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Abstract. Soil fertility and plant productivity are globally constrained by N availability. Proteins are the largest N reservoir 10 

in soils and the cleavage of proteins into small peptides and amino acids has been shown to be the rate limiting step in the 

terrestrial N cycle. However, we are still lacking a profound understanding of the environmental controls of thi s process. 

Here we show that integrated effects of climate and soil geochemistry drive protein cleavage across large scales. We 

measured gross protein depolymerization rates in mineral and organic soils sampled across a 4000-km-long European 

transect covering a wide range of climates, geologies and land uses. Based on structural equation models we identified that 15 

soil organic N cycling was strongly controlled by substrate availability, e.g. by soil protein content. Soil geochemistry was a 

secondary predictor, by controlling protein stabilization mechanisms and protein availability. Precipitation was identified as 

the main climatic control on protein depolymerization, by affecting soil weathering and soil organic matter accumulation. In 

contrast, land use was a poor predictor of protein depolymerization. Our results highlight the need to consider geology and 

precipitation effects on soil geochemistry when estimating and predicting soil N cycling at large scales.  20 

1 Introduction 

Microbial decomposition of soil organic matter is a fundamental driver of soil ecosystem functions and services, e.g. nutrient 

regeneration through decomposition maintains soil fertility and plant productivity. For example, the extracellular cleavage o f 

plant- and microbial-derived soil proteins, chitin or peptidoglycan to small organic compounds such as peptides, amino acids 

and amino sugars regulates organic N uptake by soil microbes, contributes to plant N nutrition and further drives terrestrial  25 

inorganic N cycling (Hu et al., 2018; Noll et al., 2019b). Proteins account for up to 90 % of soil N (Martens and 

Loeffelmann, 2003; Schulten and Schnitzer, 1997). Protein depolymerization is mediated by extracellular enzymes and 

facilitates microbes and plants to utilize the by far single largest N reservoir in soils. However, the large-scale controls of 

gross protein depolymerization are largely unknown. Since protein depolymerization is mediated by extracellular enzymes 

this process is expected to be either enzyme-limited or substrate-limited and thereby to be it is tied to substrate availability, 30 
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soil geochemistry and vegetation affecting substrate availability, and to microbial community composition and microbial N 

demands driving enzyme production (Sinsabaugh et al., 2008).  

Microbial community structure may influence protein depolymerization through several pathways. Across 

biogeographic regions peptidase activity increases strongly with soil pH, since the pH optima of most proteolytic enzymes is 

about 7 – 8 (Sinsabaugh et al., 2008; Hendriksen et al., 2016). MoreoverHowever, soil pH is a major control on bacterial 35 

community composition, and cross-continental studies showed that this pattern is consistent across soil types and biomes 

(Lauber et al., 2009; Rousk et al., 2010; Fierer and Jackson, 2006). Given the large difference in the excreted enzyme 

complement between microbial taxa, soil nutrient status and edaphic properties (e.g. soil pH, texture and cation exchange 

capacity) were shown to shape the set of excreted proteolytic enzymes (Lauber et al., 2009; Lauber et al., 2008; Jangid et al., 

2008; Fuka et al., 2008) by their effects on microbial community composition. Effects of climate on peptidase activity are 40 

rather mainly indirect, indicated by shifts in vegetation type and in soil nutrient stoichiometry from low to high latitudes 

(Hendriksen et al., 2016; Sinsabaugh et al., 2008; Peng and Wang, 2016) . Soil C:N ratios  are typically higher in forest soils 

than in agricultural soils, and affect in particular the fungi: bacteria ratios (Lauber et al., 2008). Land use can consequently 

affect the production of soil extracellular enzymes through its effect on microbial community composition, but also 

reflecting the external inputs of fertilizer and lime and soil management (e.g. ploughing), which deplete organic N reservoirs 45 

in soils and down-regulate extracellular N-mining enzyme activities (Jangid et al., 2008; Xiao et al., 2018; Chen et al., 2022; 

Padbhushan et al., 2022)).  

Substrate availability is likely the most striking control on organic N depolymerization rates and has been shown to 

be driven by land use and soil properties at the regional scale (Noll et al., 2019b). Soil N stocks (as proxy for soil protein 

contents) are typically increasing with mean annual precipitation and to decrease with the level of aridity (Delgado-50 

Baquerizo et al., 2013; Marty et al., 2017; Callesen et al., 2007). Changes in temperature and precipitation patterns are 

associated with changes of the potential natural vegetation, where N becomes progressively limiting with vegetation changes 

from deciduous to coniferous shrubs and trees, and from low to high latitudes (Kang et al., 2010; Reich and Oleksyn, 2004). 

Moreover, soil N stocks decrease with intensification of land management, from forests to grasslands and croplands (Six and 

Jastrow, 2002). Decomposition experiments of plant litter and organic soils showed an inverse relationship of gross protein 55 

depolymerization rates and resource C:N ratios and a positive relation with resource N content, though none with potential 

peptidase activities, suggesting that protein depolymerization is rather controlled by substrate availability than by the pool 

size of extracellular enzymes (Mooshammer et al., 2012). However, in mineral soils this the former relationship was less 

pronounced, indicating that protein stabilization on mineral surfaces may restrict soil protein cleavage (Wild et al., 2013; 

Noll et al., 2019b).  60 

In mineral soils, organic nitrogen availability is constrained by interactions of organic compounds with the soil 

matrix, e.g. by the formation of organo-mineral associations, and restricted accessibility in small pores and soil aggregates 

render soil organic matter to become protected from enzymatic attack (Kögel‐Knabner et al., 2008; Quiquampoix, 2000). 

Stabilization mechanisms are controlled by soil texture and soil mineral assemblage, and particularly by the amounts of Fe - 
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and Al- (oxyhydr)oxides, which are major sorption sites of soil organic matter in soils (Kaiser and Guggenberger, 2000). 65 

Their amount and composition are shaped by soil parent material (primary minerals) and environmental conditions during 

pedogenesis, which controlling bedrock weathering and the formation of secondary minerals. Both, protein availability and 

proteolytic activity are further constrained by the substrates/exoenzymes being inactivated by formation of metal-organic 

complexes or by the complexation with tannins (Nierop et al., 2002; Peter J Hernes, 2001; Adamczyk et al., 2009).  

