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Abstract. This study presents a novel ensemble regression model for hypoxic area (HA) forecast in the Louisiana–Texas 10 

(LaTex) Shelf. The ensemble model combines a zero-inflated Poisson generalized linear model (GLM) and a quasi-Poisson 11 

generalized additive model (GAM) and considers predictors with hydrodynamic and biochemical features. Both models were 12 

trained and calibrated using the daily hindcast (2007–2020) by a three-dimensional coupled hydrodynamic–biogeochemical 13 

model embedded in the Reginal Ocean Modeling System (ROMS). Compared to the ROMS hindcasts, the ensemble model 14 

yields a low root-mean-squared error (RMSE) (3,256 km2), a high R2 (0.7721), and low mean absolute percentage biases for 15 

overall (29 %) and peak HA prediction (25 %). When compared to the Shelf-wide cruise observations from 2012 to 2020, our 16 

ensemble model provides a more accurate summer HA forecast than any existing forecast models with a high R2 (0.9200), a 17 

low RMSE (2,005 km2), a low scatter index (15 %), and low mean absolute percentage biases for overall (18 %), fair-weather 18 

summers (15 %), and windy summers (18 %) predictions. To test its robustness, the model is further applied to a global forecast 19 

model and produces HA prediction from 2012 to 2020 with the adjusted predictors from the HYbrid Coordinate Ocean Model 20 

(HYCOM). In addition, model sensitivity tests suggest an aggressive riverine nutrient reduction strategy (92 %) is needed to 21 

achieve the HA reduction goal of 5,000 km2. 22 

1 Introduction  23 

The Louisiana–Texas (LaTex) Shelf has become a center of hypoxia (bottom dissolved oxygen, DO<2 mg L-1) study since the 24 

1980s (e.g., Rabalais et al., 2002; Rabalais et al., 2007a; Justić and Wang, 2014). Regular mid-summer Shelf-wide cruises 25 

documented that the area and volume of hypoxic bottom water could reach up to 23,000 km2 and 140 km3, respectively 26 

(Rabalais and Turner, 2019; Rabalais and Baustian, 2020). The aquatic environments, fisheries, and coastal economies are 27 

under threat of recurring hypoxia in summer (Chesney and Baltz, 2001; Craig and Bosman, 2013; De Mutsert et al., 2016; 28 

LaBone et al., 2020; Rabalais and Turner, 2019; Rabotyagov et al., 2014; Smith et al., 2014). For example, habitats of some 29 

fish species (e.g., croaker and brown shrimp) shift to offshore hypoxic edges (Craig and Crowder, 2005; Craig, 2012) during 30 
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summer hypoxia events, which may impact organism energy budgets and trophic interactions (Craig and Crowder, 2005; 67 

Hazen et al., 2009). The horizontal displacement of brown shrimp habitats in summer can also lead to changes in the 68 

distribution of Gulf shrimp fleets (Purcell et al., 2017). Although an Action Plan has been launched by the Mississippi 69 

River/Gulf of Mexico Hypoxia Task Force to control the size of the mid-summer hypoxic zone below 5,000 km2 in a 5-year 70 

running average since 2001 (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2001; 2008), hypoxic areal 71 

extents experience no significant decreases in recent decades (Del Giudice et al., 2020). An accurate prediction of the hypoxic 72 

area is urgently needed for coastal managers and the fishery industry.  73 

 74 

Water column stratification and sediment oxygen consumption (SOC) are two main factors regulating the formation, evolution, 75 

and destruction of bottom hypoxia from mid-May through mid-September (Bianchi et al., 2010; Conley et al., 2009; Fennel et 76 

al., 2011, 2013, 2016; Feng et al., 2014; Hetland and DiMarco, 2008; Justić and Wang, 2014; Laurent et al., 2018; McCarthy 77 

et al., 2013; Murrell and Lehrter, 2011; Rabalais et al., 2007b; Wang and Justić, 2009; Yu et al., 2015). The stratification 78 

inhibits bottom water reoxygenation, while SOC, induced by water eutrophication associated with high anthropogenic nutrient 79 

supplies by rivers, can lead to anaerobic benthic environments. Nevertheless, existing hypoxic area (HA) prediction models 80 

rely most on contribution from the nutrient load rather than hydrodynamic features. Turner et al. (2006) built a multiple linear 81 

regression model for summer HA prediction using the annual and May nitrogen flux (nitrate+nitrite) of the Mississippi River 82 

as the predictors. The model provides a robust annual prediction when no strong wind is present but overestimates the HA in 83 

windy years. Obenour et al. (2015) modeled HA using the empirical relationship between HA and bottom DO concentration 84 

derived from a Bayesian biophysical model. Their model accounts for primary biophysical processes solved for steady-state 85 

conditions, water transport, May total nitrogen loads by rivers, and parameterized water reaeration. Katin et al. (2022) further 86 

adjusted the Bayesian model by taking into account river flows, riverine bioavailable nitrogen loadings, and wind velocity in 87 

both summer (June–September) and non-summer (November–May) months. Summer riverine inputs are projected using non-88 

summer riverine variables, river basin precipitation, and river basin temperature, while summer wind velocity is resampled 89 

from historical records from 1985 to 2016. Therefore, the season prediction model is known as a pseudo-forecast model since 90 

predictors in future stages only include riverine inputs. This model explains 71 % and 41 %–48 % of the variability in hindcast 91 

(Del Giudice et al., 2020) and geostatistically estimated HA (Matli et al., 2018), respectively. An additional Bayesian model 92 

applied to summer bottom DO prediction accounts for May total nitrogen loads, distance from the Mississippi River mouth, 93 

and downstream velocity (Scavia et al., 2013). The summer HA is determined by hypoxic length (HA=57.8 hypoxic length) 94 

derived from summer bottom DO concentration. The model explains 69 % of the variability in observed HA by the mid-95 

summer Shelf-wide cruises. Mechanistic prediction methods have also been applied by Laurent and Fennel (2019) to develop 96 

a weighted mean forecast that is calibrated using May nitrate loads and three-dimensional hindcast simulations over the period 97 

1985–2018. Once calibrated, the model only requires May nitrate loads as an input to produce the seasonal forecast for a given 98 

year. The model can explain up to 76 % of the year-to-year variability of the HA observation. However, the model is not 99 

favorable for years with strong wind events during summer. 100 
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These above-mentioned models share some similar drawbacks. (1) The effects of water column stratification are considered 141 

only implicitly by the associated wind speeds, water transport, and riverine nutrient loads (usually correlated to river 142 

discharges), although stratification is documented as a crucial factor in regulating HA variability. (2) Forecast of the predictors 143 

is usually limited, which restricts some of these seasonal models to pseudo ones. (3) Most models are only capable of capturing 144 

interannual HA variability and are not reliable in summers when winds are strong. According to the hindcast results by our 145 

three-dimensional coupled hydrodynamic–biogeochemical model described in the accompanying paper (Part I), strong wind 146 

events bring considerable uncertainties to monthly and daily variabilities of HA. In this study we aim to provide a novel HA 147 

prediction method that considers both stratification and biochemical effects. Our new model aims to produce daily HA 148 

forecasts based on selected predictors’ forecasts with a minimum computational cost. The rest of the paper is organized as 149 

follows. Detailed descriptions of methods and data are given in section 2. The employments of generalized linear models 150 

(GLMs), generalized additive models (GAMs), and an independent model application using a global forecast product (HYbrid 151 

Coordinate Ocean Model, HYCOM; Bleck and Boudra, 1981; Bleck, 2002) are given in section 3. Comparisons against 152 

existing forecast models, recommendations on nutrient reduction strategy, and model improvement outlook are given in section 153 

4. 154 

2 Methods 155 

2.1 Data preparation  156 

We adapted a three-dimensional coupled hydrodynamic–biogeochemical model embedded in the framework of the Regional 157 

