Supplement of “Large autumn heterotrophic respiration signal across northeast Eurasia”

Brendan Byrne1, Junjie Liu1,2, Yonghong Yi3,4, Abhishek Chatterjee1,5,6, Sourish Basu6,7, Rui Cheng2, Russell Doughty2,8, Frédéric Chevallier9, Kevin W. Bowman1,3, Nicholas C. Parazoo1, David Crisp1, Xing Li10, Jingfeng Xiao11, Stephen Sitch12, Bertrand Guenet13, Feng Deng14, Matthew S. Johnson15, Patrick C. McGuire16, and Charles E. Miller1

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
3 Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA
4 College of Surveying and Geo-Informatics, Tongji University, China
5 Universities Space Research Association, Columbia, MD, USA
6 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
7 Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
8 College of Atmospheric and Geographic Sciences, University of Oklahoma, Norman, OK USA
9 Laboratoire des Sciences du Climat et de l’Environnement/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
10 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
11 Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
12 College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
13 Laboratoire de Géologie, Ecole Normale Supérieure/CNRS UMR8538, IPSL, PSL Research University, Paris, France
14 Department of Physics, University of Toronto, Toronto, Ontario, Canada
15 NASA Ames Research Center, Moffett Field, CA, USA
16 Department of Meteorology and National Centre for Atmospheric Science, University of Reading, Reading, UK

Correspondence: Brendan Byrne (brendan.k.byrne@jpl.nasa.gov)

Copyright statement. 2022. All rights reserved. California Institute of Technology, government sponsorship acknowledged.

1 Introduction

This supporting information contains two supporting text sections, 18 supporting figures and one supporting table.

5 Text S1. Evaluation of CMS-Flux14day inversion against aircraft data

Independent CO2 measurements are sparse over northern Eurasia, particularly over the northeastern region. Therefore, we examine airborne CO2 measurements in the free troposphere over Alaska to investigate the accuracy of the seasonal cycle es-
timate by the CMS-Flux14day flux inversions. Previous analyses have shown that CO₂ measurements over Alaska are sensitive to surface fluxes over northern Eurasia (see Fig. S5 of Byrne et al. (2020)).

Before comparing to airborne CO₂ measurements, we first show that the CMS-Flux14day NEE estimates are in family with those of the OCO-2 MIPv9 flux inversions. Figure S10 shows the CMS-Flux14day inversions aggregated to monthly resolution (mean of 2015, 2016, 2018 and 2019). These inversions show good agreement with the MIPv9 ensembles and generally fall within the interquartile range. The largest differences occur for the IS inversions that shows reduced May–June uptake relative to the MIPv9 ensemble in the Warm and Mid regions. Nevertheless, this plot shows that the inversions largely capture the same features of the MIPv9 flux inversions relative to the prior ensemble. Figure S11 shows the CMS-Flux14day NEE fluxes over the cold region and comparison with aircraft measurements over Alaska. For this comparison we sample the posterior CO₂ fields at the same time and altitude that airborne measurements occur. We include airborne measurements between 3000 m and 8000 m above the model surface over the domain 55°–90° N and 130°–180° W during the years 2015, 2016, 2018 and 2019. We calculate the monthly averages across these four years. We find that all flux inversions perform well in capturing the seasonal cycle of airborne CO₂ measurements relative to the prior. This comparison provides further evidence that strong summer uptake and autumn release of CO₂ occurs over northeastern Eurasia. Interestingly, the posterior fluxes still appear to underestimate the strength of the summer uptake (all CMS-Flux14day inversions overestimate the observed CO₂ during July) and underestimate the release during the autumn (all CMS-Flux14day inversions underestimate CO₂ during October).

Text S2. Evaluation of MERRA-2 Land T\textsubscript{soil}

A key result of the analysis is that a delayed seasonal peak in soil temperature with depth is suggestive of a substantial R_h signal at depth. Here, we confirm that the seasonal cycle of MERRA-2 soil temperature with depth is consistent with observational constraints from borehole measurements, and regional simulations from ERA5 and CMIP6.

Figure S13 shows a comparison of MERRA-2 Land soil temperature and borehole measurements downloaded from the Global Terrestrial Network for Permafrost (GTN-P) over two depth intervals. We examine data from the following sites: Anderson, Anaktuvuk Pass, Ambler, Arctic Village, Barentsburg Borehole 2, Bayelva Ny Alesund, Banks Island Dataset 1349, Banks Island Dataset 1348, Deadhorse 1, Deadhorse 2, Chandalar Shelf, Bonanza Creek, Bonanza Creek 2, Endalen PYRN, College Peat, Kapp Linne 1, Kapp Linne 2, Happy Valley 1 b, Happy Valley 1 ib, Gakona 2, Galbraith Lake, Ivotuk 4 Dataset 820, Ivotuk 4 Dataset 819, Ivotuk 3 Dataset 814, ILU2007, Franklin Bluffs wet b Dataset 666, Franklin Bluffs surface Dataset 660, Franklin Bluffs dry ib Dataset 665, Franklin Bluffs dry be Dataset 664, Franklin Bluffs dry b Dataset 663, Franklin Bluffs dry b Dataset 35, Lake Elgygytgyn, Kashin 01k, Last Bridge, NGTS UNIS east, Nadym ND3 4, Nadym ND3, Nadym ND2, Old Auroral Station PYRN, Mary’s Igloo East, Mould Bay Dataset 1355, Mould Bay Dataset 1354, Peski 1 Dataset 1406, Salmon Lake, Piz Bo, Smith Lake 2, Smith Lake 3, Smith Lake 4, and West Dock 1 surface Dataset 615.

