of the chamber to the ground was measured at three locations inside the chamber to calculate the internal volume. Lids were then placed securely on the chamber and 10 mL samples were extracted using a syringe every 20 minutes over a period of 60 minutes. Each 10 mL sample was stored, overpressurized, in a 5.9 mL, graduated glass vial with an airtight rubber septume (Labco Limited, Lampeter, UK). We analysed samples for N₂O using a gas chromatograph equipped with an electron capture detector (Agilent, Santa Clara, CA). N₂O flux was calculated as the change in headspace N₂O concentration over the 60-minute time-period. Each set of 4 data points (0, 20, 40, and 60 minutes) were analysed using linear

2.6 Soil inorganic nitrogen sampling

regression and screened for non-linearity.

185 On the day after tillage and again 12-13 days later, we measured soil inorganic N (NH₄⁺ + NO₃⁻) near the static chambers at both sites. We collected four to six, 2 cm diameter soil cores to 10 cm depth, within 1 m of each static chamber. Samples were immediately homogenized, sieved (2 mm), extracted with 2 M KCl, and analysed for soil moisture using the gravimetric method. Extractions were stored at -20 °C and later thawed and analysed for NO₃⁻ and NH₄⁺ colorimetrically on a discrete analyser (AQ2; Seal Analytical, Mequon, WI).

190 2.76 Data analysis

200

For all variables, we calculated descriptive statistics (mean, standard error, and IQRs) and checked all variables and models for normality of residuals and homoscedasticity. We transformed data using a log function for all variables. Within each site, we used repeated measures ANOVA models to test for differences in N₂O flux (g N₂O N ha⁻¹ day⁻¹) across treatments for all time points. Models included day as the repeated measure, cover crop treatment as the fixed effect, and block as the random

195 effect. We estimated mean cumulative N_2O emissions (g N_2O N ha⁻¹) for all treatments by calculating the area under the curve (Gelfand et al., 2016) using the following Eq. (2):

Cumulative N₂O Emissions =
$$\sum_{t_0}^{t_{final}} [(x_t + x_{t+1})/2] * [(t+1) - t],$$
 (2)

Where t_0 is the initial sampling date, t_{final} is the final sampling date, x_t is N_2O flux at time t, and x_{t+1} is N_2O flux at the following sampling date. In the absence of continuous sampling, this approach allowed us to approximate a total flux over the sampling window and better visualize treatment patterns within and across sites.

Within each site, we determined the effects of cover crop treatments on cumulative N₂O, total biomass (kg ha⁻¹), total biomass N (kg N ha⁻¹), the C:N ratio, clover N (kg N ha⁻¹), and BNF (kg N ha⁻¹), and soil inorganic N using separate ANOVA models for a randomized complete block design, with cover crop treatment as the fixed effect and block as the random effect. To

- 205 understand the effects of cover crop treatments on all response variables across both sites, we used two-way ANOVA models with site and treatment as fixed effects, along with their interaction, and block nested in site as a random effect. We tested differences in soil inorganic N concentrations by site for each treatment between sampling dates using a t-test. For all ANOVAs, post-hoc comparison of least square means was performed using Tukey's HSD, and results were reported as statistically significant at either $\alpha = 0.05$ or 0.1, for models including N₂O flux, following previous work identifying high
- 210 variability from unidentified sources in ecological field experiments measuring N₂O emissions (Gelfand et al., 2016; Han et al., 2017). All statistical analyses were performed in JMP Pro 15 software (SAS Institute, Cary NC). Excel and JMP Pro 15 were used to make figures.

3 Results

3.1 Soil Fertility

The *CF* site had higher soil fertility compared to the *KBS* site (Table 1). Total organic C was 34% higher at *CF* (P = 0.0003). Similarly, we found that *CF* had significantly larger POM pools than *KBS*. The concentration of free particulate organic matter (fPOM) was 44% higher (P = 0.01109) and occluded particulate organic matter (oPOM) was 29% higher at *CF* (P = 0.0062). The fPOM N concentration was 30% higher at *CF* than *KBS* (P = 0.0413) and PMN was 46% higher at *CF* than at *KBS* (P = 0.00439). However, oPOM N was not significantly different between *CF* and *KBS* (P = 0.29549). Soil inorganic N increased

220 <u>during the N₂O sampling period in all treatments at both sites. We found a significantly larger inorganic N pool at *CF* than *KBS* at both sampling dates (P < 0.001) (Table 2).</u>

3.2 Cover crop biomass and traits (C:N and BNF)

There was a significant effect of site (P = 0.0005), treatment (P < 0.0001) and a<u>n_significant</u> interaction effect-between site and treatment (P = 0.0084) for total shoot biomass, which included both cover crops and weed species. Across all cover crop treatments, mean biomass was 40% higher at *CF* (5430.45 ± 499.26 kg ha⁻¹) than at *KBS* (32<u>6059.96</u> ± 289.65 kg ha⁻¹), with nearly three times more rye biomass and 1.5 times more mixture biomass at *CF* than *KBS*. At *CF*, rye biomass (7709 ± 387 kg ha⁻¹) was 37% higher than biomass in the clover treatment (4846 ± 477 kg ha⁻¹), and almost threefold higher than in the fallow (2775 ± 245 kg ha⁻¹) (P < 0.0001). Rye and mixture (6392 ± 206 kg ha⁻¹) were not significantly different from each other, nor were the mixture and clover treatments. At *KBS*, clover (3972 ± 580 kg ha⁻¹) and mixture (4219 ± 297 kg ha⁻¹) treatments had approximately twofold more biomass than the fallow (2006 ± 388 kg ha⁻¹) ($P = 0.007_{68}$). However, mixture and clover biomass did not differ significantly from rye (2842 ± 212 kg ha⁻¹), and rye was not significantly different from fallow (Figure 1). At both sites, clover performed well in the mixture, representing 54% of the total mixture biomass at *KBS* and 53% of total mixture biomass at *CF* (Table A1).

We also found a significant effect of site (P = 0.0005), treatment (P < 0.0001), and a significant site by treatment interaction (P = 0.0484) on total shoot N (biomass N; including both cover crop and weed biomass). Across sites, there was two-fold higher biomass N at *CF* (102.6 ± 8.7 kg N ha⁻¹) than at *KBS* (53.0 ± 7.2 kg N ha⁻¹), with 68% higher biomass N in rye, 44% higher in mixture, and 56% higher in fallow at *CF* compared to *KBS*. At *CF*, there was a significant difference in biomass N between treatments, in which clover (121.2 ± 14.4 kg N ha⁻¹) accumulated twofold more N than the weeds in the fallow (59.0 ± 14.4 kg N ha⁻¹) (P = 0.00655); however, clover, mixture (131.328 ± 14.3 kg N ha⁻¹), and rye (98.64 ± 4.6 kg N ha⁻¹) treatments did not significantly differ from each other. At *KBS*, we found significantly higher aboveground N in the clover (80.8 ± 13.5 kg N ha⁻¹) and mixture (73.4 ± 5.8 kg N ha⁻¹) treatments compared to the rye (31.9 ± 1.4 kg N ha⁻¹) and weedy fallow (26.0 ±

 6.6 kg N ha^{-1} (P = 0.0004) (Figure 1).

- There was also a significant effect of site (P = 0.0014), treatment (P < 0.0001), and a significant interaction between site and treatment (P = 0.0052) for on-cover crop C:N. Across sites for all treatments combined, C:N was 26% higher at *KBS* (30.7 ± 2.0) than *CF* (23.7 ± 1.8). At *CF*, the C:N of rye biomass was 34.7 ± 1.6, while the mixture had a significantly lower C:N (21.7 ± 1.8). The mixture C:N did not differ from that in clover (17.2 ± 0.767) or weeds in the fallow (-21.1 ± 1.6; P < 0.0001). At *KBS*, we also found a lower C:N in treatments with legumes (40.3 ± 1.3 in rye and 34.8 ± 1.9 in fallow vs. 25.6 ± 1.1 in
- 250 the mixture and 21.8 ± 0.3 in clover; *P* < 0.0001). At *KBS*, the difference between clover and mixture was not significant.

