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1 Introduction

This supporting information contains two supporting text sections, 18 supporting figures and one supporting table.

Text S1. Evaluation of CMS-Flux14day inversion against aircraft data5

Independent CO2 measurements are sparse over northern Eurasia, particularly over the northeastern region. Therefore, we

examine airborne CO2 measurements in the free troposphere over Alaska to investigate the accuracy of the seasonal cycle es-
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timate by the CMS-Flux14day flux inversions. Previous analyses have shown that CO2 measurements over Alaska are sensitive

to surface fluxes over northern Eurasia (see Fig. S5 of Byrne et al. (2020)).

Before comparing to airborne CO2 measurements, we first show that the CMS-Flux14day NEE estimates are in family with10

those of the OCO-2 MIPv9 flux inversions. Figure S10 shows the CMS-Flux14day inversions aggregated to monthly resolution

(mean of 2015, 2016, 2018 and 2019). These inversions show good agreement with the MIPv9 ensembles and generally fall

within the interquartile range. The largest differences occur for the IS inversions that shows reduced May–June uptake relative

to the MIPv9 ensemble in the Warm and Mid regions. Nevertheless, this plot shows that the inversions largely capture the same

features of the MIPv9 flux inversions relative to the prior ensemble. Figure S11 shows the CMS-Flux14day NEE fluxes over15

the cold region and comparison with aircraft measurements over Alaska. For this comparison we sample the posterior CO2

fields at the same time and altitude that airborne measurements occur. We include airborne measurements between 3000 m

and 8000 m above the model surface over the domain 55◦–90◦ N and 130◦–180◦ W during the years 2015, 2016, 2018 and

2019. We calculate the monthly averages across these four years. We find that all flux inversions perform well in capturing

the seasonal cycle of airborne CO2 measurements relative to the prior. This comparison provides further evidence that strong20

summer uptake and autumn release of CO2 occurs over northeastern Eurasia. Interestingly, the posterior fluxes still appear to

underestimate the strength of the summer uptake (all CMS-Flux14day inversions overestimate the observed CO2 during July)

and underestimate the release during the autumn (all CMS-Flux14day inversions underestimate CO2 during October).

Text S2. Evaluation of MERRA-2 Land Tsoil

A key result of the analysis is that a delayed seasonal peak in soil temperature with depth is suggestive of a substantial25

Rh signal at depth. Here, we confirm that the seasonal cycle of MERRA-2 soil temperature with depth is consistent with

observational constraints from borehole measurements, and regional simulations from ERA5 and CMIP6.

Figure S13 shows a comparison of MERRA-2 Land soil temperature and borehole measurements downloaded from the

Global Terrestrial Network for Permafrost (GTN-P) over two depth intervals. We examine data from the following sites:

Anderson, Anaktuvuk Pass, Ambler, Arctic Village, Barentsburg Borehole 2, Bayelva Ny Alesund, Banks Island Dataset 1349,30

Banks Island Dataset 1348, Deadhorse 1, Deadhorse 2, Chandalar Shelf, Bonanza Creek, Bonanza Creek 2, Endalen PYRN,

College Peat, Kapp Linne 1, Kapp Linne 2, Happy Valley 1 b, Happy Valley 1 ib, Gakona 2, Galbraith Lake, Ivotuk 4 Dataset

820, Ivotuk 4 Dataset 819, Ivotuk 3 Dataset 814, ILU2007, Franklin Bluffs wet b Dataset 666, Franklin Bluffs surface Dataset

660, Franklin Bluffs dry ib Dataset 665, Franklin Bluffs dry be Dataset 664, Franklin Bluffs dry b Dataset 663, Franklin Bluffs

dry b Dataset 35, Lake Elgygytgyn, Kashin 01k, Last Bridge, NGTS UNIS east, Nadym ND3 4, Nadym ND3, Nadym ND2,35

Old Auroral Station PYRN, Mary’s Igloo East, Mould Bay Dataset 1355, Mould Bay Dataset 1354, Peski 1 Dataset 1406,

Salmon Lake, Piz Bo, Smith Lake 2, Smith Lake 3, Smith Lake 4, and West Dock 1 surface Dataset 615.

