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Abstract. Site-level observations have shown pervasive cold season CO2 release across Arctic and boreal ecosystems, impact-

ing annual carbon budgets. Still, the seasonality of CO2 emissions are poorly quantified across much of the high latitudes due to

the sparse coverage of site-level observations. Space-based observations provide the opportunity to fill some observational gaps

for studying these high latitude ecosystems, particularly across poorly sampled regions of Eurasia. Here, we show that data-5

driven net ecosystem exchange (NEE) from atmospheric CO2 observations implies strong summer uptake followed by strong

autumn release of CO2 over the entire cold northeastern region of Eurasia during the 2015–2019 study period. Combining

data-driven NEE with satellite-based estimates of gross primary production (GPP), we show that this seasonality implies less

summer heterotrophic respiration (Rh) and greater autumn Rh than would be expected given an exponential relationship be-

tween respiration and surface temperature. Furthermore, we show that this seasonality of NEE and Rh over northeastern Eurasia10
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is not captured by the TRENDY v8 ensemble of dynamic global vegetation models (DGVMs), which estimate that only 52%

:::::::
47–57%

:::::::::::
(interquartile

::::::
range) of annual Rh occurs during Aug-Apr, while the data-driven estimate suggests 64–70

::::::::
estimates

::::::
suggest

::::::
59–76% of annual Rh occurs over this period. We explain this seasonal shift in Rh by respiration from soils at depth

during the zero curtain period, when sub-surface soils remain unfrozen up to several months after the surface has frozen. Ad-

ditional impacts of physical processes related to freeze-thaw dynamics may contribute to the seasonality of Rh. This study15

confirms a significant and spatially extensive early cold season CO2 efflux in the permafrost rich region of northeast Eurasia,

and suggests that autumn Rh from subsurface soils in the northern high latitudes is not well captured by current DGVMs.

1 Introduction

Boreal and Arctic ecosystems hold vast quantities of soil carbon and play an important role in the global carbon cycle (Schuur

et al., 2015). These ecosystems are also experiencing the most rapid climate change (Overland et al., 2018), driving major20

changes in the carbon cycle, including: greening trends (Park et al., 2016), permafrost thaw (Schuur et al., 2015; Turetsky

et al., 2019, 2020), and increased fire frequency and intensity (Veraverbeke et al., 2017, 2021). Yet, the impact of these changes

on the carbon budget of the region remains uncertain (Schuur et al., 2015; McGuire et al., 2018; Miner et al., 2022). In part,

this is due to sparse site level observations in boreal and Arctic ecosystems, while the limited available observations of high

latitude ecosystems are providing surprises.25

A meta-analysis
::::::::
synthesis of Arctic and boreal site-level flux measurements from the literature found pervasive CO2 release

during the cold season (Natali et al., 2019), such that the cold season is not a dormant period but strongly impacts annual

carbon budgets (Zimov et al., 1993; Björkman et al., 2010; Natali et al., 2019). Particularly strong releases of CO2 have been

observed during the early cold season (Commane et al., 2017; Mastepanov et al., 2013; Jeong et al., 2018). This has been

linked to the “zero-curtain effect”, wherein the air and surface temperatures drop below 0 ◦C but deeper soils remain unfrozen30

for an extended period due to latent heat release (Outcalt et al., 1990; Romanovsky and Osterkamp, 2000; Hinkel et al., 2001;

Zona et al., 2016). The result is an “active layer” of unfrozen soil that can persist for months, resulting in greater respiration

than would be expected based on air temperature. Both aircraft (Commane et al., 2017) and site-level (Mastepanov et al., 2013;

Jeong et al., 2018) measurements have found substantial CO2 release during the zero-curtain period over Alaska (Sep–Dec)

that is not well captured by our current generation of Earth System Models (Commane et al., 2017). Similarly, CO2 mole35

fractions enhancements within soils have been observed during the zero-curtain period (Wilkman et al., 2021; Raz-Yaseef

et al., 2017). Mechanistically, both biological and physical processes likely contribute to the enhanced early cold season CO2

release. Physically, freezing forces dissolved CO2 out of solution (Bing et al., 2015), which may then be released through

mechanical channels and fissures in the soil that form during freezing (Mastepanov et al., 2013; Pirk et al., 2015; Wilkman

et al., 2021). Enhanced CO2 effluxes (release to the atmosphere) have also been observed during the spring thaw (Raz-Yaseef40

et al., 2017; Arndt et al., 2020). This spring signal has been linked to a delayed release of CO2 production from the previous

early cold season (Raz-Yaseef et al., 2017), while a rapid warming and introduction of oxygen during snow melt has also been

proposed as a contributor to this signal (Arndt et al., 2020). Finally, observed CO2 effluxes during the middle of the cold season
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(Natali et al., 2019) have been mechanistically linked to microbial respiration that persists at subzero bulk soil temperatures

(Rivkina et al., 2000; Panikov et al., 2006; McMahon et al., 2009; Drotz et al., 2010), with a possible additional contribution45

from the diffusion of stored CO2 that is produced during the non-frozen season (Natali et al., 2019).

Still, the full spatial extent and magnitude of cold season CO2 release is not well characterized due to sparsity of
:::::
sparse site-

level observations, particularly over much of north Eurasia. Here, we employ a “top-down” approach to estimate the seasonal

cycle of data-driven carbon fluxes using space-based observations during the period 2015–2019. This approach complements

previous site-level analyses by providing CO2 flux constraints on large continental-scale regions. We utilize these data to inves-50

tigate carbon cycle dynamics over three large regions within Eurasia (Fig. 1), which are defined based on the east-west temper-

ature gradient (see Sec. 2.1), with the coldest region in the east and warmest region in the west. We
::::
focus

:::
on

:::::::
Eurasia,

::
as

:::::
much

::
of

:::
this

:::::
region

:::
has

::::::::::
particularly

:::::
sparse

::::::::
site-level

:::::::::::
observations,

:::
yet

::
is

::::::::::
experiencing

:::::
rapid

::::::
change

::::::::::::::::::::::::::::::
(Liu et al., 2020; Bastos et al., 2019)

:
.
:::
We further compare the observationally-constrained seasonality of CO2 fluxes to a suite of dynamic global vegetation models

(DGVMs) from the TRENDY ensemble (Sitch et al., 2015) version 8 as used in the Global Carbon Budget 2019 (Friedlingstein55

et al., 2019) (Sec. 3.1). Our study addresses two main questions: (1) Do large-scale observational constraints support enhanced

CO2 effluxes during the shoulder seasons at high-latitudes? And if so, (2) what are the underlying mechanisms driving this

behaviour?

We first examine the seasonality of net ecosystem exchange (NEE) constrained by atmospheric inversions of retrieved

column-averaged dry-air mole fractions of CO2 (XCO2 ) from the Orbiting Carbon Observatory 2 (OCO-2) (Crisp et al., 2017;60

Eldering et al., 2017) and by flask and in situ CO2 measurements (Sec. 2.2). Monthly NEE is obtained from version 9 of the

OCO-2 Model Inter-comparison Project (
::
v9 OCO-2 MIPv9

:::
MIP) (Peiro et al., 2021). In addition, we perform a set of three

higher temporal resolution inversions using the CAMS, TM5-4DVar and CMS-Flux inversion systems to examine sub-monthly

variability in CO2 fluxes.

We then look to
:::
We

:::
then

:
decompose NEE into component fluxes to better understand the processes driving the seasonality of65

NEE. In particular, we decompose the data-driven NEE fluxes into net primary production (NPP) and heterotrophic respiration

(Rh):

NEE = Rh −NPP. (1)

To do this, we utilize
:::
use

:
four data-driven gross primary production (GPP) products: FLUXCOM (Jung et al., 2020), FluxSat

(Joiner and Yoshida, 2020), the Vegetation Photosynthesis Model (VPM) (Zhang et al., 2017)
:::::::::::::::::::::
(VPM, Zhang et al., 2017), and70

the Global OCO-2-based SIF product (GOSIF) (Li and Xiao, 2019)
:::::::::::::::::::::::
(GOSIF, Li and Xiao, 2019). These datasets utilize MODIS

:::
use

:::::::::::::::::
MODerate-resolution

::::::::
Imaging

:::::::::::::::
Spectroradiometer

:::::::::
(MODIS) reflectances, OCO-2 solar induced fluorescence and reanalysis

data to infer GPP, and thus provide an ensemble of global estimates of GPP to inform its uncertainty. NPP is estimated from

GPP using the
:::::::
monthly carbon use efficiency (CUE) from the TRENDY models (Sec. 2.4) using the relationship:

NPP = CUE×GPP. (2)75

We then combine the data-driven estimates of NEE and NPP to recover a data-driven seasonal cycle of Rh (Sec. 2.5).
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Figure 1. (a) Permafrost extent over 2000-2016 (Obu et al., 2019; Obu et al., 2018) (b) MODIS IGBP (MOD12C1 v6) land cover for urban

areas, forest (tree cover >60% and height>2 m), savanna (tree cover 10–60% and height>2 m), shrublands (woody perennials cover >10%

and height<2m), grasslands, croplands, and barren land. (c) zero-crossing date (date when the mean soil temperature drops below 0 ◦C) for

the top 0.5 m of soil from the MERRA-2 Land dataset at 4◦ × 5◦ spatial resolution. Gridcells with no shading do not have a zero-crossing

date. Three regions are shown by different hatching patterns. The “Warm” (cross hatching) region does not have a zero-crossing date, the

“Mid” (dots) region has a zero-crossing date after Oct 27, and the “Cold” (diagonal hatching) region has a zero-crossing date before Oct 27.

