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Abstract. Site-level observations have shown pervasive cold
season CO2 release across Arctic and boreal ecosystems,
impacting annual carbon budgets. Still, the seasonality of
CO2 emissions are poorly quantified across much of the high
latitudes due to the sparse coverage of site-level observa-5

tions. Space-based observations provide the opportunity to
fill some observational gaps for studying these high-latitude
ecosystems, particularly across poorly sampled regions of
Eurasia. Here, we show that data-driven net ecosystem ex-
change (NEE) from atmospheric CO2 observations implies10

strong summer uptake followed by strong autumn release
of CO2 over the entire cold northeastern region of Eurasia
during the 2015–2019 study period. Combining data-driven

NEE with satellite-based estimates of gross primary produc-
tion (GPP), we show that this seasonality implies less sum- 15

mer heterotrophic respiration (Rh) and greater autumn Rh
than would be expected given an exponential relationship
between respiration and surface temperature. Furthermore,
we show that this seasonality of NEE and Rh over north-
eastern Eurasia is not captured by the TRENDY v8 ensem- 20

ble of dynamic global vegetation models (DGVMs), which
estimate that 47 %–57 % (interquartile range) of annual Rh
occurs during August–April, while the data-driven estimates
suggest 59 %–76 % of annual Rh occurs over this period. We
explain this seasonal shift in Rh by respiration from soils at 25

depth during the zero-curtain period, when sub-surface soils
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2 B. Byrne et al.: Respiration signal across northeast Eurasia

remain unfrozen up to several months after the surface has
frozen. Additional impacts of physical processes related to
freeze–thaw dynamics may contribute to the seasonality of
Rh. This study confirms a significant and spatially extensive
early cold season CO2 efflux in the permafrost-rich region of5

northeast Eurasia and suggests that autumn Rh from subsur-
face soils in the northern high latitudes is not well captured
by current DGVMs.

Copyright statement. © 2022. All rights reserved. California Insti-
tute of Technology, government sponsorship acknowledged.10

1 Introduction

Boreal and Arctic ecosystems hold vast quantities of soil car-
bon and play an important role in the global carbon cycle
(Schuur et al., 2015). These ecosystems are also experiencing
the most rapid climate change (Overland et al., 2018), driving15

major changes in the carbon cycle, including greening trends
(Park et al., 2016), permafrost thaw (Schuur et al., 2015;
Turetsky et al., 2019, 2020), and increased fire frequency and
intensity (Veraverbeke et al., 2017, 2021). Yet, the impact of
these changes on the carbon budget of the region remains20

uncertain (Schuur et al., 2015; McGuire et al., 2018; Miner
et al., 2022). In part, this is due to sparse site-level obser-
vations in boreal and Arctic ecosystems, while the limited
available observations of high-latitude ecosystems are pro-
viding surprises.25

A synthesis of Arctic and boreal site-level flux measure-
ments from the literature found pervasive CO2 release dur-
ing the cold season (Natali et al., 2019) such that the cold
season is not a dormant period but strongly impacts annual
carbon budgets (Zimov et al., 1993; Björkman et al., 2010;30

Natali et al., 2019). Particularly strong releases of CO2 have
been observed during the early cold season (Commane et al.,
2017; Mastepanov et al., 2013; Jeong et al., 2018). This
has been linked to the “zero-curtain effect”, wherein the air
and surface temperatures drop below 0 ◦C, but deeper soils35

remain unfrozen for an extended period due to latent heat
release (Outcalt et al., 1990; Romanovsky and Osterkamp,
2000; Hinkel et al., 2001; Zona et al., 2016). The result is
an “active layer” of unfrozen soil that can persist for months,
resulting in greater respiration than would be expected based40

on air temperature. Both aircraft (Commane et al., 2017)
and site-level (Mastepanov et al., 2013; Jeong et al., 2018)
measurements have found substantial CO2 release during the
zero-curtain period over Alaska (September–December) that
is not well captured by our current generation of Earth system45

models (Commane et al., 2017). Similarly, CO2 mole frac-
tion enhancements within soils have been observed during
the zero-curtain period (Wilkman et al., 2021; Raz-Yaseef
et al., 2017). Mechanistically, both biological and physical

processes likely contribute to the enhanced early cold season 50

CO2 release. Physically, freezing forces dissolved CO2 out
of solution (Bing et al., 2015), which may then be released
through mechanical channels and fissures in the soil that
form during freezing (Mastepanov et al., 2013; Pirk et al.,
2015; Wilkman et al., 2021). Enhanced CO2 effluxes (re- 55

lease to the atmosphere) have also been observed during the
spring thaw (Raz-Yaseef et al., 2017; Arndt et al., 2020). This
spring signal has been linked to a delayed release of CO2
production from the previous early cold season (Raz-Yaseef
et al., 2017), while a rapid warming and introduction of oxy- 60

gen during snowmelt have also been proposed as contribut-
ing to this signal (Arndt et al., 2020). Finally, observed CO2
effluxes during the middle of the cold season (Natali et al.,
2019) have been mechanistically linked to microbial respi-
ration that persists at subzero bulk soil temperatures (Rivk- 65

ina et al., 2000; Panikov et al., 2006; McMahon et al., 2009;
Drotz et al., 2010), with a possible additional contribution
from the diffusion of stored CO2 that is produced during the
non-frozen season (Natali et al., 2019).

Still, the full spatial extent and magnitude of cold sea- 70

son CO2 release are not well characterized due to sparse
site-level observations. Here, we employ a “top-down” ap-
proach to estimate the seasonal cycle of data-driven car-
bon fluxes using space-based observations during the pe-
riod 2015–2019. This approach complements previous site- 75

level analyses by providing CO2 flux constraints on large
continental-scale regions. We utilize these data to investigate
carbon cycle dynamics over three large regions within Eura-
sia (Fig. 1), which are defined based on the east–west tem-
perature gradient (see Sect. 2.1), with the coldest region in 80

the east and warmest region in the west. We focus on Eura-
sia, as much of this region has particularly sparse site-level
observations, yet it is experiencing rapid change (Liu et al.,
2020; Bastos et al., 2019). We further compare the obser-
vationally constrained seasonality of CO2 fluxes to a suite 85

of dynamic global vegetation models (DGVMs) from the
TRENDY ensemble (Sitch et al., 2015) version 8 as used in
the Global Carbon Budget 2019 (Friedlingstein et al., 2019)
(Sect. 3.1). Our study addresses two main questions. (1) Do
large-scale observational constraints support enhanced CO2 90

effluxes during the shoulder seasons at high latitudes? If so,
(2) what are the underlying mechanisms driving this behav-
ior?