Ocean Modeling System (ROMS) on the platform of Coupled Ocean–Atmosphere–Wave–Sediment Transport Modelling 158 

system (COAWST, Warner et al., 2010) to the GoM (Gulf–COAWST, for detailed descriptions, validations, and results of the 159 

numerical model see Part I). Numerical hindcasts (hereafter denoted as ROMS hindcasts or ROMS simulations) are output 160 

daily from 1 January 2007 to 26 August 2020 and spatially averaged over the LaTex Shelf extending from the west of 161 

Mississippi River mouth to 95°W with water depths ranging from 6 to 50 m (color shaded region in Figure A1b).  162 

2.1.1 Hydrodynamic-related predictors 163 

Both water stratification and bottom biochemical processes modulate the variability of bottom DO concentration in the LaTex 164 

Shelf. Potential energy anomaly (PEA, in J m-3) is introduced as an estimate of water column stratification according to: 165 

 166 

𝑃𝐸𝐴 = !
" ∫ (�̅� − 𝜌)𝑔𝑧𝑑𝑧

#
$% ,                  (1) 167 

 168 

where 𝜌 is water density profile (estimated by water temperature and salinity profiles) over water column of depth 𝐻 = ℎ + 𝜂,  169 

ℎ is the location of the bed, 𝜂 is water surface elevation, 𝑔 is the gravitational acceleration (9.8 m s-2), 𝑧 is the vertical axis, �̅� 170 
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is the depth-integrated water density given by �̅� = !
" ∫ 𝜌𝑑𝑧#

$%  (Simpson and Hunter, 1974; Simpson et al., 1978; Simpson, 375 

1981; Simpson and Bowers, 1981). The PEA represents the amount of energy per volume required to homogenize the entire 376 

water column (Simpson and Hunter, 1974). Thus, a greater PEA value represents a more stratified water column. As a river-377 

dominated area, water stratification in the LaTex Shelf is highly affected by freshwater-induced buoyancy from the Mississippi 378 

and Atchafalaya Rivers. Sea surface salinity (SSS) is a good proxy for representing the distribution and variability of river 379 

freshwater across the shelf. Indeed, the correlation of regionally averaged PEA and SSS is significantly high as -0.87 (p<0.001; 380 

Figure 1a) which emphasizes the importance of freshwater-induced stratification. Therefore, we considered SSS as another 381 

candidate predictor besides PEA. 382 

 383 

Surface heating and wind mixing are two other factors that influence water stratification (Simpson, 1981). The tidal effects 384 

considered in Simpson (1981) are neglected here due to the relatively weaker contribution in stratification in the shelf when 385 

compared to the effects of rivers and winds. The two mixing terms are quantified as follows: 386 

 387 
&(()*)
&,

= -.
/0
𝑄 − 𝛿𝑘1𝜌1𝑊2,                    (2) 388 

 389 

where 𝑄 is the rate of surface heat input, 𝛼 is the volume expansion coefficient, 𝑐 is water specific heat capacity, 𝛿  is a 390 

coefficient of wind mixing, 𝑘1 is drag coefficient, 𝜌1 is humid air density near the sea surface, and 𝑊 is the wind speed near 391 

the sea surface. The first term on the right-hand side of Eq. (2) represents the rate of change of water stratification due to 392 

surface heating, while the second term is the rate of working by wind stress contributing negatively to water stratification. 393 

Therefore, the heat-induced change of PEA is proportional to surface heat input, which is,  394 

 395 

d(𝑃𝐸𝐴)%31, ∝ 𝑄,                                          (3) 396 

 397 

The total net heat flux, a sum of net shortwave and net longwave radiation flux, is derived from the National Centers for 398 

Environmental Prediction Climate Forecast System (NCEP) Reanalysis (CFSR) 6-hourly products (Saha et al., 2010; 2011) in 399 

this study. The term Q is added to the candidate list of predictors and is denoted as PEA4567 (heat-induced PEA changes) for 400 

simplification (Figure 1a).  401 

 402 

Daily variability of term (𝛿𝑘1𝜌1𝑊2) is dominated by that of 𝑊2, since the 𝜌1 fluctuates much less than the 𝑊2 on a daily 403 

scale (Figure A2). We obtained the 𝜌1 according to (Picard et al., 2008) : 404 

 405 

𝜌1 =
89!
:;< >1 − 𝑥= A1 −

9"
9!BC,                  (4) 406 
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where 𝑝 represents the absolute air pressure, 𝑀& (=28.96546 g mol-1) is the molar mass of dry air, 𝑀= (=18.01528 g mol-1) is 428 

the molar mass of water vapor, 𝑍  indicates compressibility, 𝑅  (=8.314472 J mol-1 K-1) is the molar gas constant, 𝑇  is 429 

thermodynamic temperature, 𝑥= is the mole fraction of water vapor. We assumed that air parcels at the sea surface are ideal 430 

gases (𝑍 = 1) and are always saturated with water vapor. Thus, 𝑥= is a function of absolute air pressure (𝑝) and saturation 431 

vapor pressure of water (𝑝>1,) and can be calculated as follows: 432 

 433 

𝑥= =
8#$%
8

,                            (5) 434 

 435 

According to the adjusted Tetens equation (Murray, 1967; Monteith and Unsworth, 2014), 𝑝>1, (in Pa) can be estimated by: 436 

 437 

𝑝>1, = 611𝑒
&'.)'(+,)-'.-)

+,+/ ,                                 (6) 438 

 439 

where 𝑇? = 36 K. Substitute Eqs. (5)–(6) to Eq. (4) with the assumption of 𝑍 = 1, we obtained air density as a function of both 440 

air pressure and air temperature in the following: 441 

 442 

𝜌1 = 𝜌1(𝑇, 𝑝) =
89!
;< L1 −

@!!
8 A1 −

9"
9!B 𝑒

&'.)'(+,)-'.-)
+,+/

M,                                          (7) 443 

 444 

The 𝜌1 is then estimated using sea surface air pressure and air temperature 2 meters above the sea surface provided by NCEP 445 

CFSR 6-hourly products. The correlation of daily 𝜌1𝑊2 and 𝑊2 (provided by NCEP CFSR 6-hourly products) is significantly 446 

high as 0.9988 (p<0.001, Figure A2) emphasizing the importance of term 𝑊2 in controlling the daily variability of wind-447 

induced PEA changes over the shelf. We, thus, approximated the relationship as: 448 

 449 

d(𝑃𝐸𝐴)ABC& ∝	𝑊2,                                 (8) 450 

 451 

The term 	𝑊2  is introduced as another candidate predictor and is denoted as PEADEFG  (wind-induced PEA changes) for 452 

simplification (Figure 1a).  453 

2.1.2 Biochemical-related predictors 454 

Sedimentary biochemical processes directly influence the bottom DO consumption rate. However, global forecast models such 455 

as HYCOM do not cover biochemical parameters. Therefore, the biochemical-related term SOC needs to be replaced by an 456 

alternative term (denoted as SOCalt). According to the SOC scheme (Eq. 9) stated in Part I, the biochemical features are 457 

attributed to the sedimentary particulate organic nitrogen concentration (PONsed, derived from ROMS hindcasts). The total 458 
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nitrate+nitrite loads by the Mississippi River are used to represent the PONsed variability due to the long-term data supports. 476 

The daily Mississippi River discharges at site 07374000 are updated daily by the U.S. Geological Survey (USGS) National 477 

Water Information System (NWIS) since March 2004. The total nitrogen concentration at site 07374000 is provided and 478 

updated daily by USGS since November 2011. Prior to 2011, nitrogen loads (at site 07374000) are provided monthly by USGS 479 

and, in this study, are interpolated to daily intervals according to the corresponding monthly loads. Although phosphate and 480 

silicate are another two limitation nutrients in the shelf, daily measurement are still not available for the Mississippi River. 481 

