
Response to Referee #3 

I observe that the authors paid much attention to my previous comments and did a great job 

to integrate my remarks into the new version of the manuscript. The majority of my concerns 

have been addressed. There are still a few minor improvements required. Overall, the 

manuscript improved considerably. I suggest it for publication after minor revisions. 

Response: We would like to thank the reviewer for the positive comments and the time 

invested to review our manuscript again. The revised manuscript will follow the reviewer’s 

recommendations. 

 

Specific comments: 

1. Please add the description of the workflow (Fig. 2) to clarify the main steps in the 2.2 section. 

Response: the description of the workflow is clarified in the 2.2. section: ‘Typically, the flow of 

the NEE prediction modeling framework (Fig. 2) based on flux observations and machine 

learning is as follows: first, half-hourly scale NEE flux observations are aggregated into various 

time scale NEE data, and gap-filling techniques (Moffat et al., 2007) are often used in this step 

to obtain complete NEE series when data are missing. Various predictors including 

meteorological variables, remote sensing-based biophysical variables, etc. are extracted to 

match site-scale NEE series to generate a training dataset containing the target variable NEE 

and various covariates. Subsequently, various algorithms are used for the NEE prediction 

model construction and validated in different ways (e.g., leave-one-site-out validation (Zeng 

et al., 2020)). Finally, in some studies, prediction models were applied on gridded covariate 

data to map the regional or global-scale NEE spatial and temporal variations (Zeng et al., 

2020; Papale and Valentini, 2003; Jung et al., 2020). The information of R-squared (at the 

validation phase) and the associated model features reported in the article are considered as 

one data record for the formal meta-analysis (i.e., each R-squared record corresponding to 

a prediction model). From the included papers, R-squared records and various features (Table 

2) involved in the NEE modeling framework (Fig. 2) were extracted (including the used 

algorithms, modeling/validation methods, remote sensing data, meteorological data, 

biophysical data, and ancillary data). In some studies, multiple algorithms were applied to the 

same dataset, or models with different features were developed (Virkkala et al., 2021; Zhang 

et al., 2021; Cleverly et al., 2020; Tramontana et al., 2016). In these cases, multiple data records 

will be documented.’ (Line 151) 

 

2. The R2-based comparison with keeping other variables constant may cause potential 

uncertainty. Need to add statements and instructions in the Discussion section.  

Response: elaborated in the Discussion section as ‘We should pay more attention to the effect 

of features on model accuracy individually in future studies, and it may be valuable to keep 

other features as constants while changing the level of only one feature and assessing the 

difference. It may help us to understand the real sensitivity of model accuracy to different 

features in specific conditions.’ (Line 480) 

 

3. Please add an explanation for the reason why MLR, RF, SVM, and ANN are separately 

compared instead of all models and why PLSR with high R2 is removed in the Methodology 



section. This response is similar to the response for L198. 

Response: elaborated as ‘Subsequently, the model accuracies corresponding to different 

levels of various features are compared in a cross-study fashion. In the evaluation of 

algorithms and time scales, we also implement comparisons within individual studies. For 

example, in the evaluation of the effects of the algorithms, we compare the accuracy of 

models using the same training data and keeping other features as constants in individual 

studies. In this intra-study comparison step, only algorithms with relatively large sample sizes 

in the cross-study comparisons were selected.’ (Line 188) 
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