The seasonal peak in soil temperature from MERRA-2 well reproduces the borehole soil temperature peak for the 0–50 cm

and 50–200 cm depth intervals, and accurately captures the phase shift in temperature. The largest data-model differences occur

during the winter (Dec–Mar), where the MERRA-2 soil temperature is biased 2–3 ◦C high. This bias could be partially inpacted40

by differences in the time periods examined. We average the seasonal cycle in borehole data for all available measurements
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over 1998–2020, whereas we examine the 2015–2018 period for the MERRA-2 data, so it is possible that climate warming

could impact the inferred bias.

Figure S14 shows the regional simulated seasonal cycle of soil temperature over four depth intervals for MERRA-2 Land

(2015–2019), ERA5 Land (2015–2019), and seven CMIP6 models (2010–2019). For the CMIP6, models we examine the me-45

dian and interquartile range across the mean seasonal cycles over 2010–2019. All of the model estimates show close agreement

in the seasonality of soil temperature across the regions with depth. Each model captures a similar phase shift in soil temper-

ature with depth. The largest differences are evident in the Cold region, particularly during the winter, where MERRA-2 is

about ∼5 ◦C colder than ERA5 (and the CMIP6 models largely fall in between). Interestingly, the MERRA-2 Land reanalysis

showed the opposite (warm) bias relative to the borehole data. Nevertheless, this comparison shows that the MERRA-2 Land50

soil temperature is in good agreement with borehole measurements and other models in simulating the seasonal cycle of soil

temperature at high latitudes.

Figure S1. GFED4.1 Biomass burning emissions of CO2.
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Figure S2. NEE fluxes from individual MIPv9 participants. (a-c) Median and interquartile spread for each experiment. Individual model

NEE estimates for the (d-f) IS experiment, (g-i) LNLG experiment, and (j-l) prior fluxes.
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Figure S3. Prior (dashed) and posterior (solid) NEE fluxes at 14 day temporal resolution for CAMS14day (orange), TM5-4DVar14day (ma-

genta), and CMS-Flux14day (navy blue) flux inversions.

Figure S4. (a-c) NEE, (d-f) NPP, and (g-i) Rh seasonal cycles simulated by each TRENDY v8 model examined in this study. The shaded

green area shows the TRENDY model interquartile spread, while individual lines show specific models: (dash magenta) LPX, (dashed cyan)

LPJ, (dotted blue) OCN, (dotted red) ORCHIDEE-CNP, (dotted green) ORCHIDEE, (dotted magenta) SDGVM, (dotted cyan) VISIT, (solid

blue) CABLE-POP, (solid red) CLASS-CTEM, (solid green) CLM5.0, (solid magenta) DLEM, (solid cyan) ISAM, (dashed blue) ISBA-

CTRIP, (dashed red) JSBACH, and (dashed green) JULES.
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Figure S5. CUE (NPP/GPP) for the TRENDY models. Thin green lines show the CUE for individual models while the thick green line

shows the median and shaded regions shows the interquartile spread.

Figure S6. GPP fluxes at 14 day temporal resolution from FluxSat (blue), VPM (green), FLUXCOM (red), and GOSIF (cyan).
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Figure S7. Same as Fig. 2 of main text but with units in gCm−2day−1 rather than TgCday−1.
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Figure S8. Spatial coverage of monthly OCO-2 land XCO2 retrievals averaged over four years (2015, 2016, 2018, and 2019). (a-l) Monthly

mean observations per day of OCO-2 ACOS v10 combined land nadir and land glint 10 sec XCO2 super-obs on a 1◦ × 1◦ spatial grid.
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Figure S9. Spatial coverage of monthly in situ and flask measurements averaged over four years (2015, 2016, 2018, and 2019). (a-l) Monthly

mean observations per day assimilated in to OCO-2 v10 MIP. Sites are shown by circles while shipboard and aircraft measurements are

aggregated to a 1◦ × 1◦ spatial grid.
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Figure S10. Seasonal cycle of NEE for the OCO-2 MIPv9 and CMS-Flux14day flux inversions at monthly temporal resolution over the (a)

warm, (b) mid, and (c) cold regions. The shaded regions show the interquartile spread for the MIPv9 prior (grey), IS (red) and LNLG (blue)

ensembles. The lines show the CMS-Flux14day prior (dashed cyan), IS (red), LNLG (blue), and LNLGIS (navy).

Table 1. Site name, latitude, longitude and vegetation type for the FLUXNET sites examined in this study.