We first examine the seasonality of net ecosystem ex-
change (NEE) constrained by atmospheric inversions of 95

retrieved column-averaged dry-air mole fractions of CO2
(XCO2 ) from the Orbiting Carbon Observatory 2 (OCO-2)
(Crisp et al., 2017; Eldering et al., 2017) and by flask and
in situ CO2 measurements (Sect. 2.2). Monthly NEE is ob-
tained from version 9 of the OCO-2 Model Inter-comparison 100

Project (v9 OCO-2 MIP) (Peiro et al., 2022). In addition,
we perform a set of three higher-temporal-resolution inver-
sions using the CAMS, TM5-4DVar, and CMS-Flux (Car-
bon Monitoring System Flux) inversion systems to examine
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Figure 1. (a) Permafrost extent over 2000–2016 (Obu et al.,
2018, 2019). (b) MODIS International Geosphere Biosphere Pro-
gramme (IGBP; MOD12C1 v6) land cover for urban areas, for-
est (tree cover > 60 % and height > 2 m), savanna (tree cover
10 %–60 % and height > 2 m), shrublands (woody perennials cover
> 10 % and height < 2 m), grasslands, croplands, and barren land.
(c) Zero-crossing date (date when the mean soil temperature drops
below 0 ◦C) for the top 0.5 m of soil from the MERRA-2 Land
dataset at 4◦× 5◦ spatial resolution. Grid cells with no shading
do not have a zero-crossing date. Three regions are shown by dif-
ferent hatching patterns. The “Warm” (cross hatching) region does
not have a zero-crossing date, the “Mid” (dots) region has a zero-
crossing date after 27 October, and the “Cold” (diagonal hatching)
region has a zero-crossing date before 27 October. Note that some
adjustments from these definitions are made so that the regions are
contiguous. The Warm, Mid, and Cold regions have land areas of
5.66×106 km2, 8.66×106 km2, and 12.65×106 km2, respectively.

sub-monthly variability in CO2 fluxes. We then decompose
NEE into component fluxes to better understand the pro-
cesses driving the seasonality of NEE. In particular, we de-
compose the data-driven NEE fluxes into net primary pro-
duction (NPP) and heterotrophic respiration (Rh): 5

NEE= Rh−NPP. (1)

To do this, we use four data-driven gross primary produc-
tion (GPP) products: FLUXCOM (Jung et al., 2020), FluxSat
(Joiner and Yoshida, 2020), the Vegetation Photosynthesis
Model (VPM; Zhang et al., 2017), and the Global OCO- 10

2-based solar-induced chlorophyll fluorescence (SIF) prod-
uct (GOSIF; Li and Xiao, 2019). These datasets use Mod-
erate Resolution Imaging Spectroradiometer (MODIS) re-
flectances, OCO-2 solar-induced fluorescence, and reanaly-
sis data to infer GPP and thus provide an ensemble of global 15

estimates of GPP to inform its uncertainty. NPP is estimated
from GPP using the monthly carbon use efficiency (CUE)
from the TRENDY models (Sect. 2.4) using the following
relationship:

NPP= CUE×GPP. (2) 20

We then combine the data-driven estimates of NEE and
NPP to recover a data-driven seasonal cycle ofRh (Sect. 2.5).

This analysis is performed at two temporal resolutions.
First, we leverage the large ensembles from TRENDY and
the v9 OCO-2 MIP that provide fluxes at monthly tem- 25

poral resolution (Sect. 3.1). However, because phenologi-
cal changes can be significant on shorter timescales (e.g.,
weekly; Parazoo et al., 2018a), we perform a second anal-
ysis at 14 d temporal resolution using three inversion analy-
ses that optimize weekly or 14 d NEE fluxes (Sect. 3.2). For 30

these 14 d fluxes, we further examine mechanistic explana-
tions for data–model differences in Rh using a range of mod-
els (Sect. 3.3). Finally, we discuss the results (Sect. 4) and
summarize our conclusions (Sect. 5).

2 Data and methods 35

2.1 Environmental data and region definitions

We utilize MERRA-2 Land soil temperature data (Reichle
et al., 2011, 2017; Gelaro et al., 2017) to define three large
regions within Eurasia (Fig. 1). These data were downloaded
from the Goddard Earth Sciences Data and Information Ser- 40

vices Center at monthly temporal resolution and 4◦× 5◦ spa-
tial resolution (regridded from model horizontal resolution
of ∼ 50 km). Three regions are defined based on the date
at which the top 0.5 m of MERRA-2 Land soil temperature
falls below 0 ◦C, referred to as the “zero-crossing date”, for 45

a mean seasonal cycle averaged over 4 years (2015, 2016,
2018, and 2019). The “Cold” region has a zero-crossing date
before 27 October, the “Mid” region has a zero-crossing date
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after 27 October, and the “Warm” region does not have a
zero-crossing date. This date was chosen as a cutoff to cre-
ate two similarly sized Mid and Cold regions. Some adjust-
ments from these definitions are made so that the regions are
contiguous. We aggregate the CO2 fluxes described below to5

these regions by (1) interpolating the Warm, Mid, and Cold
regions from 4◦× 5◦ spatial resolution to the grid of the CO2
flux datasets (both GPP and NEE) and (2) calculating the
area-weighted net fluxes over the regions. We also obtain the
downward shortwave flux from the MERRA-2 Land dataset.10

Several datasets are also used for supplementary eval-
uation of the MERRA-2 Land soil temperature sea-
sonality (Sect. S2 in the Supplement). For that analy-
sis, we use ERA5-Land reanalysis soil temperature data
(Muñoz Sabater, 2019), generated using Copernicus Cli-15

mate Change Service Information 2020. We also exam-
ined monthly soil temperature from seven models from the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
(Eyring et al., 2016) for the historical simulations and Shared
Socioeconomic Pathway 585 (ssp585) simulations, which is20

the highest emission scenario. The CMIP6 simulations were
included to compare with MERRA-2 simulated soil temper-
ature over 2010–2019 and to examine possible trends in soil
temperature under a high-emission scenario. The model runs
are CanESM5 (r1i1p2f1), MIROC ES2L (r1i1p1f2), AC-25

CESS EMS1 (r1i1p1f1), MRI ESM2 0 (historical r1i1p1f1,
ssp585 r1i2p1f1), CNRM ESM2 1 (r1i1p1f2), E3SM 1 1
(r1i1p1f1), and UKESM1 0 LL (r4i1p1f2). These mod-
els were chosen because they participated in the Coupled
Climate–Carbon Cycle Model Intercomparison (C4MIP)30

(Jones et al., 2016). Finally, we compare the MERRA-2 Land
soil temperature to borehole soil temperature measurements
over the period 1998–2020, which were downloaded from
the Global Terrestrial Network for Permafrost (GTN-P) bore-
hole database (http://gtnpdatabase.org/boreholes, last access:35

9 November 2021).

2.2 Atmospheric flux inversions

The OCO-2 Model Inter-comparison Project (OCO-2 MIP)
provides standardized experimental setups for assimilating
atmospheric CO2 to estimate net biosphere exchange (NBE),40

defined as

NBE= NEE+BB, (3)

where BB is biomass burning, across a range of inversion
systems. The v9 OCO-2 MIP (Peiro et al., 2022) provides
ensembles of nine inversion systems that assimilated a stan-45

dardized set of in situ and flask CO2 measurements for one
experiment (referred to as “IS”) and OCO-2 ACOS b9 land
nadir and land glint XCO2 retrievals for a second experi-
ment (referred to as “LNLG”). We estimate NEE fluxes from
v9 OCO-2 MIP NBE fluxes by subtracting biomass burning50

emission estimates from the Global Fire Emissions Database
version 4 (GFED4.1s) (van der Werf et al., 2017). GFED4.1s

provides estimates of biomass burning using MODIS burned
area (Giglio et al., 2013), thermal anomalies, and surface re-
flectance observations (Randerson et al., 2012). Note that 55

biomass burning is a relatively small contribution to NBE
over the regions examined here during the study period
(2015–2019) (Fig. S1 in the Supplement). The NEE fluxes
produced by each ensemble member over northern Eurasia
are shown in Fig. S2. 60

