
Response to referee comments and actions

Referee #1

In this manuscript, the impacts of features such as the machine learning algorithm, the
temporal scales of the observed flux data, and the PFT of the flux sites on the accuracy of
the model were evaluated by the authors. The results of this study can provide some
general guidance for the selection of feature factors during future NEE simulations. This
manuscript logic is clear and well arranged, in terms of criteria for article selection, the
choice of analysis methods, and the uncertainties in this analysis of the article. While,
there are some problems need to be revised before this manuscript can be published,
following is the detailed advices.
Response: We would like to thank the reviewer for the positive comments and the time
invested to review our manuscript. The revised manuscript will follow the reviewer’s
recommendations.

L34, the 2 of CO2should be subscripted;
We will correct it.
Action: Corrected.

L63, "soil temperature(Ta)" in parentheses should be “Ts”;
We will correct it.
Action: Corrected.

L68, It can be expressed as "in models that include multiple PFTs" without writing
the full name of the PFT;
We will correct it.
Action: Corrected.

L189-191, please rewrite the sentences. I guess the author wants to express that MLR is
weaker than ANN, SVM, and RF because MLR did not divide the training and validations
sets. The logic of this sentence is confusing because of the inappropriate use of the words
“Unexpectedly” and “not worse than”;
Response: Thank you for the insightful comments. We will modify the expression of this
sentence more logically.
Action: This sentence was deleted in the revised manuscript.

L230, please add references to support "the lag of precipitation and NDVI/EVI in effect on
NEE";
Response: Thank you for the insightful comments. References (Hao et al., 2010; Cranko
Page et al., 2022) will be added to support this description.
Action: References added.

L431-434, the reference title formatting is inconsistent with others;



We will check and correct it.
Action: Corrected.

Figure 3, there is no scale bar and north arrow;
We will add a scale bar and north arrow to the map.
Action: Scale bar and north arrow added.

The 2 in R2needs to be superscripted in all figures throughout the manuscript, e.g. Figure
5, Figure 6, Figure 7, Figure 8, etc.
We will check and correct them which should be superscripted.
Action: Corrected (superscripted).



Response to referee comments and actions

Referee #2

This study implemented a meta-analysis of current NEE prediction studies. Overall, the
topic is interesting and the methodology is innovative, as few researchers in past studies
have used R2 or other accuracy metrics to compare models of different studies. Although
the number of available models is not large, some of the findings of this study have
adding-values and implications at the cross-study (different focus, data, models) level.
This manuscript is of interest to BG readers (especially researchers using machine
learning to predict NEE). The following issues should be clarified before acceptance.

Response: We would like to thank the reviewer for the positive comments and the time
invested to review our manuscript. The revised manuscript will follow the reviewer’s
recommendations.

Main comments:

The authors have already mentioned the inconsistency between the area of the flux
footprint and the area extracted from remote sensing data (e.g. 2x2 km). So, could the
authors extract this information from the literature and further analyze this effect? I believe
this analysis will be interesting.

Response: Thank you for the insightful comments. Indeed the scale of the explanatory
variables affects how well they match the scale of the flux observations. We will consider
discussing this issue more in-depth or extracting this information from the literature and
further evaluate this effect in various PFTs.

Action: Elaborated in the discussion section: ‘The effects of this mismatch between
explanatory variables and flux footprints may be diverse for different PFTs. For example,
for cropland types, the NEE is monitored at a range of several hundred meters around the
flux towers, but remote sensing variables such as FAPAR, NDVI, LAI, etc. can be
extracted at coarse scales (e.g., 2x2 km), some effects outside the extent of the flux
footprint (Chu et al., 2021; Walther et al., 2021) are incorporated (e.g., planting structures
with high spatial heterogeneity, agricultural practices such as irrigation). And for more
homogeneous types such as grasslands, coarse-scale meteorological data may still
cause spatial mismatches, even though the differences in land cover types within the 2x2
km and 200x200 m extent around the flux stations in grasslands may not be considerable.
For example, precipitation with high spatial heterogeneity can dominate the spatial
variability of soil moisture and thus affect the spatial variability of grassland NEE (Wu et al.,
2011; Jongen et al., 2011). However, using 0.25°x0.25° reanalysis precipitation data
(Zeng et al., 2020) may make it difficult for predictive models to capture this spatial
heterogeneity around the flux station.’ (Line 402)



The discussion section is not in-depth enough. The authors should adequately compare
the differences between some conclusions in previous studies and the findings of this
manuscript.