Note that some adjustments from these definition are made so that the regions are contiguous. The Warm, Mid, and Cold regions have land

areas of 5.66× 106 km, 8.66× 106 km, and 12.65× 106 km, respectively.

We perform this analysis
::::
This

:::::::
analysis

:
is
:::::::::
performed

:
at two temporal resolutions. First, we leverage the large ensembles from

TRENDY and the
::
v9 OCO-2 MIPv9

::::
MIP that provide fluxes at monthly temporal resolution (Sec. 3.1). However, because phe-
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nological changes can be significant on shorter timescales (e.g., weekly, Parazoo et al. (2018a))
:::::::::::::::::::::::::::::
(e.g., weekly, Parazoo et al., 2018a)

, we perform a second analysis at 14 day
::::::
14-day temporal resolution using three inversion analyses that optimize weekly or80

14 day
::::::
14-day NEE fluxes (Sec. 3.2). For these 14 day

:::::
14-day

:
fluxes, we further examine mechanistic explanations for data-

model differences in Rh using a range of models (Sec. 3.3). Finally,
::
we

:::::::
discuss

:::
the

:::::
results

::
(Sec. 4provides a discussion of the

results and
:
)
:::
and

:::::::::
summarize

::::
our

::::::::::
conclusions

:
(Sec. 5summarizes the conclusions

:
).

2 Data and methods

2.1 Environmental data and region definitions85

We utilize MERRA-2 Land soil temperature data (Reichle et al., 2011, 2017; Gelaro et al., 2017) to define three large regions

within Eurasia (Fig. 1). These data were downloaded from the Goddard Earth Sciences Data and Information Services Center

at monthly temporal resolution and 4◦ × 5◦ spatial resolution (regridded from model horizontal resolution of ∼50 km). Three

regions are defined based on the date at which the top 0.5 m of MERRA-2 Land soil temperature falls below 0◦C, referred

to as the “zero-crossing date”, for a mean seasonal cycle averaged over four years (2015, 2016, 2018 and 2019). The “Cold”90

region has a zero-crossing date before Oct 27, the “Mid” region has a zero-crossing date after Oct 27, and the “Warm” region

does not have a zero-crossing date. This date was chosen as a cutoff to create two similarly sized Mid and Cold regions. Some

adjustments from these definitions are made so that the regions are contiguous. We aggregate the CO2 fluxes described below

to these regions by (1) interpolating the Warm, Mid and Cold regions from 4◦×5◦ spatial resolution to the grid of the CO2 flux

datasets (both GPP and NEE), and (2) calculate the area weighted
::::::::::::
area-weighted net fluxes over the regions. We also obtain95

the downward shortwave flux from the MERRA-2 Land dataset.

Several datasets are also used for supplementary evaluation of the MERRA-2 Land soil temperature seasonality (Text S2).

For that analysis, we use ERA5-Land reanalysis soil temperature data (Munoz Sabater, 2019), generated using Copernicus

Climate Change Service Information 2020. We also examined monthly soil temperature from seven models from the Coupled

Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016) for the historical and Shared Socioeconomic Pathway100

585 (ssp585) simulations, which is the highest emission scenario. The CMIP6 simulations were included to compare with

MERRA-2 simulated soil temperature over 2010–2019, and to examine possible trends in soil temperature under a high emis-

sion scenario. The model runs are: CanESM5 (r1i1p2f1), MIROC ES2L (r1i1p1f2), ACCESS EMS1 (r1i1p1f1), MRI ESM2 0

(historical r1i1p1f1, ssp585 r1i2p1f1), CNRM ESM2 1 (r1i1p1f2), E3SM 1 1 (r1i1p1f1), and UKESM1 0 LL (r4i1p1f2). These

models were chosen because they participated in the Coupled Climate–Carbon Cycle Model Intercomparison (C4MIP) (Jones105

et al., 2016). Finally, we compare the MERRA-2 Land soil temperature to borehole soil temperature measurements over the

period 1998–2020, which were downloaded from the Global Terrestrial Network for Permafrost (GTN-P) borehole database

(http://gtnpdatabase.org/boreholes).
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2.2 Atmospheric flux inversions

The OCO-2 Model Inter-comparison Project (OCO-2 MIP) provides standardized experimental set-ups for assimilating atmo-110

spheric CO2 to estimate net biosphere exchange (NBE), defined as

NBE=NEE+BB, (3)

where BB is biomass burning, across a range of inversion systems. Version 9 of the
:::
The

:::
v9 OCO-2 MIP (MIPv9, (Peiro et al., 2021)

)
:::::::::::::::
(Peiro et al., 2021), provides ensembles of nine inversion systems that assimilated a standardized set of in situ and flask CO2

measurements for one experiment (referred to as “IS”) and OCO-2 ACOS b9 land nadir and land glint
::::
XCO2:

retrievals for a115

second experiment (referred to as “LNLG”). We estimate NEE fluxes from MIPv9
::
v9

:::::::
OCO-2

::::
MIP

:
NBE fluxes by removing

biomass burning emissions
:::::::::
subtracting

:::::::
biomass

:::::::
burning

::::::::
emission

::::::::
estimates from the Global Fire Emissions Database version

4 (GFED4.1s) (van der Werf et al., 2017). GFED4.1s provides estimates of biomass burning using MODIS burned area (Giglio

et al., 2013), thermal anomalies, and surface reflectance observations (Randerson et al., 2012). Note that biomass burning is a

relatively small contribution to NBE over the regions examined here during the study period (2015–2019) (Fig. S1). The NEE120

fluxes produced by each ensemble member over northern Eurasia are shown in Fig. S2.

To examine variability in fluxes at the sub-monthly time step, we examine three other inversion NEE estimates that optimize

sub-monthly NEE fluxes: TM5-4DVAR14day LNLGIS, CAMS14day LNLGIS, and CMS-Flux14day LNLGIS. These inversions

assimilated both in situ and flask CO2 in addition to OCO-2 ACOS b10 land nadir and land glint retrievals(we refer to this

experiment as LNLGIS). Note that the ACOS b10 retrievals are updated from the b9 retrievals employed in MIPv9
::
v9

:::::::
OCO-2125

::::
MIP. The prior and posterior NEE fluxes produced by each ensemble member are shown in Fig. S3, and the inversion set-ups

are described below.

TM5-4DVAR is a variational inversion framework based on the TM5 atmospheric tracer transport model (Meirink et al.,

2008; Basu et al., 2013). The TM5-4DVAR14day LNLGIS inversion assimilated 10 s averages of OCO-2 ACOS b10 land

nadir and land glint measurements concurrently with in situ measurements to optimize weekly NEE and ocean fluxes. The130

OCO-2 10 s averages were constructed analogous to the b9 10 s averages assimilated by models in MIPv9
::
v9

:::::::
OCO-2

::::
MIP

(Peiro et al., 2021). The in situ measurements assimilated were updated from Peiro et al. (2021), specifically ObsPack NRT

5.0 was replaced by NRT 5.2. The flux inversion set-up was identical to the set-up of “TM5-4DVAR” in Peiro et al. (2021),

except (i) the inversion was run from 2014-06-01 to 2021-02-01 (instead of 2014-09-01 to 2019-06-01 in Peiro et al. (2021)

)
:::::::::::::::::::::::::::::::::::::::::::::::
(instead of 2014-09-01 to 2019-06-01 in Peiro et al., 2021), (ii) ECMWF ERA5 meteorology was used to drive the model135

instead of ERA Interim, (iii) a 1◦ × 1◦ transport grid over North America was nested inside the global 3◦ × 2◦ grid to take

advantage of the higher in situ data density, and (iv) prior CO2 fluxes were constructed following Weir et al. (2021).

