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Abstract. In this study, a novel ensemble regression model was developed for hypoxic area (HA) forecast in the Louisiana–10 

Texas (LaTex) Shelf. The ensemble model combines a zero-inflated Poisson generalized linear model (GLM) and a quasi-11 

Poisson generalized additive model (GAM) and considers predictors with hydrodynamic and biochemical features. Both 12 

models were trained and calibrated using the daily hindcast (2007–2020) by a three-dimensional coupled hydrodynamic–13 

biogeochemical model embedded in the Reginal Ocean Modeling System (ROMS). A promising HA forecast is provided by 14 

the ensemble model with a low RMSE (3,204 km2), a high R2 (0.8005), and a precise performance in capturing hypoxic area 15 

peaks in the summers. To test its robustness, the model was further applied to a global forecast model and produces HA 16 

prediction from 2019 to 2020 with the adjusted predictors from the HYbrid Coordinate Ocean Model (HYCOM). Predicted 17 

HA shows a high agreement with the ROMS hindcast time series (RMSE=4,571 km2, R2=0.8178). Our model can also predict 18 

the magnitude and onsets of summer HA peaks in both 2019 and 2020 with high accuracy. To the best of our knowledge, this 19 

ensemble model is by far the first one providing fast and accurate daily HA predictions for the LaTex Shelf while considering 20 

both hydrodynamic and biochemical effects. This study demonstrates that it is feasible to perform regional ocean HA prediction 21 

using global ocean forecast. 22 

1 Introduction  23 

The Louisiana–Texas (LaTex) Shelf has become a center of hypoxia (bottom dissolved oxygen, DO<2 mg L-1) study since 24 

the 1980s (Rabalais et al., 2002; Rabalais et al., 2007a; Justić and Wang, 2014). Regular mid-summer Shelfwide cruises 25 

documented that the area and volume of hypoxic bottom water could reach up to 23,000 km2 and 140 km3, respectively 26 

(Rabalais and Turner, 2019; Rabalais and Baustian, 2020). The aquatic environments, fisheries, and coastal economies are 27 

under threat of recurring hypoxia in summer (Chesney and Baltz, 2001; Craig and Bosman, 2013; De Mutsert et al., 2016; 28 

LaBone et al., 2020; Rabalais and Turner, 2019; Rabotyagov et al., 2014; Smith et al., 2014). Water column stratification and 29 

sediment oxygen consumption (SOC) are two main factors regulating the formation, evolution, and deconstruction of bottom 30 
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hypoxia from mid-May through mid-September (Bianchi et al., 2010; Conley et al., 2009; Fennel et al., 2011, 2013, 2016; 31 

Feng et al., 2014; Hetland and DiMarco, 2008; Justić and Wang, 2014; Laurent et al., 2018; McCarthy et al., 2013; Murrell 32 

and Lehrter, 2011; Rabalais et al., 2007b; Wang and Justić, 2009; Yu et al., 2015). However, prevailing prediction models for 33 

the hypoxic area (HA) rely most on nutrient-induced mechanisms rather than the hydrodynamic features. Turner et al. (2006) 34 

built a multiple linear regression model for summer HA prediction using the annual and May nitrogen flux (nitrate+nitrite) of 35 

the Mississippi River as the predictors. The model provides a robust annual prediction when no strong wind was present but 36 

underestimates the HA in windy years. Obenour et al. (2015) modeled HA using the empirical relationship between HA and 37 

bottom DO concentration derived by a Bayesian biophysical model. Their model accounted for primary biophysical processes 38 

solved for steady-state conditions, water transport, May total nitrogen loads by rivers, and parameterized water reaeration. 39 

Katin et al. (2021) further adjusted the Bayesian model by taking into account river flows, riverine bioavailable nitrogen 40 

loadings, and wind velocity in both summer (June–September) and non-summer (November–May) months. Summer riverine 41 

inputs are projected using non-summer riverine variables, river basin precipitation, and river basin temperature, while, 42 

however, summer wind velocity is resampled from historical records from 1985 to 2016. Therefore, the model is known as a 43 

pseudo-forecast model since predictors in future stages only include riverine inputs. The pseudo-forecast model explains 71 44 

% and 41 %–48 % of the variability in hindcast (Del Giudice et al., 2020) and geostatistically estimated HA (Matli et al., 45 

2018), respectively. Another Bayesian model was proposed for summer bottom DO concentration prediction taking account 46 

of May total nitrogen loads, distance from the Mississippi River mouth, and downstream velocity (Scavia et al., 2013). The 47 

summer HA is determined by hypoxic length (HA=57.8 hypoxic length) derived from summer bottom DO concentration. The 48 

model explains 69 % of the variability in observed HA by the mid-summer Shelfwide cruises. Different from linear regression 49 

and Bayesian analysis, Laurent and Fennel (2019) developed a weighted mean forecast method calibrated on the May nitrate 50 

loads and three-dimensional hindcast simulations (1985–2018). Once calibrated, the model requires the May nitrate loads for 51 

the forecast year as the only input to produce the seasonal forecast. The model can explain up to 76 % of the year-to-year 52 

variability of the HA observation. However, the model is not favorable for years with strong wind events during summer. 53 

 54 

These above-mentioned models share some similar shortages: (1) The effects of water column stratification are not included 55 

or only partially considered even though stratification is documented as a crucial factor in regulating HA variability. (2) The 56 

information of future conditions is limited although some models are built upon multiple predictors, thus these forecast models 57 

are indeed “pseudo-forecast” ones. (3) Most models only capture year-to-year HA variability and fail whenever winds are 58 

strong in summers. According to the hindcast results by our three-dimensional coupled hydrodynamic–biogeochemical model 59 

described in the accompanying paper (Part I), monthly and daily variabilities of HA cannot be neglected before and after strong 60 

wind events. In this study, we aimed to provide a new technique in HA prediction considering both stratification and 61 

biochemical effects and executing daily forecasts based on the forecasts of selected predictors. An important assumption is 62 

that the future conditions of predictors are accessible. Indeed, it can be fulfilled by using global forecast products such as the 63 

HYbrid Coordinate Ocean Model (HYCOM), which provides operational hydrodynamics forecasts for up to one week (eight 64 
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days). In the accompanying paper (Part I), we demonstrated that the hypoxic volume and the bottom HA over the LaTex Shelf 65 

are highly correlated. The former can be reproduced by the latter alone with a quadratic relationship. Thus, in this study,  we 66 

focused on bottom HA predictions. The rest of the paper is organized as follows: a detailed description of methods and data is 67 

given in section 2. The employment of generalized linear models (GLMs) and generalized additive models (GAMs) is given 68 

in section 3. The ensemble HA prediction and its application using the global HYCOM is discussed in section 4. 69 

2 Methods 70 

2.1 Data descriptions  71 

We adapted a three-dimensional coupled hydrodynamic–biogeochemical model embedded in the framework of the Regional 72 

Ocean Modeling System (ROMS) on the platform of Coupled Ocean–Atmosphere–Wave–Sediment Transport modeling 73 

system (COAWST, Warner et al., 2010) to the GoM (Gulf–COAWST, for detailed descriptions, validations, and results of the 74 

numerical model see Part I). Numerical hindcasts (hereafter denoted as ROMS hindcasts or ROMS simulations) are output 75 

daily from 1 January 2007 to 26 August 2020 and spatially averaged over the LaTex Shelf. In this study, we aim to produce a 76 

fast and accurate daily forecast of the shelf HA using models trained from the ROMS outputs. 77 