To examine variability in fluxes at the sub-monthly time
step, we examine three other inversion NEE estimates that
optimize sub-monthly NEE fluxes: TM5-4DVAR14d LNL-
GIS, CAMS14d LNLGIS, and CMS-Flux14d LNLGIS. These
inversions assimilated both in situ and flask CO2 in addition 65

to OCO-2 ACOS b10 land nadir and land glint retrievals.
Note that the ACOS b10 retrievals are updated from the b9
retrievals employed in v9 OCO-2 MIP. The prior and pos-
terior NEE fluxes produced by each ensemble member are
shown in Fig. S3, and the inversion setups are described be- 70

low.
TM5-4DVAR is a variational inversion framework based

on the TM5 atmospheric tracer transport model (Meirink
et al., 2008; Basu et al., 2013). The TM5-4DVAR14d LNL-
GIS inversion assimilated 10 s averages of OCO-2 ACOS 75

b10 land nadir and land glint measurements concurrently
with in situ measurements to optimize weekly NEE and
ocean fluxes. The OCO-2 10 s averages were constructed
analogous to the b9 10 s averages assimilated by models in
v9 OCO-2 MIP (Peiro et al., 2022). The in situ measurements 80

assimilated were updated from Peiro et al. (2022); specifi-
cally ObsPack NRT 5.0 was replaced by NRT 5.2. The flux
inversion setup was identical to the setup of “TM5-4DVAR”
in Peiro et al. (2022), except (i) the inversion was run from 1
June 2014 to 1 February 2021 (instead of 1 September 2014 85

to 1 June 2019 in Peiro et al., 2022), (ii) ECMWF ERA5
meteorology was used to drive the model instead of ERA In-
terim, (iii) a 1◦× 1◦ transport grid over North America was
nested inside the global 3◦× 2◦ grid to take advantage of the
higher in situ data density, and (iv) prior CO2 fluxes were 90

constructed following Weir et al. (2021).
The CAMS14d LNLGIS inversion utilizes the CAMS

greenhouse gases inversion system (Chevallier et al.,
2005, 2010; Chevallier, 2013) and assimilates OCO-2 land
nadir and land glintXCO2 10 s averages and in situ CO2 mea- 95

surements concurrently. A variational system is employed to
optimize daytime and nighttime NEE at 8 d temporal resolu-
tion on a 1.875◦× 3.75◦ model grid. Tracer transport is per-
formed using the Laboratoire de Météorologie Dynamique
(LMDz) general circulation model version LMDz6A (Re- 100

maud et al., 2018). These data were downloaded from https:
//atmosphere.copernicus.eu/ (last access: 29 August 2022).
Note that CAMS reports NBE – as explained earlier, we es-
timate NEE using GFED4.1s biomass burning emissions, as
was done for the v9 OCO-2 MIP. 105

The CMS-Flux14d LNLGIS flux inversions are performed
using the setup of Byrne et al. (2020b), which uses the

http://gtnpdatabase.org/boreholes
https://atmosphere.copernicus.eu/
https://atmosphere.copernicus.eu/
https://atmosphere.copernicus.eu/
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CMS-Flux inversion system that has been developed under
the NASA Carbon Monitoring System Flux project (https:
//cmsflux.jpl.nasa.gov, last access: 29 August 2022) (Henze
et al., 2007; Liu et al., 2014). These flux inversions optimize
14 d NEE and ocean fluxes by assimilating OCO-2 ACOS5

b10 land nadir and land glint “buddy” super-obs concurrently
with in situ and flask measurements from version 6.0 of
the GlobalView plus package (Masarie et al., 2014; Schuldt
et al., 2020). OCO-2 “buddy” super-obs are obtained by av-
eraging individual soundings into super-obs at 0.5◦× 0.5◦10

spatial resolution (within the same orbit) with equal weight-
ing following Liu et al. (2017). We assimilate surface-based
in situ and flask measurements between 11:00 and 16:00 lo-
cal time. These data were also pre-filtered to remove obser-
vations that were not well simulated by the model (based on a15

posteriori data–model χ2 mismatches greater than three for
a preliminary flux inversion). For these inversions, ODIAC
fossil fuel emissions (Oda and Maksyutov, 2011; Oda et al.,
2018) and GFED4.1s biomass burning emissions (van der
Werf et al., 2017), including small fires (Randerson et al.,20

2012), are prescribed but not optimized.

2.3 Dynamic global vegetation models (DGVMs)

We use CO2 flux estimates from an ensemble of 15 dy-
namic global vegetation models (DGVMs) from TRENDY
v8 (Sitch et al., 2015). We utilize fluxes simulated by25

the CABLE-POP, CLASS-CTEM, CLM5.0, DLEM, ISAM,
ISBA-CTRIP, JSBACH, JULES, LPJ, LPX-Bern, OCN, OR-
CHIDEE, ORCHIDEE-CNP, SDGVM, and VISIT DGVMs.
We exclude LPJ-GUESS because monthly output on Rh was
not available. We utilize monthly GPP, autotrophic respira-30

tion (Ra), and Rh fluxes from the “S3” experiment that em-
ploys time-varying CO2, climate, and land use forcing data.
We further calculate NPP from the simulated GPP and Ra
data (NPP= GPP−Ra) at the models’ native resolution. The
NEE, NPP, and Rh fluxes produced by each ensemble mem-35

ber are shown in Fig. S4 for the same 3-year period as the
data-driven estimates (2015, 2016, and 2018).

We also utilize TRENDY v8 model output to estimate an
ensemble of carbon use efficiency (CUE= NPP/GPP) from
each DGVM. CUE can become negative during the winter40

and spring, when GPP is approximately zero but Ra is non-
zero. However, we limit CUE values to a range between zero
and one. These CUE estimates are then employed to esti-
mate data-driven NPP estimates from the data-driven GPP
data (see Sect. 2.4). Figure S5 shows the CUE estimates de-45

rived from the TRENDY v8 models.

2.4 GPP datasets and NPP estimates

We utilize four data-driven GPP estimates in this analysis:
FluxSat, FLUXCOM, VPM, and GOSIF. These datasets dif-
fer in inputs and approach.50

FluxSat Version 2 (Joiner and Yoshida, 2020) estimates
GPP based on Nadir BRDF-Adjusted Reflectance (NBAR)
from the MODIS MYD43D product (Schaaf et al., 2002).
The GPP estimates are calibrated with the FLUXNET2015
GPP derived from eddy covariance flux measurements at 55

Tier 1 sites (Pastorello et al., 2020).
FLUXCOM upscales CO2 fluxes from flux tower observa-

tions using a variety of machine learning methods and forc-
ing datasets (Jung et al., 2020). We examine the ensemble
mean of the nine remote sensing (RS) learning algorithms. 60

VPM is a light use efficiency model that estimates
GPP globally using MODIS surface reflectances and NCEP
Reanalysis-2 photosynthetically active radiation and temper-
ature data (Xiao et al., 2004; Zhang et al., 2017). The na-
tive spatiotemporal resolution of the dataset is 500 m and 65

8 d. VPM has been shown to agree well with FLUXNET
eddy covariance site-level data (Zhang et al., 2017) and with
TROPOMI SIF at the global scale (Doughty et al., 2021).

The GOSIF GPP product estimates GPP based on OCO-2
SIF, MODIS EVI, and reanalysis data from MERRA-2 (Li 70

and Xiao, 2019). To generate GPP estimates, first, 8 d glob-
ally gridded 0.05◦× 0.05◦ SIF is estimated from the input
data using machine learning algorithms. GOSIF GPP is then
estimated from the GOSIF SIF estimates using eight SIF–
GPP relationships with different forms (universal and biome- 75

specific, with and without intercept). In this analysis we uti-
lize the mean GPP estimate across the eight SIF–GPP esti-
mates.