Land use, bedrock and biogeographic region are therefore key controls on soil nutrient status and edaphic properties 70 

and affect microbial community structure, substrate availability and microbial N and C demands ( Lauber et al, 2008; Lauber 

at al., 2009; Xu et al., 2013, Elrys at al., 2021)Figure 1). Changes in environmental conditions might thereby be translated 

into altered organic N process rates (Figure 1). To investigate the major controls on organic N cycling, we sampled a large-

scale transect across Europe, from the Mediterranean to the Subarctic, covering three different land use types (forest/shrub 

land, grassland and cropland) as well as a wide range of climates and geologies, and determined gross protein 75 

depolymerization rates using an isotope pool dilution approach targeting soil amino acid production (protein 

depolymerization).  

 

Figure 1 Proposed model relating climate, bedrock and land use effects to protein depolymerization rates. 

We hypothesized that (I) protein depolymerization is restricted by the lower soil organic matter content and microbial 80 

activity in cropland soils compared to grassland and forest soils. (II) We further expected that the availability of proteins  and 

thereby gross protein depolymerization rates are controlled by soil geochemical properties (e.g. soil pH), mineral assemblage 

and texture. (IVIII) We further hypothesized that climate is a rather indirect control on organic N cycling by its effects on 

vegetation and soil geochemistry as well as on soil N stocks. 
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2 Materials and Methods 85 

2.1 Sampling 

Soil samples were collected during summer 2017 (May to August) at the peak of the growing season across a European 

continental transect from the warm Mediterranean to the cold Subarctic and from the humid Atlantic western climate to the 

dry continental steppes in Romania (Figure 2). The sampled soils were distinct in soil parent material, soil type, land use and 

vegetation. Sampling sites were selected to represent the natural vegetation as defined in the ‘Map of the natural vegetation  90 

of Europe’ (Bohn and Katenina, 2000). For each sampling site climate data scaled to 100 m were extracted from the 

WorldClim database vs. 1.4 (Fick and Hijmans, 2017). Bedrock was obtained from the international geological map of 

Europe (IGME5000, 1:5.000.000 (Asch, 2005)) and dominant soil types were obtained from the “Soil regions of European 

Union and adjacent areas” map (EUSR5000, 1:5.000.000, (Bgr [Bundesanstalt Für Geowissenschaften Und Rohstoffe], 

2005).  95 

For statistical analyses bedrock types were binned into three groups: limestone, sediment and silicate. Sediment geologies 

included Flysch, Molasse, till and fluvial sand, silicate bedrock included plutonic, igneous and metamor phic formations, and 

Figure 2 Sampling sites across European biogeographical regions. Red circles symbolize sampling 

sites including three land use types (woodland, grassland, cropland). Map of European 

biogeographical regions was obtained from biogeographical regions dataset of the European 

Environment Agency. 
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carbonate bedrock ranged from dolomite to limestone and marl. Mean annual temperature (MAT) of the sampling sites 

ranged from -3.5 to 17.8 °C and mean annual precipitation ranged from 415 to 1396 mm y
-1

. Where possible, all three 

management types (woodland/forest, grassland and cropland) as well as mineral and organic soils were sampled in close 100 

vicinity. In the following we only use ‘woodland’ for subarctic tundra, open woodlands and forests. At each site bulk 

samples of mineral top soil (0-15 cm) were taken with a soil corer (5 cm). Each bulk soil sample consisted of five replicates 

with about 5 m distance from each other. In total we sampled 96 mineral top soils from 43 sites. 23 sites included woodland, 

grassland and cropland soils (Table S1). Organic layers were sampled at 13 sites using a 20 x 20 cm frame to cut out the 

organic horizon down to the mineral soil surface. The depth of the individual organic horizons varied from 2 to 30 cm. 105 

Representative leaf litter samples were collected at each site and represent the dominating vegetation. Roots and stones were  

removed from the soil samples manually immediately after sampling. Soil samples, roots, stones and litter samples were 

cooled (4-8 °C) and shipped within 3 to 7 days to the University of Vienna for further analyses. Soil samples were 

homogenized by sieving to 2 mm and separate aliquots were air dried or stored moist at 4 °C. Litter and root samples were 

washed and dried in a drying oven at 60 °C.  110 

2.2 Basic soil parameters 

Soil texture, CaCO3 content, cation exchange capacity (CEC), base saturation (BS) and exchangeable Ca
2+,

 Mg
2+

, K
+
, Na

+
, 

Al
3+

, Fe
3+

  and H
+
 were determined by the Austrian Agency for Health and Food Safety (AGES) according to European and 

international standards (ÖNORM). Fe- and Al-oxyhydroxides were determined in acid ammonium oxalate and in Na-

dithionite extracts (Loeppert, 1996) at the Institute of Soil Research (IBF, University of Natural Resources and Life 115 

Sciences, Vienna, Austria). Oxalate extractable Fe (Feoxalate) and Al (Aloxalate) refers to amorphous Fe- and Al oxyhydroxides 

and Fe bound in organo-metal complexes. Dithionite extractable Fe minus oxalate extractable Fe represents Fe bound in 

crystalline oxyhydroxides (Fed-o). The ratio of oxalate extractable Fe over dithionite extractable Fe presents a measure of the 

activity of the Fe-mineral phase (Feo/d). To determine the soil water content, sieved soils were dried at 85 °C for 48 h. Water 

holding capacity (WHC) was measured by repeatedly saturating 10 g field-moist soil with deionized water and draining in 120 

between for 2.5 hours in a funnel with an ash-free cellulose filter paper. Field-moist soils were either adjusted to 60% WHC 

by gentle drying at room temperature or by addition of deionized water.  Before further analyses all soils were pre-incubated 

for two weeks at 20 °C and 60% water holding capacity (WHC) in PE-Ziploc bags. Soil pH was measured in water and 10 

mM CaCl2 (1 : 5 (w : v)) using an ISFET pH sensor (Sentron, Leek, The Netherlands). To determine total C and total N in 

root and litter as well as soil organic C (SOC) and soil total N (TN) oven dried root, litt er and soil samples were ground with 125 

a ball mill (MM 200, Retsch, Germany) and analyzed by an Elemental analyzer (Carlo Erba 1110, CE Instruments) coupled 

to a Delta
Plus

 Isotope Ratio Mass Spectrometer (Finnigan MAT, Germany) via a Conflo III interface (Thermo Fisher, 