Using stable isotope methods at KBS, we estimated that the clover shoot N derived from fixation was $43.3 \times 62.1 \times 62.1$

treatment (P = 0.7040.2565) and no significant interaction (P = 0.9364). Between sites, with mixture and clover treatments combined, aboveground N from BNF was 38 % higher at CF (49.5 58.2 ± 7.3 8.5 kg N ha⁻¹) than at KBS (30.6 36.2 ± 3.5 5.0 kg N ha⁻¹) (P = 0.05326). At KBS, BNF in clover (29.2 41.9 ± 6.0 8.7 kg N ha⁻¹) and mixture (32.1 30.5 ± 4.4 4.2 kg N ha⁻¹) were not significantly different (P = -0.6770.3458). Similarly, at CF, clover (46.2 66.28 ± 8.3 11.9 kg N ha⁻¹) and mixture (52.7 50.2 ± 13.1 12.5 kg N ha⁻¹) supplied similar BNF inputs (P = 0.8650.4897). In a sensitivity analysis for BNF at CF spanning 40-70 50 - 70-%Ndfa, N from fixation ranged from 42.7 to 74.7 60.5 to 84.9 kg N ha⁻¹ for the sole clover treatment

and from <u>33.3</u> <u>41.7</u> to <u>58.3</u> <u>58.3</u> kg N ha⁻¹ for the clover in the mixture treatment (Table A3).

3.3 Effects of a legume-grass cover crop mixture functional diversity on daily N2O emissions

In the repeated measures model for daily N₂O flux at *CF*, we found a significant effect of cover crop treatment (P = 0.070), day (P < 0.0001), and a significant interaction between day and treatment (P = 0.005). At *KBS*, there was a significant effect of cover crop treatment (P = 0.01655) and day (P < 0.0001). Individual ANOVA models for each sampling date at *CF* showed that N₂O emissions were higher in the clover ($4.5 \pm 0.5 \text{ g } \text{N}_2\text{O N ha}^{-1}$), mixture ($4.8 \pm 1.3 \text{ g } \text{N}_2\text{O N ha}^{-1}$), and rye ($7.7 \pm 2.2 \text{ g}$ N₂O N ha⁻¹) treatments than in the fallow ($1.2 \pm 0.3 \text{ g } \text{N}_2\text{O N ha}^{-1}$) at the baseline sampling point prior to tillage (P = 0.00247). Six days after incorporating the cover crops by tillage, N₂O emissions in the clover treatment peaked at 55.1 ± 16.4 g N₂O N ha⁻¹, whereas fluxes in the other treatments had started to decline (Figure 2 A). On day six, emissions in the clover treatment were significantly higher than in the fallow ($16.8 \pm 6.2 \text{ g } \text{N}_2\text{O N ha}^{-1}$) (P = 0.032), whereas the mixture ($21.0 \pm 3.5 \text{ g } \text{N}_2\text{O N ha}^{-1}$) and rye ($16.5 \pm 2.2 \text{ g } \text{N}_2\text{O N ha}^{-1}$) treatments were not different from fallow. Emissions in the clover treatment remained elevated for the rest of the measurement period, however, the difference in emissions between clover, mixture, and rye treatments was not statistically significant on the last sampling date, 18 days after tillage (P = 0.151) (Figure 2 A).

At *KBS*, N₂O emissions were five times higher in the mixture $(18.0 \pm 5.6 \text{ g N}_2\text{O N ha}^{-1})$ than in rye $(3.6 \pm 1.0 \text{ g N}_2\text{O N ha}^{-1})$ at the peak flux eight days after tillage (P = 0.04987) and were also five times higher in mixture $(9.4 \pm 2.6 \text{ g N}_2\text{O N ha}^{-1})$ than the rye $(1.8 \pm 0.4 \text{ g N}_2\text{O N ha}^{-1})$ eleven days after tillage (P = 0.01878). Twelve days after tillage, emissions were four times higher in clover $(5.9 \pm 1.1 \text{ g N}_2\text{O N ha}^{-1})$ than rye $(1.5 \pm 0.6 \text{ g N}_2\text{O N ha}^{-1})$ (P = 0.018). By the fifteenth and last day, clover $(4.4 \pm 1.3 \text{ g N}_2\text{O N ha}^{-1})$ and mixture $(7.2 \pm 1.6 \text{ g N}_2\text{O N ha}^{-1})$ were higher than rye $(1.9 \pm 0.4 \text{ g N}_2\text{O N ha}^{-1})$ and fallow $(1.7 \pm 280 \text{ O.3 g N}_2\text{O N ha}^{-1})$ (P = 0.0073) (Figure 2 B).

3.4 Cumulative N₂O emissions

Both cover crop treatment (P = 0.00216) and site (P = 0.00437) had a significant effect on cumulative N₂O emissions, with no significant interaction (P = 0.13877). The mean N₂O flux following tillage was 1.8 times higher at *CF* (413.4 ± 67.5 g N₂O-N ha⁻¹ vs. 230.8 ± 42.5 g N₂O-N ha⁻¹; P = 0.00437), which had both higher rates of potentially mineralizable N and larger free and occluded POM fractions (Figure 3). On average across both sites, the clover (488.5 ± 129.4 g N₂O-N ha⁻¹) and mixture (388 ± 46.2 g N₂O-N ha⁻¹) treatments led to significantly higher emissions than the rye (193.0 ± 43.4 g N₂O-N ha⁻¹) and fallow (218.0 ± 52.5 g N₂O-N ha⁻¹), with clover producing more than 2.5 times and mixture 2 times higher emissions than rye (P = 0.00216). Emissions from clover and mixture were statistically similar, and emissions from rye and fallow also did not differ significantly.

290

295

When evaluating treatment effects within each site, at *CF*, cumulative N₂O flux tended to be lower in the fallow (291.5 ± 92.0 g N₂O-N ha⁻¹), rye (288.9 ± 48.1 g N₂O-N ha⁻¹), and clover-rye mixture (380.2 ± 44.4 g N₂O-N ha⁻¹) treatments compared to clover grown alone (692.9 ± 204.7 g N₂O-N ha⁻¹), although these differences were not statistically significant (P = 0.112). At *KBS*, cumulative N₂O fluxes were lower in the fallow (144.5 ± 28.2 g N₂O-N ha⁻¹) and rye (97.1 ± 18.3 g N₂O-N ha⁻¹) treatments compared to the clover-rye mixture (397.7 ± 89.1 g N₂O-N ha⁻¹) and clover grown alone (284.1 ± 91.5 g N₂O-N ha⁻¹) (P = 0.008). At this site, the mixture produced four times, and clover three times, higher emissions than rye (Figure 4).

3.5 N₂O fluxes normalized by soil fertility indicators or cover crop biomass

Given the contrasting soil fertility properties at the two experimental sites, we normalized N₂O emissions by POM levels and PMN rates (i.e., cumulative N₂O to POM, or PMN, ratios). When controlling for differences in soil fertility, all ratios had significant treatment effects, with clover resulting in the highest N₂O emissions at *CF* and mixture producing the highest emissions at *KBS* (Table 3). There was no significant effect of site on cumulative N₂O when expressed per unit fPOM or PMN. However, when normalizing for differences in oPOM, oPOM N, and fPOM N across sites, there was a significant site effect. Specifically, compared to *KBS*, mean N₂O emissions at *CF* were 22% higher when normalizing for oPOM (*P* = 0.0112), 43% higher for oPOM N (*P* = 0.0013), and 26% higher for fPOM N (*P* = 0.02<u>768</u>). When normalized by POM fractions or PMN, the cumulative N₂O emissions across sites were 1.9-2.8 times higher in clover and mixture than in fallow or rye (Table 4). When N₂O was normalized by cover crop biomass, site was not significant (*P* = 0.180<u>795</u>), but we found a significant treatment effect (*P* = 0.003¹) with lower emissions following rye than the other treatments. There was no effect of either treatment (*P* = 0.1712) or site (*P* = 0.46<u>7</u>96) when expressing N₂O emissions as a ratio of cover crop biomass N (Table 5). Daily N₂O fluxes normalized by cover crop biomass N are presented in the Appendix (Table A2).