Response: Thank you for the insightful comments. We will further improve the discussion
section of this manuscript by incorporating/comparing findings from previous literature
(e.g., the study of uncertainty in modeling practices in some local studies).

Action: Elaborated in the discussion section: ‘Compared to previous comparisons of
machine learning-based NEE prediction models, this study is more comprehensive.
Previous studies (Abbasian et al., 2022) have also found advantages of RF over other
algorithms in NEE prediction. This study consolidated this finding using a larger amount of
evidence. Previous studies (Tramontana et al., 2016) have also compared the impact of
different practices in NEE prediction models based on the R-squared, such as comparing
the difference in accuracy between the two predictor combinations (i.e., using only
remotely sensed data and using remotely sensed data and meteorological data together).
In contrast, since this study incorporated more detailed factors influencing model accuracy,
the comprehensiveness of the understanding of such issues was deepened. However,
there are still many uncertainties and challenges in NEE prediction not clarified in this
study.’ (Line 345)

Other comments:

In Table 1, GPP is also used as a keyword in the literature collection? Clarify.

Response: Our inclusion of the keyword GPP was to ensure that as much of the literature
as possible was included because NEE was predicted along with GPP in some literature.

In Table 2, evapotranspiration (ET) is also used as a predictor. Is ET here the latent heat
observed by the flux station? Clarify.

Response: We would modify it to 'evapotranspiration (ET) as the latent heat observed by
the flux station'.

Action: Modified as ‘evapotranspiration (ET) (i.e., the latent heat observed by the flux
station)’

In Figure 8, the categories should be reordered.

Response: We will modify the order.

Action: The categories were reordered.

The area observed by the flux station should be larger than 100 x 100 m (usually a few
hundred meters).



Response: We will modify it to ‘a few hundred meters'. The observation extent of the flux
footprint is influenced by many factors such as wind speed and therefore varies within a
few hundred meters.

Action: modified to ‘a few hundred meters'.



Response to referee comments and actions

Referee #3

This manuscript conducts a meta-analysis to explore the uncertainty of simulating NEE
using comparing machine learning techniques, time-scale and spatial-scale changes, and
input variables. This is an important topic to solve the difference between observed and
predicted NEE. However, this manuscript doesn’t clarify the objectives and detail of data
processing. Oversimple descriptions in the Methods section makes readers confusing.
Additionally, the usage of too many speculative explanations in the discussion section is
hard to draw universal conclusions. This manuscript doesn’t clarify the motivation of the
work, especially in the advantages and potential of ML. In summary, the paper needs to
be substantially revised, and some parts need further elaboration.

Response: We would like to thank the reviewer for the positive comments and the time
invested to review our manuscript. The revised manuscript will follow the reviewer’s
recommendations.

L32, This sentence hardly reflects the scientific value of this paper.

Response: Thank you for the insightful comments. We will delete this sentence.

Action: Deleted.

L40-L43, The advantages and the current situation applied to ML need to be further
reviewed, which is beneficial for readers to understand the purpose of introducing ML in
this paper.

Response: Thank you for the insightful comments. We will further state the advantages
and state-of-the-art of using machine learning for NEE simulations compared to
process-based models. Previous process-based and empirical models are limited in their
performance in NEE prediction due to our poor understanding of the mechanisms of NEE.
Compared to process-based models, machine learning-based NEE prediction models can
improve accuracy by establishing complex relationships between observed NEE and
environmental variables in a data-driven manner.