Austria). If necessary, carbonates were removed from soil samples with 2 M HCl prior to SOC and TN measurements. Soil 

total P (TP) and soil total inorganic P (TIP) were determined in 0.5 M H2SO4 extracts of ignited (450 °C, 4 °C (Lajtha et al., 

1999)) and control soil aliquots followed by malachite green measurements of reactive phosphate (Kuo, 1996). Total soil 130 
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organic P (TOP) was calculated as the difference of TP – TIP. Soils were extracted with 1 M KCl (1:5 (w:v)) for 1 h and 

filtered through ash-free cellulose filters (Whatmann). Dissolved organic C (DOC) and total N (TDN) were measured in the 

extracts by a TOC/TN analyzer (TOC-VCPH/TNM-1, Shimadzu, Austria). NH4
+
 and NO3

-
 were measured colorimetrically 

in the same extracts (Hood-Nowotny et al., 2010). Dissolved organic N (DON) was calculated as TDN minus NO3
-
 and 

NH4
+
. Free amino acids (FAA) were determined fluorimetrically in 1 M KCl extracts by the OPAME fluorescence method 135 

(Jones et al., 2002) as modified by Prommer et al. (2014). Dissolved inorganic P (DIP, Olsen P) was extracted with 0.5 M 

NaHCO3 (1 : 7.5 (w : v), pH 8.5) for 1 h, filtered through ash free cellulose filters and measured by malachite green. Total 

dissolved P (TDP) was measured following acid persulfate digestion
 
and dissolved organic P (DOP) was calculated as the 

difference of P concentration between digested and non-digested samples (Lajtha et al., 1999). Soil microbial community 

composition was analyzed by phospholipid fatty acid (PLFA) analyses according to Kaiser et al.  (2010) and Hu et al. (2018). 140 

Microbial C, N and P were determined by chloroform fumigation extraction (Brookes et al., 1985). Sample aliquots were 

fumigated for 48 h and subsequently extracted as described above with 1 M KCl or 0.5 M NaHCO3. Potential activities of 

leucine-amino peptidase (EC 3.4.11.1) was determined in buffered (Na-acetate, pH 5.5) and unbuffered (ultra-pure water) 

soil slurries using L-leucine-7-amido-4-methyl coumarin (AMC-leucine) as substrate (Kaiser et al., 2010). Triplicates of 

each sample were incubated for 2 h at 25 °C and measured every 30 min. Fluorescence was measured with a TECAN 145 

InfiniteR M200 (Austria) spectrophotometer at an excitation wavelength of 365 nm and an emission wavelength of 450 nm, 

and was corrected for sample blank fluorescence and quenching prior to calculations of AMC concentration.  

2.3 NaOH extractable protein 

2 g of fresh soil were extracted with 0.5 M NaOH (1 : 10 (w : v)) for 2 h in an ultra-sonic bath (160 W, Sonorex RK510, 

Germany) and subsequently for further 16 h on a rotary shaker. NaOH extracts free and loosely bound proteins e.g from 150 

organo-mineral associations but not proteins stabilized in metal-organo complexes (Wattel-Koekkoek et al., 2001). Extracts 

were centrifuged for 15 min at 1600 x g. As high salt concentrations interfere with the consequent measurement of 

hydrolyzed amino acids, 2.5 ml of supernatant were desalted using Sephadex™ G-25 columns (PD10 GE Healthcare, 

Uppsala, Sweden). For determination of total amino acids we adopted a method published by Martens and Loeffelmann 

(2003) and Hu et al. (2018). The purified extracts were freeze-dried and re-dissolved in 1.5 ml methanesulfonic acid (4 M 155 

MSA). 1 ml of samples, bovine serum albumin (BSA) standards, and blanks were hydrolyzed in an autoclave for 1 h at 135 

°C. Hydrolyzed extracts were neutralized with 4 M KOH and measurements were performed on an HPLC system (Dionex 

ICS-3000, Thermo Fisher Scientific, Bremen, Germany) coupled to an electrochemical detector. Amino acids were separated 

using a PA-10 IC column (Thermo Fisher Scientific, Bremen, Germany). NaOH-extractable protein (ProteinNaOH) was 

calculated as the sum of the 20 measured amino acids.  160 



7 

 

2.4 Gross organic N processes 

One day before starting the pool dilution experiment FAA concentrations were determined in an aliquot of pre-incubated 

soil. The isotope pool dilution experiment and sample analyses were conducted as described previously by Noll et al. 

(2019a). In brief, 4 g of soil were weighed into transparent HDPE vials in duplicates and 400 μl of a 
15

N tracer solution were 

added drop wise. Samples were shaken vigorously to guarantee good mixing of the tracer. The tracer solution was prepared 165 

from a highly 
15

N enriched amino acid mixture (U-15N-98 at% 
15

N amino acid mixture from crude algal protein, Cambridge 

Isotope Laboratories, Radeberg, Germany). The total amount of added 
15

N was adjusted to about 20% of the native FAA 

pool. The incubation was terminated after 15 and 45 min by addition of cold KCl (4 °C) and samples were extracted for 1 h 

on a rotary shaker and filtered at 4 °C. Prior to measuring the isotopic composition of FAA NH4
+
 was removed by 

microdiffusion (Lachouani et al., (2010); (Noll et al., 2019a). Extracts were microdiffused for 48 h. To measure the 170 

concentration and atom %
15

N of FAA 2 ml of pre-treated extracts were transferred into 12 mL glass exetainers and the α-

amino group was cleaved/oxidized by NaClO and KBr as catalyst under alkaline conditions as described by Zhang and 

Altabet (2008) and modified by Noll et al. (2019a).  Subsequently the produced NO2
-
 was converted to N2O by buffered 

NaN3 (NaN3 in 100% acetic acid 1:1). The produced N2O was measured with a purge-and-trap isotope ratio mass 

spectrometer (PT-IRMS) consisting of a Finnigan Delta V Advantage IRMS (Thermo Fisher, Germany) and a Gasbench II 175 

headspace analyzer (Thermo Fisher, Germany) with cryo-focusing unit. Calibration was done according to Lachouani at al. 