4 Discussion 310

Reducing greenhouse gas emissions from agriculture is necessary to meet global targets for limiting climate change (IPCC, 2019). Generally, greenhouse gas emissions are greater from grain agroecosystems with fertilizer additions compared to legume N sources (Robertson et al., 2014; Han et al., 2017; Westphal et al., 2018) and are higher in rotations with only annual crops compared to those with perennial crops (Gelfand et al., 2016). Overwintering cover crops can help "perennialize" annual 315 agroecosystems by providing continuous plant cover, building SOsoil organic C (King and Blesh, 2018) and supporting related functions such as soil nutrient supply and storage. In diversified rotations with cover crops, however, N₂O emissions can peak during the weeks following tillage when cover crop biomass is incorporated into the soil, increasing N mineralization rates (Han et al., 2017). There is growing evidence that small increases in cover crop functional diversity can simultaneously enhance multiple agroecosystem functions, including nutrient retention (Storkey et al., 2015; Blesh, 2017; Kave et al., 2019). For 320 instance, Storkey et al. (2015) found that low to intermediate levels of species richness (1-4 species) provided an optimal balance of multiple ecosystem services when species exhibited contrasting functional traits related to growth habit and phenology. Our experiment tested whether increasing cover crop functional diversity with a legume-grass mixture, compared to a sole legume, would reduce pulse N₂O emissions following cover crop incorporation by tillage at two field sites. Understanding these critical moments of N₂O flux can inform how to adapt management of diversified cropping systems to

325 reduce N losses, and further reap their environmental benefits compared to fertilizer-based management practices.

4.1 Effects of legume-grass cover crop mixture functional diversity on N₂O flux

The sampling period (15-18 days) of this experiment captured the first peak of N_2O emissions following tillage of cover crop biomass at both sites. Our analysis of cover crop treatment effects on cumulative N₂O emissions in this period shows the strong 330 influence of biomass N inputs, particularly for the legume species, which supplied an external N source through BNF. When normalized for differences in soil fertility across sites, the clover and mixture treatments led to significantly higher pulse losses of N₂O than rye or fallow (Table 4), providing strong evidence that BNF inputs from the treatments that included clover were a driving factor of N₂O losses. While our study tested the role of legume N inputs, priorast research, summarized in recent meta-analyses, hasve been dominated by studies with N-inputs from synthetic fertilizer and manure N sources (Han et al., 335 2017; Eagle et al., 2017; Basche et al., 2014). The only studies included in these meta-analyses that had legumes as the sole N source were Robertson et al. (2000) and Alluvione et al. (2010), both using tillage to terminate cover crops. Gelfand et al. (2016) extended the data reported in the Robertson et al. (2000) study by another decade and found that legume N sources did not significantly reduce N₂O fluxes from soil compared to fertilizer N sources. Our findings contribute evidence that legume cover crops release more N₂O compared to treatments without legumes, within the context of agroecosystems that have only received legume N inputs for several decades.

Despite clear differences between treatments with clover and those without, we did not find strong support for our hypothesis that the legume-grass mixture would reduce pulse N_2O flux. This may be explained by the lack of difference in total BNF

- 345 inputs between clover grown alone and in mixture within each site, as well as the similar C:N ratios of litter biomass in both treatments. Litter chemistry for clover and mixture both fell into the intermediate C:N range (17.2-25.6) expected to lead to net N mineralization_compared to the much higher C:N-range in rye (31.5----44.1) across sites, which likely led to net N immobilization (Robertson and Groffman, 2015; Kramberger et al., 2009; Rosecrance et al., 2000; Wagger et al., 1998). Indeed, the soluble inorganic N concentration, which exerts a direct control on N₂O flux (Robertson et al. 2000), increased at
- 350 both sites over the sampling period, and was significantly higher in clover compared to rye, while clover and mixture were not different. potentially increasing the soluble inorganic N pool and driving N₂O fluxes following tillage, compared to the much higher C:N range in rye (31.5 – 44.1) across sites, which likely led to net N immobilization (Robertson and Groffman, 2015; Kramberger et al., 2009; Rosecrance et al., 2000; Wagger et al., 1998).
- When N₂O fluxes were normalized by aboveground biomass N inputs to soil, emissions were the same for all treatments regardless of the source of N (<u>internal cycling of soil N</u> or external inputs of atmosphericfixed N₂). Furthermore, we found that three times higher rye biomass N, which was three-fold higher at *CF* than at *KBS*, corresponded with 1.6-2.6 times higher N₂O emissions <u>at *CF*</u> when normalized to control for differences in multiple soil fertility parameters across the two-sites. In the clover treatment, 1.5 times higher BNF inputs in the clover treatment were 1.5 times higher at *CF*, which corresponded with
- 360 1.2-2.3 times higher N₂O emissions when normalized for differences inby soil fertility properties. The magnitude of new N inputs from BNF was higher at *CF*, due to <u>gG</u> reater clover biomass in both treatments with clover <u>at *CF*</u>, which corresponded with significantly higher <u>BNF inputs and N₂O</u> emissions at that site. However, when N₂O fluxes were normalized by aboveground biomass across sites, emissions were significantly lower following rye than the other treatments, including weeds in the fallow, indicating that residue traits such as C:N influence N₂O emissions. Higher mean litter C:N in the rye litter compared to the other treatments with clover may have reduced N₂O emissions per unit biomass input. These results reflect
- the importance of cover crop functional type, and the impact of legume N <u>fixation</u> inputs on episodic N₂O emissions, which is supported by prior studies showing that higher total N inputs lead to higher N mineralization rates and higher N₂O fluxes (e.g., Han et al., 2017) and that legume cover crops can lead to pulse N₂O fluxes following incorporation by tillage (Baggs et al., 2003; Millar et al., 2004; Basche et al., 2014).

370

Within each site, the specific treatment effects differed. At *CF*, the clover treatment produced the highest pulse of N_2O , while at *KBS*, the mixture produced the highest flux, with the magnitude of the treatment effect being much more pronounced. N_2O fluxes were four times higher following mixture than rye at *KBS*, compared to just over two times higher in clover than rye at *CF*, suggesting that the new N input from BNF was a stronger driver of treatment differences at *KBS*. At *CF*, the mixture-did

- slightly reduce<u>d</u> cumulative N₂O emissions compared to clover (380.2 v. 692.9 g N₂O-N ha⁻¹), a difference which was likely ecologically meaningful even though it was not statistically significant. In contrast, the mixture slightly increased mean N₂O at *KBS*, from 284.1 g N₂O N ha⁻¹ in clover to 397.7 g N₂O N ha⁻¹ in mixture; however, at this site both treatments with clover produced significantly higher N₂O emissions than the non-legume treatments.
- In addition, differences between cover crop treatments may have been even greater at *CF* than our data suggests. We likely underestimated cumulative N₂O emissions during the first peak following tillage at *CF* because emissions had not yet returned to baseline, especially for the clover treatment. By extending our empirical measurements using regression models, we estimated the trajectory of N₂O emissions to approximately 19-26 days after tillage depending on the cover crop treatment and replicate. Cumulative N₂O emissions at *CF* could have reached 822.8 ± 253.2 g N₂O N ha⁻¹ in clover, 461.6 ± 59.2 g N₂O N
 ha⁻¹ in mixture, 340.4 ± 63.4 g N₂O N ha⁻¹ in rye, and 355.0 ± 77.4 g N₂O N ha⁻¹ in fallow. These higher estimates also further increase differences in cumulative N₂O emissions between sites.

At both sites, the clover was competitive in mixture, representing just over half of the total stand biomass in this treatment. <u>Although similar mixture composition allowed for better comparison of this treatment between sites, there is a need for future</u> 390 <u>studies to assess a range of legume-to-grass ratios because mixture composition influences</u>. Given that mixture composition <u>likely drives-the quality of cover crop residue inputs to soil (Finney, White, and Kaye, 2016), and mixture evenness is related</u> to agroecosystem multifunctionality (Blesh et al. 2019). there is a need for future studies to assess the effects of legume grass mixtures across a wide range of contexts, with larger variation in mixture establishment and evenness. For example, it is possible that if rye had produced more biomass in the mixture in our experiment, we would have observed lower N₂O emissions in the mixture compared to the clover treatment at both sites.