2.1.1 Hydrodynamic-related predictors 78 

Both water stratification and bottom biochemical processes modulate the variability of bottom DO concentration in the LaTex 79 

Shelf. Potential energy anomaly (PEA, in J m-3) is introduced as an estimate of water column stratification according to: 80 

 81 

𝑃𝐸𝐴 = !
" ∫ (𝜌̅ − 𝜌)𝑔𝑧𝑑𝑧#

$% ,                  (1) 82 

 83 

where 𝜌 is water density profile (estimated by water temperature and salinity profiles) over water column of depth 𝐻 = ℎ + 𝜂,  84 

ℎ is the location of the bed, 𝜂 is water surface elevation, 𝑔 is the gravitational acceleration (9.8 m s-2), 𝑧 is the vertical axis, 𝜌̅ 85 

is the depth-integrated water density given by 𝜌̅ = !
" ∫ 𝜌𝑑𝑧#

$%  (Simpson and Hunter, 1974; Simpson et al., 1978; Simpson, 86 

1981; Simpson and Bowers, 1981). The PEA represents the amount of energy per volume to homogenize the entire water 87 

column (Simpson and Hunter, 1974). Thus, a greater PEA value represents a more stratified water column. As a river-88 

dominated area, water stratification in the LaTex Shelf is highly affected by freshwater-induced buoyancy from the Mississippi 89 

and Atchafalaya Rivers. Sea surface salinity (SSS) is a good proxy in representing the distribution and variability of river 90 

freshwater across the shelf. Indeed, the correlation of regionally averaged PEA and SSS is significantly high up to -0.88 91 

(p<0.001; Figure 1a) which emphasizes the importance of freshwater-induced stratification. Therefore, we considered SSS as 92 

another candidate predictor besides PEA. 93 

 94 
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In the meantime, surface heating and wind mixing are other two factors influencing water stratification (Simpson and Hunter, 95 

1974; Simpson et al., 1978) and can be quantified as follows: 96 

 97 
&(()*)
&,

= -.%
/0
𝑄 − 𝛿𝑘1𝜌1𝑊2,                  (2) 98 

 99 

where 𝑄  is the rate of surface heat input, 𝛼  is the volume expansion coefficient, 𝑐  is water specific heat capacity, 𝛿  is 100 

coefficient of wind mixing, 𝑘1 is drag coefficient, 𝜌1 is humid air density near the sea surface, and 𝑊 is the wind speed near 101 

sea surface. The first term on the right-hand side of Eq. (2) represents the rate of change of water stratification due to surface 102 

heating, while the second term is the rate of working by wind stress contributing negatively to water stratification. Therefore, 103 

the heat-induced change of PEA is proportional to the product of heat input and water depth, which is,  104 

 105 

d(𝑃𝐸𝐴)%31, ∝ 𝑄ℎ,                           (3) 106 

 107 

The total net heat flux, a sum of net shortwave and net longwave radiation flux, is derived from the National Centers for 108 

Environmental Prediction Climate Forecast System (NCEP) Reanalysis (CFSR) 6-hourly products (Saha et al., 2010; 2011) in 109 

this study. The term (Qh) is added to the candidate list of predictors and is denoted as PEA4567 (heat-induced PEA changes) 110 

for simplification.  111 

 112 

Daily variability of term (𝛿𝑘1𝜌1𝑊2) is dominated by that of 𝑊2, since the 𝜌1 fluctuates much less than the 𝑊2 in a daily 113 

scale (Figure A1). We obtained the 𝜌1 according to (Picard et al., 2008) : 114 

 115 

𝜌1 =
89!
:;<

=1 − 𝑥= @1 −
9"
9!
AB,                  (4) 116 

 117 

where 𝑝 represents the absolute air pressure, 𝑀& (=28.96546 g mol-1) is the molar mass of dry air, 𝑀= (=18.01528 g mol-1) is 118 

the molar mass of water vapor, 𝑍  indicates compressibility, 𝑅  (=8.314472 J mol-1 K-1) is the molar gas constant, 𝑇  is 119 

thermodynamic temperature, 𝑥= is the mole fraction of water vapor. We assumed that air parcels at the sea surface are ideal 120 

gases (𝑍 = 1) and are always saturated with water vapor. Thus, 𝑥= is a function of absolute air pressure (𝑝) and saturation 121 

vapor pressure of water (𝑝>1,) and can be calculated as follows: 122 

 123 

𝑥= =
8#$%
8

,                            (5) 124 

 125 

According to the Tetens equation (Monteith and Unsworth, 2014), 𝑝>1, (in Pa) can be estimated for the following: 126 
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 127 

𝑝>1, = 610.78𝑒
&'.)'(+,)-'.-)

+ ,                  (6) 128 

 129 

Substitute Eqs. (5)–(6) to Eq. (4) with the assumption of 𝑍 = 1, we obtained air density as a function of both air pressure and 130 

air temperature in the following: 131 

 132 

𝜌1 = 𝜌1(𝑇, 𝑝) =
89!
:;<

O1 − !
8
@1 − 9"

9!
A 𝑒

&'.)'(+,)-'.-)
+ P,                (7) 133 

 134 

The 𝜌1 is then estimated using sea surface air pressure and air temperature 2 meters above the sea surface provided by NCEP 135 

CFSR 6-hourly products. Correlation of daily 𝜌1𝑊2 and 𝑊2 (provided by NCEP CFSR 6-hourly products) is significantly 136 

high as 0.9989 (p<0.001, Figure A1) emphasizing the importance of term 𝑊2 in controlling the daily variability of wind-137 

induced PEA changes over the shelf. We, thus, approximated the relationship as: 138 

 139 

d(𝑃𝐸𝐴)?@A& ∝	𝑊2,                                 (8) 140 

 141 

The term 	𝑊2  is introduced as another candidate predictor and is denoted as PEABCDE  (wind-induced PEA changes) for 142 

simplification.  143 

2.1.2 Biochemical-related predictors 144 

Sedimentary biochemical processes directly influence the bottom DO consumption rate. However, by far, global forecast 145 

model systems like HYCOM does not include biochemical fields. Therefore, the biochemical-related term SOC needs to be 146 

replaced by an alternative term (denoted as SOCalt) that does not rely on biochemical simulations. According to the SOC 147 

scheme stated in Eq. (8) and Eq. (10) in Part I, the biochemical features are attributed to the sedimentary particulate organic 148 

nitrogen (PONsed, derived from ROMS hindcasts) concentration. The total nitrate and nitrite load by the Mississippi River are 149 

used to represent the PONsed variability, because inorganic nitrogen is the primary nutrient resource for plankton bloom. Daily 150 

updates of measured riverine nitrate+nitrite loads are accessible from U.S. Geological Survey (USGS) National Water 151 