(2010) and Noll et al. (2019a) 

2.5 Data analyses and statistics 

Gross rates of protein depolymerization (GP) and microbial amino acid uptake (GU) were calculated according to Kirkham 

and Bartolomew (1954) and Wanek et al. (2010):  180 

𝐺𝑃 =
(𝑁𝑡2 − 𝑁𝑡1

(𝑡2 − 𝑡1)
∗

LN [
(𝑎𝑡%15𝑁𝑡1 − 𝑎𝑡%15𝑁𝑏)
(𝑎𝑡%15𝑁𝑡2 − 𝑎𝑡%15𝑁𝑏)

]

𝐿𝑁 (
𝑁𝑡2

𝑁𝑡1
)

 

 

𝐺𝑈 =
(𝑁𝑡1 −  𝑁𝑡2

(𝑡2 − 𝑡1)
∗ (1 +

LN [
(𝑎𝑡%15𝑁𝑡2 − 𝑎𝑡%15𝑁𝑏)
(𝑎𝑡%15𝑁𝑡1 − 𝑎𝑡%15𝑁𝑏)

]

𝐿𝑁 (
𝑁𝑡2

𝑁𝑡1
)

) 

where Nt1 and Nt2 are the concentrations of FAA-N at the time points t1 (15 min) and t2 (45min). 
15

N content in amino acids 

at the time points of termination are expressed as at%
15

Nt1 and at%
15

Nt2, while at%
15

Nb is the background 
15

N abundance 

(0.366 at%
15

N) in non-labeled samples. Mean residence times of FAA were estimated as free amino acid pool size divided 

by microbial amino acid uptake rate. Microbial C:N and N:P imbalances were calculated as the ratio of resource C:N or N:P 185 

over microbial C:N or N:P.  

Formatiert: Nicht Hervorheben
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For statistical analyses of single variables, mineral soils were grouped by bedrock (limestone, sediments, silicates) or by land 

use (cropland, grassland, woodlands). Prior to statistical analyses data were checked for normality and transformed if 

necessary. Effects of bedrock were analyzed by one-way analysis of variance (ANOVA) followed by Tukey HSD tests. Land 

use effects on process rates and soil properties were only analyzed for the 22 sites where cropland, grassland and woodland 190 

soils could be sampled in close vicinity (66 data points).  Since only one composite sample was analyzed per land use at each 

site and therefore single observations were not independent, ‘site’ was included as factor in a two-way ANOVA to account 

for differences between sites (climate, bedrock, soil type). To analyze land use effects on process rates and soil properties 

site was included  

as factor in a two-way ANOVA to account for differences between sites (climate, bedrock, soil type). Land use effects were 195 

only analyzed for 22 sites where cropland, grassland and woodland soils could be sampled in close vicinity. Given the low 

(non-significant) land use effects across sites the Eeffects of bedrock were analyzed by one-way analysis of variance 

(ANOVA) followed by Tukey HSD tests. Not accounting for land use here allowed to analyze the whole data set (n=91) 

instead of restricting this to the 22 site data set (n=66). Differences in process rates and soil properties between organic and 

underlying mineral soil horizons were analyzed by paired t-tests for the 13 sites where organic and mineral horizons were 200 

sampled. Linear mixed models were used to explore the effect of soil properties and climate on protein depolymerization 

rates with land use as random factor. The most parsimonious model was selected by Akaike’s information criterion (AIC). 

Multicollinearity was assessed by variance inflation factors (VIF). Variables with VIF larger than 2.5 were excluded from 

the model. Partial correlations were used to control for the effect of soil geochemical properties on the relationship between 

climate and the response variables (i.e. protein depolymerization rates, leucine-amino peptidase activity and NaOH-205 

extractable Proteinprotein; (Doetterl et al., 2015; Luo et al., 201)). Significant changes of the correlation coefficient were 

assumed when the 95% confidence interval of the zero-order correlation and the partial correlation did not overlap. Partial 

correlations were analyzed using ‘ppcor’ in R environment (Kim, 2015). Effects of climate parameters and their interactions 

on process rates were assessed by linear mixed effect models with soil parent material or land use as random effects. We 

used structural equation modelling (SEM) to explore direct and indirect effects of climate, geology and soil properties on 210 

protein depolymerization rates. We used parameters which correlated significantly with protein depolymerization to 

construct a base model for gross protein depolymerization rates. Input variables were tested for multivariate normality and 

linearity. If necessary variables were log transformed to mitigate departure from model assumptions. The model was then 

analyzed using the ‘lavaan’ package (Rosseel, 2018) in R. Model fit was evaluated using Chi-square statistics (p>0.05). The 

most parsimonious model was identified by step-wise deletion of non-significant paths. Akaike’s information criterion (AIC) 215 

was used to compare competing model fits.  We followed the two-index strategy proposed by Hu and Bentler (1999) to 

describe the specified model and the data covariance-matrix and reported root mean square error of approximation (RMSEA) 

and standardized root mean square residual (SRMR). Good model-data fit is indicated by RMSEA ≤ 0.06 and SRMR ≤ 0.08. 

All statistics were performed in R 3.1.3 (R Development Core Team, 2008). Direct and indirect effect sizes in path analysis 

were assessed by ‘lavaan’, indirect effects being calculated by multiplying the (direct) path effects that constitute the effect.  220 
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3 Results 

3.1 Effects of bedrock, land use, soil horizon and climate 

Protein depolymerization rates were strongly related to soil physicochemical properties like soil pH, amorphous Fe 

and Al minerals (Feoxalate, Aloxalate) as well as to soil organic matter (Corg, total N), NaOH-extractable protein and microbial 

biomass (Cmic, PLFA) (Figure 3, Table S3). NaOH-extractable protein content increased with SOC, soil TN, root biomass 225 

and amorphous Fe- and Al-(hydr)oxides (Table S3, Figure 3). Soil pH was negatively correlated with gross depolymerization 

and NaOH-extractable protein, but positively to peptidase activity (Figure 3). However, across all sites as well as within 

subgroups we found no significant (putatively positive) correlation between aminopeptidase activity, a widely spread soil 

proteolytic enzyme, and protein depolymerization rates (Figure S5). In order to further examine the potential edaphic 

controls on gross protein depolymerization rates in mineral soils as well as interaction effects with land use we used multiple 230 

linear regression analyses. In the most parsimonious model NaOH-extractable protein explained 37% of the variance, 

emphasizing the prominent role of substrate availability controlling depolymerization rates (Figure 2). Land use did not 

interact with specific edaphic properties, and linear mixed effect models with land use as random factor confirmed the 

suggested main controls on depolymerization rates, i.e. protein availability and soil pH (Table S4).  