Action: Elaborated ‘Many researchers have tried to use a data-driven approach as an
alternative (Fu et al., 2014; Tian et al., 2017; Tramontana et al., 2016; Jung et al., 2011).
On the one hand, it was made possible by the increase in the growth of global carbon flux
observations and the large amount of flux observation data being accumulated. Since the
1990s, the use of the eddy covariance technique to monitor NEE has been rapidly
promoted (Baldocchi, 2003). Several regional and global flux measurement networks
have been established for the big data management of the flux sites, including
CarboEuro-flux (Europe), AmeriFlux (North America), OzFlux (Australia), ChinaFlux
(China), FLUXNET (global), etc. On the other hand, machine learning approaches are



increasingly used to extract patterns and insights from the ever-increasing stream of
geospatial data (Reichstein et al., 2019). The rapid development of various algorithms and
high public availability of model tools in the field of machine learning have made these
techniques easily available to more researchers in the field of geography and ecology
(Reichstein et al., 2019). Since the above two major advances in the last two decades,
various machine learning algorithms have been used to simulate NEE at the flux station
scale with various predictor variables (e.g., meteorological variables, biophysical variables)
incorporated for spatial and temporal mapping of NEE or understanding the driving
mechanisms of NEE.’ (line 37)

L45, The sentence, “a synthesis evaluation is …limited”, needs to be further explained
otherwise it is hardly understood.

Response: We will provide more descriptive text, such as the limitations of the existing
local multi-model evaluation.

Action: revised as ‘To date, studies on using machine learning to predict NEE have a high
diversity in terms of modeling approaches. To obtain a comprehensive understanding of
machine learning-based NEE prediction, a synthesis evaluation of these machine learning
models is necessary.’ (line 53)

L49-50, need references, preferably with 2 examples

Response: We will provide the appropriate references here.

Action: revised as ‘Many studies have demonstrated the effectiveness of their proposed
improvements (i.e., using predictors with a higher spatial resolution (Reitz et al., 2021)
and using data from the local flux site network (Cho et al., 2021)) by comparing with
previous studies.’ (Line 58)

L52-54, There is a logical gap between this sentence and the previous statements.

Response: We will emphasize the importance of evaluation studies from 'local' to 'global',
thus making the logic smooth.

Action: revised as ‘We are more interested in guidelines with universal applicability that
improve the model accuracy, such as the selection of appropriate predictors and
algorithms under different conditions. Therefore, we should synthesize the results of
models applied to different conditions and regions to obtain general insights.’ (line 63)

L88-93, The uncertainty caused by spatio-temporal heterogeneity cannot be confused
with the volume of data sets. Because large-data volume does not equate to higher
heterogeneity. Big data provides more opportunities to build balanced-training data. This
section may need to be rewritten.



Response: Thank you for the insightful comments. Indeed, data volume does not always
correspond to large spatiotemporal heterogeneity. For example, a site with a long year
span and small interannual climate variability may have a large data volume, but it may
not contain large spatiotemporal heterogeneity. We will rewrite this paragraph to avoid this
confusion.

Action: The text concerning on the volume of data was removed: ‘(b) The spatio-temporal
heterogeneity of data sets, and validation method: The spatio-temporal heterogeneity of
the dataset may affect model accuracy.’ (line 98)

L107-108, need references

Response: We will provide the reference (Marcot and Hanea, 2021) here.

Action: Reference (Marcot and Hanea, 2021) added.

L116, "Other Features" needs to be clarified. The purpose of this manuscript may be to
explore: the uncertainty of NEE evaluation results caused by ML techniques,
spatio-temporal resolution remote sensing data, and verification methods according to the
introduction?

Response: We will revise it as ‘machine learning algorithms, Spatio-temporal resolution of
remote sensing data, and validation methods’.

Action: Revised as ‘In this study, to evaluate the impacts of predictors use, algorithms,
spatial/temporal scale, and validation methods on model accuracy, we performed a
meta-analysis of papers with prediction models that combine NEE observations from flux
towers, various predictors, and machine learning for the data-driven NEE simulations.’
(line 126)

L144, An oversimplified description of the workflow, please give an overview and detailed
sub-steps of data processing and simulation. It is hard to know the objectives of each
analysis for readers.

Response: We will provide more details on data extraction.

Action: Elaborated as:

‘The information of R-squared (at the validation phase) and the associated model features
reported in the article are considered as one data record for the formal meta-analysis (i.e.,
each R-squared record corresponded to a prediction model). From the included papers,
R-squared records and various features (Table 2) involved in the NEE modeling
framework (Fig. 2) were extracted (including the used algorithms, modeling/validation
methods, remote sensing data, meteorological data, biophysical data and ancillary data).
In some studies, multiple algorithms were applied to the same dataset, or models with



different features were developed. In these cases, multiple data records will be
documented.