These four data-driven GPP estimates are shown in
Fig. S6. For this analysis, we estimate NPP from these data 80

using the CUE from the TRENDY models. We perform this
calculation differently for the monthly analysis and biweekly
analysis. For the monthly analysis, we calculate 60 NPP sea-
sonal cycles for each possible combination of the four GPP
and 15 CUE seasonal cycles. We then calculate the mean as 85

our best estimate and interquartile range as a metric of uncer-
tainty. For the biweekly analysis, we calculate the best esti-
mate using the mean GPP and CUE seasonal cycles and cal-
culate the uncertainty using the full range of GPP estimates
and interquartile range of CUE estimates. This is done differ- 90

ently to match the NEE analysis, which leverages the larger
ensemble from the v9 OCO-2 MIP to examine the mean and
interquartile spread for the monthly analysis but employs the
full range for the smaller biweekly ensemble of three models.

2.5 Data-driven Rh estimates 95

We calculate the seasonal cycle of Rh by combining the
data-driven estimates of NPP and NEE using Eq. (1) (Rh =

NEE+NPP). We perform this calculation differently for the
monthly analysis and biweekly analysis. For the monthly v9
OCO-2 MIP IS- and LNLG-based estimates, we calculate 100

540 Rh seasonal cycles by combining the 9 data-driven IS or
LNLG NEE estimates with the 60 NPP estimates. We then
take the mean and interquartile spread as the best estimate

https://cmsflux.jpl.nasa.gov
https://cmsflux.jpl.nasa.gov
https://cmsflux.jpl.nasa.gov
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and uncertainty. For the biweekly analysis, we calculate the
best estimate of Rh from the best (mean) estimates of NPP
and NEE. We then specify the uncertainty to be the full range
of Rh estimates calculated from the three biweekly NEE es-
timates and the NPP range.5

2.6 Soil carbon decomposition model

We use the soil carbon decomposition model developed in
Yi et al. (2015, 2020) to simulate the contribution of soil
at different depths to total Rh and NEE fluxes. The soil de-
composition model uses multiple litter and soil organic car-10

bon (SOC) pools to characterize the progressive decomposi-
tion of fresh litter to more recalcitrant materials, which in-
clude three litterfall pools, three SOC pools with relatively
fast turnover rates, and a deep SOC pool with slow turnover
rates. The litterfall carbon inputs were first allocated to the15

three litterfall pools depending on the substrate quality of
litterfall component and then transferred to the SOC pools
through progressive decomposition. We then model the pro-
file of the carbon pools through accounting for the verti-
cal carbon transport (Yi et al., 2020). A constant diffusiv-20

ity rate was assigned to permafrost (5.0 cm2 yr−1) and non-
permafrost (2.0 cm2 yr−1) regions within the top 1 m soil and
then linearly decreased to 0 at the 3 m b.s. (below surface)
(Koven et al., 2013). The boundary conditions at the soil sur-
face were set as the carbon input rate to the three surface25

litterfall pools. A zero-flux was assigned at the bottom of
the soil carbon pool, which was set as 3 m. This accounts
for the upper permafrost layer, while carbon in deeper lay-
ers (e.g., 3–10 m) is largely insulated from climate variabil-
ity and ignored in this study. The decomposition rate (d−1)30

for each carbon pool was derived as the product of a theo-
retical maximum rate constant and dimensionless multipliers
for soil temperature and liquid water content constraints (Yi
et al., 2015). In this study, the decomposition was driven by
the MERRA2 soil temperature data. For simplicity, the soil35

saturation was assumed as 1.0 when soil temperature is above
0 ◦C, while the maximum liquid soil water fraction was used
for below freezing (Schaefer and Jafarov, 2016).

2.7 FLUXNET data and processing

We examine 15 high-latitude FLUXNET2015 sites to con-40

firm the seasonality of carbon fluxes inferred from the at-
mospheric CO2 and remote sensing datasets. These sites are
listed in Table S1. For this, we utilize monthly data with the
quality flag greater than 0.75. We calculate NPP and Rh for
each site from the NEE and GPP datasets by applying the45

CUE from the TRENDY DGVMs at the grid cell containing
the FLUXNET site.

3 Results

3.1 Differences between data-driven and DGVM
carbon fluxes 50

We first examine the mean seasonal cycle of monthly NEE
from the v9 OCO-2 MIP inversions and TRENDY v8
DGVMs over the three northern Eurasian regions (mean
over 2015, 2016, and 2018; 2017 is excluded due to an
OCO-2 data gap during August–September). The objective 55

of this initial analysis is to identify the seasonal features
of NEE over northern Eurasia and identify how the data-
driven and simulated estimates differ. The spread among
the TRENDY v8 models is large and encompasses the data-
driven estimates (Fig. S4). Thus, to identify data–model dif- 60

ferences, we focus on differences in the ensemble mean es-
timates and adopt the interquartile spread across v9 OCO-2
MIP and TRENDY to quantify uncertainty in this estimate.

Figure 2a–c show the NEE fluxes for the v9 OCO-2 MIP
and TRENDY DGVMs for three regions over Eurasia. The 65

two v9 OCO-2 MIP ensembles (IS and LNLG) generally
show close agreement and coherent differences from the
TRENDY models (and prior NEE estimates; Fig. S2). The
largest differences between the IS and LNLG ensembles
occur over the Cold region, where the IS ensemble sug- 70

gests increased uptake during July and somewhat increased
release during October. Still, the coherent differences be-
tween the data-driven fluxes (both IS and LNLG) relative to
the TRENDY ensemble gives us increased confidence that
these inversions are precisely capturing the seasonality of 75

NEE. The comparatively good agreement between the IS and
LNLG inversions (relative to TRENDY) also suggests that
artifacts related to observational coverage (Byrne et al., 2017;
Basu et al., 2018) and data and model biases (Schuh et al.,
2019) do not strongly impact the results, although we note 80

that both datasets have spatial and seasonal gaps over north-
ern Eurasia (e.g., Figs. S7–S8) as discussed in Sect. 4.2. The
accuracy of the v9 OCO-2 MIP fluxes is supported through
an evaluation of the posterior CO2 fields against independent
atmospheric CO2 measurements by Peiro et al. (2022), as 85

well as a supplementary comparisons of the CMS-Flux14d
inversions with aircraft data over Alaska (Sect. S1, Figs. S9–
S10).

Comparing the v9 OCO-2 MIP and TRENDY NEE esti-
mates, good agreement is found for the Warm and Mid re- 90

gions, while larger differences are found for the Cold re-
gion. In the Warm and Mid regions, systematic differences
exceed the interquartile range during September–October,
when the TRENDY models suggest a weaker efflux of CO2
to the atmosphere (0.30–0.51 g C m−2 d−1). The TRENDY 95

models also tend to show weaker uptake by land during June–
July in the Mid region (0.05–0.35 g C m−2 d−1). For the Cold
region, the TRENDY models produce weaker carbon up-
take during June–July (0.48–0.83 g C m−2 d−1) but stronger
uptake (or reduced efflux) during August–October (0.31– 100
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Figure 2. Monthly carbon cycle fluxes (average of 2015, 2016, and 2018; 2017 is excluded due to an OCO-2 data gap). (a–c) Mean (solid
line) and interquartile range (shaded area) of NEE for the ensemble of IS (red) and LNLG (blue) v9 OCO-2 MIP and for the TRENDY
ensemble (green). (d–f) GPP for the TRENDY ensemble (green) and data-driven datasets (black). (g–i) TER simulated by the TRENDY
ensemble (green) and calculated from combining the data-driven GPP with the IS (red) and LNLG (blue) v9 OCO-2 MIP NEE constraints.