4.2 Differences in N₂O flux between sites

The different treatment patterns for daily emissions between sites, and the larger pulse emissions overall at *CF*, both provide insights into mechanisms governing N₂O fluxes following cover crop incorporation. There is substantial evidence indicating that <u>Although</u> new N inputs to agroecosystems, and soil N mineralization rates, are <u>a</u> primary drivers of soil N₂O emissions (e.g., Han et al., 2017, Robertson and Groffman, 2015). <u>However</u>, in our study, mean BNF inputs did not significantly differ between clover and mixture treatments.<u></u><u>+</u>tThus, the different baseline soil fertility levels, and plant-soil interactions that drive N mineralization, likely played a key role in the contrasting effects of the mixture across sites. For instance, prior studies have found positive correlations between total SOC and N₂O flux (Bouwman et al., 2002; Dhadli et al., 2016) <u>and</u>. In a meta analysis of 26 studies, Basche et al. (2014) found that SOC and cover crop biomass had a significant effect on denitrification potential and N₂O emissions. These studies highlight th<u>e</u> important role ofat ecosystem state factors that influence fertility, such as soil

parent material and organic C content, in drivinge N₂O emissions.

Here, we found approximately twofold higher cumulative N_2O fluxes at the site with larger soil POM fractions and higher POM N concentrations (*CF*) (Figure 3), suggesting that POM fractions may influence cover crop growth and N_2O fluxes. POM

- 410 fractions are robust indicators of soil fertility that respond to changes in management over shorter time scales than total SOM and play an important functional role in soil N cycling and N availability to crops (Wander, 2004; Luce et al., 2016). For instance, the *CF* site also had approximately twofold higher rates of N mineralization (PMN) and 5 times higher soil inorganic <u>N concentrations</u> compared to *KBS*. The total amount of soil N assimilated by cover crops (in the absence of external N inputs) is also an integrated indicator of soil inorganic N availability over the cover crop season. Rye aboveground biomass N was
- 415 threefold higher at *CF*, while N in weed biomass in the fallow control was 2.3 times higher at *CF* than at *KBS*. In diversified agroecosystems, plant-mediated N acquisition from SOM pools can couple the release of inorganic N with plant N uptake in the rhizosphere (Paterson et al., 2006), making organic N inputs, such as those from legume residues, less susceptible to loss than inorganic fertilizer inputs (Drinkwater and Snapp, 2007). When cCover crops-grow in higher fertility soils, they are thus likely to have higher net primary productivity, and to release more root C into the soil, which increases microbial growth and turnover rates, and mineralizes more soil N. The roots, in turn, take up more N and produce more biomass (Hodge et al., 2000; Paterson et al., 2006). This positive feedback loop may have led to the significantly higher cover crop biomass production at

CF, which was especially pronounced in the rye treatment (7709 kg ha⁻¹ at *CF* compared to 2842 kg ha⁻¹ in at *KBS*).

Mechanistically, interactions between background soil fertility and cover crop functional types likely drive soil inorganic N
availability and N₂O emissions. For instance, the highest N₂O emissions measured in our study were from the clover treatment at *CF*, which had both the highest new N inputs to soil from BNF and the largest POM pools. This site also showed a small reduction in emissions with the legume-grass mixture. After clover incorporation, the large, relatively labile C and N input to soil, in combination with larger background POM pools, may have primed greater overall N mineralization <u>atim</u> *CF* compared to *KBS*, with some of this N lost as N₂O. Since corn had not yet established during this two-week <u>periodtime frame</u> after tillage,
there were no active roots to couple N release with N uptake, <u>allowing soil inorganic N pools to increase (Table 2) and</u> leaving a window of opportunity for N losses.

Even when controlling for fertility differences across sites (i.e., the analysis of N₂O to POM or PMN ratios), we found that cumulative N₂O emissions per unit oPOM, oPOM N, and fPOM N were significantly higher at *CF*. This site difference was
highest for the oPOM N stock, with about 43% more emissions per oPOM N at *CF*. Prior studies have shown that oPOM N is a strong indicator of SOM quality, N fertility, and soil inorganic N availability from microbial turnover of SOM (Wander, 2004, Marriott and Wander, 2006; Blesh, 2019). Our contrasting findings across experimental sites indicate a need for future studies that assess the effects of cover crops on N₂O emissions across soils with a wide range of POM pool sizes.

4.3 Episodic N₂O emissions following tillage of cover crops

- 440 To understand the relative importance of N_2O fluxes following cover crop incorporation, it is important to interpret the magnitude of these episodic emissions within the context of N_2O fluxes for a complete crop rotation. In a 20-year study in the biologically-based cropping system in the MCSE at KBS (the *KBS* site in our experiment), Gelfand et al. (2016) reported mean annual N_2O emissions of approximately 1.08 kg N ha⁻¹ yr⁻¹ during a corn year, which was defined as the 380-day window between corn planting and soybean planting the following year. They also calculated an average of 2.2 kg N ha⁻¹ yr⁻¹ over the
- course of the three-year corn-soy-wheat crop rotation at this site (Gelfand et al., 2016). These values are likely a slight underestimate because their sampling did not include emissions during winter thaws, and occurred every 2 weeks, potentially missing periods of high emissions. In a meta-analysis, Han et al. (2017) reported a similar average annual N₂O flux of 2.3 3.1 kg N ha⁻¹ yr⁻¹ for annual cropping systems with inorganic fertilizer additions.
- Using Gelfand et al.'s estimate of 1.08 kg N ha⁻¹ yr⁻¹, the <u>twothree</u>-week cumulative flux we measured post-tillage of clover would represent 62.64% of crop year emissions at *CF* and 26.3% at *KBS*, while the flux following tillage of the mixture biomass would represent 33.95% of the crop year estimate at *CF* and 37.8% at *KBS*. Using the estimate of 2.2 kg N ha⁻¹ yr⁻¹ for the complete crop rotation, the <u>twothree</u>-week cumulative flux we measured post-tillage of clover would represent 30.74% of annual emissions at *CF* and 12.93% at *KBS*, while the flux following tillage of the mixture biomass is 16.77% of that annual estimate at *CF* and 18.1% at *KBS*. After incorporating sole clover biomass, the average daily flux was 37.66 g N ha⁻¹ d⁻¹ at *CF* and 18.99 g N ha⁻¹ d⁻¹ at *KBS*, and after mixture biomass, was 20.4 g N ha⁻¹ d⁻¹ at *CF* and 26.5 g N ha⁻¹ d⁻¹ at *KBS* which are approximately three- to twelve-fold greater than the annual average daily flux reported for the organic cropping system at *KBS* (Gelfand et al., 2016).5 Taken together, these comparisons highlighting the relative importance of these peak eventsepisodic N₂O emissions following tillage of cover crops.

460

Additionally, we used long-term measurements of N₂O emissions from the biologically-based cropping system at KBS as further context for interpreting our single-season results. Between 2014 and 2020, following the red clover cover crop, there were three years in which N₂O fluxes were measured roughly two weeks apart within a month after tillage. These two-week periods of N₂O emissions after tilling red clover represented 19.9 \pm 2.1 % of the annual emissions from this cropping system (Reported 2020). These N O measurements from peet years at the KBS site were not collected writh at least 8 days after

465 (Robertson 2020). These N₂O measurements from past years at the KBS site were not collected until at least 8 days after tillage, and likely missed the initial flux immediately following soil disturbance, which may explain why we found a slightly higher proportion of annual emissions (26.3%) following clover tillage at *KBS*. These historical data suggest that we indeed captured the peak N₂O flux following soil disturbance by tillage in our one-year experiment. Given the large spatial and temporal variability in N₂O emissions, <u>S</u>sampling frequently during the days and weeks following tillage of cover crops is

470 therefore important for advancing knowledge of episodic emissions.