Information System (NWIS). Due to lateral transports and vertical settling of particulate organic matter, a leading period should 152 

be introduced to the time series of riverine nutrient loads. The optimal length of leading days is obtained by examining the 153 

highest linear correlation of regionally averaged ROMS-hindcast SOC and SOCalt following Eq. (9) and is calculated as 19 154 

days (Figure A2a). The exponential term in Eq. (9) estimates the temperature-dependent decomposition rate of organic matter. 155 

A significant correlation coefficient between daily SOCalt and ROMS-hindcast SOC is found as 0.8157 (p<0.001, Figure A2). 156 

 157 

𝑆𝑂𝐶𝑎𝑙𝑡 = Mississippi	River	inorganic	nitrogen	loads	(led	by	19	days) ∙ eF.FHI2</,          (9) 158 
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 159 

where 𝑇J  indicates bottom water temperature (in °C). Along with SOCalt, the temperature-dependent decomposition rate 160 

𝑒F.FHI2∙</ is also considered as a candidate predictor in statistical models and is denoted as DCPTemp for simplification.  161 

2.1.3 HA estimation 162 

As listed in Table 1, there are six candidate predictors considered in the statistical models including four stratification-related 163 

variables (PEA, SSS, (Qh), and W3) and two bottom biochemical variables (SOCalt and 𝑒F.FHI2∙</). For simplification, we 164 

denoted this variable as (Qh), W3, and 𝑒F.FHI2∙</  as PEAheat, PEAwind, and DCPTemp, respectively. Correlation coefficients 165 

matrix (Figure 1a) indicates that multicollinearity may become a problem in regression models since linear correlations among 166 

some predictors are significantly high, e.g., 0.76 (p<0.001) between PEA and SOCalt, and -0.88 (p<0.001) between PEA and 167 

SSS. The frequency distribution of HA (Figure 1b) illustrates that the response variable is highly right-skewed with ~51 % of 168 

samples (2,506 out of 4,968) being exactly zero. The HA is estimated by the number of hypoxia cells times a constant value 169 

(area of the computational cell). Thus, the HA can be estimated by the number of grid cells when the Poisson and negative 170 

binomial regression models are applied. However, the great portion of zero samples leads to overdispersion (magnitude of 171 

variance ≫ magnitude of mean, i.e., 52,161,613 ≫ 4,378) and zero-inflated problems (Lambert, 1992). The overdispersion 172 

issue violates the mean-variance equality assumption employed in regular Poisson regression models, while zero-inflated 173 

problems can weaken the model performances. 174 
Table 1. Description of daily response variable and candidate predictors. The data cover a time range from 1 January 2007 to 26 175 
August 2020. Prescribed min and max are used for min–max normalization. 176 

Variables [units] Description Min Median Mean Max Prescribed 

(Min:Max) 

HA [km2] Area of extremely low 

dissolved oxygen 

concentration (< 2 mg L-1) 

0 0 4,378 40,561 Non-normalized 

PEA [J m-3] Potential energy anomaly 

measuring the water 

stratification  

3.1 36.9 49.2 190.4 (0:200) 

SSS [non-dim] Sea surface salinity 20.7 31.8 31.4 34.4 (0:40) 

PEAheat [W m-3] =Qh, an approximation of 

surface heat-induced water 

stratification 

-1,472.9 3,986.3 3,717.2 6,829.7 (-2,000:7,000) 
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PEAwind [m3 s-3]  =W3, an approximation of 

water stratification changes 

due to wind mixing 

0.8 175.1 305.4 6,415.8 (0:6,500) 

SOCalt [mmol m-3 s-1] An alternative term for 

sediment oxygen 

consumption. 

874,870 10,103,864 12,604,970 41,530,153 (800,000:42,000,000) 

DCPTemp[non-dim] = 𝑒F.FHI2∙</, temperature-

dependent decomposition rate 

of organic matter 

2.6 5.1 5.2 8.0 (0:10) 

 177 

2.2 Data pre-processes 178 

We applied the spatially averaged daily ROMS-derived predictors over the LaTex Shelf, then applied the min–max 179 

normalization (Eq. (10)) to the one-dimensional time series. Predictive models can be beneficial from the min–max 180 

normalization when applying to a new dataset since the method guarantees that the normalized predictors from different 181 

datasets range from 0 to 1 as the minimum and maximum values are prescribed. Note that the response is not normalized. 182 

 183 

𝑋ALM =
N012$9@A314#516/4!

(91O314#516/4!$9@A314#516/4!)
,                                                                                                 (10) 184 

 185 

where 𝑋ALM , 𝑋LM. , 𝑀𝑖𝑛8M3>0M@J3& , and 𝑀𝑎𝑥8M3>0M@J3&  represent normalized value, original value, prescribed minimum, and 186 

prescribed maximum, respectively. The daily samples are then split into a training set (for model construction) accounting for 187 

80 % of the total samples and a test set (for assessment of model performances) accounting for the rest 20 %. To maintain the 188 

HA distribution in both sets, a random resampling method is applied in different HA intervals individually. For example, 80 189 

% of samples with HA=0 is chosen randomly for the training set out of all daily samples with HA=0, while the rest of samples 190 

with HA=0 is grouped into the test set. The HA=0 is the first interval to which the resampling process is applied, while the rest 191 

of samples are split every 5,000 km2. However, the distribution of HA from each year is similar with a right-skewed structure 192 

and numerous zero values. Thus, even though through random processes, both the training and test sets contain samples from 193 

each year including samples with non-peak and peak HA. Samples shown in Figure 4 are listed sequentially in the time 194 

dimension from 2007 to 2020 but are not equally distributed along time, which means that the listed samples should not be 195 

regarded as time series. This splitting method increases the model applicability and provides a comprehensive assessment of 196 

prediction performances on both non-peak and peak HA. 197 
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 198 
Figure 1. (a) Correlation coefficient matrix of the response variable and candidate predictors, and (b) frequency distribution of HA.   199 

3 Model construction 200 

3.1 Model built-up process 201 

Several regression models are explored using the statistical programming language R. To find the “best” model balancing both 202 

model interpretability and prediction performance, a procedure is conducted for model selection (Figure 2) and is summarized 203 

below. (1) Choose a regression model. (2) Apply an exhaustive best-subset searching approach to the chosen model. Models 204 

with possible combinations of candidate predictors from the ROMS training set are built. A 10-fold cross-validation (CV) 205 

method is applied to each model yielding 10 root-mean-square errors (RMSEs) and 1 corresponding mean. The candidate 206 

predictors of PEA and SOCalt are forced into each subset. Thus, the number of fitted models with a subset size of k is 207 

𝐶(6 − 2, 𝑘 − 2) = P!
(H$R)!(R$/)!