Monthly total nitrate+nitrite loads, phosphate loads, and silicate loads by both the Mississippi River and the Atchafalaya River 482 

are significantly correlated (Table A1). Therefore, the total nitrate+nitrite loads applied here can be interpreted as total nutrient 483 

loads by both river systems. Due to lateral transports and vertical settling of particulate organic matter, a leading period should 484 

be introduced to the time series of riverine nutrient loads. The optimal length of leading days is obtained by examining the 485 

highest linear correlation of regionally averaged ROMS-hindcast SOC and SOCalt (Eq. (10)) and is calculated as 44 days 486 

(R=0.7427, p<0.001, Figure A3a). The exponential term in Eqs. (9)–(10) estimates the temperature-dependent decomposition 487 

rate of organic matter.  488 

𝑆𝑂𝐶 = 𝑃𝑂𝑁>3& ∙ 𝑉𝑃2𝑁H ∙ 𝑒I0)1∙<2,                                                      (9) 489 

𝑆𝑂𝐶𝑎𝑙𝑡 = Mississippi	River	inorganic	nitrogen	loads	(led	by	44	days) ∙ eH.H@L2<2,          (10) 490 

 491 

𝑉𝑃2𝑁H is a constant representing the decomposition rates of sedimentary particulate organic nitrogen, 𝑃𝑂𝑁>3&, at 0 ºC. 𝐾(/M 492 

is a constant (0.0693 ºC-1) indicating temperature coefficients for decomposition of 𝑃𝑂𝑁>3&. 𝑇N is bottom water temperature 493 

(in °C). The Q10 (= 2 given the above chosen coefficients; van’t Hoff and Lehfeldt, 1899; Reyes et al., 2008) assumption is 494 

applied to mimic the aerobic decomposition rate of 𝑃𝑂𝑁>3&. Along with SOCalt, the temperature-dependent decomposition 495 

rate 𝑒H.H@L2∙<2 is also considered as a candidate predictor in statistical models and is denoted as DCPTemp for simplification.  496 

2.1.3 HA estimation 497 

As listed in Table 1, six candidate predictors are considered in the statistical models including four stratification-related 498 

variables (PEA, SSS, PEAheat, and PEAwind) and two bottom biochemical variables (SOCalt and DCPTemp). The correlation 499 

coefficient matrix (Figure 1a) indicates that multicollinearity may become a problem in regression models since linear 500 

correlations among some predictors are significantly high, e.g., 0.74 (p<0.001) between PEA and SOCalt, and -0.87 (p<0.001) 501 

between PEA and SSS. The multicollinearity can harm the assumption that predictors are independent. It can lead to difficulties 502 

in individual coefficients test and numerical instability (Siegel and Wagner, 2022). The frequency distribution of HA (Figure 503 

1b) illustrates that the response variable is highly right-skewed with ~42 % of samples (2,081 out of 4,943) being exactly zero. 504 

The HA is estimated by the number of hypoxia cells (ROMS computational cells reaching hypoxic conditions) times a nearly 505 

constant value (area of the computational cell), which is 25.56 ± 0.17 km2 (mean ± 1SD). Thus, the HA can be estimated by 506 

the number of grid cells when the Poisson and negative binomial regression models are applied. However, the great portion of 507 

zero samples leads to overdispersion (magnitude of variance ≫ magnitude of mean, i.e., 45,730,441 ≫	4,507) and zero-508 
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inflated problems (Lambert, 1992). The overdispersion issue violates the mean-variance equality assumption employed in 634 

regular Poisson regression models, while zero-inflated problems can weaken the model performances. 635 

Table 1. Description of daily response variable and candidate predictors. The data cover a time range from 1 January 636 
2007 to 26 August 2020. Prescribed min and max are used for min-max normalization. 637 

Variables [units] Description Min Median Mean Max Prescribed 

(Min:Max) 

HA [km2] Hypoxic area (when 

bottom dissolved oxygen 

< 2 mg L-1) 

0 1,137 4,507 34,097 Non-normalized 

PEA [J m-3] Potential energy anomaly 

measuring the water 

stratification  

3.3 35.6 47.2 187.9 (0:200) 

SSS [non-dim] Sea surface salinity 20.0 30.8 30.4 33.9 (0:40) 

PEAheat [W m-3] =Q, an approximation of 

surface heat-induced 

water stratification 

-54.4 151.9 142.7 261.3 (-60:300) 

PEAwind [m3 s-3]  =W3, an approximation 

of water stratification 

changes due to wind 

mixing 

0.5 164.7 296.1 7013.2 (0:7,100) 

SOCalt [mmol s-1] An alternative term for 

sediment oxygen 

consumption. 

789,31

9 

10,423,3

83 

13,377,2

87 

41,984,0

69 

(770,000:43,000,

000) 

DCPTemp[non-

dim] 

= 𝑒!.!#$%∙'O , 

temperature-dependent 

decomposition rate of 

organic matter 

2.6 5.1 5.2 8.0 (0:10) 

 638 
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2.2 Data pre-processes 671 

We first spatially averaged ROMS-derived predictors (daily) over the LaTex Shelf (color-shaded area in Figure A1b), then 672 

applied the min-max normalization (Eq. (11)) to the one-dimensional time series. Predictive models can be beneficial from the 673 

min-max normalization when applying to a new dataset since the method guarantees that the normalized predictors from 674 

different datasets range from 0 to 1 as the minimum and maximum values are prescribed. Note that the response is not 675 

normalized. 676 

 677 

𝑋CPQ =
R345$9BC647#84927!

(91S647#84927!$9BC647#84927!)
,                                                                                                 (11) 678 

 679 

where 𝑋CPQ , 𝑋PQ. , 𝑀𝑖𝑛8Q3>0QBN3& , and 𝑀𝑎𝑥8Q3>0QBN3&  represent normalized value, original value, prescribed minimum, and 680 

prescribed maximum, respectively. The daily samples are then split into a training set (for model construction) accounting for 681 

80 % of the total samples and a test set (for assessment of model performances) accounting for the remaining 20 %. To maintain 682 

the HA distribution in both sets, a random resampling method is applied in different HA intervals individually. For example, 683 

80 % of samples with HA=0 are chosen randomly for the training set out of all daily samples with HA=0, while the rest of the 684 

samples with HA=0 are grouped into the test set. The HA=0 is the first interval to which the resampling process is applied, 685 

while the remaining samples are split at intervals of 5,000 km2. However, the distribution of HA from each year is similar with 686 

a right-skewed structure and numerous zero values. Thus, even through random processes, both the training and test sets 687 

contain samples from each year including samples with non-peak and peak HA. This splitting method increases the model 688 

applicability and provides a comprehensive assessment of prediction performances on both non-peak and peak HA. 689 
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 709 
Figure 1. (a) A correlation coefficient matrix of the response variable and candidate predictors, and (b) the frequency distribution 710 
of HA. Data are provided daily from 1 January 2007 to 26 August 2020.  711 

2.3 Model skill assessment  712 

The R2, root-mean-square error (RMSE), mean absolute percentage bias (MAPB),  and scatter index (SI; Zambresky, 1989) 713 

are used to assess the model performances in HA predictions. The SI is a normalized measure of error or a relative percentage 714 

of expected error with respect to the mean observation. The calculations of the statistics are given in Eqs. (12) – (15). 715 

𝑅/ = 1 − ∑ ((9$U9))
1
9:&

∑ ((9$UV))1
9:&

                                                                                                                                                                (12) 716 

 717 

𝑅𝑀𝑆𝐸 = q
∑ ((9$U9))1
9:&

M
                                                                                                                                                             (13) 718 

 719 

𝑀𝐴𝑃𝐵 = !
M∑ t

(9,U9
U9 t

M
BW! × 100%                                                                                                                                              (14) 720 

 721 

𝑆𝐼 = ;9X)
UV

× 100%                                                                                                                                                                   (15) 722 

where 𝑃B  and 𝑂B  represent the ith record of prediction and observation (or hindcast), while 𝑂y represents the average of all 723 

observed (or hindcast) records. 724 
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3 Model construction and results 727 

3.1 Model built-up process 728 

Several regression models are explored using the statistical programming language R. To find the “best” model balancing both 729 

model interpretability and prediction performance, a procedure is conducted for model selection (Figure 2) and is summarized 730 

below. (1) Choose a regression model. (2) Apply an exhaustive best-subset searching approach to the chosen model. Models 731 

with possible combinations of candidate predictors from the ROMS training set are built. A 10-fold cross-validation (CV) 732 

method is applied to each model yielding 10 RMSEs and 1 corresponding mean. The candidate predictors of PEA and SOCalt 733 

are forced into each subset. Thus, the number of fitted models with a subset size of k is 𝐶(6 − 2, 𝑘 − 2) =
Y!