The seasonal peak in soil temperature from MERRA-2 well reproduces the borehole soil temperature peak for the 0–50 cm and 50–200 cm depth intervals, and accurately captures the phase shift in temperature. The largest data-model differences occur during the winter (Dec–Mar), where the MERRA-2 soil temperature is biased 2–3 °C high. This bias could be partially impacted by differences in the time periods examined. We average the seasonal cycle in borehole data for all available measurements
over 1998–2020, whereas we examine the 2015–2018 period for the MERRA-2 data, so it is possible that climate warming could impact the inferred bias.

Figure S14 shows the regional simulated seasonal cycle of soil temperature over four depth intervals for MERRA-2 Land (2015–2019), ERA5 Land (2015–2019), and seven CMIP6 models (2010–2019). For the CMIP6, models we examine the median and interquartile range across the mean seasonal cycles over 2010–2019. All of the model estimates show close agreement in the seasonality of soil temperature across the regions with depth. Each model captures a similar phase shift in soil temperature with depth. The largest differences are evident in the Cold region, particularly during the winter, where MERRA-2 is about ∼5 °C colder than ERA5 (and the CMIP6 models largely fall in between). Interestingly, the MERRA-2 Land reanalysis showed the opposite (warm) bias relative to the borehole data. Nevertheless, this comparison shows that the MERRA-2 Land soil temperature is in good agreement with borehole measurements and other models in simulating the seasonal cycle of soil temperature at high latitudes.

![Figure S1. GFED4.1 Biomass burning emissions of CO₂.](image-url)
Figure S2. NEE fluxes from individual MIPv9 participants. (a-c) Median and interquartile spread for each experiment. Individual model NEE estimates for the (d-f) IS experiment, (g-i) LNLG experiment, and (j-l) prior fluxes.
Figure S3. Prior (dashed) and posterior (solid) NEE fluxes at 14 day temporal resolution for CAMS$_{14\text{day}}$ (orange), TM5-4DVar$_{14\text{day}}$ (magenta), and CMS-Flux$_{14\text{day}}$ (navy blue) flux inversions.

Figure S4. (a-c) NEE, (d-f) NPP, and (g-i) R_h seasonal cycles simulated by each TRENDY v8 model examined in this study. The shaded green area shows the TRENDY model interquartile spread, while individual lines show specific models: (dash magenta) LPX, (dashed cyan) LPJ, (dotted blue) OCN, (dotted red) ORCHIDEE-CNP, (dotted green) ORCHIDEE, (dotted magenta) SDGVM, (dotted cyan) VISIT, (solid blue) CABLE-POP, (solid red) CLASS-CTEM, (solid green) CLM5.0, (solid magenta) DLEM, (solid cyan) ISAM, (dashed blue) ISBA-CTRP, (dashed red) JSBACH, and (dashed green) JULES.
Figure S5. CUE (NPP/GPP) for the TRENDY models. Thin green lines show the CUE for individual models while the thick green line shows the median and shaded regions shows the interquartile spread.

Figure S6. GPP fluxes at 14 day temporal resolution from FluxSat (blue), VPM (green), FLUXCOM (red), and GOSIF (cyan).
Figure S7. Same as Fig. 2 of main text but with units in gC m\(^{-2}\) day\(^{-1}\) rather than TgC day\(^{-1}\).
Figure S8. Spatial coverage of monthly OCO-2 land X_{CO_2} retrievals averaged over four years (2015, 2016, 2018, and 2019). (a-l) Monthly mean observations per day of OCO-2 ACOS v10 combined land nadir and land glint 10 sec X_{CO_2} super-obs on a $1^\circ \times 1^\circ$ spatial grid.
Figure S9. Spatial coverage of monthly in situ and flask measurements averaged over four years (2015, 2016, 2018, and 2019). (a-l) Monthly mean observations per day assimilated in to OCO-2 v10 MIP. Sites are shown by circles while shipboard and aircraft measurements are aggregated to a 1° × 1° spatial grid.
Figure S10. Seasonal cycle of NEE for the OCO-2 MIPv9 and CMS-Flux$_{14\text{day}}$ flux inversions at monthly temporal resolution over the (a) warm, (b) mid, and (c) cold regions. The shaded regions show the interquartile spread for the MIPv9 prior (grey), IS (red) and LNLG (blue) ensembles. The lines show the CMS-Flux$_{14\text{day}}$ prior (dashed cyan), IS (red), LNLG (blue), and LNLGIS (navy).

Table 1. Site name, latitude, longitude and vegetation type for the FLUXNET sites examined in this study.