	 , 2 ≤ 𝑘 ≤ 6 (the total number of candidate predictors is 6). The optimal subset of this size is 208 

found as the one with the lowest mean CV RMSE among these models. The best subset is then obtained by comparing mean 209 

CV RMSEs of the optimal subsets of different sizes. (3) Steps (1)–(2) are repeated for the selected M candidate regression 210 

models. (4) Prediction performances of different models with the corresponding best subsets are assessed by the 10-fold CV 211 

RMSEs and Bootstrap (1,000 iterations) aggregating (i.e., Bagging) ensemble algorithms. The Bagging method builds the 212 

given model N (=1,000) times during each of which the given model is trained using different samples chosen randomly and 213 

repeatedly from the ROMS training set and is executed for HA prediction using samples in the ROMS test set. The ensemble 214 

means and ensemble 95 % prediction intervals (PIs) of forecast HA are given according to the prediction results in the 1,000 215 
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iterations. The best model (Model X in Figure 2) is chosen according to the comparisons of the 10-fold CV RMSEs and the 216 

Bagging results. 217 

 218 
Figure 2. A flow chart of building up regression models. 219 

 220 

3.2 Generalized linear models (GLMs) 221 

3.2.1 Regular GLMs and zero-inflated GLMs 222 

The response variable can be treated as count data. Regular Poisson (function glm in R package “stats” version 3.6.2), quasi-223 

Poisson (function glm in R package “stats” version 3.6.2), and negative binomial (function glm.nb in R package “MASS” 224 

version 7.3-54; Venables and Ripley, 2002) GLMs are explored in this section. The latter two GLMs are known for solving 225 

overdispersion problems by relaxing the mean-variance equality assumption. These GLMs make use of a natural log link 226 

function. Thus, a natural logarithm of the area of a single ROMS cell (~ 25.56 km2) is added to the models as an offset term 227 

(an additional intercept term).  228 

 229 

In addition, the overdispersion issue can result from the great percentage (~51 %) of zero values in the response variable 230 

(Figure 1b). Zero-inflated GLMs (using function zeroinfl in R package “pscl” version 1.5.5; Jackman, 2020; Zeileis et al., 231 

2008) are developed for dealing with response variables of this kind. Rather than resetting dispersion parameters, a zero-232 

inflated count model is a two-component mixture model blending a count model and a zero-excess model. The count model is 233 

usually a Poisson or negative binomial GLM (with log link), while the zero-excess model is a binomial GLM (with logit link 234 

in this study) estimating the probability of zero inflation. An offset term of log (25.56) is also introduced into the count model. 235 

Instead of applying the best-subset searching to the count and zero-excess models simultaneously, in this study, the searching 236 
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is conducted respectively for these two models to reduce demands of computational resources. The best subset of the zero-237 

excess model (binomial GLM) is given first. The best subset of the count model (Poisson or negative binomial GLMs) is then 238 

provided blending the zero-excess model with the corresponding selected best subset fixed. 239 

 240 

However, it is hard to determine whether a given zero value of HA is excessive, instead, it is relatively easy to model hypoxia 241 

occurrence assuming that all the zero values are excessive. A new binary response, hypoxia, stated in Eq. (11) is introduced 242 

for modeled hypoxia occurrence using regular binomial GLMs (function glm in R package “stats” version 3.6.2). The hypoxia 243 

is equal to 0 when HA is 0 (no hypoxia), otherwise, is equal to 1. The optimal model selected three predictors: PEA, SOCalt, 244 

and DCPTemp (Figure 3b). 245 

 246 

ℎ𝑦𝑝𝑜𝑥𝑖𝑎 = s0,											𝑛𝑜	ℎ𝑦𝑝𝑜𝑥𝑖𝑎1,			ℎ𝑦𝑝𝑜𝑥𝑖𝑎	𝑜𝑐𝑐𝑢𝑟𝑠 ,                                                                                                  (11) 247 

 248 

3.2.2 Performance of GLMs 249 

The zero-inflated Poisson GLM serves as the best GLM in terms of prediction performances since it has the lowest mean CV 250 

RMSE (Figure 3a) among the five candidate GLMs. The relaxation of the mean-variance equality assumption by the negative 251 

binomial GLM and the quasi-Poisson GLM does not guarantee salient improvement of performances when comparing their 252 

CV RMSEs to those of regular Poisson GLM. The zero-inflated negative binomial GLM yields poorest perfomance with the 253 

largest mean CV RMSE. The mean CV RMSEs of zero-inflated Poisson GLM hit the trough (3,621 km2) at the size of five. 254 

However, the greatest drop of RMSEs (3,671 km2) occurs at the size of three beyond which the RMSEs remain stable. It is 255 

worth considering a model with fewer predictors satisfying model interpretability. Thus, the best zero-inflated Poisson GLM 256 

accounts for three predictors (PEA, SOCalt, and DCPTemp) in the count model and three predictors (PEA, SOCalt, and DCPTemp) 257 

in the zero-excess model. As indicated in the correlation matrix (Figure 1a), the robustness of a model can be imparied by 258 

multicollinearity which can be estimated by variance inflation factors (VIFs). VIFs among the selected predictors are 2.60, 259 

2.43, and 1.23 for PEA, SOCalt, and DCPTemp, respectively. The VIFs are all less than 5 suggesting that predictors subsets 260 

involved in both the count and the zero-excess models are merely violated by multicollinearity. For simplicity, the best zero-261 

inflated Poisson GLM is symbolized as GLMzip3. 262 

 263 

The Bagging ensemble method is implemented to estimate the prediction performance of GLMzip3 (Figure 4a). The Bagging 264 

means of predicted HA provides an RMSE of 3,610 km2 and an R2 of 0.7511 against the ROMS hindcasts. The Bagging 95 % 265 

PIs of the predicted values are restricted within a narrow range with a slight increase at the predicted peaks. We want to address 266 

that the comparisons are not between the time series. The training set and test set are resampled according to different HA 267 

intervals, while the distributions of HA in each year are similar. Thus, HA in both the training set and test set contains 268 
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observations of peak and non-peak values in each year. The results suggest that GLMzip3 is capable of providing not only 269 

accurate but also stable HA forecasts. Nevertheless, we noted salient overestimations (e.g., around the 30th and 920th samples) 270 

and underestimations (e.g., around the 540th and 830th samples) at some peaks. Instead of the prediction performance at non-271 

peak HA, here we are more focused on forecasts at HA peaks which impose more threatens to the shelf ecosystem. In section 272 

3.3, GAMs are investigated with an expectation of further improvements in peak predictions by considering non-parametric 273 

or non-linear effects of the predictors. 274 

 275 
Figure 3. Comparisons of mean 10-fold CV RMSEs among different regression models with various sizes of predictors subsets. The 276 
response variable in (b) binomial GLM and (a) other models is hypoxia occurrence (hypoxia) and hypoxic area (HA), respectively. 277 
Note that the CV RMSE of negative binomial GAM with the size of six is out of the range shown. CV RMSE curves of the Poisson 278 
GLM, negative binomial GLM, and quasi-Poisson GLM overlap, while those of Poisson GAM and quasi-Poisson GAM overlap. The 279 
minimum size of predictor subsets is two since PEA and SOCalt are forced into every subset. 280 
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 281 
Figure 4. Comparisons of model predicted HA and ROMS-hindcast HA in the test set. RMSEs and R2s are derived between model 282 
Bagging mean and ROMS-hindcast HA. 283 

3.2.3 Model interpretation for GLMzip3 284 

We applied the complete ROMS training set to the model construction of GLMzip3 and found the coefficients for PEA, 285 