In the practical information extracting step, we categorized such features in a comparable
manner. First, we categorized the various algorithms used in these papers, although the
same algorithm may also have a variant form or an optimized parameter scheme. They
are categorized into the following families of algorithms: Random Forests (RF), Multiple
Linear Regressions (MLR), Artificial Neural Networks (ANN), Support Vector Machines
(SVM), Partial Least Squares Regression (PLSR), Generalized additive model (GAM),
Boosted Regression Tree (BRT), Bayesian Additive Regression Trees (BART), Cubist ,
model tree ensembles (MTE). Second, we classified the spatial scales of these studies.
Models with study areas (spatial extent covered by flux stations) smaller than 100x100 km
were classified as ‘local’ scale models, those with study area sizes exceeding continental
scale were classified as ‘global’ scale, and those with study area sizes in between were
classified as ‘regional’ scale. Third, for various predictors, we only recorded whether the
predictors were used or not without distinguishing the detailed data sources and
categories (e.g., grid meteorological data from various reanalysis datasets and in-situ
meteorological observations from flux stations), measurement methods (e.g., soil
moisture measured/estimated by remote sensing or in situ sensors), etc. Fourth, we
documented PFTs for the prediction models from the description of study area or sites in
these papers. They are classified into the following types: forest, grassland, cropland,
wetland, savannah, tundra, and multi-PFTs (models containing a mixture of multiple PFTs).
Models not belonging to the above PFTs were not given a PFT field and were not included
in the subsequent analysis on the PFT differences. Other features (Table 2) are extracted
directly from the corresponding descriptions in the papers in an explicit manner.’ (line
152-177)

L150, Abbreviations in the figure need to be clarified

Response: We will provide the meaning of these abbreviations in the figure caption.

Action: The figure caption is elaborated: ‘Prec, Ta, Rn, Ws, RH, and VPD represent
precipitation, air temperature, net surface radiation, wind speed, relative humidity, and
vapour-pressure deficit. FAPAR is the fraction of absorbed photosynthetically active
radiation. LST is the land surface temperature. LAI ia the leaf area index.’

L178, Need scale bar and north arrow in figure 3

Response: We will add a scale bar and north arrow.

Action: Added.



L198, It is difficult to find the differences among algorithms using simple comparisons in
figure 5a, and needs more statistically testing. Additionally, this figure confuses me. Why
are MLR, RF, SVM, and ANN separately compared? Please provide explanations. Why is
PLSR with high R2 removed? Finally, there are also some problems with the image. The
caption does not explain the details of the box. Does the line in the box represent the
mean or the median?

Response: Thank you for the insightful comments. MLR, RF, SVM, and ANN are the more
commonly used methods. Other algorithms such as PLSR may have too small a sample
size. Since cross-study comparisons of algorithm accuracy include differences in data
used in model construction, we perform a pairwise comparison of these four algorithms in
figure 5b. Multiple models are developed for uniform training data in a single study so that
the interference of data variation is removed. The line in the box shows the median. We
will revise this figure (and the caption of the figure) in detail to provide more clarification.

Action: Revised as ‘Among the more frequently used algorithms, ANN and SVM
performed better (Fig. 5a) on average across studies (lightly better than RF). On the other
hand, since cross-study comparisons of algorithm accuracy include differences in data
used in model construction, we performed a pairwise comparison (Fig. 5b) of these four
algorithms (i.e., ANN, SVM, RF, and MLR). In these studies, multiple models are
developed for consistent training data with the interference of training data differences
removed. It shows that RF and SVM perform best in the inter-study comparison (Fig. 5b).
Whereas ANN performed slightly worse than RF and SVM, all three of them were stronger
than MLR. Overall, the performance of RF and SVM may be good and similar in the NEE
simulations.’ (line 223)

To explain the meaning of the lines in the boxplot, the figure caption is elaborated: ‘In the
panel (a), the horizontal line in the box indicates the medians. The top and bottom border
lines of the box indicate the 75% and 25% percentiles, respectively.