The CAMS14day LNLGIS inversion utilizes the CAMS greenhouse gases inversion system (Chevallier et al., 2005, 2010;

Chevallier, 2013), and assimilates OCO-2 land nadir and land glint XCO2
10 s averages and in situ CO2 measurements concur-

rently. A variational system is employed to optimize day-time and night-time NEE at 8-day temporal resolution of 1.875◦ ×140

3.75◦ model grid. Tracer transport is performed using the Laboratoirede Météorologie Dynamique (LMDz) general circulation

model version LMDz6A (Remaud et al., 2018). These data were downloaded from https://atmosphere.copernicus.eu/. Note
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that CAMS reports NBE - as explained earlier, we estimate NEE using GFED4.1s biomass burning emissions, as was done for

the MIPv9
:::
v9

:::::::
OCO-2

::::
MIP.

The CMS-Flux14day LNLGIS flux inversions are performed using the set-up of Byrne et al. (2020b), which uses the Carbon145

Monitoring System-Flux (CMS-Flux) inversion system that has been developed under the NASA Carbon Monitoring System

Flux project (https://cmsflux.jpl.nasa.gov) (Henze et al., 2007; Liu et al., 2014). These flux inversions optimize 14-day NEE

and ocean fluxes by assimilating OCO-2 ACOS b10 land nadir and land glint “buddy” super-obs concurrently with in situ and

flask measurements from version 6.0 of the GLOBALVIEW plus package (Masarie et al., 2014; Schuldt et al., 2020). OCO-

2 “buddy” super-obs are obtained by averaging individual soundings into super-obs at 0.5◦ × 0.5◦ spatial resolution (within150

the same orbit)
:::
with

:::::
equal

:::::::::
weighting following Liu et al. (2017). We assimilate surface-based in situ and flask measurements

between 11 AM and 4 PM local time. These data were also pre-filtered to remove observations that were not well simulated by

the model (based on a posterior data-model χ2 mismatches greater than three for a preliminary flux inversion). For these

inversions, ODIAC fossil fuel emissions (Oda and Maksyutov, 2011; Oda et al., 2018) and GFED 4.1s biomass burning

emissions (van der Werf et al., 2017), including small fires (Randerson et al., 2012), are prescribed but not optimized.155

2.3 Dynamic global vegetation models (DGVMs)

We use CO2 flux estimates from an ensemble of 15 dynamic global vegetation models (DGVMs) from TRENDY v8 (Sitch

et al., 2015). We utilize fluxes simulated by the CABLE-POP, CLASS-CTEM, CLM5.0, DLEM, ISAM, ISBA-CTRIP, JS-

BACH, JULES, LPJ, LPX-Bern, OCN, ORCHIDEE, ORCHIDEE-CNP, SDGVM and VISIT DGVMs. We exclude LPJ-

GUESS because monthly output on Rh was not available. We utilize monthly GPP, autotrophic respiration (Ra) and Rh fluxes160

from the “S3” experiment that employs time-varying CO2, climate and land use forcing data. We further calculate NPP from

the simulated GPP and Ra data (NPP =GPP−Ra) at the models native resolution. The NEE, NPP, and Rh fluxes produced

by each ensemble member are shown in Fig. S4 for the same three year period as the data-driven estimates (2015, 2016, and

2018).

We also utilize TRENDY v8 model output to estimate an ensemble of Carbon Use Efficiency (CUE=NPP/GPP) from165

each DGVM. CUE can become negative during the winter and spring, when GPP is approximately zero but Ra is non-zero.

However, we limit CUE values to a range between zero and one. These CUE estimates are then employed to estimate data-

driven NPP estimates from the data-driven GPP data (see Sec. 2.4). Figure S5 shows the CUE estimates derived from the

TRENDY v8 models.

2.4 GPP datasets and NPP estimates170

We utilize four data-driven GPP estimates in this analysis: FluxSat, FLUXCOM, VPM, and GOSIF. These datasets differ in

inputs and approach.

FluxSat Version 2 (Joiner and Yoshida, 2020) estimates GPP based on Nadir BRDF-Adjusted Reflectances (NBAR) from the

MODerate-resolution Imaging Spectroradiometer (MODIS )
:::::::
MODIS MYD43D product (Schaaf et al., 2002). The GPP esti-
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mates are calibrated with the FLUXNET2015 GPP derived from eddy covariance flux measurements at Tier 1 sites (Pastorello175

et al., 2020).

FLUXCOM upscales CO2 fluxes from flux tower observations using a variety of machine learning methods and forcing

datasets (Jung et al., 2020). We examine the ensemble mean of the nine remote sensing (RS) learning algorithms.

VPM is a light use efficiency model that estimates GPP globally using MODIS surface reflectances and NCEP Reanalysis-2

PAR and temperature data (Xiao et al., 2004; Zhang et al., 2017). The native spatiotemporal resolution of the dataset is 500-m180

and 8-days. VPM has been shown to agree well with FLUXNET eddy covariance site-level data (Zhang et al., 2017) and with

TROPOMI SIF at the global scale (Doughty et al., 2021).

The GOSIF GPP product estimates GPP based on OCO-2 SIF, MODIS EVI, and reanalysis data from MERRA-2 (Li and

Xiao, 2019). To generate GPP estimates, first, 8 day
::::
8-day

:
globally gridded 0.05◦ × 0.05◦ SIF is estimated from the input

data using machine-learning algorithms. GOSIF GPP is then estimated from the GOSIF SIF estimates using eight SIF-GPP185

relationships with different forms (universal and biome-specific, with and without intercept). In this analysis we utilize the

mean GPP estimate across the eight SIF-GPP estimates.

These four data-driven GPP estimates are shown in Fig. S6. For this analysis, we estimate NPP from these data using the

CUE from the TRENDY models. We perform this calculation differently for the monthly analysis and biweekly analysis.

For the monthly analysis, we calculate 60 NPP seasonal cycles for each possible combination of the four GPP and 15 CUE190

seasonal cycles. We then calculate the median
:::::
mean as our best estimate and interquartile range as a metric of uncertainty. For

the biweekly analysis, we calculate the best estimate using the median
::::
mean

:
GPP and CUE seasonal cycles, and calculate the

uncertainty using the full range of GPP estimates and interquartile range of CUE estimates. This is done differently to match

the NEE analysis, which leverages the larger ensemble from the MIPv9
::
v9

::::::
OCO-2

:::::
MIP to examine the median

::::
mean

:
and

interquartile spread for the monthly analysis, but employs the full range for the smaller biweekly ensemble of three models.195

2.5 Data-driven Rh estimates

We calculate the seasonal cycle of Rh by combining the data-driven estimates of NPP and NEE ,

Rh =NEE+NPP.

::::
using

::::
Eq.

:
1
::::::::::::::::::
(Rh =NEE+NPP).

:
We perform this calculation differently for the monthly analysis and biweekly analysis. For

the monthly
::
v9 OCO-2 MIPv9

:::
MIP

:
IS- and LNLG-based estimates, we calculate 540 Rh seasonal cycles by combining the nine200

data-driven IS or LNLG NEE estimates with the 60 NPP estimates. We then take the median
::::
mean

:
and interquartile spread as

the best estimate and uncertainty. For the biweekly analysis, we calculate the best estimate of Rh from the best (median
::::
mean)

estimates of NPP and NEE. We then take
::::::
specify

:
the uncertainty to be the full range of Rh estimates calculated from the three

biweekly NEE estimates and the NPP range.
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2.6 Soil carbon decomposition model205

We use the soil carbon decomposition model developed in Yi et al. (2015, 2020) to simulate the contribution of soil at different

depths to total Rh and NEE fluxes. The soil decomposition model uses multiple litter and SOC
:::
soil

::::::
organic

::::::
carbon

::::::
(SOC) pools

to characterize the progressive decomposition of fresh litter to more recalcitrant materials, which include three litterfall pools,

three SOC pools with relatively fast turnover rates, and a deep SOC pool with slow turnover rates. The litterfall carbon inputs

were first allocated to the three litterfall pools depending on the substrate quality of litterfall component and then transferred210

to the SOC pools through progressive decomposition. We then model the profile of the carbon pools through accounting for

the vertical carbon transport (Yi et al., 2020). A constant diffusivity rate was assigned to permafrost (5.0 cm2 yr−1) and non-

permafrost (2.0 cm2 yr−1) regions within the top 1 m soil, and then linearly decreased to 0 at the 3 m below surface (Koven

et al., 2013). The boundary conditions at the soil surface were set as the carbon input rate to the three surface litterfall pools.