SOCalt, and DCPTemp (Table 2) are all significantly positive (p<0.001) in the count model, while coefficients for these 286 

predictors are significantly negative (p<0.001) in the zero-excess model. The count model simulates the HA while the zero-287 

excess model estimates the probability of HA being zero. Higher PEA is consistent with stronger water stratification, while 288 

higher SOCalt and DCPTemp are both corresponding to higher sediment oxygen consumption. Therefore, there is no surprise 289 

that higher PEA, SOCalt, and DCOTemp are related to greater HA and higher hypoxia occurrence or lower probability of HA 290 

being zero. Results indicate that the GLMzip3 essentially builds up reasonable relationships between the response and 291 

predictors variables with a high agreement with physical and biochemical mechanisms. 292 
Table 2. Regression coefficients of GLMzip3. 293 

Count model coefficients (Poisson with log link): Zero-excess model coefficients (binomial with logit link): 

 Estimate Std. Error z value  Pr (> |z|)  Estimate Std. Error z value  Pr (> |z|) 

Intercept 1.9897 0.0021 948.2 <2E-16*** Intercept 9.1993 0.3181 28.9 <2E-16*** 

PEA  2.6763 0.0016 1681.4 <2E-16*** PEA -10.0945 0.5986 -16.9 <2E-16*** 

SOCalt 0.9228 0.0014 663.6 <2E-16*** SOCalt -8.7784 0.5508 -15.9 <2E-16*** 

DCPTemp 3.5940 0.0031 1168.2 <2E-16*** DCPTemp -9.4939 0.4346 -21.9 <2E-16*** 
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Significance codes:  0 (***) 0.001 (**) 0.01 (*)   

Log-likelihood: -2.4E6 on 8 degrees of freedom 

  294 

3.3 Generalized additive models (GAMs) 295 

GAMs are explored with an expectation of improving prediction performance in HA peaks by introducing non-parametric 296 

effects of predictors. Using function "gam" in R package “mgcv” (version 1.8-36; Wood, 2011) with smooth functions as pure 297 

thin plate regression splines (degree of freedom=9; Wood, 2003), three GAMs are studied and compared, i.e., Poisson GAM, 298 

quasi-Poisson GAM, and negative binomial GAM. Following the same procdurel in GLM exploration, the best subset 299 

searching approach is applied to the GAMs first. The mean 10-fold CV RMSEs for the Poisson and quasi-Poisson GAMs 300 

(Figure 3a) exhibit insignificant differences and are the lowest among those for all GLMs and GAMs studied. Although the 301 

mean CV RMSEs for these two types of GAMs both reach the lowest at the size of five, the best size is considered as three 302 

(considering PEA, SOCalt, and DCPTemp) at which CV RMSEs exhibits most saline decline, and beyond which mean CV 303 

RMSEs stabilize around 3,200 km2. The negative binomial GAM has the greatest mean CV RMSEs among the GAMs studied 304 

and has an extremely high mean CV RMSE at the size of six. It is, therefore, dropped out of the list of candidate models. The 305 

quasi-Poisson GAM with three predictors involved (symbolized as GAMqsp3) is chosen as the best GAM since it relaxes the 306 

mean-variance equality assumption which should not be applied to the HA dataset due to the overdispersion issue. 307 

 308 

Component plots of model GAMqsp3 (Figure 5) imply that HA generally increases as the chosen predictors increase. The 309 

smooth functions of PEA and DCPTemp are considerably greater than the smooth function of SOCalt indicating that the 310 

contributions of the former two predictors are greater than the effect of SOCalt on the daily variability of HA. Note that the 311 

fitted HA equals the summation of all smooth function terms. Such results agree with those found by model GLMzip3. 312 

However, the component plots provide more detailed information about the rate of changes of HA. The effective degrees of 313 

freedom range from 8 to 8.54 indicating strong non-linear effects of the predictors on the changes of HA. The HA is more 314 

sensitive to the predictors in the low-value ranges but becomes nearly stable in the medium- and high-value ranges of 315 

predictors. It implies that bottom hypoxia develops rapidly in early summer when water stratification and sediment oxygen 316 

demand start to increase. The bottom hypoxic water further extends with a much lower expansion speed as the stratification 317 

and SOC further intensify. Nevertheless, the smooth function of PEA is slightly greater also with a more acute slope than those 318 

found for SOCalt and DCPTemp in the medium- and high-value regimes of the predictors. It indicates that the HA variability is 319 

more related to the hydrodynamic changes in the shelf than the biochemical effects. The result is consistent with the findings 320 

by previous studies of the shelf hypoxia (Yu et al., 2015; Mattern et al., 2013) emphasizing that the physical impacts are 321 

stronger than the biological impacts on HA estimates. A short conclusion is made that the GAMqsp3 model provides reasonable 322 

interpretations on the hypoxic area mechanisms.   323 
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 324 
Figure 5. Component plots of model GAMqsp3. Solid black lines represent the mean of the smooth function, while the pink area 325 
denotes the range of mean ± 1SE. Numbers in brackets represent effective degrees of freedom for the corresponding smooth terms. 326 
Black bars at the x axis indicate the density of corresponding predictors. Dashed black lines are straight lines of zero along the 327 
predictor domains. Note that the predictors shown have been normalized. 328 

The prediction performance of GAMqsp3 is estimated using the Bagging ensemble method (Figure 4b). The RMSE and R2 329 

between the Bagging mean and ROMS-hindcast HA is 3,134 km2 and 0.8093, respectively. They are 13 % lower and 8 % 330 

higher than the corresponding statistics found for the GLMzip3, respectively, suggesting that GAMqsp3 outcompetes 331 

GLMzip3 in terms of overall performance. However, GAMqsp3 tends to produce underestimated predictions at HA peaks 332 

(like peaks around the 310th and 920th samples) some of which are overestimated by the GLMzip3. Therefore, instead of 333 

determining the best model out of the two, ensemble HA predictions blending efforts of both GLMzip3 and GAMqsp3 are 334 

carried out with an expectation to improve model performance in the peak forecast. We assumed that the contributions of 335 

GLMzip3 and GAMqsp3 are equally weighted since there is no clue showing the apparent superiority of either model in HA 336 

peak predictions. We thus averaged the predicted HA by GLMzip3 and GAMqsp3 and calculated the 95 % PIs given the 337 

Bagging results of these models (Figure 4c). As expected, the overall performance of the ensemble forecast is somewhere 338 

between the performance of GLMzip3 and GAMqsp3 with an RMSE of 3,204 km2 and an R2 of 0.8005. However, some HA 339 

peak events (like peaks around the 310th and 920th samples) which are overestimated by GLMzip3 but are underestimated by 340 

GAMqsp3 are accurately predicted by the ensemble approach. The ensemble model provides higher accuracy in peak forecast 341 

given minor sacrifices in overall performance.  342 
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4 Discussion  343 

A promising HA forecast is provided by the ensemble model with a low RMSE (3,204 km2), a high R2 (0.8005), and a precise 344 

performance in capturing hypoxic area peaks in the summers. The power of the prediction model relies on the availability of 345 

the forecast of predictors. In this section, we discuss the model's transferability using an independent global ocean product.  346 

 347 

The Global Ocean Forecasting System (GOFS) 3.1 provides global daily analysis products and an eight-day forecast in a daily 348 

interval with a horizontal resolution of 1/12 °. The products (hereafter referred to HYCOM-derived products) are derived by a 349 

41-layer HYCOM global model with data assimilated via the Navy Coupled Ocean Data Assimilation (NCODA) system 350 