0.36 g C m−2 d−1). This large amplitude of the NEE seasonal
cycle contributes to the large seasonality in XCO2 observed
over eastern Eurasia (Jacobs et al., 2021).

To further investigate the causes of differences in NEE be-
tween the TRENDY and v9 OCO-2 MIP ensembles, we sep-5

arately examine component primary productivity and respi-
ration fluxes. For the most direct decomposition, we employ
the data-driven GPP estimates to decompose NEE into GPP
and terrestrial ecosystem respiration (TER) fluxes (Fig. 2).
This comparison shows that the TRENDY ensemble mean10

GPP tends to overestimate the data-driven GPP during the
autumn (September–November), largely explaining the mis-
match in NEE during this season. For TER, we find good
agreement for over the Warm region except for an under-
estimate of TER for the TRENDY ensemble mean during15

the summer (mirroring GPP). For the Mid region, agreement
is found between the TRENDY and data-driven TER esti-
mates throughout the growing season. For the Cold region,
we find that the TRENDY ensemble mean suggested greater
TER during May–August, which drives the mismatch found20

in NEE.

We next decompose NEE into component NPP and Rh
fluxes. These estimates require an additional assumption
about the CUE in comparison to the GPP/TER decompo-
sition but also have the potential to provide more process 25

understanding. As described in Sect. 2.4, we employ the
monthly CUE estimates from the ensemble of TRENDY
models. This both allows an “apples-to-apples” comparison
with the TRENDY models as the CUE estimates are con-
sistent between the data-driven and TRENDY estimates and 30

allows us to propagate uncertainty in CUE from the ensem-
ble spread. The data-driven NPP and TRENDY NPP are
shown in Fig. 3d–f. The seasonality in NPP between the
data-driven and TRENDY estimates show good agreement
for all regions. In the Mid and Warm regions, the TRENDY 35

model mean NPP tends to be lower than the data-driven
estimates during June–July (0.26–0.37 g C m−2 d−1). How-
ever, the largest differences are for the Cold region, where
the TRENDY ensemble mean shows increased NPP dur-
ing August–September (0.38 g C m−2 d−1). This largely ac- 40

counts for the lower NEE during August–September (86 %–
95 %). Thus, despite previously reported deficiencies in
model representation of photosynthesis over high latitudes
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(Rogers et al., 2017, 2019), we find that TRENDY NPP esti-
mates largely capture the data-driven seasonality and do not
drive NEE differences against the data-driven seasonal cycle.

Finally, we compare TRENDY Rh to data-driven Rh
(Fig. 3g–i). In the Warm region, the TRENDY model mean5

Rh is lower than the data-driven estimates during May–
September (0.21–0.26 g C m−2 d−1), but the seasonality is
similar. In the Mid region, the data-driven and TRENDY Rh
seasonal cycles show good agreement throughout the grow-
ing season. The largest differences between data-driven and10

TRENDY Rh seasonal cycles are found for the Cold region.
The TRENDY model mean shows increasedRh during May–
July (0.32–0.58 g C m−2 d−1) but show reduced Rh during
the rest of the year (0.29–0.51 g C m−2 d−1). As a result, the
seasonality of data-driven Rh is shifted later in the year rel-15

ative to the TRENDY ensemble. This can be seen in the cu-
mulative fraction of annual Rh, which quantifies the fraction
of total Rh released as the season progresses (Fig. 3j–l). The
percentage of total annual Rh released during May–July is
46 % for the TRENDY ensemble mean but 37 % (30 %) for20

the LNLG (IS) data-driven Rh ensemble mean.
We independently confirm a shift in the seasonality

of data-driven Rh relative to TRENDY for 15 high-
latitude FLUXNET sites (Fig. S11). Due to the sparsity
of FLUXNET sites over northeastern Eurasia, we include25

sites outside of the “Cold” domain but that have early zero-
crossing dates (estimated by a mean October air temperature
less than 2 ◦C). The observed mean Rh peaks across these
sites during September, in agreement with the data-driven Rh
seasonality. In contrast, the TRENDY mean Rh peak occurs30

during July (consistent with the regional-scale analysis). This
phase shift is also evident in the cumulative fraction of an-
nual Rh, which shows that the percentage of total annual Rh
released during May–July is 46 % for the TRENDY ensem-
ble mean but 35 % for the FLUXNET-based ensemble mean.35

Overall, these results indicate good agreement between
the TRENDY ensemble and data-driven estimates for the
Warm and Mid regions but show marked differences over
the Cold region. In particular, we find that the data-driven
estimates suggest a seasonal redistribution of Rh with a re-40

duction during May–July but an increase for the remainder
of the year. Further, these results show that differences in Rh
largely account for the differences between the data-driven
and TRENDY NEE fluxes over the Cold region, except in
August–September when NPP differences are large. In the45

remaining sections, we will characterize the data-driven sea-
sonal cycle of NEE, NPP, and Rh at a higher (biweekly) tem-
poral resolution and investigate mechanistic explanations for
the data–model differences found over the Cold region.

3.2 Data-driven biweekly CO2 fluxes50

We now investigate the data-driven seasonal cycle of NEE,
NPP, and Rh with biweekly (14 d) temporal resolution. This
higher resolution better resolves temporal changes in CO2

fluxes throughout the growing season, particularly during the
shoulder seasons, when week-to-week changes in CO2 fluxes 55

are large (Parazoo et al., 2018a). For this analysis, we utilize
a set of three flux inversions that assimilate both in situ and
OCO-2 land nadir and glint data (ACOS v10) to estimate
sub-monthly CO2 fluxes (TM5-4DVAR14d, CAMS14d, and
CMS-Flux14d; individual model fluxes shown in Fig. S3). 60

These inversions give similar NEE seasonality to the v9
OCO-2 MIP monthly fluxes (e.g., Fig. S9) and have sea-
sonality similar to the v9 OCO-2 MIP LNLG inversions for
the Cold region. For NPP, we utilize the same datasets as
Sect. 3.1 but at 14 d temporal resolution. We examine the en- 65

semble means for a best estimate and take the full range of
model estimates as an illustration of the uncertainty.

Figure 4 shows the 4-year-mean (2015, 2016, 2018, and
2019; 2017 is excluded due to an OCO-2 data gap in summer)
seasonal cycle of NEE, NPP, and Rh for the three regions of 70

Eurasia. NEE largely tracks the inverted seasonality of NPP,
although peak NPP is slightly delayed relative to peak draw-
down in NEE (by 0–2 weeks). Both NEE and NPP generally
follow the seasonal cycle of insolation but are somewhat de-
layed in the Mid and Cold regions likely due to temperature 75

limitation (Liu et al., 2020). Peak Rh is found to be delayed
relative to peak NPP by 0–8 weeks. For the Warm and Mid
regions, Rh follows the seasonal cycle of surface tempera-
ture, with 48 % and 51 % of the annual total Rh occurring
after the peak in surface temperature, respectively. In con- 80

trast, the Cold region shows a substantial delay relative to
surface temperature, with 63 % of the total Rh occurring af-
ter the peak in surface temperature. The mean Rh seasonal
cycle is also found to have a double peak in this Cold region:
a smaller peak of 0.77 g C m−2 d−1 occurs during late May 85

followed by a larger peak of 1.70 g C m−2 d−1 at the begin-
ning of September. This May peak roughly aligns with the
spring thaw and positive zero-crossing at the beginning of
May. A potential mechanistic explanation for a spring pulse
of Rh could be due to thawing soils that release CO2 that 90

had been trapped within subsurface soil layers over the win-
ter (see Sect. 4). Another plausible mechanism could be the
timing of snowmelt, which may insulate the soil over winter
(Yu et al., 2016). However, the signal from this first peak is
small relative to the uncertainties. 95