A zero-flux was assigned at the bottom of the soil carbon pool, which was set as 3 m. This accounts for the upper permafrost215

layer, while carbon in deeper layers (e.g., 3-10 m) is largely insulated from climate variability and ignored in this study. The

decomposition rate (day−1) for each carbon pool was derived as the product of a theoretical maximum rate constant and

dimensionless multipliers for soil temperature and liquid water content constraints (Yi et al., 2015)to decomposition indicated

:
.
::
In

:::
this

::::::
study,

:::
the

::::::::::::
decomposition

::::
was

::::::
driven by the MERRA2 soil temperature data. For simplicity, the soil saturation was

assumed as 1.0 when soil temperature is above 0 ◦C, while the maximum liquid soil water fraction was used for below freezing220

(Schaefer and Jafarov, 2016).

2.7 FLUXNET data and processing

We examine 15 high latitude FLUXNET2015 sites to confirm the seasonality of carbon fluxes inferred from the atmospheric

CO2 and remote sensing datasets. These sites are listed in table
::::
Table S1. For this, we utilize monthly data with the quality

flag greater than 0.75. We calculate NPP and Rh for each site from the NEE and GPP datasets by applying the CUE from the225

TRENDY DGVMs at the gridcell containing the FLUXNET site.

3 Results

3.1 Differences between data-driven and DGVM carbon fluxes

We first examine the mean seasonal cycle of monthly NEE from the MIPv9
::
v9

::::::
OCO-2

:::::
MIP

:
inversions and TRENDY v8

DGVMs over the three north Eurasian regions (mean over 2015, 2016, and 2018; 2017 is excluded due to an OCO-2 data230

gap
::::::
during

:::::::
Aug-Sep). The objective of this initial analysis is to identify the seasonal features of NEE over northern Eurasia,

and identify how the data-driven and simulated estimates differ. The spread among the TRENDY v8 models is large and

encompasses the data-driven estimates (Fig. S4). Thus, to identify data-model differences, we focus on differences in the

ensemble median
::::
mean estimates and adopt the interquartile spread across MIPv9

::
v9

::::::
OCO-2

::::
MIP

:
and TRENDY to quantify

uncertainty in this estimate.235
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Figure 2. Monthly carbon cycle fluxes (average of 2015, 2016 and 2018; 2017 is excluded due to an OCO-2 data gap). (a-c) Median
::::
Mean

(solid line) and interquartile range (shaded area) of NEE for the ensemble of IS (red) and LNLG (blue)
::
v9

:
OCO-2 MIPv9

:::
MIP

:
and for the

TRENDY ensemble (green). (d-f) NPP
:::
GPP for the TRENDY ensemble (green) and estimated from data-driven GPP

::::::
datasets (black). (g-i)

Rh :::
TER

:
simulated by the TRENDY ensemble (green) and calculated from combining the data-driven GPP with the IS (red) and LNLG

(blue)
::
v9 OCO-2 MIPv9

:::
MIP NEE constraints.(j-l) Cumulative fraction of Rh over the growing season. Figure S7 shows these fluxes per

unit area.

Figure 3
:
2(a-c) shows the NEE fluxes for the MIPv9

::
v9

::::::
OCO-2

:::::
MIP and TRENDY DGVMs for three regions over Eurasia.

The two
::
v9

:
OCO-2 MIPv9

:::
MIP

:
ensembles (IS and LNLG) generally show close agreement and coherent differences from

the TRENDY models (and prior NEE estimates, Fig. S2). The largest differences between the IS and LNLG ensembles occur

over the Cold region, where the IS ensemble suggests increased uptake during July and somewhat increased release during

October. Still, the coherent differences between the data-driven fluxes (both IS and LNLG) relative to the TRENDY ensemble240

gives us increased confidence that these inversions are precisely capturing the seasonality of NEE. The comparatively good

agreement between the IS and LNLG inversions (relative to TRENDY) also suggests that artifacts related to observational

coverage (Byrne et al., 2017; Basu et al., 2018) and data/model biases (Schuh et al., 2019) do not strongly impact the results.

Although, we note that both datasets have spatial and seasonal gaps over northern Eurasia (e.g., Fig. S8–S9) as discussed in

Sec. 4.2. The accuracy of the MIPv9
::
v9

:::::::
OCO-2

::::
MIP fluxes is supported through an evaluation of the posterior CO2 fields245
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Figure 3.
::::::
Monthly

::::::
carbon

::::
cycle

:::::
fluxes

::::::
(average

::
of

::::
2015,

::::
2016

:::
and

:::::
2018;

::::
2017

:
is
:::::::
excluded

:::
due

::
to

::
an

::::::
OCO-2

:::
data

::::
gap).

::::
(a-c)

:::::
Mean

::::
(solid

::::
line)

:::
and

:::::::::
interquartile

::::
range

::::::
(shaded

::::
area)

::
of
::::
NEE

:::
for

:::
the

:::::::
ensemble

::
of

::
IS

::::
(red)

:::
and

:::::
LNLG

:::::
(blue)

::
v9

::::::
OCO-2

::::
MIP

:::
and

::
for

:::
the

:::::::
TRENDY

::::::::
ensemble

::::::
(green).

::::
(d-f)

:::
NPP

:::
for

:::
the

::::::::
TRENDY

:::::::
ensemble

::::::
(green)

:::
and

::::::::
estimated

::::
from

::::::::
data-driven

::::
GPP

::::::
(black).

::::
(g-i)

:::
Rh::::::::

simulated
::
by

:::
the

::::::::
TRENDY

:::::::
ensemble

:::::
(green)

::::
and

:::::::
calculated

::::
from

:::::::::
combining

::
the

:::::::::
data-driven

::::
NPP

:::
with

:::
the

::
IS

::::
(red)

:::
and

:::::
LNLG

:::::
(blue)

:::
v9

:::::
OCO-2

::::
MIP

::::
NEE

:::::::::
constraints.

:::
(j-l)

:::::::::
Cumulative

::::::
fraction

::
of

::
Rh::::

over
:::
the

::::::
growing

::::::
season.

:::::
Figure

::
S7

:::::
shows

::::
these

:::::
fluxes

:::
per

:::
unit

::::
area.

against independent atmospheric CO2 measurements by Peiro et al. (2021), and a supplementary comparisons of the CMS-

Flux14day inversions with aircraft data over Alaska (Text. S1, Fig. S10–S11).

Comparing the MIPv9
::
v9

:::::::
OCO-2

::::
MIP

:
and TRENDY NEE estimates, good agreement is found for the Warm and Mid

regions, while larger differences are found for the Cold region. In the Warm and Mid regions, systematic differences ex-

ceed the interquartile range during Sep–Oct, when the TRENDY models suggest a weaker efflux of CO2 to the atmosphere250

(2.19–2.47 TgCday−1
::::::::
0.30–0.51

:::::::::::::
gCm−2day−1). The TRENDY models also tend to show weaker uptake by land during
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June–July in the Mid region (2.32–2.77 TgCday−1
::::::::
0.05–0.35

:::::::::::::
gCm−2day−1). For the Cold region, the TRENDY models

produce weaker carbon uptake during June–July (7.17–11.21 TgCday−1
::::::::
0.48–0.83

:::::::::::::
gCm−2day−1) but stronger uptake (or

reduced efflux) during Aug–Oct (4.86–5.33 TgCday−1
::::::::
0.31–0.36

::::::::::::
gCm−2day−1). This large amplitude of the NEE seasonal

cycle contributes to the large seasonality in XCO2 observed over eastern Eurasia (Jacobs et al., 2021).255

To further investigate the causes of differences in NEE between the TRENDY and MIPv9
::
v9

::::::
OCO-2

::::
MIP

:
ensembles, we

separately examine
:::::::::
component

:::::::
primary

:::::::::::
productivity

:::
and

::::::::::
respiration

:::::
fluxes.

::::
For

:::
the

:::::
most

:::::
direct

:::::::::::::
decomposition,

:::
we

:::::::
employ

::
the

::::::::::
data-driven

::::
GPP

::::::::
estimates

:::
to

:::::::::
decompose

:::::
NEE

:::
into

:::::
GPP

:::
and

::::::::
terrestrial

:::::::::
ecosystem

:::::::::
respiration

::::::
fluxes

:::::
(TER)

:::::
(Fig.

:::
2).

::::
This

:::::::::
comparison

::::::
shows

::::
that

:::
the

:::::::::
TRENDY

::::::::
ensemble

:::::
mean

:::::
GPP

:::::
tends

::
to

:::::::::::
overestimate

:::
the

::::::::::
data-driven

:::::
GPP

::::::
during

:::
the

:::::::
autumn

:::::::::
(Sep–Nov),

::::::
largely

:::::::::
explaining

:::
the

:::::::::
mismatch

::
in

::::
NEE

::::::
during

:::
this

:::::::
season.