5 Conclusion

We tested the impacts of cover crop functional type on short-term N cycling dynamics following tillage in the context of diversified agroecosystems that rely on legume N. Given that gaseous N fluxes are episodic, it is critical to understand how they are influenced by management practices during periods of high susceptibility for N losses. Overall, N₂O flux was higher

- 475 in the clover and mixture treatments than in rye and fallow when emissions were normalized by soil fertility properties. We found that the functionally diverse legume-grass cover crop led to a small reduction in N_2O losses at *CF* but not at *KBS*. In contrast to our hypothesis, at *KBS*, the mixture led to higher N_2O emissions than the clover treatment at peak flux following tillage. We also found a more pronounced treatment effect at *KBS*, indicating that new N inputs from both treatments with legumes were a larger driver of N_2O emissions at the site with lower soil fertility. Overall, the clover treatment at *CF* led to
- 480 the highest emissions across sites, suggesting a synergistic effect of BNF inputs and soil fertility on N₂O. These contrasting findings across sites shed light on the drivers of N₂O losses following cover crop incorporation. Our results show that higher aboveground cover crop biomass can lead to higher N₂O emissions during cover crop decomposition, particularly for cover crops that include legumes.
- 485 Data availability: Portions of the data used in this paper are being used to prepare other manuscripts and will be available in Deep Blue Repositories at https://doi.org/10.7302/hv7v-4378 in January 2023.

Author contribution: AB and JB developed the research questions, experimental design, and methods. AB conducted the field and lab work and led data analysis with input from JB. AB and JB wrote and edited the manuscript.

Competing interests: The authors declare that they have no conflict of interest.

- 490 Acknowledgments: We thank Brendan O'Neill and Kevin Kahmark for assistance with the N₂O sampling protocol, Jeremy Moghtader and Joe Simmons for managing field operations, and Beth VanDusen for technical support in the field and the lab. We would also like to thank Dev Gordin, Kent Connell, Marta Plumhoff, Etienne Herrick, Luyao Li, Nicole Rhoads, Kristen Hayden, Danielle Falling, Riley Noble, Alice Elliott, Ben Iuliano, Dahlia Rockowitz, Ellie Katz, Naveen Jasti, and Nisha Gudal for assistance in the field and lab, and Don Zak for input on a draft of the manuscript. Support for this research was also
- 495 provided by the NSF Long-term Ecological Research Program (DEB 1832042) at the Kellogg Biological Station and by Michigan State University AgBioResearch.

Financial support: This work was supported by Research Funding for Conservation Studies from the Matthaei Botanical Gardens, University of Michigan, a Rackham Graduate Student Research Grant from the University of Michigan, and a United States Department of Agriculture (USDA) NIFA grant (Award #: 2019-67019-29460).

500 References

Alluvione, F., Bertora, C., Zavattaro, L., and Grignani, C.: Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn, Soil Sci. Soc. Am. J., 74, 384-395, https://doi.org/10.2136/sssaj2009.0092, 2010.

Baggs, E. M., Stevenson, M., Pihlatie, M., Regar, A., Cook, H., and Cadisch, G.: Nitrous oxide emissions following application

505 of residues and fertilizer under zero and conventional tillage. Plant Soil, 254, 361-370, https://doi.org/10.1023/A:1025593121839, 2003.

Basche, A. D., Miguez, F. E., Kasper, T. C., and Castellano, M. J.: Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis, J. Soil Water Conserv., 69(6), 471-482, https://doi.org/10.2489/jswc.69.6.471, 2014.

510

Blesh, J.: Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality, J. Appl. Ecol. 55: 38-48, https://doi.org/10.1111/1365-2664.13011, 2017.

Blesh, J.: Feedbacks between nitrogen fixation and soil organic matter increase ecosystem functions in diversified 315 agroecosystems, Ecol. Appl., e01986, https://doi.org/10.1002/eap.1986, 2019.

Blesh, J., and Drinkwater, L. E.: The impact of nitrogen source and crop rotation on nitrogen mass balances in the Mississippi River Basin, Ecol. Appl., 23, 1017-1035, https://doi.org/10.1890/12-0132.1, 2013.

520 Blesh, J., VanDusen, B. M., and Brainard, D. C.: Managing ecosystem services with cover crop mixtures on organic farms, Agron. J., 111, 1-15, https://doi.org/10.2134/agronj2018.06.0365, 2019.

Bressler, A., and Blesh, J.: Data from: Episodic N_2O emissions following tillage of a legume-grass cover crop mixture, Deep Blue Data, https://doi.org/10.7302/hv7v-4378, 2023.

525

Bouwman, A. F., Boumans, L. J. M., and Batjas, N. H.: Emissions of N₂O and NO from fertilized fields: Summary of available measurement data, Global Biogeochem. Cy., 16(4), 1058, https://doi.org/10.1029/2001GB001811, 2002.

<u>Cheng, W.: Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C-N</u>
 <u>budgets, Soil Biol. Biochem.</u>, 41, 1795-1801, https://doi.org/10.1016/j.soilbio.2008.04.018, 2009.

Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil carbon storage informed by particulate and mineralassociated organic matter, Nat. Geosci., 12, 989-994, https://doi.org/10.1038/s41561-019-0484-6, 2019.

535 Crum, J. R., and Collins, H. P.: KBS Soils. Kellogg Biological Station Long-term Ecological Research Special Publication. Zenodo, http://doi.org/10.5281/zenodo.2581504, 1995. de Figueiredo, C. C., de Oliveira, A. D., Dos Santos, I. L., Ferreira, E. A. B., Malaquias, J. V., de Sá, M. A. C, de Carvalho, A. M., and Dos Santos, J. D. G. Jr.: Relationships between soil organic matter pools and nitrous oxide emissions of

agroecosystems in the Brazilian Cerrado, Sci. Total Environ., 618, 1572-1582, https://doi.org/10.1016/j.scitotenv.2017.09.333, 2018.

Dhadli, H., Brar, B. S., and Black, T. A.: N2O emissions in a long-term soil fertility experiment under maize-wheat cropping system in Northern India, Geoderma Reg., 7, 102-109, https://doi.org/10.1016/j.geodrs.2016.02.003, 2016.

545

Drinkwater, L. E., Wagoner, P., and Sarrantonio, M.: Legume-based cropping systems have reduced carbon and nitrogen losses, Nature, 396, 262-264, https://doi.org/10.1038/24376, 1998.

Drinkwater, L. E., and Snapp, S. S.: Understanding and managing the rhizosphere in agroecosystems, in: The Rhizosphere:
An Ecological Perspective, edited by Cardon, Z. G., and Whitbeck, J. L., Elsevier Inc., 127-153, https://doi.org/10.1016/B978-0-12-088775-0.X5000-9, 2007.

Eagle, A. J., Olander, L. P., Locklier, K. L., Heffernan, J. B., and Bernhardt, E. S.: Fertilizer management and environmental factors drive N₂O and NO₃⁻ losses in corn: a meta-analysis, Soil Sci. Soc. Am. J., 81, 1191-1202, https://doi-org/10.2136/sssaj2016.09.0281, 2017.

Eagle, A. J., McLellan, E. L., Brawner, E. M., Chantigny, M. H., Davidson, E. A., Dickey, J. B.,
Linquist, B. A., Maaz, T. M., Pelster, D. E., Pittelkow, C. M., van Kessel, C., Vyn, T. J., and Cassman, K. G.: Quantifying on-farm nitrous oxide emission reductions in food supply chains. *Earth's Future*, 8,
e2020EF001504, https://doi.org/10.1029/2020EF001504, 2020.

Finney, D. M., White, C. M., and Kaye J. P.: Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop Mixtures, Agron. J., 108(1), 39-52, https://doi-org/10.2134/agronj15.0182, 2016.

565 Gaillard, R., Duval, B. D., Osterholz, W. R., and Kucharik, C. J.: Simulated effects of soil texture on nitrous oxide emission factors from corn and soybean agroecosystems in Wisconsin. J. Environ. Qual., 45, 1540–1548, https://doi.org/10.2134/jeq2016.03.0112, 2016.

Gartner, T. B., Cardon, X. G.: Decomposition dynamics in mixed-species leaf litter, Oikos, 104, 230-246, 570 https://doi.org/10.1111/j.0030-1299.2004.12738.x, 2004.

Gelfand, I., Shcherbak, I., Millar, N., Kravchenko, A. N., and Robertson, G. P.: Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA, Glob. Change Biol., 22, 3594-3607, https://doi.org/10.1111/gcb.13426, 2016.