(@$[)!([$/)!
	 , 2 ≤734 

𝑘 ≤ 6 (the total number of candidate predictors is 6). The optimal subset of this size is found as the one with the lowest mean 735 

CV RMSE among these models. The best subset is then obtained by comparing mean CV RMSEs of the optimal subsets of 736 

different sizes. (3) Steps (1)–(2) are repeated for the selected M candidate regression models. (4) Prediction performances of 737 

different models with the corresponding best subsets are assessed by the 10-fold CV RMSEs and Bootstrap (1,000 iterations) 738 

aggregating (i.e., Bagging) ensemble algorithms. The Bagging method builds the given model N (=1,000) times during each 739 

of which the given model is trained using different samples chosen randomly and repeatedly from the ROMS training set and 740 

is executed for HA prediction using samples in the ROMS test set. The ensemble means and ensemble 95 % prediction intervals 741 

(PIs) of forecast HA are given according to the prediction results in the 1,000 iterations. The best model (Model X in Figure 742 

2) is chosen according to the comparisons of the 10-fold CV RMSEs and the Bagging results. 743 

 744 

 745 
Figure 2. A flow chart of building up regression models. 746 

Deleted: root-mean-square errors (747 
Deleted: )748 

Deleted: i749 

Deleted: ¶750 



11 
 

3.2 Generalized linear models (GLMs) 751 

3.2.1 Regular GLMs and zero-inflated GLMs 752 

The response variable can be treated as count data. Regular Poisson (function glm in R package “stats” version 3.6.2), quasi-753 

Poisson (function glm in R package “stats” version 3.6.2), and negative binomial (function glm.nb in R package “MASS” 754 

version 7.3-54; Venables and Ripley, 2002) GLMs are explored in this section. The latter two GLMs are known for solving 755 

overdispersion problems by relaxing the mean-variance equality assumption. These GLMs make use of a natural log link 756 

function. Thus, a natural logarithm of the area of a single ROMS cell (~ 25.56 km2) is added to the models as an offset term 757 

(an additional intercept term).  758 

 759 

In addition, the overdispersion issue can result from the great percentage (~42 %) of zero values in the response variable 760 

(Figure 1b). Zero-inflated GLMs (using function zeroinfl in R package “pscl” version 1.5.5; Jackman, 2020; Zeileis et al., 761 

2008) are developed for dealing with response variables of this kind. Rather than resetting dispersion parameters, a zero-762 

inflated count model is a two-component mixture model blending a count model and a zero-excess model. The count model is 763 

usually a Poisson or negative binomial GLM (with log link), while the zero-excess model is a binomial GLM (with logit link 764 

in this study) estimating the probability of zero inflation. An offset term of log (25.56) is also introduced into the count model. 765 

Instead of applying the best-subset searching to the count and zero-excess models simultaneously, in this study, the searching 766 

is conducted respectively for these two models to reduce the demands of computational resources. The best subset of the zero-767 

excess model (binomial GLM) is given first. The best subset of the count model (Poisson or negative binomial GLMs) is then 768 

provided blending the zero-excess model with the corresponding selected best subset fixed. 769 

 770 

However, it is hard to determine whether a given zero value of HA is excessive, instead, it is relatively easy to model hypoxia 771 

occurrence assuming that all the zero values are excessive. A new binary response, hypoxia, stated in Eq. (16) is introduced 772 

for modeling hypoxia occurrence using regular binomial GLMs (function glm in R package “stats” version 3.6.2). The hypoxia 773 

is equal to 0 when HA is 0 (no hypoxia), otherwise, is equal to 1. The optimal model selected three predictors: PEA, SOCalt, 774 

and DCPTemp (Figure 3b). 775 

 776 

ℎ𝑦𝑝𝑜𝑥𝑖𝑎 = }
0,											𝑛𝑜	ℎ𝑦𝑝𝑜𝑥𝑖𝑎
1,			ℎ𝑦𝑝𝑜𝑥𝑖𝑎	𝑜𝑐𝑐𝑢𝑟𝑠 ,                                                                                                  (16) 777 

 778 

3.2.2 Performance of GLMs 779 

The zero-inflated Poisson GLM serves as the best GLM in terms of prediction performances since it has the lowest mean CV 780 

RMSE (Figure 3a) among the five candidates GLMs. The relaxation of the mean-variance equality assumption by the negative 781 

Deleted: ¶782 

Deleted: 51783 

Deleted: 11784 

Deleted: model785 
Deleted: odelling786 
Deleted: ed 787 

Deleted: 11788 

Deleted: candidate789 



12 
 

binomial GLM and the quasi-Poisson GLM does not guarantee salient improvement of performances when comparing their 790 

CV RMSEs to those of regular Poisson GLM. The zero-inflated negative binomial GLM yields similar performances to the 791 

three regular GLMs. The mean CV RMSEs of zero-inflated Poisson GLM hit the trough (3,573 km2) at the size of four. 792 

However, the greatest drop of RMSEs (3,586 km2) occurs at the size of three beyond which the RMSEs remain stable. It is 793 

worth considering a model with fewer predictors satisfying model interpretability. Thus, the best zero-inflated Poisson GLM 794 

accounts for three predictors (PEA, SOCalt, and DCPTemp) in the count model and three predictors (PEA, SOCalt, and DCPTemp) 795 

in the zero-excess model. As indicated in the correlation matrix (Figure 1a), the robustness of a model can be impaired by 796 

multicollinearity which can be estimated by variance inflation factors (VIFs). VIFs among the selected predictors are 2.15, 797 

2.70, and 1.59 for PEA, SOCalt, and DCPTemp, respectively. The VIFs are all less than 5 suggesting that both the count and the 798 

zero-excess models with these predictors involved are merely violated by multicollinearity. For simplicity, the best zero-799 

inflated Poisson GLM is symbolized as GLMzip3. 800 

 801 

The Bagging ensemble method is implemented to estimate the prediction performance of GLMzip3 (Figure 4a). It is noted 802 

that the training set and test set are resampled according to different HA intervals. Since the distributions of HA in each year 803 

are similar (see Section 2.2), HA in both training and test set contains observations of peak and non-peak values in each year. 804 

Therefore, samples shown in Figure 4 are listed sequentially in the time dimension from 2007 to 2020 but are not necessarily 805 

evenly distributed. The listed samples should not be regarded as time series. The Bagging means of predicted HA provides an 806 

RMSE of 3,614 km2 and an R2 of 0.7214 against the ROMS hindcasts. The Bagging 95 % PIs are restricted within a narrow 807 

range with a slight increase at the predicted peaks. Within different ranges of hindcast HA, the MAPB between predicted and 808 

hindcast HA ranges from 29 % to 38 % with an average of 33 % (Table 2). Particularly, the GLMzip3 produces the lowest 809 

bias (29 %) for the hindcast HA ≥ 30,000 km2. The results suggest that GLMzip3 is capable of providing not only accurate 810 

but also stable HA forecasts. Nevertheless, we noted salient overestimations (e.g., peaks around samples 30, 481, and 901) and 811 

underestimations (e.g., peaks around samples 181, 390, and 826) at some peaks. Instead of the prediction performance at non-812 

peak HA, here we focused more on the forecasts at HA peaks which impose more threats to the shelf ecosystem. In section 813 