:::
For

:::::
TER,

::
we

::::
find

:::::
good

:::::::::
agreement

::
for

::::
over

:::
the

::::::
Warm260

:::::
region

::::::
except

:::
for

::
an

::::::::::::
underestimate

::
of

::::
TER

:::
for

:::
the

::::::::
TRENDY

::::::::
ensemble

:::::
mean

::::::
during

:::
the

:::::::
summer

::::::::
(mirroring

::::::
GPP).

:::
For

:::
the

::::
Mid

::::::
regions,

:::::::::
agreement

::
is
::::::

found
:::::::
between

:::
the

:::::::::
TRENDY

:::
and

::::::::::
data-driven

:::::
TER

::::::::
estimates

:::::::::
throughout

:::
the

::::::::
growing

::::::
season.

::::
For

:::
the

::::
Cold

::::::
region,

:::
we

::::
find

:::
that

:::
the

:::::::::
TRENDY

::::::::
ensemble

:::::
mean

::::::::
suggested

::::::
greater

:::::
TER

:::::
during

::::::::::
May–Aug,

:::::
which

:::::
drives

:::
the

:::::::::
mismatch

:::::
found

::
in

:::::
NEE.

:::
We

::::
next

:::::::::
decompose

:::::
NEE

:::
into

::::::::::
component NPP and Rh :::::

fluxes.
::::::
These

::::::::
estimates

::::::
require

::
an

:::::::::
additional

::::::::::
assumption

:::::
about

:::
the265

::::
CUE

::
in

::::::::::
comparison

::
to
:::

the
:::::::::

GPP/TER
:::::::::::::
decomposition,

:::
but

::::
also

::::
have

:::
the

::::::::
potential

::
to

:::::::
provide

:::::
more

::::::
process

:::::::::::::
understanding.

:::
As

::::::::
described

::
in

::::
Sec.

::::
2.4,

:::
we

::::::
employ

:::
the

::::::::
monthly

::::
CUE

::::::::
estimates

:::::
from

:::
the

::::::::
ensemble

::
of

:::::::::
TRENDY

:::::::
models.

::::
This

::::
both

::::::
allows

:::
an

:::::::::::::::
“apples-to-apples”

::::::::::
comparison

::::
with

:::
the

:::::::::
TRENDY

::::::
models

:::
as

:::
the

::::
CUE

::::::::
estimates

:::
are

:::::::::
consistent

:::::::
between

::::
the

:::::::::
data-driven

::::
and

::::::::
TRENDY

:::::::::
estimates,

:::
and

::::::
allows

:::
us

::
to

:::::::::
propagate

:::::::::
uncertainty

:::
in

::::
CUE

:::::
from

:::
the

:::::::::
ensemble

::::::
spread. The data-driven NPP and

TRENDY NPP are shown in Fig. 3(d-f). The seasonality in NPP between the data-driven and TRENDY estimates show good270

agreement for all regions. In the Mid and Warm regions, the TRENDY model median
:::::
mean

::::
NPP tends to be lower than the data-

driven estimates during Jun-Jul (1.94–2.01 TgCday−1
::::::::
0.26–0.37

:::::::::::::
gCm−2day−1). However, the largest differences are for the

Cold region, where the TRENDY ensemble median
::::
mean

:
shows increased NPP during Aug–Sep (5.64 TgCday−1

::::
0.38

::::::::::::
gCm−2day−1).

This largely accounts for the lower NEE during Aug-Sep (86-95%). Thus, despite previously reported deficiencies in model

representation of photosynthesis over high latitudes (Rogers et al., 2017, 2019), we find that TRENDY NPP
::::::::
estimates largely275

capture the data-driven seasonality and do not drive NEE differences against the data-driven seasonal cycle.

Finally, we compare TRENDY Rh to data-driven Rh (Fig. 3(g-i)). In the Warm region, the TRENDY model median
::::
mean Rh

is lower than the data-driven estimates during May–Sep (2.28–2.47 TgCday−1
::::::::
0.21–0.26

::::::::::::
gCm−2day−1), but the seasonality

is similar. In the Mid region, the data-driven and TRENDY Rh seasonal cycles show good agreement throughout the growing

season. The largest differences between data-driven and TRENDY Rh seasonal cycles are found for the Cold region. The280

TRENDY model median
::::
mean

:
shows increased Rh during May–Jul (4.05–7.07 TgCday−1

::::::::
0.32–0.58

:::::::::::::
gCm−2day−1) but

show reduced Rh during the rest of the year (1.37–1.69 TgCday−1
::::::::
0.29–0.51

::::::::::::
gCm−2day−1). As a result, the seasonality of

data-driven Rh is shifted later in the year relative to TRENDY ensemble. This can be seen in the cumulative fraction of annual

Rh, which quantifies the fraction of total Rh released as the season progresses (Fig. 3(j-l)). The percentage of total annual Rh

released during May-Jul is 48
:::::::
May–Jul

::
is

::
46% for the TRENDY ensemble median but 36

::::
mean

:::
but

:::
37% (30%) for the LNLG285

(IS) data-driven Rh ensemble median
::::
mean.
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We independently confirm a shift in the seasonality of data-driven Rh relative to TRENDY for 15 high latitude FLUXNET

sites (Fig. S12). Due to the sparsity of FLUXNET sites over northeastern Eurasia, we include sites outside of the “Cold”

domain but that have early zero-crossing dates (estimated by a mean October air temperature less than 2 ◦C). The observed

median
::::
mean

:
Rh peaks across these sites during September, in agreement with the data-driven Rh seasonality. In contrast,290

the TRENDY median
::::
mean

:
Rh peak occurs during July (consistent with the regional scale analysis). This phase shift is also

evident in the cumulative fraction of annual Rh, which shows that the percentage of total annual Rh released during May-Jul

is 46% for the TRENDY ensemble median
::::
mean

:
but 35% for the FLUXNET-based ensemble median

::::
mean.

Overall, these results indicate good agreement between the TRENDY ensemble and data-driven estimates for the Warm and

Mid regions, but show marked differences over the Cold region. In particular, we find that the data-driven estimates suggest295

a seasonal redistribution of Rh with a reduction during May-Jul but an increase for the remainder of the year. Further, these

results show that differences in Rh largely account for the differences between the data-driven and TRENDY NEE fluxes over

the Cold region, except in Aug-Sep when NPP differences are large. In the remaining sections, we will characterize the data-

driven seasonal cycle of NEE, NPP, and Rh at a higher (biweekly) temporal resolution and investigate mechanistic explanations

for the data-model differences found over the Cold region.300

3.2 Data-driven biweekly CO2 fluxes

We now investigate the data-driven seasonal cycle of NEE, NPP, and Rh with biweekly (14 day
:::::
14-day) temporal resolution.

This higher resolution better resolves temporal changes in CO2 fluxes throughout the growing season, particularly during the

shoulder seasons, when week-to-week changes in CO2 fluxes are large (Parazoo et al., 2018a). For this analysis, we utilize

a set of three flux inversions that assimilate both in situ and OCO-2 land nadir and glint data (ACOS v10) to estimate sub-305

monthly CO2 fluxes (TM5-4DVAR14day, CAMS14day, and CMS-Flux14day; individual model fluxes shown in Fig. S3). These

inversions give similar NEE seasonality to the MIPv9
::
v9

:::::::
OCO-2

::::
MIP monthly fluxes (e.g., Fig S10) and have seasonality

similar to the
::
v9

:
OCO-2 MIPv9

::::
MIP LNLG inversions for the Cold region. For NPP, we utilize the same datasets as Sec. 3.1

but at 14-day temporal resolution. We examine the ensemble medians
:::::
means

:
for a best estimate and take the full range of

model estimates as an illustration of the uncertainty.310

Figure 4 shows the four-year-mean (2015, 2016, 2018, and 2019; 2017 is excluded due to an OCO-2 data gap in summer)

seasonal cycle of NEE, NPP, and Rh for the three regions of Eurasia. NEE largely tracks the inverted seasonality of NPP,

although peak NPP is slightly delayed relative to peak drawdown in NEE (by 0–2 weeks). Both NEE and NPP generally follow

the seasonal cycle of insolation, but are somewhat delayed in the Mid and Cold regions, likely due to temperature limitation