Climate effects on depolymerization rates were analyzed by linear regression analyses including climate 235 

parameters, land use and interaction effects. We found significant effects of mean annual temperature (MAT) and mean 

annual precipitation (MAP) and of their interaction (MAP:MAT) (Table S5). Land use had no significant effect on the 

climate response of protein depolymerization, as shown by the strongsimilar negative correlations between depolymerization 

and MAT across thein all three studied land use types (Figure 4). The model explained about 42% of the variance. Although 

the climatic humidity index (MAP:PET), expressed as MAP over potential evapotranspiration (PET), was not included in the 240 

most parsimonious model, the strong non-linearlogarithmic increase of depolymerization rates with climatic humidity 

(r²=0.632, p<0.001) across all sites and land use types was striking (Figure 4). The most parsimonious linear mixed effect 

model included land use as random factor and showed a strong negative effect of MAT and a positive effect of MAP. The 

model explained about 47% of the variance. in protein depolymerization 
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Figure 3 Effects of soil properties on gross protein depolymerization rates in mineral soils. Relationship of pH and (a), 

log(Protein depolymerization) and (b), log(leucine-amino peptidase activity).  (c), Relationship of soil total N and protein 

depolymerization rate (d), Relationship of NaOH-extractable protein and protein depolymerization rate. Color codes 

indicate land use type. (e), Relationship of oxalate extractable Al and Fe and NaOH-extractable protein. (f), Analyses of 

variance of the most parsimonious linear regression model of log(gross protein depolymerization rate) explained by soil 

properties, land use and their interaction effects (n = 95). Total model fit is given as adjusted r².  

  245 

3.2 Integratedractive effects of edaphic properties and climate 

Since soil parent material, which is a main driver of soil geochemical properties, is not uniformly distributed across the 

sampled transect, climate effects (MAT and MAP) on gross protein depolymerization rates, leucine-amino peptidase activity 

and NaOH-extractable protein were analysed by partial regression analyses controlled controlling for geochemical 

parameters (Figure 4). For instance wWe found a negative zero-order correlation between protein depolymerization rates and 250 

MAT (r = -0.63, p<0.01), the correlation coefficient. A significant decrease decreasing significantly of the correlation 
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coefficient was observed when removing correlations with Al, Fe or the sum of oxalate- extractable Fe and Al (Figure 4). 

Leucine-amino peptidase was positively correlated to MAT (r = 0.34, p<0.05). After removing the correlations with soil pH 

or Al we found a negative correlation between peptidase activity and MAT. Removal of the correlation with soil P content 

significantly increased the positive correlation between peptidase activity and MAT. NaOH-extractable protein was 255 

negatively correlated to MAT (r = -0.53, p<0.01), t. The correlation coefficient was significantly decreased decreasing 

significantly by removing the correlations with Al and the sum of oxalate extractable Al and Fe. All zero-order correlations 

with MAT decreased significantly after removing the effects of all used soil geochemical parameters. Mean annual 

precipitation was weakly positively correlated with protein depolymerization rates (r = 0.29, p<0.05) and NaOH-extractable 

protein (r = 0.46, p<0.01), however, the removal of correlations with geochemical parameters having no significant effect. 260 

The removal of correlations with geochemical parameters did not change the correlation coefficient significantly. Leucine-

amino peptidase activity was not correlated to MAP; however the removal of soil pH or Al increased the correlation 

coefficient significantly, inducing a weak positive correlation between leucine-amino peptidase activity and MAP. NaOH-

extractable protein was positively correlated to MAP (r = 0.46, p<0.01) and the removal of correlations with geochemical 

parameters had no significant effect.    265 
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Figure 4 Climate effects on gross protein depolymerization. (a), Relationship between the natural logarithm of gross 

protein depolymerization and 2nd polynomial regression fit for cropland (adjusted r² = 0.455, p<0.001, n = 24), 

grassland (r² = 0.480, p<0.001, n = 28) and woodland (r² = 0.219, p<0.01, n = 48) soils. (b), Relationship between the 

natural logarithm of gross protein depolymerization rates and the ratio of mean annual precipitation over potential 

evapotranspiration (MAP:PET) and regression fit (y=log(x)) for cropland (adjusted r² = 0.330, p<0.01, n = 24), 

grassland (adjusted r² = 0.371, p<0.001, n = 28) and woodland (adjusted r² = 0.318, p<0.001, n = 48) soils. The 

vertical line indicates the transition from arid to humid climate conditions (MAP:PET = 0.65). (c), zero-order and 

partial correlations (Pearson’s r) between climate variables (MAT and MAP) and organic N cycling (protein 

depolymerization rate, leucine-amino peptidase activity and ProteinNaOH) controlled for geochemical variables). 

Significant correlations are indicated by bold numbers. Significant changes of the correlation coefficients compared 

to the zero-order correlation are indicated by italic numbers. 
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3.3 Path analyses 270 

The a priori model was constructed according to the hypothesis illustrated in Figure 1. After removing insignificant paths  the 

model contained NaOH-extractable protein, soil pH, amorphous Fe and Al, and MAP (Χ² = 2.49, p = 0.288; RMSEA = 

0.048, SRMR = 0.023). The revised model explained 43% of the variance in gross protein depolymerization and 49% of the 

variance in NaOH-extractable protein. Protein depolymerization in mineral soils was highly dependent on NaOH-extractable 

protein. Soil pH had direct and indirect (via NaOH-extractable protein) negative effects on depolymerization rates (Figure 5). 275 

MAP and amorphous Fe and Al had positive effects on NaOH-extractable protein and thereby positive indirect effects on 

protein depolymerization. The total effects (direct effects + indirect effects) of the model parameters on protein  

depolymerization increased in the order amorphous Fe and Al<soil pH<MAP<NaOH-extractable protein. The model 

explained 49% of the variation of NaOH-extractable protein and 43% of the variation of protein depolymerization rates.  