575

Gomes, J., Bayer, C., Costa, F. D., Piccolo, M. D., Zanatta, J. A., Vieira, F. C. B., and Six, J.: Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil Tillage Res. 106, 35-44, https://doi.org/10.1016/j.still.2009.10.001, 2009.

580 IPCC.: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., In press, 2019.

585

Han, Z., Walter, M. T., and Drinkwater, L. E.: N2O emissions from grain cropping systems: a meta-analysis of the impacts of fertilizer-based and ecologically-based nutrient management strategies, Nutr. Cycl. Agroecosys., 107(3), 335-355, https://doi.org/10.1007/s10705-017-9836-z, 2017.

590 Hodge, A., Stewart, J., Robinson, D., Griffiths, B. S. and Fitter, A. H.: Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity, J. Ecol., 88, 150-164, http://www.jstor.org/stable/2648492, 2000.

Huang, Y., Zou, J. W., Zheng, X. H., Wang, Y. S., Xu, X.K.: Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios, Soil Biol. Biochem., 36(6), 973-981, https://doi.org/10.1016/j.soilbio.2004.02.009, 2004.

Kahmark, K., Millar, N., and Robertson, G. P.: Greenhouse gas fluxes—static chamber method. Michigan State University Kellogg Biological Station, https://lter.kbs.msu.edu/protocols/113, 2018.

600 Kallenbach, C. M., Wallentein, M. D., Schipanski, M. E., and Grandy, A. S.: Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward, Front. Microbiol., 10, 1146, https://doi.org/10.3389/fmicb.2019.01146, 2019. Kaye, J., Finney, D., White, C., Bradley, B., Schipanski, M., Alonso-Ayuso, M., Hunter, M., Burgess, M., and Mejia, C.:
Managing nitrogen through cover crop species selection in the U.S. mid-Atlantic, PLoS ONE, 14(4), e0215448, https://doi.org/10.1371/journal.pone.0215448, 2019.

Kramberger, B., Gselman, A., Janzekovic, M., Kaligaric, M., and Bracko, B.: Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of corn. Eur. J. Agron., 31, 103-109, https://doi.org/10.1016/j.eja.2009.05.006, 2009.

610

Luce, M. St. Whalen, J. K., Ziadi, N., and Zebarth, B. J.: Net nitrogen mineralization enhanced with the addition of nitrogen rich particulate organic matter, Geoderma, https://doi-org.proxy.lib.umich.edu/10.1016/j.geoderma.2015.08.017, 262, 112-118, 2015.

615 Marriott, E. E., and Wander M. M.: Total and labile soil organic matter in organic and conventional farming systems, Soil Sci. Soc. Am. J., 70(3), 950-959, https://doi.org/10.2136/sssaj2005.0241, 2006.

McDaniel, M. D., Tiemann, L. K. and Grandy, A. S.: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis, Eco. Appl., 24, 560-570, https://doi.org/10.1890/13-0616.1, 2014.

620

Melillo, J. M., Aber, J. D., and Muratore, J. F.: Nitrogen and lignin control of hardwood leaf litter decomposition dynamics, Ecology, 63, 621–626, https://doi.org/10.2307/1936780, 1982.

Millar, N., Ndufa, J. K., Cadisch. G., and Baggs, E. M.: Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics, Global Biogeochem. Cycles, 18, GB1032, 1-9. https://doi.org/10.1029/2003GB002114, 2004.

Millar, N., Robertson, G.P., Grace, P.R., Gehl, R., and Hoben, J.: Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (maize) production: an emissions reduction protocol for US Midwest agriculture, Mitig. Adapt. Strat. Gl., 15, 185–204, https://doi.org/10.1007/s11027-010-9212-7, 2010.

630

Nadelhoffer, N. J., Aber, J. D., Melillo, J. M.: Seasonal patterns of ammonium and nitrate uptake in nine temperate forest ecosystems, Plant Soil, 80, 321-335, https://www.jstor.org/stable/42935521, 1984.

Norskov, J., and Chen, J.: Sustainable Ammonia Synthesis, US DoE Round Table Report, 635 https://www.osti.gov/servlets/purl/1283146, 2016. Ostrom, N. E., Sutka, R. L., Ostrom, P. H., Grandy, A. S., Huizinga, K. H., Gandhi, H., von Fisher, J. C., and Robertson, G. P.: Isotopologue data reveal denitrification as the primary source of N2O upon cultivation of a native temperate grass-land, Soil Biol. Biochem., 42, 499-506, https://doi.org/10.1016/j.soilbio.2009.12.003, 2010.

640

Paterson, E., Sim, A., Standing, D., Dorward, M., and McDonald A. J. S.: Root exudation from hordeum vulgare in response to localized nitrate supply, J. Exp. Bot., 57(10), 2413-2420, https://doi.org/10.1093/jxb/erj214, 2006.

<u>Robertson, G.: Trace Gas Fluxes on the Main Cropping System Experiment at the Kellogg Biological Station, Hickory Corners,</u>
 <u>MI (1991 to 2019) ver 46, Environmental Data Initiative,</u>
 <u>https://doi.org/10.6073/pasta/b1feb30692eb31b7f8a27615d18e0fa8 (Accessed 2022-02-11), 2020.</u>

Robertson, G. P., Coleman, D. C., Bledsoe, C. S., and Sollins, P.: Standard Soil Methods for Long-Term Ecological Research. Long-Term Ecological Research Network Series. Oxford University Press, New York, 1999.

650

Robertson, G. P., Paul, E. A., and Harwood, R. R.: Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere, Am. Assoc. Adv. Sci., 289 (5486), 1922-1925, http://www.jstor.org/stable/3077685, 2000.

655 Robertson, G. P., and Vitousek, P. M.: Nitrogen in agriculture: balancing the cost of an essential resource, Annu. Rev. Env. Resour., 34, 97-125, https://doi.org/10.1146/annurev.environ.032108.105046, 2009.

Robertson, G. P., Gross, K. L., Hamilton, S. K., Landis, D. A., Schmidt, T. M., Snapp, S. S., and Swinton, S. M.: Farming for ecosystem services: an ecological approach to production agriculture, Bioscience, 64(5), 404-415, https://doi.org/10.1093/biosci/biu037, 2014.

Robertson, G. P., and Groffman, P. M.: Nitrogen transformations, in: Soil Microbiology, Ecology, and Biochemistry, 4th ed., edited by: Paul, E. A., Academic Press, Burlington, MA, 421-446, 2015.

665 Rosecrance, R. C., McCarty, G. W. Shelton D. R., and Teasdale, J. R.: Denitrification and N mineralization from hairy vetch (Vicia villosa Roth) and rye (Secale cereale L.) cover crop monocultures and bicultures, Plant Soil, 227, 283-290, https://doi.org/10.1023/A:1026582012290, 2000. Saha, D., Kaye, J.P., Bhowmik, A., Bruns, M. A., Wallace, J. M., and Kemanian, A. R.: Organic fertility inputs synergistically
increase denitrification-derived nitrous oxide emissions in agroecosystems, Eco, Appl., 31(7), e02403, https://doi.org/10.1002/eap.2403, 2021.

Storkey, J., Doring, T., Baddeley, J., Collins, R., Roderick, S., Jones, H., and Watson, C.: Engineering a plant community to deliver multiple ecosystem services, Eco. Appl., 25(4), 1034-1043, https://doi.org/10.1890/14-1605.1, 2015.

675

- Syswerda, S. P., Basso, B., Hamilton, S. K., Tausig, T. B., and Robertson, G. P.: Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA, Agric. Ecosyst. Environ., 149, 10-19, https://doi.org/10.1016/j.agee.2011.12.007, 2012.
- 680 <u>Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E., and McDaniel. M. D.: Crop rotational diversity enhances</u> belowground communities and functions in agroecosystems, Ecol. Lett. 18, 761-771, https://doi.org/10.1111/ele.12453, 2015.