3.3 Mechanistic drivers of late-season Rh

Data-driven Rh for the Cold region indicates a delayed peak
relative to surface temperature and the TRENDY model
mean. Here we examine possible mechanistic explanations
for this late season peak in Rh using models. We investigate 100

two factors that could potentially contribute to the delay in
Rh. (1) The first factor is seasonal variations in the labile
carbon pool. Leaf and fine root litter carbon pools tend to
increase over the growing season as carbon is sequestered
through photosynthesis (Randerson et al., 1996). Thus, in- 105

creased substrate availability in the autumn relative to the
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Figure 3. Monthly carbon cycle fluxes (average of 2015, 2016, and 2018; 2017 is excluded due to an OCO-2 data gap). (a–c) Mean (solid
line) and interquartile range (shaded area) of NEE for the ensemble of IS (red) and LNLG (blue) v9 OCO-2 MIP and for the TRENDY
ensemble (green). (d–f) NPP for the TRENDY ensemble (green) and estimated from data-driven GPP (black). (g–i) Rh simulated by the
TRENDY ensemble (green) and calculated from combining the data-driven NPP with the IS (red) and LNLG (blue) v9 OCO-2 MIP NEE
constraints. (j–l) Cumulative fraction of Rh over the growing season.

spring will act to shift the seasonal cycle of Rh later in the
year. (2) The second factor is Rh from subsurface soil lay-
ers that have a delayed seasonal cycle driven by a lag in soil
temperature. Heating and cooling at the surface slowly dif-
fuses through the soil column resulting in a lagged seasonal5

cycle of temperature with depth (Parazoo et al., 2018b). Fig-
ure 5a–c show the seasonal cycle in soil temperature from
the MERRA-2 Land dataset. The phase shift in soil temper-
ature seasonality with depth can be up to several months and
is largest for the colder regions. Note that we verify the fi-10

delity of the MERRA-2 Land soil temperature against bore-
hole measurements and against simulated soil temperature
from ERA-5 reanalysis and the CMIP6 models (see Sect. S2,
Figs. S12–S13).

To test the impact of these factors, we consider a single 15

layer model that represents Rh using a exponential relation-
ship with temperature:

Rh = αe
βT , (4)

where α represents the labile carbon pool size, β is a con-
stant, and T is the temperature of the carbon pool. To inves- 20

tigate the impact of seasonal and vertical variations in labile
carbon, we consider three cases:

1. Rh(αc,Tsurf)= αce
βTsurf : the carbon pool is constant in

time (αc), and the surface temperature (Tsurf) drives Rh;
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Figure 4. Data-driven 4-year-mean (2015, 2016, 2018, and 2019) 14 d NEE, NPP, and Rh. (a–c) Mean and ensemble spread of NEE for the
CMS-Flux14d, TM4-4DVar14d, and CAMS14d flux inversions. (d–f) Mean and ensemble spread for the data-driven NPP. MERRA-2 Land
net downward shortwave flux over land is shown in blue. (g–i) Ensemble estimate of Rh = NEE+NPP estimated from the three NEE and
NPP estimates. MERRA-2 Land surface temperature is shown in red.

2. Rh(αc,T1m)= αce
βT1m : the carbon pool is constant in

time (αc), and the average top meter soil temperature
(T1m) drives Rh;

3. Rh(αt,Tsurf)=αte
βTsurf : the carbon pool is dynamic in time

(αt = f (t), described in the Appendix), and the Tsurf5

drives Rh. We assume seasonal variations in the carbon
pool are within± 15 % of the mean (γ = 0.15, Fig. S14
shows the seasonal variation in the labile carbon pool).

Figure 5d–f show linear regressions for each one-layer
model against the mean biweekly estimate of Rh. In each10

case, the parameters α and β are optimized (note linear re-
gressions are performed on ln(Rh)= ln(α)+βT ). Statistics
on the model fits are provided in Table 1. For the Warm re-
gion, all models are able to fit the data well (R2

= 0.89–
0.93, SE= 0.051–0.067 g C m−2 d−1). Similarly, all models15

are able to largely capture the seasonal cycle in the Mid re-
gion (R2

= 0.84–0.94), although Rh(αc,T1m) appears to bet-
ter capture the shoulder seasons and gives a smaller stan-
dard error (SE= 0.046 g C m−2 d−1) than the other mod-
els (SE= 0.074–0.091 g C m−2 d−1). The models diverge the20

most for the Cold region. Rh(αc,Tsurf) gives the poorest per-
formance (R2

= 0.66, SE= 0.16 g C m−2 d−1), as the driv-
ing temperature data peak too early to capture the season-
ality of Rh. Rh(αt,Tsurf) performs somewhat better, as the
peak in model Rh is delayed relative to surface temperature25

(R2
= 0.77, SE= 0.13 g C m−2 d−1). Still, Rh(αc,T1m) per-

forms the best (R2
= 0.88, SE= 0.08 g C m−2 d−1) and best

captures the delayed Rh seasonality relative to surface tem-
perature.

To further confirm that Rh(αc,T1m) best captures the 30

seasonality of Rh, we fit these same models to seasonal
FLUXNET Rh averaged over cold sites. This is a rather
rough comparison as we drive the models with soil tem-
peratures averaged over the Cold region rather than site
specific datasets (due to absence of soil temperature data). 35

Figure S15 shows the resulting fits, and Table S2 gives
the statistics of the fits. We find that Rh(αc,T1m) performs
best (R2

= 0.96, SE= 0.08 g C m−2 d−1), whileRh(αt,Tsurf)

performs second best (R2
= 0.85, SE= 0.19 g C m−2 d−1),

and Rh(αc,Tsurf) gives the poorest performance (R2
= 0.75, 40

SE= 0.25 g C m−2 d−1), consistent with the regional-scale
data-driven analysis.

This analysis demonstrates that the seasonality of Rh in
the Warm and Mid regions is reasonably explained by sea-
sonal variations in Tsurf but that inclusion of seasonal varia- 45

tions in the labile carbon pool and the impact of soil temper-
ature with depth still improve the seasonal fit. However, for
the Cold region, the seasonality of Rh is not well captured
by Tsurf, and additional factors, particularly the impact soil
temperature with depth, are required to explain the delayed 50

seasonality of Rh over the Cold region.
We further investigate these mechanisms using a soil car-

bon decomposition model that can simulate seasonal and ver-
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Figure 5. Impact of temporal and vertical variations in carbon pools on Rh. (a–c) MERRA-2 Land soil temperature over five intervals for
the (a) Warm, (b) Mid, and (c) Cold regions. (d–e) Mean and range in inferred 14 d Rh with fits for single-layer Rh models that employ
(navy dash) Tsurf dependence and no seasonal variations in the carbon pool, (cyan dash) T1m dependence and no seasonal variations in the
carbon pool, and (magenta dash) Tsurf dependence and seasonal variations in the carbon pool. (g–i, top) Normalized seasonal cycle of Rh
simulated by the soil decomposition model (Sect. 2.6). The different lines show different model simulations: D300cm employs a dynamic
carbon pool over 0–300 cm depth, C300cm employs a constant carbon pool over 0–300 cm depth, andD10cm employs a dynamic carbon pool
over 0–10 cm depth. (g–i, bottom) Differences in simulated Rh between experiments.