3.3, GAMs are investigated with an expectation of further improvements in peak predictions by considering non-parametric 814 

or non-linear effects of the predictors. 815 
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 844 
Figure 3. Comparisons of mean 10-fold CV RMSEs among different regression models with various sizes of predictors subsets. The 845 
response variable in (b) binomial GLM and (a) other models is hypoxia occurrence (hypoxia) and hypoxic area (HA), respectively. 846 
Note that the CV RMSEs of negative binomial GAM and Poisson GAM with the size of six are out of the range shown. CV RMSE 847 
curves of the Poisson GLM, negative binomial GLM, and quasi-Poisson GLM overlap, while those of Poisson GAM and quasi-848 
Poisson GAM overlap when size ≤ 5. The minimum size of predictor subsets is two since PEA and SOCalt are forced into every 849 
subset. 850 
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 854 
Figure 4. Comparisons of model predicted HA and ROMS-hindcast HA in the test set. RMSEs and R2s are derived between model 855 
Bagging mean and ROMS-hindcast HA. 856 

Table 2 Mean absolute percentage bias between predicted and hindcast HA in the test set within different ranges of hindcast HA. 857 
The mean bias when hindcast HA < 5,000 km2 is not shown since the prediction accuracy at high HA ranges is a more important 858 
feature of HA prediction models. The threshold of 5,000 km2 is chosen because it is the goal HA set by the Action Plan (Mississippi 859 
River/Gulf of Mexico Watershed Nutrient Task Force, 2001; 2008). HA above this threshold is more worthy of attention. 860 

Hindcast HA range (km2) GLMzip3 GAMqsp3 Ensemble 

[5000, 10000] 38 40 36 

[10000, 20000] 32 25 28 

[20000, 30000] 34 26 28 

≥ 30000 29 28 25 

Average 33 30 29 

 861 

3.2.3 Model interpretation for GLMzip3 862 

We applied the complete ROMS training set to the model construction of GLMzip3. Coefficients for PEA, SOCalt, and 863 

DCPTemp (Table 3) are all found significantly positive (p<0.001) in the count model, while coefficients for these predictors are 864 

significantly negative (p<0.001) in the zero-excess model. The count model simulates the HA while the zero-excess model 865 
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estimates the probability of HA being zero. Higher PEA is consistent with stronger water stratification, while higher SOCalt 870 

and DCPTemp are both corresponding to higher sediment oxygen consumption. Therefore, there is no surprise that higher PEA, 871 

SOCalt, and DCOTemp are related to greater HA and higher hypoxia occurrence or lower probability of HA being zero. Results 872 

indicate that the GLMzip3 essentially builds up reasonable relationships between the response and predictors variables with a 873 

high agreement with physical and biochemical mechanisms. Since the ranges of normalized predictors are from 0 to1, 874 

comparisons of regression coefficients indicate that effects of PEA (2.8037 in the count model and -10.4439 in the zero-excess 875 

model, same hereafter) are considered more important than SOCalt (0.9057 and -7.3100) and DCPTemp (0.8425 and -95698). 876 

The result is consistent with the findings of previous studies which emphasized that the physical impacts are stronger than the 877 

biological impacts on HA estimates (Yu et al., 2015; Mattern et al., 2013). 878 
Table 3. Regression coefficients of GLMzip3. 879 

Count model coefficients (Poisson with log link): Zero-excess model coefficients (binomial with 

logit link): 

 Estima

te 

Std. 

Error 

z value  Pr (> |z|)  Estima

te 

Std. 

Error 

z value  Pr (> |z|) 

Interce

pt 

3.6397 0.0017 2120.5 <2E-

16*** 

Interce

pt 

7.7641 0.2761 28.12 <2E-16*** 

PEA  2.8037 0.0014 1984.6 <2E-

16*** 

PEA -

10.443

9 

0.6794 -15.37 <2E-16*** 

SOCalt 0.9057 0.0014 639.6 <2E-

16*** 

SOCalt -

7.3100 

0.5714 -12.79 <2E-16*** 

DCPTe

mp 

0.8425 0.0029 287.7 <2E-

16*** 

DCPTe

mp 

-

9.5698 

0.4611 -20.75 <2E-16*** 

Significance 

codes:  

0 (***) 0.001 (**) 0.01 (*)   

Log-likelihood: -2.675E6 on 8 degrees of freedom 
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3.3 Generalized additive models (GAMs) and the ensemble model 911 

GAMs are explored with an expectation of improving prediction performance in HA peaks by introducing non-parametric 912 

effects of predictors. Using function “gam” in R package “mgcv” (version 1.8-36; Wood, 2011) with smooth functions as pure 913 

thin plate regression splines (degree of freedom=9; Wood, 2003), three GAMs are studied and compared, i.e., Poisson GAM, 914 

quasi-Poisson GAM, and negative binomial GAM. Following the same procedure in GLM exploration, the best subset 915 

searching approach is applied to the GAMs first. Although mean 10-fold CV RMSEs for the Poisson and quasi-Poisson GAMs 916 

(Figure 3a) exhibit insignificant differences at sizes from two to five, the CV RMSEs for the former increase dramatically at a 917 

size of six, which indicates that the model stability decreases with sizes. The negative binomial GAM has the greatest mean 918 

CV RMSEs among the GAMs studied and has an extremely high mean CV RMSE at the size of six. The quasi-Poisson GAM 919 

is considered the best GAM among the three. Although the mean CV RMSEs for the quasi-Poisson GAM reach the lowest at 920 

the size of six, the best size is considered as three (including PEA, SOCalt, and DCPTemp) at which CV RMSEs exhibit the 921 

most saline decline, and beyond which mean CV RMSEs stabilize around 3,200 km2. The quasi-Poisson GAM with three 922 

predictors involved is symbolized as GAMqsp3. 923 

 924 

Component plots of the GAMqsp3 (Figure 5) imply that HA generally increases as the chosen predictors increase. Note that 925 

the summation of all smooth function terms contributes directly to the log of fitted HA. Such results agree with those found 926 

by model GLMzip3. However, the component plots provide more detailed information about the rate of changes in HA. The 927 

effective degrees of freedom range from 6.79 to 8.90 indicating strong non-linear effects of the predictors on the variability of 928 

HA. The HA is more sensitive to the predictors in the low-value ranges but becomes nearly stable in the medium- and high-929 

value ranges of predictors. This implies that bottom hypoxia develops rapidly in early summer when water stratification and 930 

sediment oxygen demand start to increase. On the other hand, the smooth functions of SOCalt and DCPTemp have a sharper 931 

slope than that of PEA at the low-value range. It suggests that at the first stage of hypoxia development in late spring and early 932 

summer, sedimentary biochemical processes contribute more than water stratification. The bottom hypoxic water further 933 

extends with a much lower expansion speed as the stratification and SOCalt further intensify. Nevertheless, the smooth function 934 

of PEA is slightly greater also with a more acute slope than those found for SOCalt and DCPTemp in the medium- and high-935 

value regimes of the predictors. It indicates that the HA variability is more related to the hydrodynamic changes in the shelf 936 

than the biochemical effects during mid-summers. The result is consistent with the findings by Yu et al., (2015) and Mattern 937 

et al. (2013). The GAMqsp3 model provides reasonable interpretations on the hypoxic area mechanisms.   938 
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 975 
Figure 5. Component plots of model GAMqsp3. Solid black lines represent the mean of the smooth function, while the red area 976 
denotes the range of mean ± 1SE. Numbers in brackets represent effective degrees of freedom for the corresponding smooth terms. 977 
Black bars at the x axis indicate the density of corresponding normalized predictors. Dashed black lines are straight lines of zero 978 
along the predictor domains.  979 