Tonitto, C., David, M. B., and Drinkwater, L. E.: Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics, Agric. Ecosyst. Environ., 112, 58-72, https://doi.org/10.1016/j.agee.2005.07.003, 2006

Unkovich, M., Herridge, D., Peoples, M. Cadisch, G., Boddey, B., Giller, K., Alves, B., and Chalk,: Measuring plant-associated nitrogen fixation in agricultural systems, Australian Centre for International Agricultural Research, Canberra, Australia, http://hdl.handle.net/102.100.100/121643?index=1, 2008.

690

685

USEPA: Global Anthropogenic Non-CO₂ Greenhouse Gas Emissions: 1990-2030, Office of Atmospheric Programs, Climate Change Division, Washington, D.C., 2012.

USEPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019, Agriculture, Washington, D.C., 2021.

695

Wagger, M. G., Cabrera, M. L., and Ranells, N. N.: Nitrogen and carbon cycling in relation to cover crop residue quality. J. Soil Water Conserv., 53(3), 214-218, https://www.jswconline.org/content/53/3/214, 1998.

Wagner-Riddle, C., Baggs, E. M., Clough, T. J., Fuchs, K., and Peterson, S. O.: Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments, Curr. Opin. Environ., 47, 46-

53, https://doi.org/10.1016/j.cosust.2020.08.002, 2020.

Westphal, M., Tenuta, M., and Entz M. H.: Nitrous oxide emissions with organic crop production depends on fall soil moisture, Agric. Ecosyst. Environ., 254, 41-49, https://doi.org/10.1016/j.agee.2017.11.005, 2018.

705

White, C.M., DuPont, S.T., Hautau, M., Hartman, D., Finney, D. M., Bradley, B., LaChance, L. C., and Kaye, J. P.: (2017) Managing the trade-off between nitrogen supply and retention in cover crop mixtures, Agric. Ecosyst. Environ., 237, 121-133, https://doi.org/10.1016/j.agee.2016.12.016, 2017.

710

720

Figure 1: Biomass (kg/ha) and biomass N (kg N/ha) by treatment (including cover crops and weeds), at two sites (CF and KBS).

Figure 2: A: Mean net nitrous oxide (N₂O) flux from the soil (with standard error) over 18 days at *CF*, measured once the day before (d = -1) tillage on 23 May 2018 (d = 0), and then five times following tillage and incorporation of cover crop biomass. B: Mean net nitrous oxide (N₂O) flux from the soil (with standard error) over 15 days at *KBS*, measured seven times following tillage on 26 May 2020 (d = 0). The lines connecting the sampling points are intended to aid in visualizing treatment patterns for cumulative N₂O and do not indicate continuous data collection (Eq. 2).

Figure 3: Cumulative N₂O plotted against fPOM (g kg⁻¹), oPOM (g kg⁻¹), and PMN (kg NH₄⁺ N ha⁻¹ week⁻¹) at both sites (*KBS* and *CF*). Open symbols are values by replicate block and closed symbols are overall site means. Error bars represent standard error of the means for each site.

Figure 4: Cumulative N₂O flux by treatment, compared between sites.

		CF		KBS
Soil Series		Fox	Kalamazoo	o & Oshtemo
	Mean	Std. Error	Mean	Std. Error
*Bulk Density	1.48	0.02	1.58	0.02
**% Sand	65.00	1.29	41.30	2.06
% Clay	21.50	0.96	19.40	1.33
**% Silt	13.50	0.50	39.30	2.40
рH	6.35	0.20	6.59	0.07
**Total Organic Carbon (Mg ha ⁻¹)	44.39	1.81	29.44	1.01
**Total Organic Nitrogen (Mg ha ⁻¹)	3.83	0.10	2.81	0.06
*Phosphorus (mg P kg ⁻¹)	16.00	1.91	9.31	1.85
Potassium (mg K kg ⁻¹)	62.25	5.31	60.19	3.18
*oPOM (mg kg⁻¹)	3.89	0.05	2.75	0.14
oPOM N (mg N kg ⁻¹)	63.20	1.05	56.93	2.95
*fPOM (mg kg ⁻¹)	5.26	0.36	2.92	0.13
*fPOM N (mg N kg ⁻¹)	62.31	3.69	43.54	2.11
*PMN (kg NH ₄ $^+$ N ha ⁻¹ week ⁻¹)	24.62	1.01	13.34	0.90

Table 1: Soil fertility indicators at each site. P-values are indicated as: * <0.05, ** <0.001 for differences between sites.

Table 2: Mean ± standard error for soil inorganic N (mg N kg soil-1) at initial and final sampling points separated by site and745treatment. There was a significant difference between sites at both time points (<0.0001). P-values are indicated as: * <0.05, ** <0.01,</td>*** <0.001 for differences between time points for each treatment in the last column. Significant treatment differences (within each site) are indicated by different letters.</td>

	Soil Inorganic N									
Site	Treatment	Initial	Final	P-value						
	Rye	$5.0\pm0.6~b$	$12.7 \pm 1.3 \ b$	*						
~~	Clover	$9.0 \pm 0.6 \ a$	$26.7 \pm 1.6 a$	**						
CF	Clover-Rye	$7.1 \pm 0.7 \ a$	$20.0 \pm 1.9 \ ab$	**						
	Fallow	$4.5\pm0.2~b$	$17.5 \pm 4.3 \ ab$	*						
	Rye	$1.2 \pm 0.1 \ bc$	$2.8\pm0.5\;b$	***						
	Clover	$1.7 \pm 0.2 \ a$	$5.0 \pm 0.8 \ a$	***						
KBS	Clover-Rye	$1.5 \pm 0.2 \ ab$	$4.6 \pm 0.4 \ a$	***						
	Fallow	$0.9 \pm 0.2 c$	$3.3 \pm 0.5 \ b$	*						

750 Table 3: Mean \pm standard error for ratios of g N₂O/g POM and g N₂O/ kg PMN by treatment and site. P-values are indicated as: * <0.05, ** <0.001 for differences between treatments, and ^ <0.05 for differences between sites.

		N ₂ O/				
Site	Treatment	fPOM*	oPOM*^	fPOM N*^	oPOM N*^	PMN**
	Rye	0.19 ± 0.03	0.25 ± 0.04	16.12 ± 3.08	15.36 ± 2.35	12.09 ± 2.48
	Clover	0.51 ± 0.19	0.60 ± 0.18	41.44 ± 14.96	37.82 ± 11.77	29.95 ± 11.04
CF	Clover-Rye	0.26 ± 0.04	0.33 ± 0.03	21.38 ± 3.31	20.27 ± 2.15	16.17 ± 2.84
	Fallow	0.17 ± 0.03	0.25 ± 0.08	14.94 ± 2.53	15.26 ± 4.29	11.67 ± 3.06
	Rye	0.10 ± 0.02	0.13 ± 0.02	6.65 ± 1.38	5.82 ± 0.82	7.43 ± 1.14
KBS	Clover	0.30 ± 0.09	0.34 ± 0.10	19.81 ± 6.54	15.80 ± 4.66	23.61 ± 6.49
	Clover-Rye	0.50 ± 0.12	0.47 ± 0.11	32.64 ± 8.50	22.00 ± 5.44	33.41 ± 7.85
	Fallow	0.16 ± 0.03	0.15 ± 0.03	10.50 ± 1.97	7.00 ± 1.39	9.33 ± 1.55

Table 4: Mean ± standard error for ratios of g N₂O/g POM and g N₂O/kg PMN averaged across both sites by treatment. Significant treatment differences are indicated by different letters.

	N2O/	N2O/	N2O/	N2O/	N2O/
Treatment	fPOM	оРОМ	fPOM N	oPOM N	PMN
Rye	$0.15 \pm 0.03b$	$0.19 \pm 0.03b$	$11.39 \pm 2.37b$	$10.59 \pm 2.14b$	$9.76 \pm 1.54b$
Clover	$0.40 \pm 0.11a$	$0.47 \pm 0.11a$	$30.63 \pm 8.59a$	26.81 ± 7.19 <i>a</i>	$26.78 \pm 6.05a$
Clover-Rye	$0.38 \pm 0.08a$	$0.40 \pm 0.06a$	$27.01 \pm 4.73a$	$21.13 \pm 2.73a$	$24.79 \pm 5.05a$
Fallow	$0.17 \pm 0.02b$	$0.20 \pm 0.04b$	$12.72 \pm 1.71 ab$	$11.13 \pm 2.61b$	$10.50 \pm 1.65b$

Table 5: Mean ± standard error for ratios of g N₂O to kg cover crop biomass and g N₂O to kg cover crop biomass N averaged across both sites by treatment. Significant treatment differences are indicated by different letters.