tical variations in carbon pools (Sect. 2.6). This allows for a
prognostic simulation of mechanisms driving the seasonality,
in contrast to the diagnostic one-layer models. Three exper-
iments are examined that simulate Rh: (1) down to a depth
of 300 cm using a constant carbon pool (C300cm), (2) within5

the top 10 cm of soil using a dynamic carbon pool (D10cm),
and (3) to a depth of 300 cm using a dynamic carbon pool
(D300cm due to dynamic litterfall inputs and Rh outputs). We
compare these seasonal cycles after normalizing by the an-
nual total Rh. Figure 5g–i show that incorporating seasonal10

and vertical variations in the carbon pool results in a phase
shift in Rh to later in the year, consistent with the one-layer
model results. The simulated impact of these factors is found

to be quite small possibly due to underestimation of the im-
pact of seasonal and vertical variations in the carbon pools 15

on Rh in the model. Still, these model simulations can inform
the Rh tendencies of these carbon pool variations. Compar-
ing the regions, the impact of seasonal variations in the labile
carbon pool are quite similar, with reduced Rh in the summer
and increased Rh during the autumn relative to a constant 20

carbon pool. In contrast, the impact of vertically resolved Rh
shows differences between the regions, with a small impact
for the Warm region but a comparatively large impact for the
Cold region. The larger impact over the Cold region is likely
due to larger carbon pools at depth (Fig. S17), with a possible 25

contribution from regional differences in the thermal gradi-
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Table 1. Parameters (α,β) for one-layer model fits and statistics (slope, intercept, R2, standard error – SE) on the data–model mismatch of
these fits.

Region Experiment Slope Intercept R2 Standard error (SE)
(g C m−2 d−1)

Warm αeβTsurf 0.94 0.11 0.89 0.067
Warm αeβT1m 0.91 0.14 0.93 0.051
Warm α(t)eβTsurf 0.94 0.10 0.92 0.057

Mid αeβTsurf 1.03 0.00 0.84 0.091
Mid αeβT1m 0.88 0.09 0.94 0.046
Mid α(t)eβTsurf 1.04 −0.01 0.89 0.074

Cold αeβTsurf 1.08 −0.01 0.66 0.16
Cold αeβT1m 1.04 −0.01 0.88 0.08
Cold α(t)eβTsurf 1.11 −0.03 0.77 0.13

ent with depth (Fig. 5). Similarly, we find that the fractional
contribution of subsurface soils to total Rh has larger sea-
sonal variation over the Cold region (Fig. S18). Thus, these
results support a substantial contribution of subsurface soil
Rh and suggest that an underestimation of this quantity by5

the DGVMs could explain the data–model differences.

4 Discussion

4.1 Implications

Over the cold northeastern region of Eurasia, our data-driven
Rh seasonal cycle allocates 64 %–70 % of annual CO2 emis-10

sions to outside of the summer (August–April) compared to
only 52 % of annual Rh emissions allocated by the TRENDY
DVGMs to this period. The reason that the TRENDY mod-
els do not capture this seasonality is unclear. A plausible
explanation is that the TRENDY models do not capture the15

contribution of subsurface layers to Rh, especially during the
zero-curtain period. This is clearly the case for the subset of
TRENDY models that drive Rh with air temperature. How-
ever, it is unclear if this is an important factor for models with
more sophisticated soil modules. Surprisingly, a preliminary20

analysis did not find a relationship between model complex-
ity and agreement with the data-driven estimate. The drivers
of differences from the data-driven estimate may differ be-
tween models and be impacted by the interplay of litterfall
phenology, Rh formulation (Peylin et al., 2005), and num-25

ber of soil layers, among other factors. Some potential areas
of focus for improving models may be gleaned from recent
studies. Seiler et al. (2022) suggest that the TRENDY mod-
els may systematically underestimate soil organic carbon at
high latitudes, which could contribute to an underestimate30

of subsurface Rh across the models. Endsley et al. (2022)
found a similarly phased bias in simulated Rh by the Ter-
restrial Carbon Flux (TCF) model against flux tower Rh to
that reported here. They show that this bias could be largely

mitigated by adding seasonally varying litterfall phenology, 35

an O2 diffusion limitation on Rh, and a vertically resolved
soil decomposition model, suggesting these may be foci for
model improvements.

Differences between the data-driven and TRENDY Rh
seasonal cycles suggest that DGVMs may be deficient in 40

simulating the response of permafrost-rich ecosystems to cli-
mate change, particularly in terms of subsurface Rh. Im-
proving DGVM skill in these ecosystems is critical given
the rapid northern high-latitude warming and lengthening
of the zero-curtain period (Euskirchen et al., 2017; Para- 45

zoo et al., 2018b; Chen et al., 2021). The rapid changes in
northern Eurasia are illustrated in Fig. 6, which shows the
number of months per year that soil temperatures are greater
than 0 ◦C as simulated by a set of CMIP6 models. Soils
in the permafrost-rich Cold region are undergoing the most 50

dramatic lengthening of the unfrozen period, particularly at
depth (50–200 cm). Under scenario ssp585 (highest emission
scenario), these soils are predicted to go from∼5 months per
year with a monthly mean soil temperature above 0 ◦C during
the 20th century to ∼ 11 months per year by 2100. The im- 55

pact is largest for the Cold region at depth because of the re-
duced seasonality relative to the surface such that a warming
of ∼ 7 ◦C shifts nearly the entire seasonal cycle above 0 ◦C
at a depth of 50–200 cm (Fig. S19). Such warming would
drive the widespread formation of talik, a subsurface layer 60

of perennial thawed soil (Parazoo et al., 2018b), and further
enhance Rh at depth.
Rh from sub-surface layers may already be increasing

substantially in permafrost regions. Examining the 41-year
record of CO2 at Barrow tower, Commane et al. (2017) find 65

that early cold season NEE efflux (October–December) has
increased 73.4 %± 10.8 % over the 1975–2015 period. The
standard CAMS IS inversion product similarly suggests an
increase in the September–October NEE efflux of ∼ 80 %
over Siberia for the 2013–2017 period relative to the 1980– 70

1984 period (see Fig. S20 of Lin et al., 2020). In agree-
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Figure 6. Number of months per year with monthly mean soil temperatures above 0 ◦C at depths of 0–10 cm (red), 10–50 cm (green), and
50–200 cm (blue) simulated by seven CMIP6 models under ssp585 for the (a) Warm, (b) Mid, and (c) Cold regions. The solid lines show the
model mean, and shading shows ± 1 SD.

ment, Hu et al. (2021) identified a strong increase (∼ 10 %)
in August–OctoberRh over the North America Arctic–boreal
region between 1979–1988 and 2010–2019 based on mea-
surements of atmospheric CO2 and carbonyl sulfide. These
inferred changes in Rh may in part be related to warming-5

induced changes in the seasonality of GPP (Liu et al., 2020;
Kwon et al., 2021), but more research is needed to determine
the impact of these different drivers.