(Cummings, 2005; Cummings and Smedstad, 2013). Daily data from 1 January 2007 to 26 August 2020 are retrieved and 351 

studied. Predictors of PEA, SOCalt, and DCPTemp are reconstructed using HYCOM-derived variables and Mississippi River 352 

daily total nitrate and nitrite loadings downloaded from the USGS NWIS. Relationships of ROMS-derived and HYCOM-353 

derived predictors are examined in Figure 6. The magnitudes of HYCOM-derived SOCalt and DCPTemp match up with the 354 

corresponding ROMS-derived predictors, respectively, although HYCOM-derived predictors are found slightly greater. 355 

Simple linear regression for these predictors illustrates that the linear relationships between the ROMS and HYCOM products 356 

are significant with the R2 ranging from 0.93 to 0.95. The intercept terms are at least one-order smaller than the magnitudes of 357 

corresponding predictors. Therefore, the HYCOM global products are deemed to agree with the ROMS hindcasts for SOCalt 358 

and DCPTemp. Nevertheless, the magnitude of HYCOM-derived PEA is found much lower than the ROMS-derived PEA 359 

(Figure 6a). Simple linear regression indicates a significant linear relationship between the natural log transformation of PEA 360 

from the two datasets (R2=0.69).  361 

 362 

At land-sea interfaces, the HYCOM global model is forced by monthly riverine discharges, which weakens the model 363 

performance in coastal regions. The hydrodynamics in the LaTex Shelf is highly affected by the freshwater and momentum 364 

from the Mississippi and the Atchafalaya Rivers. Monthly river forcings in HYCOM are essentially weaker than daily forcings 365 

used in our ROMS set up and can result in a less stratified water column (i.e., lower PEA). Therefore, it is necessary to scale 366 

the magnitude of HYCOM-derived PEA to that of the ROMS hindcast. It can be achieved by using the natural log 367 

transformation and simple linear regression as discussed. We then adjusted HYCOM-derived PEA but kept the HYCOM-368 

derived SOCalt and DCPTemp unchanged before the application of the ensemble model. 369 

 370 

The Bagging approach is implemented again to assess the performances of the ensemble model. During each iteration 371 

(N=1,000), the GLMzip3 and GAMqsp3 are trained using the ROMS training set and then applied to the adjusted HYCOM-372 

derived predictors for HA prediction from 1 January 2019 to 26 August 2020. The ensemble method provides averages and 95 373 

% PIs of predicted HA blending Bagging results by GLMzip3 and GAMqsp3. Compared to the ROMS-hindcast HA, the 374 

ensemble model performs an overall accurate HA forecast with an RMSE and an R2 of 4,571 km2 and 0.8178, respectively 375 
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(Figure 7). The HA peaks in both 2019 and 2020 summers are well captured by the model with slight underestimates at the 376 

first peak and slight overestimates at the second. The width of 95 % PI is larger during high HA periods suggesting less stability 377 

in the HA peak forecast. Discharges measurements for the Mississippi and the Atchafalaya Rivers are provided and updated 378 

daily by USGS NWIS, assuring a possible improvement of HYCOM model performance in the LaTex Shelf. Once the 379 

performance of hydrodynamics predictions in the LaTex Shelf is guaranteed, predictions performance of the ensemble model 380 

on HA would be further improved. 381 

 382 
Figure 6. Scatter plots of (a) log(PEA) (unit: 𝐥𝐨𝐠	(𝐉	𝐦!𝟑)), (b) SOCalt (unit:	𝐦𝐦𝐨𝐥	𝐦!𝟑	𝐬!𝟏), and (c) DCPTemp (unit: 1) between 383 
ROMS and HYCOM simulations. Note that the solid red lines represent linear regression lines, while the dashed grey lines are 384 
diagonals with a slope of 1 and an intercept of 0. Daily data compared are from 2007 to 2020. 385 
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 386 
Figure 7. Daily time series of predicted HA by ensemble model ((GLMzip3+GAMqsp3)/2) when applied to adjusted HYCOM 387 
products and ROMS-hindcast HA from 2019 to 2020. 388 

5 Conclusion  389 

In this study, an ensemble HA forecast model for the LaTex Shelf is developed using the state-of-the-art statistic programming 390 

language R. The model is trained using numeric simulations from 1 January 2007 to 26 August 2020 generated by a coupled 391 

hydrodynamic–biogeochemical model. Before splitting data into a training set and a test set, we applied regional average over 392 

the LaTex Shelf and min-max normalization to the hindcast data. 393 

 394 

Multiple GLMs (regular Poisson GLMs, quasi-Poisson GLMs, negative binomial GLMs, zero-inflated Poisson GLMs, and 395 

zero-inflated negative binomial GLMs) and GAMs (regular Poisson GAMs, quasi-Poisson GAMs, and regular negative 396 

binomial GAMs) are assessed for HA prediction. Comparisons of model prediction performance illustrate that an ensemble 397 

model combing the prediction efforts of a zero-inflated Poisson GLM and a quasi-Poisson GAM provides the most accurate 398 

HA forecast with a variability explanation high up to 80 %, a low overall RMSE of 3,204 km2, and a high precision in 399 

forecasting peak HA when compared to the hindcasts by the coupled model. Predictors PEA, SOCalt, and DCPTemp are involved 400 

in the GLM and GAM. Statistically significant coefficients for the predictors (for the GLMzip3) and component plots (for the 401 

GAMqsp3) agree well with the physical and biochemical mechanisms. 402 

 403 

The ensemble model is then migrated to the GOFS 3.1 products based on HYCOM,s which provides eight-day forecast of 404 

global hydrodynamics. The ensemble model is trained using the ROMS training set and then is used for the HA prediction 405 

covering the period from January 1st, 2019 to August 26th,  2020. The prediction is robust when compared to the ROMS 406 

simulations (2019–2020), with a low overall RMSE (4,571 km2) and a high R2 (0.8178). The model can also accurately predict 407 

the magnitude and onset of summer HA peaks in 2019 and 2020, respectively. To our best knowledge, this ensemble model is 408 

the first model providing efficient yet accurate daily HA forecast for the LaTex Shelf while considering both hydrodynamic 409 

and biochemical effects. This model is also the first model successfully applying global hydrodynamic forecast in regional HA 410 

predictions. 411 

  412 
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Appendix A:  424 

 425 
Figure A1. A scatter plot of 𝝆𝒂𝑾𝟑 and 𝑾𝟑 and their linear correlation.  426 
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 427 
Figure A2. (a) Lead/lag correlation coefficients between ROMS hindcast daily SOC and SOCalt ( =428 
𝐌𝐢𝐬𝐬𝐢𝐬𝐬𝐢𝐩𝐩𝐢	𝐑𝐢𝐯𝐞𝐫	𝐢𝐧𝐨𝐫𝐠𝐚𝐧𝐢𝐜	𝐧𝐢𝐭𝐫𝐨𝐠𝐞𝐧	𝐥𝐨𝐚𝐝𝐬 ∙ 𝐞𝟎.𝟎𝟔𝟗𝟑𝑻𝒃) with the Mississippi nitrogen loads led by different days; (b) daily time 429 
series of ROMS hindcast SOC and SOCalt when the Mississippi nitrogen loads led by 19 days. Time series of compared is averaged 430 
over the LaTex Shelf and is normalized. 431 