755

•

Treatment	N ₂ O/biomass	N ₂ O/biomass N		
Rye	$0.036 \pm 0.0049b$	$2.98 \pm 0.34a$		
Clover	$0.12 \pm 0.034a$	$5.12 \pm 1.48a$		
Clover-Rye	$0.076 \pm 0.011a$	$4.17 \pm 0.70a$		
Fallow	$0.087 \pm 0.012a$	$5.37 \pm 0.60a$		

Appendix A

Table A1: Means (standard error) for aboveground biomass, biomass nitrogen, and biological nitrogen fixation (BNF) by species across treatments at *CF* (A) and *KBS* (B).

А.

CF	All Cover Crops		Clover		Rye		Weeds		
	Biomass	Biomass N	Biomass	Biomass N	BNF	Biomass	Biomass N	Biomass	Biomass N
	$(kg ha^{-1})$	$(kg N ha^{-1})$	$(kg ha^{-1})$	$(kg N ha^{-1})$	$(kg N ha^{-1})$	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$	$(kg ha^{-1})$	$(kg N ha^{-1})$
Rye	7709.1	98.6				7250.9	89.2	458.2	9.4
-	(387.2)	(4.6)				(341.7)	(7.6)	(201.3)	(4.1)
Clover	4845.8	121.2	4294.6	106.7	46.2			551.2	14.5
	(477.9)	(14.4)	(680.5)	(19.2)	(8.3)			(284.3	(6.5)
Mixture	6392.4	131.3	3371.9	83.3	52.7	2863.5	43.9	157.0	4.1
	(205.8)	(14.4)	(702.6)	(20.7)	(13.1)	(495.4)	(6.6)	(70.4)	(1.8)
Fallow	2774.5	59.0						2774.5	59.0
	(245.1)	(7.9)						(245.1)	(7.9)

B.

KBS	All Cover Crops		Clover		Rye		Weeds		
	Biomass	Biomass N	Biomass	Biomass N	BNF	Biomass	Biomass N	Biomass	Biomass N
	$(kg ha^{-1})$	$(kg N ha^{-1})$	$(kg ha^{-1})$	$(kg N ha^{-1})$	$(kg N ha^{-1})$	$(kg ha^{-1})$	$(kg N ha^{-1})$	$(kg ha^{-1})$	$(kg N ha^{-1})$
Rye	2842.8	31.9				2367.7	25.4	475.2	6.5
	(212.2)	(1.4)				(161.8)	(0.5)	(89.9)	(1.1)
Clover	3972.1	80.8	2963.9	67.5	29.2			1008.2	13.3
	(579.7)	(13.5)	(654.8)	(14.0)	(6.0)			(90.4)	(1.2)
Mixture	4219.1	73.4	2310.0	50.6	32.1	1148.9	13.1	760.3	9.6
	(297.2)	(5.8)	(380.7)	(7.0)	(4.4)	(300.9)	(3.6)	(43.3)	(0.6)
Fallow	2005.8	26.0						2005.8	26.0
	(387.9)	(6.6)						(387.9)	(6.6)

Table A2: Means (standard error) for ratios of mg N_2O to kg cover crop biomass (A) and for ratios of mg N_2O to kg biomass N (B) by site and by treatment for each N_2O sampling date

A. mg N₂O/kg cover crop biomass

Site	Treatment	5/21/2018	5/23/2018	5/25/2018	5/28/2018	6/4/2018	6/9/2018	
	Rye	1.0 (0.3)	0.5 (0.1)	3.4 (1.1)	2.2 (0.4)	2.2 (0.8)	1.4 (0.4)	
CE	Clover	1.0 (0.1)	2.6 (1.1)	8.3 (2.1	12.5 (4.8)	7.2 (3.1)	9.5 (4.9)	
Cr	Clover-Rye	0.8 (0.2)	1.3 (0.3)	4.6 (0.5)	3.3 (0.5)	3.4 (0.7)	3.3 (0.5)	
	Fallow	0.4 (0.1)	1.5 (0.5)	9.6 (3.1)	5.7 (1.6)	4.8 (0.9)	6.5 (1.0)	
		5/29/2020	5/31/2020	6/3/2020	6/5/2020	6/8/2020	6/9/2020	6/12/2020
	Rye	1.3 (0.3)	0.8 (0.4)	1.5 (0.3)	1.3 (0.4)	0.6 (0.2)	0.5 (0.2)	0.6 (0.1)
VDC	Clover	1.1 (0.3)	0.7 (0.3)	3.1 (1.7)	3.0 (1.5)	1.5 (0.7)	1.5 (0.3)	1.1 (0.3)
KBS	Clover-Rye	1.8 (1.0)	0.8 (0.2)	3.6 (0.7)	4.1 (1.2)	2.2 (0.6)	1.2 (0.3)	1.7 (0.4)
	Fallow	1.4 (0.4)	0.9 (0.3)	3.3 (0.1)	2.9 (0.6)	1.6 (0.3)	1.3(0.4)	0.9 (0.1)

B. mg N₂O/kg cover crop biomass N

Site	Treatment	5/21/2018	5/23/2018	5/25/2018	5/28/2018	6/4/2018	6/9/2018	
	Rye	81.8 (27.2)	38.8 (4.5)	264.4 (75.4)	170.8 (28.3)	166.0 (55.0)	109.9 (25.2)	
CE	Clover	38.4 (4.3)	109.1 (46.3)	342.0 (93.6)	517.5 (212.1)	298.9 (137.7)	398.8 (213.3)	
Cr	Clover-Rye	38.5 (12.6)	60.6 (11.2)	227.5 (22.0)	166.3 (33.6)	172.1 (45.6)	167.7 (39.3)	
	Fallow	17.2 (4.4)	77.3 (31.1)	468.3 (153.7)	275.2 (73.2)	228.3 (38.9)	315.3 (51.1)	
		5/29/2020	5/31/2020	6/3/2020	6/5/2020	6/8/2020	6/9/2020	6/12/2020
	Rye	117.2 (22.0)	71.4 (32.0)	138.7 (27.2)	112.4 (30.3)	56.6 (13.2)	46.2 (17.6)	57.5 (11.1)
VDC	Clover	53.9 (18.1)	36.4 (17.0)	153.6 (83.0)	150.4 (74.5)	73.0 (33.1)	75.4 (13.3)	57.4 (16.8)
КВЗ	Clover-Rye	101.1 (49.2)	44.5 (10.6)	206.3 (38.1)	236.0 (69.2)	125.3 (32.5)	70.4 (15.9)	100.1 (22.3)
	Fallow	115.8 (35.5)	72.9 (30.2)	265.5 (25.2)	237.9 (56.8)	129.6 (26.3)	98.4 (25.8)	72.6 (15.2)

Treatment	Block	BNF (N kg ha ⁻¹) @ 40 %Ndfa	BNF (N kg ha ⁻¹) @ 50 %Ndfa	BNF (N kg ha ⁻¹) @ 60 %Ndfa	BNF (N kg ha ⁻¹) @ 70 %Ndfa
	1	22.6	28.3	35.1	39.6
	2	44.1	55.1	68.5	77.2
	3	43.9	54.9	68.1	76.8
Clover	4	60.1	75.2	93.3	105.2
Ciover	Mean (std. error)	42.7 (7)	53.3 (10)	66.3 (12)	74.7 (13)
	1	33.1	41.4	49.6	57.9
	2	32.7	40.9	49.0	57.2
	3	54.0	67.5	81.0	94.5
Mixturo	4	13.5	16.8	20.2	23.6
1 11111111	Mean (std. error)	33.3 (8)	41.7 (10)	50.0 (12)	58.3 (14)

775 Table A3: Sensitivity analysis for the *CF* site where we estimated %Ndfa at 40, 50, 60, and 70 for the clover grown alone and in mixture.