 280 

Figure 5 Direct and indirect effects in gross protein depolymerization rates. Controls of Path analyses 

for gross protein depolymerization rates in mineral soils and coefficients for direct, indirect and total 

effects (n=91). Significant effects (p<0.05) are indicated by red (negative) and blue (positive) black 

arrows. Eeffect sizes are indicated by line width. Numbers beside arrows indicate the standardized 

parameter estimates. Numbers within boxes indicate the variance explained by the model.  
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4 Discussion 

4.1 Land use and soil horizon effects on protein depolymerization 

Our results revealed, that land use, which is an important driver of SOM contents and soil microbial community composition 

(Lauber et al., 2008; Jangid et al., 2008) and consequently  of the set of excreted proteolytic enzymes (Lauber et al., 2008; 

Jangid et al., 2008), might only beexert a minor control ofn soil organic N cycling acrossat large spatial scales. Though 285 

effects were significant for individual sampling sites (Table S2), land use had no significant effect on the response of prot ein 

depolymerization rates to soil properties, explaining less than 5 % of the total variation in multiple linear regression models 

(Figure 3, Table S5). This demonstrates that the same drivers operated on protein depolymerization in croplands, grasslands 

and woodlands, and triggering the same directional and strength of response across land uses. Effects of land use were 

therefore likely strongly overprinted by large scale changes in climate and geology, since in the applied sampling scheme the 290 

factor land use was nested in large scale climatic and geological controls across a continental transect . Effects of land use 

might be more prominent at a smaller regional to local scale (Noll et al. 2019b), which was, however, not accessible with 

this data set. 

At the continental level, gross protein depolymerization rates increased with rising soil organic matter (SOM) contents, from 

Mediterranean to temperate and boreal ecosystems. Though vegetation N limitation increases with latitude (Kang et al, 2010, 295 

Du et al., 2020; Augusto et al., 2017)REF, the rising depolymerization rates with latitude, indicate increasing labile organic 

N provisioning to microbes and plants at higher latitudes under lab conditions. This positive effect of substrate availabilit y 

on depolymerization rates was further confirmed by high gross protein depolymerization rates observed in organic horizons 

in boreal and alpine biomes, which significantly exceeded those in the underlying mineral soils (Table S2). However, in 

contrast to findings of Mooshammer at al. (2012) for decomposing litter, our data revealed no indication that resource C:N or 300 

microbial C:N imbalances affected protein depolymerization rates in organic soils and thereby highlights the differential 

element viz. nutrient limitation of plants and soil microbes across large spatial scales as proposed by Capek et al. (2018).  

 

4.2 Substrate limitation of protein depolymerization is controlled by organo-mineral interactions 

Across all land use types NaOH-extractable protein and soil pH were the main predictors for gross protein depolymerization 305 

in mineral soils, indicating that soil properties that determine protein availability such as texture, mineral assemblage or soil 

pH need to be considered when addressing large-scale controls of soil organic N cycling. Gross protein depolymerization 

was lower in soils developed on limestone than in soils developed on sediments or silicates, which is emphasized by the 

inverse relationship between depolymerization rates and soil pH (Figure 3). Moreover, depolymerization rates decreased 

with increasing clay content. Proteins can be adsorbed to clay surfaces by electrostatic interactions between positively 310 

charged amino acid side chains and siloxane surfaces of clay minerals (Staunton and Quiquampoix, 1994; Quiquampoix and 

Ratcliffe, 1992). Sorption experiments in artificial soils showed that at neutral soil pH (>7) clay minerals are the main 
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sorption sites for organic N (Pronk et al., 2013). This can be further enhanced by polyvalent cations as Ca
2+

 or Mg
2+

, which 

can bridge the negative charges of clay mineral surfaces and proteins (Cao et al., 2011; Lützow et al., 2006). Aside from the 

stabilization on mineral surfaces, high clay contents, as found in limestone soils, promote soil aggregation and thereby the 315 

occlusion of organic matter and proteins rendering them inaccessible for enzymatic attack (Lützow et al., 2006). In contrast 

Fe- and Al- oxyhydroxides, the main sorption sites for SOM at acidic pH, were positively correlated to gross 

depolymerization rates. SOM accumulation is usually higher in acidic soils due to ligand exchange between protonated 

hydroxyl groups of Fe- and Al- minerals and carboxyl groups of organic molecules (Gu et al., 1994; Kleber et al., 2005; 

Kaiser and Guggenberger, 2000). Therefore the overall organic N pool size is expected to be larger in fine textured soils and 320 

in soils high in Fe- and Al- oxyhydroxides. Moreover, the strength of the binding interaction between Fe- and Al- 

oxyhydroxides and SOM, and more specifically with organic N including proteins, is higher by 50% than with typical clay 

minerals (Newcomb et al, 2017). Consequently soils rich in Fe- and Al- oxyhydroxides contain larger pools of proteolytic 

substrates (organic N and proteins), but these substrates arecan be more strongly bound and therefore be less accessible for 

microbial utilization.In acidic soils, column experiments with embedded goethite revealed that sufficiently large amounts of 325 

stabilized C were re-dissolved by progressing percolation of dissolved OM and consequent exchange of adsorbed 

compounds, indicating that stabilized compounds are available for microbial utilization (Leinemann et al., 2018) However, 

column experiments with embedded goethite in acidic soils revealed that sufficiently large amounts of stabilized COM can 

be re-dissolved by progressing percolation of dissolved OM and the consequent subsequent exchange ofwith adsorbed 

compounds such as peptides (Leinemann et al., 2018), which thereby become available for enzymatic attack and/or 330 

microbial utilization. Hence a higher amount of Fe- and Al – oxyhydroxides might corresponds to a larger fraction of weakly 

bound organic N, which is continuously re-dissolved and becomes thereby available for microbial utilization...  This The 

bioavailability of oxide-bound organic N is further supported by the strong positive correlation between NaOH-extractable 

protein and amorphous Fe- and Al- oxyhydroxides (Table S3), since NaOH mainly extracts loosely bound proteins (Wattel-

Koekkoek et al., 2001). HoweverOverall, Fe- and Al- oxyhydroxides remained as a significant parameter in linear models 335 

and path analyses and should therefore be considered as important predictors for the potential of a soil to retain and 

accumulate SOM (Moni  et al, 2007; Fang et al., 2019), which promotes microbial biomass and activity (Xu et al., 2013; 

Hartman and Richardson, 2013). The positive effect of the potential to accumulate SOM can be attributed to the continuous 

exchange of adsorbed compounds and the consequent steady release of organic N.  ”Fe- and Al oxyhydroxides remained as a 

significant parameter in linear models and path analyses and should therefore be considered as important predictor for the 340 

potential of a soil to retain and accumulate SOM, which promotes microbial live and decomposition . The net effect of these 

adverse interactions is currently unknown; therefore this study is among the first to show a net positive effect of Fe- and Al 

oxyhydroxides on the in situ rates of depolymerization of high molecular weight -ON substrates.  