<table>
<thead>
<tr>
<th>Site</th>
<th>Lat</th>
<th>Lon</th>
<th>vegetation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-Man</td>
<td>55.8796</td>
<td>-98.4808</td>
<td>Evergreen Needleleaf Forests</td>
</tr>
<tr>
<td>CA-NS1</td>
<td>55.8792</td>
<td>-98.4839</td>
<td>Evergreen Needleleaf Forests</td>
</tr>
<tr>
<td>CA-NS2</td>
<td>55.9058</td>
<td>-98.5247</td>
<td>Evergreen Needleleaf Forests</td>
</tr>
<tr>
<td>CA-NS3</td>
<td>55.9117</td>
<td>-98.3822</td>
<td>Evergreen Needleleaf Forests</td>
</tr>
<tr>
<td>CA-NS4</td>
<td>55.9144</td>
<td>-98.3806</td>
<td>Evergreen Needleleaf Forests</td>
</tr>
<tr>
<td>CA-NS5</td>
<td>55.8631</td>
<td>-98.4850</td>
<td>Evergreen Needleleaf Forests</td>
</tr>
<tr>
<td>CA-NS6</td>
<td>55.9167</td>
<td>-98.9644</td>
<td>Open Shrublands</td>
</tr>
<tr>
<td>CA-NS7</td>
<td>56.6358</td>
<td>-99.9483</td>
<td>Open Shrublands</td>
</tr>
<tr>
<td>CA-SF3</td>
<td>54.0916</td>
<td>-106.0053</td>
<td>Open Shrublands</td>
</tr>
<tr>
<td>FI-Lom</td>
<td>67.9972</td>
<td>24.2092</td>
<td>Permanent Wetlands</td>
</tr>
<tr>
<td>FI-Sod</td>
<td>67.3624</td>
<td>26.6386</td>
<td>Evergreen Needleleaf Forests</td>
</tr>
<tr>
<td>RU-Che</td>
<td>68.6130</td>
<td>161.3414</td>
<td>Permanent Wetlands</td>
</tr>
<tr>
<td>RU-Cok</td>
<td>70.8291</td>
<td>147.4943</td>
<td>Open Shrublands</td>
</tr>
<tr>
<td>RU-Ha1</td>
<td>54.7252</td>
<td>90.0022</td>
<td>Grasslands</td>
</tr>
<tr>
<td>US-Prr</td>
<td>65.1237</td>
<td>-147.4876</td>
<td>Evergreen Needleleaf Forests</td>
</tr>
</tbody>
</table>
Figure S11. Comparison of flux inversions and aircraft CO$_2$ measurements over Alaska. (a) Prior (dashed) and LNLGIS (solid) monthly NEE over the cold region. Shaded areas show the range from the three prior NEE estimates employed in the CMS-Flux$_{14day}$ inversions. (b) Cumulative NEE CO$_2$ flux since the beginning of the year. (c) Mean observed (brown) and simulated atmospheric CO$_2$ seasonal cycle for airborne measurements over Alaska. (d) Monthly mean simulated CO$_2$ measurements minus the observations over Alaska.
Figure S12. Median and interquartile spread in carbon fluxes measured (black) and simulated by TRENDY (green) at 15 FLUXNET sites. Mean seasonal cycles are shown for (a) NEE, (b) NPP, (c) R_h, and (d) cumulative fraction of R_h measured (black). (e) Location of 15 high-latitude FLUXNET sites in regions with the mean October air temperatures less than 2°C.
Figure S13. Comparison of MERRA-2 Land soil temperature to borehole measurements over 1998–2020. (a) locations of borehole temperature measurement sites. (b) Mean seasonal cycle of borehole temperature with shading showing one standard deviation across the sites. MERRA-2 Land soil temperatures (mean over 2015-2018) sampled at the model grids containing the boreholes.
Figure S14. Seasonal cycle of soil temperature for three regions and four different depth intervals (1–10 cm, 10–25 cm, 25–50 cm, 50–200 cm) estimated by MERRA-2 Land, ERA5 Land, and CMIP6 models. MERRA-2 (red) and ERA5 (blue) seasonal cycles are calculated as the mean over 2010–2019. For CMIP6, the mean seasonal cycle over 2010–2019 is calculated for each model, then the model median (solid black) and interquartile range (shaded grey) are plotted across the seven models included in this analysis.
Figure S15. (top) Fraction of NPP that becomes litterfall. (middle row) Carbon flux from litterfall. (bottom) Seasonal variations in the labile carbon pool due to litterfall and R_h.
Figure S16. Regional carbon stocks with depth simulated by the soil carbon decomposition model.

Figure S17. Seasonal cycle of R_h from four soil carbon layers simulated by the soil carbon decomposition model.
Figure S18. Simulated soil surface temperature for 1990–2000 (dashed) and 2090–2100 (solid) averaged over depths of (a-c) 0–10 cm, (d-f) 10–50 cm and (g-i) 50–200 cm for the three Eurasian regions examined in this study. The lines show the model median and shaded area shows the interquartile spread.
References