Figure 5. Differences in model accuracy (R-squared) using different algorithms across studies (a)
and internal comparisons of the model accuracy (R-squared) of selected pairs of algorithms within



individual studies (b). Regression algorithms: Random Forests (RF), Multiple Linear Regressions
(MLR), Artificial Neural Networks (ANN), Support Vector Machines (SVM), Partial Least
Squares Regression (PLSR), Generalized additive model (GAM), Boosted Regression Tree (BRT),
Bayesian Additive Regression Trees (BART), Cubist, model tree ensembles (MTE). In panel (a),
the horizontal line in the box indicates the medians. The top and bottom border lines of the box
indicate the 75% and 25% percentiles, respectively.

L205, Avoid using the word “significant” without statistically testing

Response: We will replace the word ‘significant’.

Action: Replaced with ‘considerable’.

L206-210, It is hard to read the trend in Figure 6. Recommend adding a line chart to
demonstrate the decreasing trend.

Response: We will add trend lines.

Action: A trend line subplot figure was added as the regression line of values of R-squared
and time scales (in days) in Figure 6.

Figure 6. Differences in model accuracy (R-squared) at different time scales across studies with the linear

regression between R-squared and time scales (a), and comparison of the model accuracy (R-squared) of selected

pairs of time scales within individual studies (b). All model records were included in the panel (a), while studies

that used multiple time scales (with other model characteristics unchanged) were included in the panel (b). Time

scales: 0.02 days (half-hourly), 0.04 days (hourly), 30 days (monthly), 90 days (quarterly).



L212, There are no details of the boxplot. Are all models incorporated into the time-scales
comparison, or only RF, SVM, and ANN? Please add the details of data processing.

Response: All models have been included in the assessment of time-scales variations.

Action: Added in the figure caption: ‘All model records were included in the panel (a), while
studies that used multiple time scales (with other model characteristics unchanged) were
included in the panel (b).’

L223, Also, use these words carefully without statistically testing.

Response: We will replace the word ‘significantly’.

Action: ‘significantly’ deleted here.

L263, Need to reorder the y-axis text in figure 8. Furthermore, a serious question is
whether the comparison analysis of these variables keeps other variables constant? If not,
conclusions based on comparisons of R2 may not hold water.

Response: We will readjust the order. Indeed, in the assessment of the impacts of
variables, the interference between variables is not eliminated (and indeed it is difficult to
keep the other variables constant). Therefore, the subsequent Bayesian network-based
analysis can be considered a multivariate analysis with the elimination of the interference
between the variables.

Action: The y-axis has been reordered.

The uncertainties and limitations of this analysis due to the joint control of multiple
features on the R-squared and also the covariance between some of the features are
described in the Discussion section:

‘There is dependence between the evaluated features (e.g. the dependency between the
spatial extent and the number of sites). It may negatively affect the assessment of the
impact of individual features on the accuracy of the model, although the BN-based
analysis of joint effects can reduce the impact of this dependence between variables by
artificially specifying causal relationships between features. The interference of unknown
dependencies between features may still not be eliminated when we focus on the effects
of an individual feature on the model performance. The sample size collected in this study
(178 records in total) is not very large. This also suggests that more future efforts should
be devoted to the comprehensive evaluation and summarization of NEE simulations.’
(line 460)

L299, Lacking the in-depth discussion of the uncertainty of NEE prediction resulting from
time-scale change.



Response: We will improve the discussion section by discussing in more depth the impact
of factors affecting NEE prediction (especially the change in the time scale you
mentioned). Since this study only provides findings based on statistics obtained, we will
compare some of the explanations of possible effects on time scales at the mechanistic
level in previous studies.

Action: elaborated as:

‘Previous studies have reported the dependence of the NEE variability and mechanism on
the time scales. On the one hand, the importance of variables affecting NEE varies at
different time scales. For example, in tropical and subtropical forests in southern China
(Yan et al., 2013), seasonal NEE variability is predominantly controlled by soil
temperature and moisture, while interannual NEE variability is controlled by the annual
precipitation variation. A study (Jung et al., 2017) showed that for annual-scale NEE
variability, water availability and temperature were the dominant drivers at the local and
global scales, respectively. This indicates the need to recognize the temporal and spatial
driving mechanisms of NEE in advance in the development of NEE prediction models. On
the other hand, dependence may exist between NEE anomalies at various time scales.
For example, previous studies (Luyssaert et al., 2007) showed that short-term
temperature anomalies may interpret both the daily and seasonal NEE anomalies. This
implies that the models at different time scales may not be independent. In the previous
studies, the relationship between prediction models at different scales has not been well
investigated, and it may be valuable to compare the relations between data and models at
different scales in depth. Larger time scales correspond to lower model accuracy, possibly
related to the fact that some small-time-scale relations between NEE and covariates
(especially meteorological variables) are smoothed. In particular, for models with time
scales smaller than one day (e.g. half-hourly models), the 8-daily and 16-daily biophysical
variable data obtained from satellite remote sensing are difficult to explain the temporal
variation in the sub-daily NEE. Therefore, for models at small time scales (i.e. half-hourly,
hourly, daily scale models), in situ meteorological variables may be more important. The
inclusion of some ancillary variables (e.g. soil texture, topographic variables) with no
temporal dynamic information may be ineffective unless many sites are included in the
model and the spatial variability of the ancillary variables for these sites is sufficiently large
(Virkkala et al., 2021).

In terms of completeness and purity of training data, hourly and daily models can be better
compared to monthly and yearly models. Hourly and daily models can usually preclude
those low-quality data and gaps in the flux observations. However, for monthly and yearly
scale models, gap-filling (Ruppert et al., 2006; Moffat et al., 2007; Zhu et al., 2022) is
necessary because there are few complete and continuous flux observations without data
gaps on the monthly to yearly scales. Since various gap-filling techniques rely on
environmental factors (Moffat et al., 2007) such as meteorological observations, this may
introduce uncertainty in the predictive models (i.e., a small fraction of the observed
information of NEE is estimated from a combination of independent variables). How it



would affect the accuracy of prediction models at various time scales remains uncertain,
although various gap-filling techniques have been widely used in the pre-processing of
training data.’ (Line 358-388)

L308, There are too many speculative parts and insufficient supporting materials in
section 4.1 of discussed.

Response: We will add more references to support our discussion in section 4.1.

For example, we will add three references for the following discussion text:

‘In addition, the impacts of lagged effects (Hao et al., 2010; Cranko Page et al., 2022) of
covariates are not considered in most models, which may underestimate the degree of
explanation of NEE for some predictor variables (e.g. precipitation). Most of the machine
learning-based models use only the average Ta and do not take into account the
maximum temperature, minimum temperature, daily difference in temperature, etc., as in
the process-based ecological models (Mitchell et al., 2009).’

Action: We have rearranged the structure of 4.1 (into 4.1.1, 4.1.2, and 4.1.3), and many
references have been added to support what is discussed.

In addition, we have removed some speculative text.

L321-323, The discussion of model accuracy difference caused by satellites needs careful.
This sentence needs further support. Are you implying that the time scale compensates
for the uncertainty caused by the spatial scale?

Response: The discussion on this in the current version was not careful although it is true
that the temporal availability of MODIS data and Landsat data differs greatly. We will
consider adding references.

Action: We removed the discussion text of the impact of the temporal and spatial scales of
satellite data, because we recognize that to perform an in-depth analysis of this issue, it
may not be sufficient based on only the evidence presented in this study alone.

L326-330, This sentence is too long

Response: We will simplify this sentence.

Action: revised as: ‘Since few of the studies included in this meta-analysis considered the
effect of variation in flux footprint, this feature was difficult to consider in this study.
However, its influence should still be further investigated in future studies. With flux
footprints calculated (Kljun et al., 2015) and the factors around the flux site (Walther et al.,



2021) that affect the flux footprint incorporated, .it is promising to clarify this issue.’ (Line
415)

L330-332, The time-scale discussion containing spatial-scale matching will confuse
readers.

Response: Thank you for the insightful comments. We will separate the discussion of
time-scale and the discussion of spatial-scale matching. In the current version, these two
parts are placed in one paragraph and it may confuse readers. We will revise this.

Action: It has been separated into two sub-sections: ‘4.1.1 Variations in time scales’ and
‘4.1.2 Scale mismatch of explanatory predictors and flux footprints’.

L349, Does "coarse-resolution" here note spatial resolution or temporal resolution?

Response: This refers to spatial resolution. We will clarify this in the manuscript.
Action: revised as ‘reanalysis meteorological data with coarse spatial resolution’
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