Reference 432 

Bianchi, T. S., DiMarco, S. F., Cowan, J. H., Hetland, R. D., Chapman, P., Day, J. W., and Allison, M. A.: The science of 433 
hypoxia in the northern Gulf of Mexico: A review, Sci. Total Environ., 408, 1471–1484, 434 
https://doi.org/10.1016/j.scitotenv.2009.11.047, 2010. 435 

Chesney, E. J. and Baltz, D. M.: The effects of hypoxia on the northern Gulf of Mexico Coastal Ecosystem: A fisheries 436 
perspective, in: Coastal Hypoxia: Consequences for Living Resources and Ecosystems, American Geophysical Union, 321–437 
354, https://doi.org/10.1029/CE058p0321, 2001. 438 

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., and Likens, G. E.: 439 
Controlling Eutrophication: Nitrogen and Phosphorus, Science, 323, 1014–1015, https://doi.org/10.1126/science.1167755, 440 
2009. 441 

Craig, J. K. and Bosman, S. H.: Small Spatial Scale Variation in Fish Assemblage Structure in the Vicinity of the Northwestern 442 
Gulf of Mexico Hypoxic Zone, Estuaries and Coasts, 36, 268–285, https://doi.org/10.1007/s12237-012-9577-9, 2013. 443 

Cummings, J. A.: Operational multivariate ocean data assimilation, Q. J. R. Meteorol. Soc., 131, 3583–3604, 444 
https://doi.org/10.1256/qj.05.105, 2005. 445 

Cummings, J. A. and Smedstad, O. M.: Variational Data Assimilation for the Global Ocean, in: Data Assimilation for 446 

https://doi.org/10.5194/bg-2022-4
Preprint. Discussion started: 9 February 2022
c© Author(s) 2022. CC BY 4.0 License.



21 
 

Atmospheric, Oceanic and Hydrologic Applications, vol. II, edited by: Park, S. K. and Xu, L., Springer Berlin Heidelberg, 447 
303–343, https://doi.org/10.1007/978-3-642-35088-7_13, 2013. 448 

Feng, Y., Fennel, K., Jackson, G. A., DiMarco, S. F., and Hetland, R. D.: A model study of the response of hypoxia to 449 
upwelling-favorable wind on the northern Gulf of Mexico shelf, J. Mar. Syst., 131, 63–73, 450 
https://doi.org/10.1016/j.jmarsys.2013.11.009, 2014. 451 

Fennel, K., Hetland, R., Feng, Y., and Dimarco, S.: A coupled physical-biological model of the Northern Gulf of Mexico shelf: 452 
Model description, validation and analysis of phytoplankton variability, Biogeosciences, 8, 1881–1899, 453 
https://doi.org/10.5194/bg-8-1881-2011, 2011. 454 

Fennel, K., Hu, J., Laurent, A., Marta-Almeida, M., and Hetland, R.: Sensitivity of hypoxia predictions for the northern Gulf 455 
of Mexico to sediment oxygen consumption and model nesting, J. Geophys. Res. Ocean., 118, 990–1002, 456 
https://doi.org/10.1002/jgrc.20077, 2013. 457 

Fennel, K., Laurent, A., Hetland, R., Justic, D., Ko, D. S., Lehrter, J., Murrell, M., Wang, L., Yu, L., and Zhang, W.: Effects 458 
of model physics on hypoxia simulations for the northern Gulf of Mexico: A model intercomparison, J. Geophys. Res. Ocean., 459 
121, 5731–5750, https://doi.org/10.1002/2015JC011516, 2016. 460 

Del Giudice, D., Matli, V. R. R., and Obenour, D. R.: Bayesian mechanistic modeling characterizes Gulf of Mexico hypoxia: 461 
1968–2016 and future scenarios, Ecol. Appl., 30, 1–14, https://doi.org/10.1002/eap.2032, 2020. 462 

de Mutsert, K., Steenbeek, J., Lewis, K., Buszowski, J., Cowan, J. H., and Christensen, V.: Exploring effects of hypoxia on 463 
fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model, Ecol. Modell., 331, 142–464 
150, https://doi.org/10.1016/j.ecolmodel.2015.10.013, 2016. 465 

Hetland, R. D. and DiMarco, S. F.: How does the character of oxygen demand control the structure of hypoxia on the Texas-466 
Louisiana continental shelf?, J. Mar. Syst., 70, 49–62, https://doi.org/10.1016/j.jmarsys.2007.03.002, 2008. 467 

Jackman, S.: pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, 468 
https://github.com/atahk/pscl/, 2020. 469 

Justić, D. and Wang, L.: Assessing temporal and spatial variability of hypoxia over the inner Louisiana-upper Texas shelf: 470 
Application of an unstructured-grid three-dimensional coupled hydrodynamic-water quality model, Cont. Shelf Res., 72, 163–471 
179, https://doi.org/10.1016/j.csr.2013.08.006, 2014. 472 

Katin, A., Del Giudice, D., and Obenour, D.: Daily hypoxia forecasting and uncertainty assessment via Bayesian mechanistic 473 
model for the Northern Gulf of Mexico, Hydrol. Earth Syst. Sci. Discuss., 35, 1–17, https://doi.org/10.5194/hess-2021-207, 474 
2021. 475 

LaBone, E., Rose, K., Justic, D., Huang, H., and Wang, L.: Effects of spatial variability on the exposure of fish to hypoxia: a 476 
modeling analysis for the Gulf of Mexico, Biogeosciences Discuss., 1–35, https://doi.org/10.5194/bg-2020-51, 2020. 477 

Lambert, D.: Zero-inflated poisson regression, with an application to defects in manufacturing, Technometrics, 34, 1–14, 478 
https://doi.org/10.1080/00401706.1992.10485228, 1992. 479 

Laurent, A. and Fennel, K.: Time-Evolving, Spatially Explicit Forecasts of the Northern Gulf of Mexico Hypoxic Zone, 480 
Environ. Sci. Technol., 53, 14449–14458, https://doi.org/10.1021/acs.est.9b05790, 2019. 481 

Laurent, A., Fennel, K., Ko, D. S., and Lehrter, J.: Climate change projected to exacerbate impacts of coastal Eutrophication 482 
in the Northern Gulf of Mexico, J. Geophys. Res. Ocean., 123, 3408–3426, https://doi.org/10.1002/2017JC013583, 2018. 483 

https://doi.org/10.5194/bg-2022-4
Preprint. Discussion started: 9 February 2022
c© Author(s) 2022. CC BY 4.0 License.