However, tThough the total N pool size was not significantly different between soils developed on the three bedrock types , 

but NaOH-extractable protein increased on the order limestone<sediment<silicate. In contrast NaOH-extractable protein 345 

accounted for 4.4±1.7% of total N in sediment soils and for 6.4±3% in silicate soils, compared to 2.97±23% in limestone Formatiert: Nicht Hervorheben
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soils. This could be either attributed to a lower extraction efficiency of proteins with 0.5 M NaOH from clay minerals at high 

soil pH or to an increase of non-hydrolysable organic N. The studied limestone soils were characterized by higher amounts 

of crystalline iron (Fed-o), namely hematite, which forms almost irreversible interactions with SOM (Gu et al., 1995), even at 

high soil pH, due to formation of coordination complexes between carboxyl groups and Fe atoms (Koutsoukos et al., 1983; 350 

Quiquampoix, 2000). The formation of strong peptide complexes on with crystalline Fe minerals is also supported by 

findings of Mikutta et al. (2010), who showed an increase of non-hydrolysable peptide-N with the proportion of crystalline 

Fe minerals across a soil chronosequence. 

From linear regression and path analyses soil pH was revealed as the second most important predictor of gross 

protein depolymerization rates. Soil pH mirrors the strength of Ca
2+

-bridging of negatively charged ligands (as protein-355 

carboxylates) to negatively charged soil particles (clays), but also the weathering status of soils, which comes with the 

formation of secondary clays and Fe- and /Al- oxyhydroxides. However, sSoil pH also directly affects electrostatic 

interactions between mineral surfaces and proteins. Sorption of proteins on clay and Fe-mineral surfaces is usually highest 

close to the isoelectric point of a specific protein.Sorption of proteins on clay and Fe-mineral surfaces is usually highest 

close to the isoelectric point of a specific protein, when the net charge is zero and repulsion from charged surfaces is 360 

smallest. However, dDue to the complex nature of proteins including different functional groups and their tertiary structures 

isoelectric points range from pH 1 for pepsin to pH 11 for lysozyme, making predictions for soil proteins at large impossible . 

Sorption of bovine and human serum albumin on montmorillonite peaked at pH ~5, whereas adsorption of cytochrome c or 

ribonuclease on hematite peaked at pH 8 to 10, all being close to their isoelectric points (Khare et al., 2006; Koutsoukos et 

al., 1983; Quiquampoix and Ratcliffe, 1992).  365 

However, the negative effect of soil pH on gross depolymerization is in sharp contrast to the increase of peptidase 

activity with soil pH. To allow comparisons between enzyme activity activities and depolymerization rates, enzyme 

activities were measured (i) in unbuffered soil slurries at natural soil pH and (ii) compared to enzyme activities measured at 

the same pH in acetate buffer (pH 5.2). Hence, unbuffered peptidase activities were highest in limestone soils close to the pH 

optima of proteolytic enzymes at about 8 (Sinsabaugh et al., 2008) (Figure S5). The lack of correlation between gross 370 

depolymerization and peptidase activity, but rather the maximum of protein depolymerization coinciding with the minima of 

potential protease activity, implies that gross protein depolymerization rates are rather substrate limited than enzyme limited . 

It further highlights  and that differences in protein depolymerization rates between alkaline, neutral and acidic soils are due 

to changes in substrate (protein) availability rather than due to changes in microbial community structure and enzymatic 

activity. Even when peptidase was measured at the same pH, potential peptidase activity was higher in limestone soils 375 

compared to sediment and silicate soils (Table S2, Figure S6), which implies enhanced microbial enzyme excretion in 

limestone soils in response to lower protein availability/concentration. 

The generally low protein depolymerization rates in limestone soils are in accordance to our previous findings from soils 

developed on limestone and silicate bedrock in Austria (Noll et al., 2019b), demonstrating that soil parent material pre-

determines depolymerization rates on regional and continental scales. We assume that in limestone soils proteins are strongly 380 

Formatiert: Hochgestellt
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stabilized on phyllosilicates and crystalline Fe-oxides or occluded within soil aggregates rendering them inaccessible for 

proteolytic attack. Soil microorganisms mitigate respond to this N-limitation by greater investments into the production and 

excretion of extracellular enzymes mining for more recalcitrantthese SOM soil organic N forms (Chen et al., 2014), as 

shown by the enhanced excretion potential activities of amino peptidase in limestone soils. With increasing amorphous Fe- 

and Al- oxyhydroxides the sorption capacity of soils increases strongly due to their higher surface area (Kaiser and 385 

Guggenberger, 2003) facilitating accumulation of SOM. However, given the strong correlation between NaOH-extractable 

protein and amorphous Fe- and Al- oxyhydroxides, our data clearly shows that soil mineral assemblage is a crucial driver of 

soil organic N stocks and dynamics across large scales. 

4.3 Climate drives protein depolymerization by affecting mineral weathering and plant productivity 

Climate is a major control on mineral weathering and net primary productivity (Norton at al., 2014: Doetterl et al., 390 

2015REF) and thereby affects protein stabilization and input of fresh OM by plants. Across the studied climate transect gross 

protein depolymerization rates decreased with MAT and increased with MAP, respectively increased with the climatic 

humidity index (MAP:PET). As demonstrated by the partial correlations, part of the negative effect of MAT on 

depolymerization rates can be explained by concomitant changes in amorphous Al- and Fe Fe-oxyhydroxides and soil pH, 

which affect protein availability (Figure 4). The correlation coefficient ofbetween mean annual temperatureMAT and 395 

depolymerization significantly decreased by removing the effects of soil mineral Fe- and Al –oxyhydroxidescontents, while . 