(Liu et al., 2020). Peak Rh is found to be delayed relative to peak NPP by 0–8 weeks. For the Warm and Mid regions, Rh315

follows the seasonal cycle of surface temperature, with 48% and 51% of the annual total Rh occurring after the peak in surface

temperature, respectively. In contrast, the Cold region shows a substantial delay relative to surface temperature, with 63% of

the total Rh occurring after the peak in surface temperature. The median
::::
mean Rh seasonal cycle is also found to have a double

peak in this Cold region: a smaller peak of 9.8 TgCday−1
::::
0.77

::::::::::::
gCm−2day−1

:
occurs during late May followed by a larger

peak of 21.5 TgCday−1
:::
1.70

:::::::::::::
gCm−2day−1

:
at the beginning of September. This May peak roughly aligns with the spring320
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Figure 4. Data-driven four-year-mean (2015, 2016, 2018, and 2019) 14-day NEE, NPP, and Rh. (a-c) Median
::::
mean

:
and ensemble spread of

NEE for the CMS-Flux14day, TM4-4DVar14day, and CAMS14day flux inversions. (d-f) Median
::::
mean and ensemble spread for the data-driven

NPP. MERRA-2 Land net downward shortwave flux over land is shown in blue. (g-i) Ensemble estimate of Rh =NEE+NPP estimated

from the three NEE and GPP estimates. MERRA-2 Land surface temperature is shown in red.

thaw and positive zero-crossing at the beginning of May. A potential mechanistic explanation for a spring pulse of Rh could be

due to thawing soils that release CO2 that has been trapped within subsurface soil layers over the winter (see Sec. 4).
:::::::
Another

:::::::
plausible

::::::::::
mechanism

:::::
could

::
be

:::
the

::::::
timing

::
of

::::
snow

:::::
melt,

:::::
which

::::
may

:::::::
insulate

:::
the

:::
soil

::::
over

::::::
winter

:::::::::::::
(Yu et al., 2016)

:
. However, the

signal from this first peak is small relative to the uncertainties.

3.3 Mechanistic drivers of late-season Rh325

Data-driven Rh for the Cold region indicates a delayed peak relative to surface temperature and the TRENDY model median
::::
mean.

Here we examine possible mechanistic explanation for this late season peak in Rh using models. We investigate two factors that

could potentially contribute to the delay in Rh: (1) Seasonal variations in the labile carbon pool. Leaf and fine root litter carbon

pools tend to increase over the growing season as carbon is sequestered through photosynthesis (Randerson et al., 1996). Thus,

increased substrate availability in the autumn relative to the spring will act to shift the seasonal cycle of Rh later in the year.330

(2) Rh from subsurface soil layers that have a delayed seasonal cycle driven by a lag in soil temperature. Heating and cooling
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at the surface slowly diffuses through the soil column resulting in a lagged seasonal cycle of temperature with depth (Parazoo

et al., 2018b). Figure 5(a-c) shows the seasonal cycle in soil temperature from the MERRA-2 Land dataset. The phase shift in

soil temperature seasonality with depth can be up to several months, and is largest for the colder regions. Note that we verify

the fidelity of the MERRA-2 Land soil temperature against borehole measurements and against simulated soil temperature335

from ERA-5 reanalysis and the CMIP6 models (see Text. S2, Fig. S13–S14).

To test the impact of these factors, we consider a single layer model that represents Rh using a exponential relationship with

temperature:

Rh = αeβT, (4)

where α represents the labile carbon pool size, β is a constant, and T is the temperature of the carbon pool. To investigate the340

impact of seasonal and vertical variations in labile carbon, we consider three cases:

1.
::::::::::::::::::::::
Rh(αc,Tsurf) = αce

βTsurf : The carbon pool is constant in time
::::
(αc) and the surface temperature (Tsurf ) drives Rh,

2.
:::::::::::::::::::::
Rh(αc,T1m) = αce

βT1m : The carbon pool is constant in time
::::
(αc) and the average top meter soil temperature (T1m)

drives Rh,

3.
::::::::::::::::::::::
Rh(αt,Tsurf) = αte

βTsurf : The carbon pool is dynamic in time (α= f(t)
::::::::
αt = f(t), described in the Appendix) and the345

Tsurf drives Rh. We assume seasonal variations in the carbon pool are within ±15% of the mean (γ = 0.15, Fig. S15

shows the seasonal variation in the labile carbon pool).

Table 1.
:::::::
Statistics

::
on

:::
the

::::::::
data-model

:::
fits

:::
for

::
the

:::::
single

::::
layer

::::::
models.

:::::
Region

:::::::
Experiment

: ::::
Slope ::::::

Intercept

::::::::::::
(gCm−2 day−1) ::

R2 ::::::
Standard

:::
Error

::::
(SE)

:::::::::::
(gCm−2 day−1)

:::
Warm

: :::::::
αeβTsurf

::
0.94

: :::
0.11

: :::
0.89

:::
0.067

:

:::
Warm

: ::::::
αeβT1m

: ::
0.91

: :::
0.14

: :::
0.93

:::
0.051

:

:::
Warm

: :::::::::
α(t)eβTsurf

::
0.94

: :::
0.10

: :::
0.92

:::
0.057

:

:::
Mid

:::::::
αeβTsurf

::
1.03

: :::
0.00

: :::
0.84

:::
0.091

:

:::
Mid

::::::
αeβT1m

: ::
0.88

: :::
0.09

: :::
0.94

:::
0.046

:

:::
Mid

:::::::::
α(t)eβTsurf

::
1.04

: :::
-0.01

: :::
0.89

:::
0.074

:

:::
Cold

:::::::
αeβTsurf

::
1.08

: :::
-0.01

: :::
0.66

:::
0.16

:::
Cold

::::::
αeβT1m

: ::
1.04

: :::
-0.01

: :::
0.88

:::
0.08

:::
Cold

:::::::::
α(t)eβTsurf

::
1.11

: :::
-0.03

: :::
0.77

:::
0.13

Figure 5(d-f) shows linear regressions for each one-layer model against the median
:::::
mean biweekly estimate of Rh. In

each case, the parameters α and β are optimized (note linear regressions are performed on ln(Rh) = ln(α)+βT).
::::::::
Statistics

::
on

:::
the

::::::
model

:::
fits

:::
are

::::::::
provided

::
in

:::::
Table

::
1.
:

For the Warm region, all models are able to fit the data well (R2=0.89–0.94
:::
.93,350
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Figure 5. Impact of temporal and vertical variations in carbon pools on Rh. (a-c) MERRA-2 Land soil temperature over five intervals for

the (a) Warm, (b) Mid, and (c) Cold regions. (d-e) Median
::::
Mean

:
and range in inferred 14-day Rh with fits for single-layer Rh models that

employ (navy dash) Tsurf dependence and no seasonal variations in the carbon pool, (cyan dash) T1m dependence and no seasonal variations

in the carbon pool and (magenta dash) Tsurf dependence and seasonal variations in the carbon pool. (g-i, top) Normalized seasonal cycle of

Rh simulated for D300cm :
by

:::
the

:::
soil

:::::::::::
decomposition

:::::
model (

:::
Sec.

::::
2.6).

:::
The

:::::::
different

:::
lines

:::::
show

::::::
different

:::::
model

:::::::::
simulations:

::::::
D300cm:::::::

employs

:
a dynamic carbon pool over 0-300 cm depth), C300cm (

:::::::
employs

:
a constant carbon pool over 0-300 cm depth), D10cm (

::::::
employs

:
a
:
dynamic

carbon pool over 0-10 cm depth)and .
:
(g-i, bottom) the difference

::::::::
Differences in simulated Rh::::::

between
::::::::::
experiments.

:::::::::::::::::::::::::::
SE = 0.051–0.067 gCm−2day−1). Similarly, all models are able to largely capture the seasonal cycle in the Mid region

(R2=0.84–0.92
:::
.94), although the model driven by T1m ::::::::::

Rh(αc,T1m):appears to better capture the shoulder seasons
:::
and

:::::
gives

:
a
::::::
smaller

::::::::
standard

::::
error

::::::::::::::::::::::::
(SE = 0.046 gCm−2day−1)

::::
than

:::
the

:::::
other

::::::
models

:::::::::::::::::::::::::::::
(SE = 0.074–0.091 gCm−2day−1). The models
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diverge the most for the Cold region. The model driven by Tsurf with a constant carbon pool
::::::::::::
Rh(αc,Tsurf) gives the poorest

performance (R2 = 0.65
:::::::

2 = 0.66,
::::::::::::::::::::::
SE = 0.16 gCm−2day−1), as the driving temperature data peaks too early to capture the355

seasonality of Rh. The model with a dynamic carbon pool
:::::::::::
Rh(αt,Tsurf) performs somewhat better as the peak in model Rh is

delayed relative to surface temperature
:::::::::
(R2 = 0.77,

:::::::::::::::::::::::
SE = 0.13 gCm−2day−1). Still, the model driven by T1m :::::::::::

Rh(αc,T1m)

performs the best (R2 = 0.88
:
,
:::::::::::::::::::::
SE = 0.08 gCm−2day−1), and best captures the delayed Rh seasonality relative to surface

temperature.