The prediction performance of GAMqsp3 is estimated using the Bagging ensemble method (Figure 4b). The RMSE and R2 980 

between the Bagging mean and ROMS-hindcast HA is 3,157 km2 and 0.7858, respectively. They are 13 % lower and 9 % 981 

higher than the corresponding statistics found for the GLMzip3, respectively. MAPB between GAMqsp3 predicted and 982 

hindcast HA ranges from 25 % to 40 % with an average of 30 % (Table 2). Such statistics are generally lower than those found 983 

in GLMzip3. Results suggest that GAMqsp3 outcompetes GLMzip3 in terms of overall performance. However, GAMqsp3 984 

tends to underestimate HA peaks (like those seen at peaks around samples 750 and 901) some of which are overestimated by 985 

the GLMzip3. Therefore, instead of determining the best model out of the two, ensemble HA predictions blending efforts of 986 

both GLMzip3 and GAMqsp3 are carried out with an expectation to improve model performance in the peak forecast. We 987 

assumed that the contributions of GLMzip3 and GAMqsp3 are equally weighted and thus averaged the predicted HA by 988 

GLMzip3 and GAMqsp3 and calculated the 95 % PIs given the Bagging results of these models (Figure 4c). As expected, the 989 

overall performance of the ensemble forecast is somewhere between the performance of GLMzip3 and GAMqsp3 with an 990 

RMSE of 3,256 km2 and an R2 of 0.7721. However, some HA peak events (like peaks around samples 750 and 901) which are 991 

overestimated by GLMzip3 but are underestimated by GAMqsp3 are accurately predicted by the ensemble approach. MAPB 992 

also indicates an increase in peak prediction performance by the ensemble model. The statistic is within a range of 25 % to 36 993 

% with an average of 29 %. At extreme peaks (hindcast HA ≥ 30,000 km2), compared to the MAPB by GLMzip3 (29 %) and 994 
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by GAMqsp3 (28 %), the statistic decreases to 25 % by the ensemble model. The ensemble model provides a higher accuracy 1012 

in peak forecast given minor sacrifices in overall performance.  1013 

3.4 Application to Global Forecast Products (HYCOM) 1014 

The power of the prediction model relies on the availability of the forecast of predictors. In this section, we discuss the model’s 1015 

transferability using an independent global ocean product. The Global Ocean Forecasting System (GOFS) 3.1 provides global 1016 

daily analysis products and an eight-day forecast in a daily interval with a horizontal resolution of 1/12 °. The products 1017 

(hereafter referred to as HYCOM-derived products) are derived by a 41-layer HYCOM global model (Bleck and Boudra, 1981; 1018 

Bleck, 2002) with data assimilated via the Navy Coupled Ocean Data Assimilation (NCODA) system (Cummings, 2005; 1019 

Cummings and Smedstad, 2013). The Mississippi River total nitrate+nitrite loadings are provided by USGS NWIS as described 1020 

in section 2.1.2. Daily HYCOM-derived hydrodynamics and USGS river nitrogen loads from 1 January 2007 to 26 August 1021 

2020 are used to reconstruct predictors of PEA, SOCalt, and DCPTemp. Relationships of ROMS-derived and HYCOM-derived 1022 

predictors are examined in Figure 6. The magnitudes of HYCOM-derived SOCalt and DCPTemp match up with the 1023 

corresponding ROMS-derived predictors, respectively, although HYCOM-derived predictors are found slightly greater. 1024 

Simple linear regression for these predictors illustrates that the linear relationships between the ROMS and HYCOM products 1025 

are significant with the R2 ranging from 0.94 to 0.96. The intercept terms are at least one-order smaller than the magnitudes of 1026 

corresponding predictors. Therefore, the HYCOM global products are deemed to agree with the ROMS hindcasts for SOCalt 1027 

and DCPTemp. Nevertheless, the magnitude of HYCOM-derived PEA is found much lower than the ROMS-derived PEA 1028 

(Figure 6a). Simple linear regression indicates a significant linear relationship between the natural log transformation of PEA 1029 

from the two datasets (R2=0.66).  1030 

 1031 

At land-sea interfaces, the HYCOM global model is forced by monthly riverine discharges, which weaken the model 1032 

performance in coastal regions. The hydrodynamics in the LaTex Shelf is highly affected by the freshwater and momentum 1033 

from the Mississippi and the Atchafalaya Rivers. Monthly river forcings in HYCOM are essentially weaker than daily forcings 1034 

used in our ROMS setups and can result in a less stratified water column (i.e., lower PEA). Therefore, it is necessary to scale 1035 

the magnitude of HYCOM-derived PEA to that of the ROMS hindcast. It can be achieved by using the natural log 1036 

transformation and simple linear regression as discussed. We then adjusted HYCOM-derived PEA but kept the HYCOM-1037 

derived SOCalt and DCPTemp unchanged before the application of the ensemble model. 1038 

 1039 

The Bagging approach is implemented again to assess the performances of the ensemble model. During each iteration 1040 

(N=1,000), the GLMzip3 and GAMqsp3 are trained using the ROMS training set and then applied to the adjusted HYCOM-1041 

derived predictors for HA prediction from 1 January 2012 to 26 August 2020 (Figure 7a). The ensemble method provides 1042 

averages and 95 % PIs of predicted HA blending Bagging results by GLMzip3 and GAMqsp3. Compared to observed HA by 1043 

mid-summer Shelf-wide cruises, the ensemble model fails in the summers of 2013, 2014, 2017, and 2018, but provides accurate 1044 
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predictions in other summers. The width of 95 % PI is larger during high HA periods suggesting less stability in the HA peak 1078 

forecast. The overall performance is barely acceptable with an R2 of 0.4242, an RMSE of 5,088 km2, and a SI of 38%. The 1079 

bias against the observations can be ascribed to the HYCOM’s failures in reproducing the shelf hydrodynamics, although 1080 

HYCOM-derived predictors are adjusted before being applied to the model (Figure 6a). We noticed that among the three 1081 

variables, HYCOM-derived PEA exhibits the largest deviation from that generated by ROMS. We then applied the model 1082 

using ROMS-derived PEA, HYCOM-derived SOCalt, and HYCOM-derived DCPTemp (Figure 7b). The performance of the 1083 

ensemble model was largely enhanced with a higher R2 (0.9255), a much lower RMSE (3,751 km2), and a lower SI (28%) 1084 

compared to that using pure HYCOM products. These results indicate that the ensemble model can produce a highly accurate 1085 

prediction for  HA summer peaks once water stratification is well resolved. Instead of using monthly river forcings, the 1086 

HYCOM model may possibly resolve the shelf hydrodynamics by utilizing daily river discharges of the Mississippi and the 1087 

Atchafalaya Rivers. 1088 

 1089 
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Figure 6. Scatter plots of (a) log(PEA) (unit: 𝐥𝐨𝐠	(𝐉	𝐦!𝟑)), (b) SOCalt (unit:	𝐦𝐦𝐨𝐥		𝐬!𝟏), and (c) DCPTemp (unit: 1) between ROMS 1242 
and HYCOM simulations. Note that the solid red lines represent linear regression lines, while the dashed grey lines are diagonals 1243 
with a slope of 1 and an intercept of 0. Daily data compared are from 2007 to 2020. 1244 

 1245 
Figure 7. Comparisons of daily predicted HA by ensemble model ((GLMzip3+GAMqsp3)/2) when applied to adjusted HYCOM 1246 
products and Shelf-wide measurements from 2012 to 2020. Model results shown in (a) are predicted using pure HYCOM-derived 1247 
products (i.e., PEA, SOCalt, and DCPTemp), while those in (b) are predicted by ROMS-derived PEA, HYCOM-derived SOCalt, and 1248 
HYCOM-derived DCPTemp. Discontinuity of the predictions is due to the lack of riverine nitrate+nitrite records at site USGS 1249 
07374000 in the Mississippi River.  1250 