However, the decrease of the correlation coefficient by removing effects of soil pH was not significant. The important role of 

soil geochemical properties on protein stabilization is underpinned by the even stronger effect of soil properties on the 

relation of between MAT and NaOH-extractable protein (Figure 4). In the Mediterranean region limestone limestone-derived 

red soils are predominatingpredominant. The so called “Terra Rossa” soils are characterized by high soil pH, high clay 400 

contents and relatively higher amounts of crystalline Fe as well as a low Feoxalate:Fedithionite ratio, caused by the preferential 

formation of the Fe-oxide hematite over the Fe-hydroxide goethite during the summer dry period (Yaalon, 1997). As 

described above, these specific soil properties might foster stabilization of proteins and thereby constrain gross protein 

depolymerization. Under more humid conditions soil pH drops due to leaching of base cations  (e.g. Ca
2+

) and more intensive 

chemical weathering causes promotes the formation of higher amounts of charged mineral surfaces as amorphous Fe- and Al 405 

oxyhydroxides (Doetterl et al., 2015). This increase in soil acidification with at higher latitude is further facilitated by the 

predominance of silicate bedrocks in Northern Europe. Although MAP is an important driver of soil weathering and thereby 

affects soil pH and the formation of charged mineral surfaces, the positive effect of MAP on depolymerization rates and 

proteins was not significantly biased by soil properties in the partial correlations (Figure 4). However, the weak effects of Fe 

and Al oxyhydroxides on the relation between protein depolymerization and MAP, or between NaOH-extractable protein 410 

and MAP, might indicate the role of MAP in soil mineral formation during pedogenesis. Particularly in arid and sub-arid 

biomes precipitation determines plant net primary production (Yang et al., 2008; Del Grosso et al., 2008) and thereby the 

input of fresh organic matter into the soil. This might further explain the strong relationship between NaOH-extractable 
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protein and MAP, as indicated by linear models and path analyses and is further supported by the proximate increase in 

depolymerization with the climatic humidity index (Figure 4). The logarithmic response implies that the limiting effect of 415 

MAP is stronger under sub-arid conditions, which is in accordance to findings showing that in water limited regions NPP is 

strongly controlled by MAP (Yang et al., 2008). Therefore, we conclude that, in sub sub-arid regions in Southern Europe 

precipitation constrains plant biomass production and consequently OM input into soils. In contrast, our results reveal that  

the increase of gross depolymerization with MAT is biased by ‘concurrent’ changes in soil parent material across the studied 

transect, while MAP likely controls net primary productivity and mineral weathering (Gislason et al., 2009; La Pierre et al., 420 

2016). Both, partial correlations and path analyses support our hypothesis that climate is a rather indirect control driver on of 

soil organic nitrogen N cycling by its effects on soil chemical weathering and more specifically the formation of specific 

minerals and consequently on soil geochemistry and soil organic matter accumulation. 

Path analysis emphasized the important role of climate and bedrock as pre-determinants of OM stabilization and 

protein availability, and suggested that MAP, soil pH, and Fe- and Al- oxyhydroxides are indirect controls on gross protein 425 

depolymerization, which is mediated by protein availability, while soil pH and NaOH-extractable protein were are direct 

controls on gross protein depolymerization. The indirect effect of MAP exceeded the direct effects of soil mineralogy and 

pH. However, NaOH-extractable protein overall was the main predictor of protein depolymerization rates. The negative 

direct effect of soil pH on depolymerization rates is explained by the low solubility of proteins at high soil pH (Franco and 

Pessôa Filho, 2011), which restricts diffusion throughout the soil matrix and limits the accessibility of protein substrates to 430 

enzymatic attack. In contrast, the negative pH effect on NaOH-extractable protein is attributed to the accumulation of SOM 

at acidic soil pH and the enhanced increased interactions with Fe- and Al- oxyhydroxides (Kaiser and Guggenberger, 2003; 

Gu et al., 1994). With increasing soil pH amino groups of proteins become de-protonated and thereby proteins become 

negatively charged, which increases the repulsion from negatively charged mineral surfaces and decreases the adsorption to 

Fe-oxides and phyllosilicates (Cao et al., 2011). Furthermore, soil pH, texture and mineral assemblage are drivers of 435 

microbial community composition and affect the availability of other nutrients like P or K (Fierer and Jackson, 2006; Lauber 

et al., 2008).  Neither Ca
2+

 nor clay was included in the final model, despite their important role in stabilizing soil organic 

matter (Lützow et al., 2006). We assume that the effects of Ca
2+

 and clay are outweighed by effects of soil pH and MAP. 

Soil pH decreased from clay clay-rich limestone soils to sediment soils and to more sandy silicate soils, and thereby co-

varied with Ca
2+ 

and clay content, while MAP regulates mineral dissolution and leaching of Ca
2+

 (Gislason et al., 2009). 440 

Land use was non-significant and therefore was also removed from the revised path model, which is in accordance to results 

from general linear models, showing that soil properties and climate variables explained a much higherthe greatest 

percentage of the variance in gross protein depolymerization. Although path analyses provided an integrative model of 

controls driving gross protein depolymerization, it offered an incomplete picture. In this study we focused on the large scale 

patterns, which explained more than 40% of the variation in organic N cycling. However, regional or local effects, such as 445 

by topography, land use history, land use /intensity, and or plant community composition, were not accessible with this data 

set, but are likely important controls on organic N cycling at regional spatial scales.  
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5 Conclusions 

Our results highlight the important role of soil geochemistry when estimating microbial nutrient cycling on continental to 

global scales, and demonstrate that at this scale soil parent material and climate modulate override the effects of land use on 450 

soil organic N transformations. The amount of NaOH-extractable protein was identified as an important direct predictor of 

protein depolymerization rates. The amount of NaOH-extractable protein was here identified as the most important direct 

predictor of protein depolymerization rates, while peptidase activity was a poor predictor ofnegatively related to protein 

depolymerization, and therefore but rather reflects a proxy of microbial N limitation according to enzyme allocation theory 

(Allison et al., 2010)In contrast, peptidase activity was a poor proxy of protein depolymerization, but rather a proxy of 455 

enzyme production and of microbial C or N limitation. Since protein availability and thereby protein depolymerization is 

strongly constrained by soil organic matter-mineral interactions, shifts in climate (precipitation regime) and associated 

alterations in soil weathering should be considered as drivers of ecosystem N availability with strong repercussions on 

ecosystem C cycle processes. This also needs to be validated in large-scale coupled climate-biogeochemical biogeochemistry 

climate and in Earth system models to help predict and mitigate global change effects.  460 
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