Site Lat Lon vegetation type

CA-Man 55.8796 -98.4808 Evergreen Needleleaf Forests

CA-NS1 55.8792 -98.4839 Evergreen Needleleaf Forests

CA-NS2 55.9058 -98.5247 Evergreen Needleleaf Forests

CA-NS3 55.9117 -98.3822 Evergreen Needleleaf Forests

CA-NS4 55.9144 -98.3806 Evergreen Needleleaf Forests

CA-NS5 55.8631 -98.4850 Evergreen Needleleaf Forests

CA-NS6 55.9167 -98.9644 Open Shrublands

CA-NS7 56.6358 -99.9483 Open Shrublands

CA-SF3 54.0916 -106.0053 Open Shrublands

FI-Lom 67.9972 24.2092 Permanent Wetlands

FI-Sod 67.3624 26.6386 Evergreen Needleleaf Forests

RU-Che 68.6130 161.3414 Permanent Wetlands

RU-Cok 70.8291 147.4943 Open Shrublands

RU-Ha1 54.7252 90.0022 Grasslands

US-Prr 65.1237 -147.4876 Evergreen Needleleaf Forests
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Figure S11. Comparison of flux inversions and aircraft CO2 measurements over Alaska. (a) Prior (dashed) and LNLGIS (solid) monthly

NEE over the cold region. Shaded areas show the range from the three prior NEE estimates employed in the CMS-Flux14day inversions. (b)

Cumulative NEE CO2 flux since the beginning of the year. (c) Mean observed (brown) and simulated atmospheric CO2 seasonal cycle for

airborne measurements over Alaska. (d) Monthly mean simulated CO2 measurements minus the observations over Alaska.
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Figure S12. Median and interquartile spread in carbon fluxes measured (black) and simulated by TRENDY (green) at 15 FLUXNET sites.

Mean seasonal cycles are shown for (a) NEE, (b) NPP, (c) Rh, and (d) cumulative fraction of Rh measured (black). (e) Location of 15

high-latitude FLUXNET sites in regions with the mean October air temperatures less than 2◦C.
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Figure S13. Comparison of MERRA-2 Land soil temperature to borehole measurements over 1998–2020. (a) locations of borehole tem-

perature measurement sites. (b) Mean seasonal cycle of borehole temperature with shading showing one standard deviation across the sites.

MERRA-2 Land soil temperatures (mean over 2015-2018) sampled at the model grids containing the boreholes.
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Figure S14. Seasonal cycle of soil temperature for three regions and four different depth intervals (1–10 cm, 10–25 cm, 25–50 cm, 50–

200 cm) estimated by MERRA-2 Land, ERA5 Land, and CMIP6 models. MERRA-2 (red) and ERA5 (blue) seasonal cycles are calculated

as the mean over 2010–2019. For CMIP6, the mean seasonal cycle over 2010–2019 is calculated for each model, then the model median

(solid black) and interquatile range (shaded grey) are plotted across the seven models included in this analysis.
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Figure S15. (top) Fraction of NPP that becomes litterfall. (middle row) Carbon flux from litterall. (bottom) Seasonal variations in the labile

carbon pool due to litterfall and Rh.
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Figure S16. Regional carbon stocks with depth simulated by the soil carbon decomposition model

Figure S17. Seasonal cycle of Rh from four soil carbon layers simulated by the soil carbon decomposition model.
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Figure S18. Simulated soil surface temperature for 1990–2000 (dashed) and 2090-2100 (solid) averaged over depths of (a-c) 0–10 cm, (d-f)

10-50 cm and (g-i) 50–200 cm for the three Eurasian regions examined in this study. The lines show the model median and shaded area

shows the interquartile spread.

17



References

Byrne, B., Liu, J., Lee, M., Baker, I. T., Bowman, K. W., Deutscher, N. M., Feist, D. G., Griffith, D. W., Iraci, L. T., Kiel, M., Kimball,

J., Miller, C. E., Morino, I., Parazoo, N. C., Petri, C., Roehl, C. M., Sha, M., Strong, K., Velazco, V. A., Wennberg, P. O., and Wunch,55

D.: Improved constraints on northern extratropical CO2 fluxes obtained by combining surface-based and space-based atmospheric CO2

measurements, Journal ofGeophysical Research: Atmospheres, 125, https://doi.org/10.1029/2019JD032029, 2020.

18

https://doi.org/10.1029/2019JD032029