4 Discussion 1251 

4.1 Model performance evaluation 1252 

To further assess the robustness of our model, we reviewed a suite of existing forecast models that are transitioned operationally 1253 

(in early June) to the NOAA ensemble forecast for each summer (data sources are listed in Table 4). Using the ROMS-derived 1254 

predictors, daily HA predictions during the Shelf-wide cruises periods are averaged for each summer from 2012 to 2020 and 1255 

are compared to the cruise observations. As shown in Figure 8a, our model predictions fit well with the Shelf-wide observation 1256 

for summers with or without strong windy events prior to the cruises. Other seasonal forecast models have similar performances 1257 

to our model in fair-weather summers (i.e., 2012, 2014, 2015, and 2017) but fail to produce an accurate forecast for several 1258 

summers with strong wind conditions (i.e., 2018 and 2020). Percentage differences between predictions and observations 1259 

(Figure 8b) also emphasize the superiority of our model with the percentages ranging from -24 % to 7 % for fair-weather 1260 

summers and from 7 % to 35 % for summers with strong wind or storms. All models underestimate or overestimate observed 1261 

HA in fair weather summers, but overestimate HA in windy summers. Our model provides the most accurate overall 1262 

performance with the highest R2 (0.9200, N=8), the lowest RMSE (2,005 km2, N=8), the lowest SI (15 %, N=8), and the lowest 1263 

MAPB (18 %, N=8) among all models (Table 4). The multiple linear regression model developed by Forrest et al. (2011) 1264 

provides the second optimal prediction. For fair-weather summers, the NOAA ensemble predictions produce the best 1265 
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estimation of the observed HA with a MAPB of 9 % (N=4), while our model results rank the second (15 %, N=4). However, 1285 

our model performs the best in windy summers with a MAPB of 18 % (N=4), while other models produce a MAPB from 33 % 1286 

to 74 %. 1287 

 1288 

Models developed by Turner et al. (2006, 2008, 2012) and Laurent and Fennel (2019) are calibrated on May nitrate or 1289 

nitrate+nitrite loads from the Mississippi–Atchafalaya River Basin, assuming that the predicted HA in summers are under fair 1290 

weather. It is expected that models excluding wind effects can hardly produce accurate forecasts during summers with strong 1291 

winds or storms. Wind mixing effects on HA are considered in reaeration by introducing a wind stress term in the mechanistic 1292 

model (Obenour et al., 2015), while in the Bayesian model by Scavia et al (2013), the wind effects are considered indirectly 1293 

via an estimation based on current velocity and the reaeration rate given different wind conditions (i.e., fair weather, strong 1294 

westerly winds, and storms). However, as shown in Figure 1a, PEAwind, which can also be interpreted as wind power, is found 1295 

poorly correlated to daily HA (R=-0.2458) compared to other highly correlated predictors and is dropped out of the candidate 1296 

list by the best subset searching approach. Forrest et al., (2011) also found that monthly wind power is not significantly 1297 

correlated to summer HA due to the short timescales of strong wind events. Therefore, the wind mixing effects considered by 1298 

Obenour et al (2015) and Scavia et al (2013) have limited contribution to the prediction of the interannual variability of the 1299 

HA. Indeed, our model construction process indicates that wind mixing, freshwater plume, and water temperature jointly 1300 

control the water stratification and vertical mixing, which directly modulates the reoxygenation of shelf water. PEA can serve 1301 

better in representing such effects rather than by wind speed or wind power alone. The daily PEA is significantly correlated to 1302 

daily HA (R=0.8178, p<0.01; Figure 1a) while the nonlinear effects of PEA cannot be neglected (Figure 5a). Therefore, an 1303 

accurate forecast of shelf hydrodynamics is critical for a robust summer HA prediction.  1304 
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 1334 
Figure 8. (a) Comparisons of Shelf-wide measured and the best estimates of model predicted HA during the Shelf-wide cruise 1335 
periods. (b) Percentage differences between different model predictions and Shelf-wide measurements. The superscript asterisks 1336 
indicate high-wind years prior to the cruises. 1337 

 1338 
Table 4 Statistics comparisons between model predictions and the Shelf-wide measurements. The R2s for predictions by Obenour et 1339 
al. (2015) and Laurent and Fennel (2019) are not given since the numbers of available records are small (N=5 and 3, respectively).  1340 
Numbers in paratheses indicate the numbers of compared records. Underscript “fair” and “windy” indicate that averages of 1341 
corresponding statistics are conducted for fair-weather and windy summers, respectively. 1342 

 This study Turner et 

al. (2006, 
2008, 2012) 

Scavia et 

al. (2013) 

Forrest et 

al. (2011) 

Obenour 

et al. 

(2015) 

Laurent 

and Fennel 

(2019) 

NOAA 

ensemble 

R2 0.9200 

(N=8) 

0.3017 

(N=8) 

0.2577 

(N=8) 

0.4061 

(N=8) 

– 

(N=5) 

– 

(N=3) 

0.3566 

(N=8) 

RMSE (km) 2005 

(N=8) 

7750 

(N=8) 

5797 

(N=8) 

4710 

(N=8) 

6412 

(N=5) 

9614 

(N=3) 

5460 

(N=8) 

SI 15 % 

(N=8) 

59 % 

(N=8) 

44 % 

(N=8) 

36 % 

(N=8) 

46 % 

(N=5) 

95 % 

(N=3) 

41 % 

(N=8) 
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MAPB 18 % 

(N=8) 

80 % 

(N=8) 

58 % 

(N=8) 

44 % 

(N=8) 

70 % 

(N=5) 

132 % 

(N=3) 

51 % 

(N=8) 

MAPBfair-

weather 

15 % 

(N=4) 

46 % 

(N=4) 

25 % 

(N=4) 

18 % 

(N=4) 

8 % 

(N=2) 

– 

(N=0) 

9 % 

(N=4) 

MAPBwindy 18 % 

(N=4) 

58 % 

(N=4) 

40 % 

(N=4) 

33 % 

(N=4)2 

43 % 

(N=3) 

74 % 

(N=3) 

40 % 

(N=4) 

Data source 
(access in 

June 2022) 

https://gulfhypoxia.net/ (Turner et al., 2006; 2008; 2012)  

http://scavia.seas.umich.edu/hypoxia-forecasts/ (Scavia et al., 2013) 

https://www.vims.edu/research/topics/dead_zones/forecasts/gom/index.php (Forrest et al., 

2011) 

https://obenour.wordpress.ncsu.edu/news/ (Obenour et al., 2015)  

https://memg.ocean.dal.ca/news/ (Laurent and Fennel, 2019),  

https://www.noaa.gov/news (NOAA ensemble)  
 1343 

4.2 Task force nutrient reduction  1344 

In this section we assess the effects of nutrient reductions on HA using our model. Since 2001, the Mississippi River/Gulf of 1345 

Mexico Hypoxia Task Force has set up a goal of controlling the size of mid-summer hypoxic zone below 5,000 km2 in a 5-1346 

year running average (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2001; 2008) by reducing riverine 1347 

nutrient loads. Because the monthly riverine silicate, phosphate, and nitrate+nitrite loads are highly correlated (Table A1), here 1348 

we refer to nitrogen load (the only nutrient that has daily measurements) as the proxy for all riverine nutrients. The averaged 1349 

summer HA during the Shelf-wide cruises in the most recent five years (2015, 2107, 2018, 2019, and 2020) are calculated 1350 

with different nutrient reduction scenarios and are shown in Figure 9. The PEA, bottom temperature, and river discharges are 1351 

unchanged, while the SOCalt is altered by reducing the nutrient concentration from 5% to 90%. The averaged observed HA is 1352 

14,000 km2, while the averaged prediction by our ensemble model is 15,478 km2, which is 11 % greater than the observation. 1353 