::
To

::::::
further

:::::::
confirm

:::
that

::::::::::::
Rh(αc,T1m) :::

best
::::::::
captures

:::
the

:::::::::
seasonality

::
of

::::
Rh,

:::
we

::
fit

:::::
these

::::
same

:::::::
models

::
to

:::::::
seasonal

::::::::::
FLUXNET360

::
Rh::::::::

averaged
::::
over

::::
cold

::::
sites.

::::
This

::
is
::
a

:::::
rather

:::::
rough

::::::::::
comparison

::
as

:::
we

::::
drive

:::
the

::::::
models

::::
with

:::
soil

:::::::::::
temperatures

::::::::
averaged

::::
over

:::
the

::::
Cold

:::::
region

::::::
rather

::::
than

:::
site

:::::::
specific

::::::
datasets

::::
(due

:::
to

::::::
absence

:::
of

:::
soil

::::::::::
temperature

:::::
data).

::::::
Figure

:::
S16

::::::
shows

:::
the

:::::::
resulting

:::
fits

::::
and

::::
Table

:::
S2

:::::
gives

:::
the

:::::::
statistics

::
of

:::
the

::::
fits.

:::
We

:::
find

::::
that

:::::::::::
Rh(αc,T1m)::::::::

performs
:::
best

::::::::::
(R2 = 0.96,

:::::::::::::::::::::::
SE = 0.08 gCm−2day−1),

:::::
while

:::::::::::
Rh(αt,Tsurf)::::::::

performs
::::::
second

::::
best

::::::::::
(R2 = 0.85,

::::::::::::::::::::::
SE = 0.19 gCm−2day−1)

:::
and

::::::::::::
Rh(αc,Tsurf):::::

gives
:::
the

::::::
poorest

:::::::::::
performance

:::::::::
(R2 = 0.75,

:::::::::::::::::::::::
SE = 0.25 gCm−2day−1),

::::::::
consistent

:::::
with

::
the

::::::::::::
regional-scale

::::::::::
data-driven

:::::::
analysis.

:
365

This analysis demonstrates that the seasonality of Rh in the Warm and Mid regions are reasonably explained by seasonal

variations in Tsurf , but that inclusion of seasonal variations in the labile carbon pool and the impact of soil temperature with

depth still improve the seasonal fit. However, for the Cold region, the seasonality of Rh is not well captured by Tsurf and

additional factors, particularly the impact soil temperature with depth, are required to explain the delayed seasonality of Rh

over the Cold region.370

We further investigate these mechanisms using a soil carbon decomposition model that can resolve
:::::::
simulate seasonal and

vertical variations in carbon pools (Sec. 2.6).
::::
This

:::::
allows

:::
for

::
a
:::::::::
prognostic

:::::::::
simulation

::
of

:::::::::::
mechanisms

::::::
driving

:::
the

::::::::::
seasonality,

::
in

:::::::
contrast

::
to

:::
the

:::::::::
diagnostic

::::::::
one-layer

:::::::
models. We examine the seasonality of the Rh simulated down to a depth of 300 cm

using a constant carbon pool (C300cm), simulated within the top 10 cm of soil using a dynamic carbon pool (D10cm), and

simulated to a depth of 300 cm using a dynamic carbon pool (D300cm,
::::

due
::
to

::::::::
dynamic

:::::::
litterfall

:::::
inputs

::::
and

:::
Rh::::::

outputs). We375

compare these seasonal cycles after normalizing by the annual total Rh. Figure 5(g-i) shows that incorporating seasonal and

vertical variations in the carbon pool results in a phase shift in Rh to later in the year, consistent with the one-layer model

results. The simulated impact of these factors is found to be quite small, possibly due to underestimation of the impact of

seasonal and vertical variations in the carbon pools on Rh in the model. Still, these model simulations can inform the Rh

tendencies of these carbon pool variations. Comparing the regions, the impact of seasonal variations in the labile carbon pool380

are quite similar, with reduced Rh in the summer and increased Rh during the autumn relative to a constant carbon pool.

In contrast, the impact of vertically resolved Rh shows differences between the regions, with a small impact for the Warm

region but a comparatively large impact for the Cold region. The larger impact over the Cold region is likely due to larger

carbon pools at depth (Fig. S16
:::
S17), with a possible contribution from regional differences in the thermal gradient with depth

(Fig. 5). Similarly, we find that the fractional contribution of subsurface soils to total Rh has larger seasonal variation over the385

Cold region (Fig. S17
:::
S18). Thus, these results support a substantial contribution of subsurface soil Rh, and suggests that an

underestimation of this quantity by the DGVMs could explain the data-model differences.
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4 Discussion

4.1 Implications

Over the cold northeastern region of Eurasia, our data-driven Rh seasonal cycle allocates 64–70% of annual CO2 emissions390

to outside of the summer (August - April) compared to only 52% of annual Rh emissions allocated by the TRENDY DVGMs

to this period. The reason that the TRENDY models do not capture this seasonality is unclear. A plausible explanation is that

the TRENDY models do not capture the contribution of subsurface layers to Rh, especially during the zero curtain period.

This is clearly the case for the subset of TRENDY models that drive Rh with air temperature. However, it is unclear if this

is an important factor for models with more sophisticated soil modules. Surprisingly, a preliminary analysis did not find a395

relationship between model complexity and agreement with the data-driven estimate. The drivers of differences from the data-

driven estimate may differ between models, and be impacted by the interplay of litterfall phenology, Rh formulation (Peylin

et al., 2005), and number of soil layers, among other factors. Some potential areas of focus for improving models may be

gleaned from recent studies. Seiler et al. (2021) suggest that the TRENDY models may systematically underestimate soil

organic carbon at high latitudes, which could contribute to an underestimate of subsurface Rh across the models. Endsley et al.400

(2021) found a similarly phased bias in simulated Rh by the Terrestrial Carbon Flux (TCF) model against flux tower Rh to

that reported here. They show that this bias could be largely mitigated by adding seasonally varying litterfall phenology, an

O2 diffusion limitation on Rh and a vertically resolved soil decomposition model, suggesting these may be foci for model

improvements.

Differences between the data-driven and TRENDY Rh seasonal cycles suggest that DGVMs may be deficient in simulating405

the response of permafrost rich ecosystems to climate change, particularly in terms of subsurface Rh. Improving DGVM

skill in these ecosystems is critical given the rapid northern high latitude warming and lengthening of the zero curtain period

(Euskirchen et al., 2017; Parazoo et al., 2018b; Chen et al., 2021). The rapid changes in northern Eurasia are illustrated in

Fig. 6, which shows the number of months per year that soil temperatures are greater than 0 ◦C as simulated by a set of

CMIP6 models. Soils in the permafrost-rich Cold region are undergoing the most dramatic lengthening of the unfrozen period,410

particularly at depth (50–200 cm). Under scenario ssp585 (highest emission scenario), these soils are predicted to go from

∼5 months per year with a monthly mean soil temperature above 0 ◦C during the 20th century to ∼11 months per year by

2100. The impact is largest for the Cold region at depth because of the reduced seasonality relative to the surface, such that a

warming of ∼7 ◦C shifts nearly the entire seasonal cycle above 0 ◦C at a depth of 50–200 cm (Fig. S18
:::
S19). Such warming

would drive the widespread formation of talik, a subsurface layer of perennial thawed soil (Parazoo et al., 2018b), and further415

enhance Rh at depth.

Rh from sub-surface layers may already be increasing substantially in permafrost regions. Examining the 41 year
::::::
41-year

record of CO2 at Barrow tower, Commane et al. (2017) find that early cold NEE efflux (Oct-Dec) has increased 73.4%±10.8%

over the 1975–2015 period. The standard CAMS IS inversion product similarly suggests an increase in the Sep-Oct NEE efflux

of ∼80% over Siberia for the 2013–2017 period relative to the 1980–1984 period (see Fig. S20 of Lin et al. (2020)). In agree-420

ment, Hu et al. (2021) identified a strong increase (∼10%) in Aug–Oct Rh over the North America Arctic-boreal region between
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Figure 6. Number of months per year with monthly mean soil temperatures above 0 ◦C at depths of 0–10 cm (red), 10–50 cm (green), and

50–200 cm (blue) simulated by seven CMIP6 models under ssp585 for the (a) Warm, (b) Mid, and (c) Cold regions. The solid lines show the

model mean and shading shows ±1 standard deviation.