4.2 Limitations

Atmospheric CO2 measurements are relatively sparse over10

northern Eurasia (Byrne et al., 2017). In situ and flask CO2
measurements are spatially sparse over Mid and Cold regions
(Fig. S8), with only a handful of sites assimilated over Russia
as part of Japan–Russia Siberian Tall Tower Inland Observa-
tion Network (JR-STATION) of nine tower sites (Sasakawa15

et al., 2010, 2013). The OCO-2 coverage is seasonally vari-
able (Fig. S7). Due to the fact that XCO2 retrievals are per-
formed on reflected sunlight, the coverage across Eurasia
is quite good during the growing season (May–September).
However, low signal and the inability to perform retrievals20

over snow limit the data coverage during the shoulder sea-
sons and winter, resulting in few XCO2 retrievals across the
Mid and Cold regions during November–February. Ongoing
research to both improve XCO2 quality control filtering at
high latitudes (Jacobs et al., 2020; Mendonca et al., 2021)25

and retrieve XCO2 over snow and ice surfaces (Mikkonen
et al., 2021) may reduce these data gaps in the future. De-
spite this sparsity of measurements, we find that the LNLG
and IS flux inversions show consistent differences from the
TRENDY and prior fluxes. Furthermore, these data show30

good agreement with withheld in situ data (Peiro et al.,
2022) and independent aircraft measurements over Alaska
(Fig. S10). Thus, we believe the results presented here to
be robust despite data gaps. Still, this sparsity of data leads
to some limitations. There are few sources of independent35

CO2 measurements over the Mid and Cold regions to evalu-
ate the inversion posterior CO2 fields. Independent measure-
ments (possibly aircraft campaigns) would provide a valu-
able additional data set for validation. Similarly, increasing
the number of year-round eddy-covariance sites across the 40

Mid and Cold regions would provide a valuable independent
dataset to compare against flux inversion estimated NEE. For
example, Byrne et al. (2020a) were able to confirm top-down
estimates of east–west differences in NEE interannual vari-
ability across North America against the dense network of 45

eddy-covariance sites.
We also note that there are challenges in estimating data-

driven GPP during the shoulder season due to reduced re-
flected radiance and snow cover, which impacts the spectral
features of the vegetation canopy. Poor quality data, such as 50

snowy and noisy samples, contribute to uncertainty in the
timing of shoulder seasons (Wang et al., 2017; Zhang, 2015).
In this analysis, we attempted to mitigate this issue through
the use of an ensemble of data-driven GPP estimates, but we
acknowledge that remaining biases may be present. 55

Furthermore, the partitioning of NEE into NPP and Rh
could be biased if CUE estimates were seasonally biased.
We employed TRENDY model CUE to translate data-driven
constraints on NEE and GPP into estimates of NPP and Rh.
Thus, systematic errors across the TRENDY ensemble in 60

CUE could impact conclusions about the relative contribu-
tions of errors in NPP and Rh. A potential source of bias in
CUE could be due to an underestimate of the impact of in-
hibition of leaf respiration by light (Wehr et al., 2016; Byrne
et al., 2018; Keenan et al., 2019; Oikawa et al., 2017). This 65

would result in greater CUE and NPP during June–July rel-
ative to the rest of the year, shifting the inferred Rh seasonal
cycle earlier, with Rh increased during June–July but de-
creased elsewhere (Byrne et al., 2018). However, the magni-
tude of this impact on the ecosystem scale is uncertain, mak- 70

ing accounting for this phenomenon challenging. Recently,
Endsley et al. (2022) found that the inhibition of leaf respira-
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tion by light has a relatively modest impact on the seasonality
of NPP and Rh, suggesting that the results presented here are
robust.

There are also remaining challenges in relating the in-
ferred fluxes to underlying processes. Space-based flux con-5

straints do not discriminate between biological and physical
processes driving carbon cycle fluxes. It is currently unclear
whether the substantial cold season CO2 effluxes across per-
mafrost regions are driven primarily by biological activity or
physical processes (Natali et al., 2019; Arndt et al., 2020;10

Raz-Yaseef et al., 2017). Yet, isolating the primary driver
of these fluxes is critical for inferring the sensitivity of Rh
to climate change. If the cold season Rh comes from the
metabolism of old permafrost carbon, then 14CO2 measure-
ments could help differentiate biological from physical CO215

production.

5 Conclusions

Space-based and in situ atmospheric CO2 measurements re-
vealed strong summer uptake and early cold season release
of CO2 over the cold northeastern Eurasia region, implying20

a late summer peak in Rh with substantial early cold season
respiration. Based on model simulations of Rh, we suggested
that this seasonality is driven by a large contribution of sub-
surface soils to the total Rh. These results are consistent with
site-level observations identifying substantial CO2 release in25

permafrost regions outside the growing season (Natali et al.,
2019) and, in particular, reported spikes in early cold season
respiration associated with the zero-curtain period in Arctic
ecosystems (Commane et al., 2017; Jeong et al., 2018).

The data-driven seasonality of Rh over the Cold region30

was generally not captured by the TRENDY DGVMs, which
showed greater Rh during May–July and lower Rh during the
rest of the year. The underlying cause of this discrepancy is
unclear but may be linked to an underestimate of the contri-
bution of sub-surface soils to total Rh. Given the rapid warm-35

ing of permafrost soils (Euskirchen et al., 2017; Chen et al.,
2021), talik formation (Parazoo et al., 2018b), and increasing
early cold season CO2 effluxes (Commane et al., 2017; Lin
et al., 2020; Hu et al., 2021), improving DGVM simulations
in permafrost regions should be a focus of future studies.40

This analysis demonstrates the utility of space-based ob-
servations for studying carbon cycle dynamics at high lati-
tudes, where in situ measurements are sparse. Although cur-
rently limited by a short observing record (2014–present),
the estimates of NEE inferred from the OCO-2 XCO2 re-45

trievals suggest that these data will provide a powerful tool
for detecting change in seasonal cycle of NEE across north-
ern Eurasia.

Appendix A: Appendix 1

We estimate seasonal variations in labile carbon by estimat- 50

ing a litterfall flux of carbon. Litterfall seasonality is as-
sumed to follow the same pattern as Randerson et al. (1996)
(Fig. S14). We assume that the labile carbon pool is in steady
state on annual timescales such that the annual total literfall
is equal to the annual total Rh: 55

Litterfall(t)= fNPP (t)

365∫
0

Rh (t) dt, (A1)

where t is the day of the year, and fNPP is the fraction of
annual total NPP that is converted to litterfall. The seasonal
variation in the labile carbon pool (1Cpool) is defined as the
difference in flux between litterfall and Rh: 60

1Cpool (t)=

t∫
0

(Litterfall(t)−Rh (t)) dt . (A2)

Finally, we assume a fractional variation in the total carbon
pool amount, γ , and calculate α(t):

α (t)=

(
Cpool (t)

max
(
|Cpool (t) |

)γ + 1

)
α0, (A3)

where α0 is the mean carbon pool size and is optimized in 65

the regression in Sect. 3.3.

Data availability. TRENDY v8 gridded data were accessed by con-
tacting Stephen Sitch following the TRENDY data policy described
on their website: https://sites.exeter.ac.uk/trendy (Sitch et al., 2022).
v9 OCO-2 MIP fluxes were downloaded from https://gml.noaa. 70

gov/ccgg/OCO2_v9mip/ (Crowell et al., 2022). GFED data were
downloaded from https://www.globalfiredata.org/ (Randerson et al.,
2022). We downloaded version 10 of the ACOS OCO-2 lite files
from the GES DISC (https://doi.org/10.5067/W8QGIYNKS3JC,
OCO-2 et al., 2018). OCO-2 data were produced by the OCO- 75

2 project at the Jet Propulsion Laboratory, California Institute of
Technology, and obtained from the OCO-2 data archive maintained
at the NASA Goddard Earth Science Data and Information Ser-
vices Center. FluxSat data were downloaded from https://avdc.gsfc.
nasa.gov/pub/tmp/FluxSat_GPP/ (Joiner, 2022). The GOSIF data 80

product is available at http://data.globalecology.unh.edu/, (Xiao and
Xing, 2022). ERA5-Land data are obtained from the Climate Data
Store (https://doi.org/10.24381/cds.68d2bb30, Muñoz Sabater,
2019).

Supplement. The supplement related to this article is available on- 85

line at: https://doi.org/10.5194/bg-19-1-2022-supplement.
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