As a leading time of 44 days (Figure A3a) is prescribed in SOCalt prior to Shelf-wide summer cruises in mid–late July, 1354 

reduction strategies are applied to mid-June nutrient loads rather than May loads in our model. The monthly averaged total 1355 

nitrogen loads for the 1980–1996 summers (April, May, and June) are 1.96 × 108 kg/month (Battaglin et al., 2010). It is 1356 

comparable to the June-mean total nitrogen load (1.6 × 108 kg month-1) for the 2015–2020 period. We find that a 92 % 1357 

reduction, which corresponds to a total nitrogen load of 5.5 × 105 kg day-1 or 1.6 × 107 kg month-1, is needed for the mid-June 1358 

nutrient loads to achieve the goal of a 5,000 km2 HA.  1359 
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 1408 

The recommended reduction strategy by our model is much more demanding than that by other models (Scavia et al., 2013; 1409 

Obenour et al., 2015; Turner et al., 2012; Laurent and Fennel, 2019), which recommend a load reduction of 52 %–58 % related 1410 

to the 1980–1996 average (Scavia et al., 2017). A recommendation of 92 % reduction is closed to that by Forrest et al. (2011) 1411 

(80 %) when the coastal westerlies from 15 June to 15 July were considered in their regression model. Since water stratification 1412 

is attributed to not only wind mixing effects but also effects from other physical processes (e.g., riverine freshwater transports 1413 

and surface heating), models developed based solely on May nutrient loads (Turner et al., 2012; Laurent and Fennel, 2019) or 1414 

nutrient loads and wind mixing (Scavia et al., 2013; Obenour et al., 2015) fail to capture water stratification’s contribution to 1415 

hypoxia development. If a model considers the variability of HA to rely highly on the nutrient loads, then a moderate decrease 1416 

in nutrient loads would result in a substantial HA reduction. For further illustration, we re-ran the model without consideration 1417 

of the PEA (i.e., use DCPTemp and SOCalt or use only SOCalt). Model results show a substantial shrink of HA with moderately 1418 

reduced riverine nitrogen loads (Figure 9). In details, if only DCPTemp and SOCalt are used as the predictors, a nutrient reduction 1419 

by 60 % will satisfy the 5000 km2 HA goal. And if we only use SOCalt as the predictor, then a 55 % in reduction is sufficient. 1420 

These results highlight the importance of considering PEA in HA predictions.  1421 

 1422 
Figure 9 2015–2020 mean (except 2016) of predicted HA in scenarios of different nutrient load reduction strategies given different 1423 
sets of predictors considered. Predictions by the ensemble model are conducted individually for the Shelf-wide cruise periods in 1424 
different summers and averaged from 2015 to 2020. Horizontal bars indicate ranges of 95 % PIs. Grey dashed lines represent the 1425 
goal of 5,000 km2 set by the Mississippi River/Gulf of Mexico Hypoxia Task Force. Note here nutrient reduction percentages are 1426 
referred to mid-June nutrient loads in corresponding years.  1427 
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5 Conclusion  1566 

In this study, we present a novel HA forecast model for the LaTex Shelf using statistical analysis. The model is trained using 1567 

numeric simulations from 1 January 2007 to 26 August 2020 by a 3-dimensional coupled hydrodynamic–biogeochemical 1568 

model (ROMS). Multiple GLMs (regular Poisson GLMs, quasi-Poisson GLMs, negative binomial GLMs, zero-inflated 1569 

Poisson GLMs, and zero-inflated negative binomial GLMs) and GAMs (regular Poisson GAMs, quasi-Poisson GAMs, and 1570 

regular negative binomial GAMs) are assessed for HA predictions. Comparisons of model prediction performance illustrate 1571 

that an ensemble model combing the prediction efforts of a zero-inflated Poisson GLM (GLMzip3) and a quasi-Poisson GAM 1572 

(GAMqsp3) provides the most accurate HA forecast with PEA, SOCalt, and DCPTemp as predictors. The ensemble model is 1573 

capable of explaining up to 77 % of the total variability of the hindcast HA and also provides a low RMSE of 3,256 km2 and 1574 

low MAPBs for overall (29 %) and peak predictions (25 %) when compared to the daily ROMS hindcasts.  1575 

 1576 

We then applied the hydrodynamics field generated by a global model (HYCOM, GOFS 3.1) and performed a HA hindcast 1577 

for the period from 1 January 2012 to 26 August 2020. The overall performance is barely acceptable with an R2 of 0.4242, an 1578 

RMSE of 5,088 km2, and a SI of 38 % against the Shelf-wide summer cruise observations, largely due to HYCOM’s relatively 1579 

poor representation of shelf stratification. A substitution of ROMS-derived PEA led to a pronounced improvement with an R2 1580 

of 0.9255, an RMSE of 3,751 km2, and an SI of 28 %. 1581 

 1582 

The ensemble model also provides an efficient yet more robust summer HA forecast than existing HA forecast models. 1583 

Comparing against the Shelf-wide cruise observations, our model provides a high R2 (0.9200 vs 0.2577–0.4061 by existing 1584 

forecast models, same comparison hereinafter), a low RMSE (2,005 km2 vs 4,710–9,614 km2), a low SI (15 % vs 36 %–95 %), 1585 

low MAPBs for overall (18 % vs 44 %–132 %), fair-weather summers (15 % vs 8 %–46 %), and windy summers (18 % vs 33 1586 

%–74 %) predictions. Sensitivity tests are conducted and suggests that a 92 % reduction in riverine nutrients related to the 1587 

1980–1996 summer average is required to meet the goal of a 5,000 km2 HA. These results highlight the importance of 1588 

considering PEA in HA prediction. 1589 
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Appendix A:  1941 

 1942 
Figure A1 (a) Bathymetry of the entire domain of the Gulf–COAWST described in the accompanying study (Part I) and (b) zoom-1943 
in bathymetry plot of the northern Gulf of Mexico (nGoM). The range of bathymetry of the color shaded area in (b) is from 6 to 50 1944 
m, over which the regional averages of parameters are conducted. 1945 
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Figure A2. A scatter plot of 𝝆𝒂𝑾𝟑 against 𝑾𝟑 and their linear correlation. 1947 

Table A1 A correlation matrix of monthly mean inorganic nutrient loads by the Mississippi River and the Atchafalaya River from 1948 
2007 to 2020. Correlation coefficients shown are all significant (p<0.001). 1949 

 Mississippi 

nitrate+nitrite 

Atchafalaya 

nitrate+nitrite 

Mississippi 

phosphate 

Atchafalaya 

phosphate 

Mississippi 

silicate 

Atchafalaya 

silicate 

Mississippi 

nitrate+nitrite 

1      

Atchafalaya 

nitrate+nitrite 

0.9207 1     

Mississippi 

phosphate 

0.8258 0.7551 1    

Atchafalaya 

phosphate 

0.7576 0.7764 0.9308 1   

Mississippi 

silicate 

0.8511 0.7770 0.8664 0.7972 1  

Atchafalaya 

silicate 

0.7989 0.7781 0.8147 0.7942 0.9673 1 
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Figure A3. (a) Lead/lag correlation coefficients between ROMS hindcast daily SOC and SOCalt ( =1955 
𝐌𝐢𝐬𝐬𝐢𝐬𝐬𝐢𝐩𝐩𝐢	𝐑𝐢𝐯𝐞𝐫	𝐢𝐧𝐨𝐫𝐠𝐚𝐧𝐢𝐜	𝐧𝐢𝐭𝐫𝐨𝐠𝐞𝐧	𝐥𝐨𝐚𝐝𝐬 ∙ 𝐞𝟎.𝟎𝟔𝟗𝟑𝑻𝒃) with the Mississippi nitrogen loads leading by different days; (b) daily 1956 
time series of ROMS hindcast SOC and SOCalt when the Mississippi nitrogen loads leading by 44 days. The time series are regional 1957 
average results over the LaTex Shelf and are normalized. 1958 
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