1979–1988 and 2010–2019 based on measurements of atmospheric CO2 and carbonyl sulphide.
:::::
These

:::::::
inferred

:::::::
changes

::
in

:::
Rh

:::
may

:::
in

:::
part

:::
be

::::::
related

::
to

:::::::::::::::
warming-induced

:::::::
changes

::
in

:::
the

:::::::::
seasonality

:::
of

::::
GPP

:::::::::::::::::::::::::::::
(Liu et al., 2020; Kwon et al., 2021)

:
,
:::
but

:::::
more

:::::::
research

:
is
:::::::
needed

::
to

::::::::
determine

:::
the

::::::
impact

::
of

:::::
these

:::::::
different

:::::::
drivers.

4.2 Limitations425

Atmospheric CO2 measurements are relatively sparse over Northern Eurasia (Byrne et al., 2017). In situ and flask CO2 mea-

surements are spatially sparse over Mid and Cold regions (Fig. S9), with only a handful of sites assimilated over Russia as

part of Japan-Russia Siberian Tall Tower Inland Observation Network (JR-STATION) of nine tower sites (Sasakawa et al.,

2010, 2013). The OCO-2 coverage is seasonally variable (Fig. S8). Due to the fact that XCO2
retrievals are performed on re-

flected sunlight, the coverage across Eurasia is quite good during the growing season (May-Sep). However, low signal and the430

inability to perform retrievals over snow limits the data coverage during the shoulder seasons and winter, resulting in few XCO2

retrievals across the Mid and Cold regions during Nov-Feb. Ongoing research to both improve XCO2 quality control filtering

at high latitudes (Jacobs et al., 2020; Mendonca et al., 2021) and in retrievals XCO2 over snow and ice surfaces (Mikkonen

et al., 2021) may reduce these data gaps in the future. Despite this sparsity of measurements, we find that the LNLG and IS

flux inversions show consistent differences from the TRENDY and prior fluxes. Furthermore, these data show good agreement435

with withheld insite
:::
situ

:
data (Peiro et al., 2021) and independent aircraft measurements over Alaska (Fig S11). Thus, we

believe the results presented here to be robust despite data gaps. Still, this sparsity of data leads to some limitations. There

are few sources of independent CO2 measurements over the Mid and Cold regions to evaluate the inversion posterior CO2

fieldsagainst. Independent measurements (possibly aircraft campaigns) would provide a valuable additional data set for vali-

dation. Similarly, increasing the number of year-round eddy-covariance sites across the Mid and Cold regions would provide440
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a valuable independent dataset to compare against flux inversion estimated NEE. For example, Byrne et al. (2020a) were able

to confirm top-down estimate of east-west differences in NEE interannual variability across North America against the dense

network of eddy-covariance sites.

We also note that there are challenges in estimating data-driven GPP during the shoulder season due to reduced reflected

radiance and snow cover, which impacts the spectral features of the vegetation canopy. Poor quality data, such as snowy and445

noisy samples, contributes to uncertainty in the timing of shoulder seasons (Wang et al., 2017; Zhang, 2015). In this analysis,

we attempted to mitigate this issue though the use of an ensemble of data-driven GPP estimates, but we acknowledge that

remaining biases may be present.

Furthermore, the partitioning of NEE into NPP and Rh could be biased if CUE estimates were seasonally biased. We

employed TRENDY model CUE to translate data-driven constraints on NEE and GPP into estimates of NPP and Rh. Thus,450

systematic errors across the TRENDY ensemble in CUE could impact conclusions about the relative contributions of errors in

NPP and Rh. A potential source of bias in CUE could be due to an underestimate of the impact of inhibition of leaf respiration

by light (Wehr et al., 2016; Byrne et al., 2018; Keenan et al., 2019; Oikawa et al., 2017). This would result in greater CUE and

NPP during June-July relative to the rest of the year, shifting the inferred Rh seasonal cycle earlier, with Rh increased during

June-July but decreased elsewhere (Byrne et al., 2018). However, the magnitude of this impact on the ecosystem scale is455

uncertain, making accounting for this phenomena challenging. Recently, Endsley et al. (2021) found that the inhibition of leaf

respiration by light to have a relatively modest impact on the seasonality of NPP and Rh, suggesting that the results presented

here are robust.

There are also remaining challenges in relating the inferred fluxes to underlying processes. Space-based flux constraints

do not discriminate between biological and physical processes driving carbon cycle fluxes. It is currently unclear whether the460

substantial cold season CO2 effluxes across permafrost regions are driven primarily by biological activity or physical processes

(Natali et al., 2019; Arndt et al., 2020; Raz-Yaseef et al., 2017). Yet, isolating the primary driver of these fluxes is critical for

inferring the sensitivity of Rh to climate change. If the cold season Rh comes from the metabolism of old permafrost carbon,

then 14CO2 measurements could help differentiate biological from physical CO2 production.

5 Conclusions465

Space-based and in situ atmospheric CO2 measurements revealed strong summer uptake and early cold season release of CO2

over the cold northeastern Eurasia region, implying a late summer peak in Rh with substantial early cold season respiration.

Based on model simulations of Rh, we suggested that this seasonality is driven by a large contribution of subsurface soils to

the total Rh. These results are consistent with site-level observations identifying substantial CO2 release in permafrost regions

outside the growing season (Natali et al., 2019), and in particular, reported spikes in early cold season respiration associated470

with the zero curtain period in Arctic ecosystems (Commane et al., 2017; Jeong et al., 2018).

The data-driven seasonality of Rh over the Cold region was generally not captured by the TRENDY DGVMs, which showed

greater Rh during May-Jul and lower Rh during the rest of the year. The underlying cause of this discrepancy is unclear, but
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may be linked to an underestimate of the contribution of sub-surface soils to total Rh. Given the rapid warming of permafrost

soils (Euskirchen et al., 2017; Chen et al., 2021), talik formation (Parazoo et al., 2018b), and increasing early cold season CO2475

effluxes (Commane et al., 2017; Lin et al., 2020; Hu et al., 2021), improving DGVM simulations in permafrost regions should

be a focus of future studies.

This analysis demonstrates the utility of space-based observations for studying carbon cycle dynamics at high latitudes,

where in situ measurements are sparse. Although currently limited by a short observing record (2014 - present), the estimates

of NEE inferred from the OCO-2 XCO2
retrievals suggest that these data will provide a powerful tool for detecting change in480

seasonal cycle of NEE across northern Eurasia.

Data availability. TRENDY v8 gridded data can be accessed through the website https://sites.exeter.ac.uk/trendy. v9 OCO-2 MIP fluxes

were downloaded from https://gml.noaa.gov/ccgg/OCO2_v9mip/. GFED data were downloaded from https://www.globalfiredata.org/. GFAS

data were downloaded from https://apps.ecmwf.int/datasets/. We downloaded version 10 of the ACOS OCO-2 lite files from the CO2 Virtual

Science Data Environment (https://CO2.jpl.nasa.gov/). OCO-2 data were produced by the OCO-2 project at the Jet Propulsion Laboratory,485

California Institute of Technology, and obtained from the OCO-2 data archive maintained at the NASA Goddard Earth Science Data and Infor-

mation Services Center. FluxSat data were downloaded from https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/. The GOSIF data product is

available at http://data.globalecology.unh.edu/. ERA5-Land data are obtained from the Climate Data Store (https://cds.climate.copernicus.eu).

Appendix A: Appendix 1

We estimate seasonal variations in labile carbon by estimating a litterfall flux of carbon. Litterfall
:::::::::
seasonality

:
is assumed to490

be a fraction of NPP, following
:::::
follow

:::
the

::::
same

::::::
pattern

:::
as Randerson et al. (1996) (Fig. S15), and

:
.
:::
We

::::::
assume

::::
that

:::
the

:::::
labile

:::::
carbon

::::
pool

::
is
:
in steady state on annual timescales:

:
,
::::
such

::::
that

::
the

::::::
annual

::::
total

:::::::
literfall

::
is

::::
equal

::
to
:::
the

::::::
annual

::::
total

::::
Rh:

Litterfall(t) = fNPP(t)·NPP(t)·
365∫
0

Rh(t)

fNPP(t) ·NPP(t)
Rh(t)
::::

dt,figure (A1)

where t is the day of the year and fNPP is the frac
::::::
fraction

::
of

::::::
annual

::::
total

:
NPP that is converted to litterfall. The seasonal

variation in the labile carbon pool (∆Cpool) is defined as the difference in flux between litterfall and Rh:495

∆Cpool(t) =

t∫
0

(Litterfall(t)−Rh(t)) dt (A2)

Finally, we assume a fractional variation in the total carbon pool amount, γ, and calculate α(t):

α(t) =

(
Cpool(t)

max(|Cpool(t)|)
γ+1

)
α0, (A3)

where α0 is the mean carbon pool size, and is optimized in the regression in Sec. 3.3.
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