22 
 

Matli, V. R. R., Fang, S., Guinness, J., Rabalais, N. N., Craig, J. K., and Obenour, D. R.: Space-Time Geostatistical Assessment 484 
of Hypoxia in the Northern Gulf of Mexico, Environ. Sci. Technol., 52, 12484–12493, https://doi.org/10.1021/acs.est.8b03474, 485 
2018. 486 

Mattern, J. P., Fennel, K., and Dowd, M.: Sensitivity and uncertainty analysis of model hypoxia estimates for the Texas-487 
Louisiana shelf, J. Geophys. Res. Ocean., 118, 1316–1332, https://doi.org/10.1002/jgrc.20130, 2013. 488 

McCarthy, M. J., Carini, S. A., Liu, Z., Ostrom, N. E., and Gardner, W. S.: Oxygen consumption in the water column and 489 
sediments of the northern Gulf of Mexico hypoxic zone, Estuar. Coast. Shelf Sci., 123, 46–53, 490 
https://doi.org/10.1016/j.ecss.2013.02.019, 2013. 491 

Monteith, J. and Unsworth, M.: Principles of environmental physics: plants, animals, and the atmosphere, 4th ed., Academic 492 
Press, https://doi.org/https://doi.org/10.1016/C2010-0-66393-0, 2014. 493 

Murrell, M. C. and Lehrter, J. C.: Sediment and Lower Water Column Oxygen Consumption in the Seasonally Hypoxic Region 494 
of the Louisiana Continental Shelf, Estuaries and Coasts, 34, 912–924, https://doi.org/10.1007/s12237-010-9351-9, 2011. 495 

Obenour, D. R., Michalak, A. M., and Scavia, D.: Assessing biophysical controls on Gulf of Mexico hypoxia through 496 
probabilistic modeling, Ecol. Appl., 25, 492–505, https://doi.org/10.1890/13-2257.1, 2015. 497 

Picard, A., Davis, R. S., Gläser, M., and Fujii, K.: Revised formula for the density of moist air (CIPM-2007), Metrologia, 45, 498 
149–155, https://doi.org/10.1088/0026-1394/45/2/004, 2008. 499 

Rabalais, N. N. and Baustian, M. M.: Historical Shifts in Benthic Infaunal Diversity in the Northern Gulf of Mexico since the 500 
Appearance of Seasonally Severe Hypoxia, Diversity, 12, https://doi.org/10.3390/d12020049, 2020. 501 

Rabalais, N. N. and Turner, R. E.: Gulf of Mexico Hypoxia: Past, Present, and Future, Limnol. Oceanogr. Bull., 28, 117–124, 502 
https://doi.org/10.1002/lob.10351, 2019. 503 

Rabalais, N. N., Turner, R. E., and Wiseman, W. J.: Gulf of Mexico hypoxia, a.k.a. “The dead zone,” Annu. Rev. Ecol. Syst., 504 
33, 235–263, https://doi.org/10.1146/annurev.ecolsys.33.010802.150513, 2002. 505 

Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., Boesch, D. F., Chapman, P., and Murrell, M. C.: Hypoxia in the northern 506 
Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia?, Estuaries and Coasts, 30, 753–507 
772, https://doi.org/10.1007/BF02841332, 2007a. 508 

Rabalais, N. N., Turner, R. E., Gupta, B. K. S., Platon, E., and Parsons, M. L.: Sediments tell the history of eutrophication and 509 
hypoxia in the northern Gulf of Mexico, Ecol. Appl., 17, 129–143, https://doi.org/10.1890/06-0644.1, 2007b. 510 

Rabotyagov, S. S., Kling, C. L., Gassman, P. W., Rabalais, N. N., and Turner, R. E.: The economics of dead zones: Causes, 511 
impacts, policy challenges, and a model of the gulf of Mexico Hypoxic Zone, Rev. Environ. Econ. Policy, 8, 58–79, 512 
https://doi.org/10.1093/reep/ret024, 2014. 513 

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., 514 
Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., 515 
Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., 516 
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., 517 
Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: NCEP 518 
Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010, 519 
https://doi.org/10.5065/D69K487J, 2010. 520 

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., 521 

https://doi.org/10.5194/bg-2022-4
Preprint. Discussion started: 9 February 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP Climate Forecast 522 
System Version 2 (CFSv2) 6-hourly Products, https://doi.org/10.5065/D61C1TXF, 2011. 523 

Scavia, D., Evans, M. A., and Obenour, D. R.: A scenario and forecast model for gulf of mexico hypoxic area and volume, 524 
Environ. Sci. Technol., 47, 10423–10428, https://doi.org/10.1021/es4025035, 2013. 525 

Simpson, J. H.: The shelf-sea fronts: implications of their existence and behaviour, Philos. Trans. R. Soc. London. Ser. A, 526 
Math. Phys. Sci., 302, 531–546, https://doi.org/10.1098/rsta.1981.0181, 1981. 527 

Simpson, J. H. and Bowers, D.: Models of stratification and frontal movement in shelf seas, Deep Sea Res. Part A, Oceanogr. 528 
Res. Pap., 28, 727–738, https://doi.org/10.1016/0198-0149(81)90132-1, 1981. 529 

Simpson, J. H. and Hunter, J. R.: Fronts in the Irish Sea, Nature, 250, 404–406, 530 
https://doi.org/https://doi.org/10.1038/250404a0, 1974. 531 

Simpson, J. H., Allen, C. M., and Morris, N. C. G.: Fronts on the Continental Shelf, J. Geophys. Res., 83, 4607–4614, 532 
https://doi.org/https://doi.org/10.1029/JC083iC09p04607, 1978. 533 

Smith, M. D., Asche, F., Bennear, L. S., and Oglend, A.: Spatial-dynamics of hypoxia and fisheries: The case of Gulf of 534 
Mexico brown shrimp, Mar. Resour. Econ., 29, 111–131, https://doi.org/10.1086/676826, 2014. 535 

Turner, R. E., Rabalais, N. N., and Justic, D.: Predicting summer hypoxia in the northern Gulf of Mexico: Riverine N, P, and 536 
Si loading, Mar. Pollut. Bull., 52, 139–148, https://doi.org/10.1016/j.marpolbul.2005.08.012, 2006. 537 

Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, Fourth., Springer, New York, 538 
https://doi.org/10.1007/978-0-387-21706-2, 2002. 539 

Wang, L. and Justić, D.: A modeling study of the physical processes affecting the development of seasonal hypoxia over the 540 
inner Louisiana-Texas shelf: Circulation and stratification, Cont. Shelf Res., 29, 1464–1476, 541 
https://doi.org/10.1016/j.csr.2009.03.014, 2009. 542 

Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a Coupled Ocean-Atmosphere-Wave-Sediment 543 
Transport (COAWST) Modeling System, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010. 544 

Wood, S. N.: Thin plate regression splines, J. R. Stat. Soc. Ser. B Stat. Methodol., 65, 95–114, https://doi.org/10.1111/1467-545 
9868.00374, 2003. 546 

Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized 547 
linear models, J. R. Stat. Soc. Ser. B Stat. Methodol., 73, 3–36, https://doi.org/10.1111/j.1467-9868.2010.00749.x, 2011. 548 

Yu, L., Fennel, K., and Laurent, A.: A modeling study of physical controls on hypoxia generation in the northern Gulf of 549 
Mexico, J. Geophys. Res. Ocean., 120, 5019–5039, https://doi.org/10.1002/ 2014JC010634, 2015. 550 

Zeileis, A., Kleiber, C., and Jackman, S.: Regression Models for Count Data in R, J. Stat. Softw., 27, 551 
https://doi.org/10.18637/jss.v027.i08, 2008. 552 

https://doi.org/10.5194/bg-2022-4
Preprint. Discussion started: 9 February 2022
c© Author(s) 2022. CC BY 4.0 License.


