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Abstract. Net ecosystem exchange (NEE) is an important indicator of carbon cycling in terrestrial ecosystems.18

Many previous studies have combined flux observations, meteorological, biophysical, and ancillary predictors19

using machine learning to simulate the site-scale NEE. However, systematic evaluation of the performance of20
such models is limited. Therefore, we performed a meta-analysis of these NEE simulations. TotalA total of 4021

such studies and 178 model records were included. The impacts of various features throughout the modeling22

process on the accuracy of the model were evaluated. Random Forests and Support Vector Machines performed23

better than other algorithms. Models with larger time scales have lower average R-squared, especially when the24
time scale exceeds the monthly scale. Half-hourly models (average R-squared = 0.73) were significantly more25

accurate than daily models (average R-squared = 0.5). There are significant differences in the predictors used26

and their impacts on model accuracy for different plant functional types (PFTPFTs). Studies at continental and27

global scales (average R-squared = 0.37) with multiple PFTs, more sites, and a large span of years correspond to28
lower R-squared than studies at local (average R-squared = 0.69) and regional scales (average R-squared = 0.7).29

Also, the site-scale NEE predictions need more focus on the internal heterogeneity of the NEE dataset and the30

matching of the training set and validation set. The results of this study may also be applicable to the prediction31

of other carbon fluxes such as methane.32

1 Introduction33

Net ecosystem exchange (NEE) of CO2 is an important indicator of carbon cycling in terrestrial ecosystems (Fu34

et al., 2019), and accurate estimation of NEE is important for the development of global carbon neutral policies.35

Although process-based models have been used for NEE simulations (Mitchell et al., 2009), their accuracy and36
spatial resolutions of the model outputs are limited probably due to the lack of understanding and quantification37

of complex processes. Many researchers have tried to use a data-driven approach as an alternative (Fu et al.,38

2014; Jung et al., 2011; Tian et al., 2017; Tramontana et al., 2016), with the growth of global carbon flux39

observations and the large amount of flux observation data being accumulated. Various machine learning40
methods have been used to simulate NEE at the flux station scale with various predictor variables (e.g.,41

meteorological factors, biophysical variables) incorporated for spatial and temporal mapping of NEE or42

understanding the driving mechanisms of NEE.43

44
To date, a synthesis evaluation of the performance of these machine learning models is still limited. Since the45

beginning of this century, when machine learning approaches were still rarely used in geography and ecology46

research, neural networks were already used to perform simulations and mapping of NEE in European forests47

(Papale and Valentini, 2003). Subsequently, considerable efforts have been made by researchers to improve48
such predictive models. Many papers have demonstrated the effectiveness of their proposed improvements by49

comparing the accuracy of the models developed in previous studies. However, the improvements achieved in50

these studies may be limited to smaller areas and specific conditions and may not be generalizable (Cho et al.,51

2021; Cleverly et al., 2020; Reed et al., 2021). Through these comparisons, it remains not easy for us to52
understand the general guidelines for selecting appropriate predictor variables and models. The effectiveness of53

various predictors under different conditions and how to further improve model accuracy are still uncertain. We54
should synthesize the results of models applied to different conditions and regions to gain general insights.55

56
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Net ecosystem exchange (NEE) of CO2 is an important indicator of carbon cycling in terrestrial ecosystems (Fu57

et al., 2019), and accurate estimation of NEE is important for the development of global carbon neutral policies.58

Although process-based models have been used for NEE simulations (Mitchell et al., 2009), their accuracy and59
spatial resolutions of the model outputs are limited probably due to the lack of understanding and quantification60

of complex processes. Many researchers have tried to use a data-driven approach as an alternative (Fu et al.,61

2014; Tian et al., 2017; Tramontana et al., 2016; Jung et al., 2011). On the one hand, it was made possible by62

the increase in the growth of global carbon flux observations and the large amount of flux observation data63
being accumulated. Since the 1990s, the use of the eddy covariance technique to monitor NEE has been rapidly64

promoted (Baldocchi, 2003). Several regional and global flux measurement networks have been established for65

the big data management of the flux sites, including CarboEuro-flux (Europe), AmeriFlux (North America),66

OzFlux (Australia), ChinaFlux (China), FLUXNET (global), etc. On the other hand, machine learning67
approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial68

data (Reichstein et al., 2019). The rapid development of various algorithms and high public availability of model69

tools in the field of machine learning have made these techniques easily available to more researchers in the70

field of geography and ecology (Reichstein et al., 2019). Since the above two major advances (i.e., increasing71
availability of flux data and machine learning techniques) in the last two decades, various machine learning72

algorithms have been used to simulate NEE at the flux station scale with various predictor variables (e.g.,73

meteorological variables, biophysical variables) incorporated for spatial and temporal mapping of NEE or74

understanding the driving mechanisms of NEE.75
76

To date, studies on using machine learning to predict NEE have a high diversity in terms of modeling77

approaches. To obtain a comprehensive understanding of machine learning-based NEE prediction, a synthesis78

evaluation of these machine learning models is necessary. Since the beginning of this century, when machine79

learning approaches were still rarely used in geography and ecology research, neural networks were already80
used to perform simulations and mapping of NEE in European forests (Papale and Valentini, 2003).81

Subsequently, considerable efforts have been made by researchers to improve such predictive models. Many82

studies have demonstrated the effectiveness of their proposed improvements (i.e., using predictors with a higher83

spatial resolution (Reitz et al., 2021) and using data from the local flux site network (Cho et al., 2021)) by84
comparing with previous studies. However, the improvements achieved in these studies may be limited to85

smaller areas and specific conditions and may not be generalizable (Cleverly et al., 2020; Reed et al., 2021; Cho86

et al., 2021). We are more interested in guidelines with universal applicability that improve the model accuracy,87

such as the selection of appropriate predictors and algorithms under different conditions. Therefore, we should88
synthesize the results of models applied to different conditions and regions to obtain general insights.89

90

Many factors may affect the performance of these NEE prediction models, such as the predictor variables, the91

spatial and temporal span of the observed flux data, the PFTplant functional type (PFT) of the flux sites, the92
model validation method, the machine learning algorithm used, as described below:93

a) Predictors: Various biophysical variables (Cui et al., 2021; Huemmrich et al., 2019; Zeng et al.,94
2020)(Zeng et al., 2020; Cui et al., 2021; Huemmrich et al., 2019) and other meteorological and95

environmental factors have been used in the simulation of NEE. The most commonly used predictor96
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variables include precipitation (Prec), air temperature (Ta), wind speed (Ws), net/sun radiation (Rn/Rs),97

soil temperature (TaTs), soil texture, soil moisture (SM) (Zhou et al., 2020)(Zhou et al., 2020), vapor-98

pressure deficit (VPD) (Moffat et al., 2010; Park et al., 2018)(Moffat et al., 2010; Park et al., 2018),99
the fraction of absorbed photosynthetically active radiation (FAPAR) (Park et al., 2018; Tian et al.,100

2017)(Park et al., 2018; Tian et al., 2017), vegetation index (e.g., NDVI, EVI), LAI, and evapotranspiration101

(ET) (Berryman et al., 2018)(Berryman et al., 2018). The predictor variables used vary with the natural102

conditions and vegetation functional types of the study area. In contrast, in models that include multiple103
plant functional types (PFT),PFTs, some variables that play a significant role in the prediction of each of104

the multiple PFTs may have higher importance. For example, growing degree days (GDD) may be a more105

effective variable for NEE of tundra in the northern hemisphere high latitudes (Virkkala et al.,106

2021)(Virkkala et al., 2021), while measured groundwater levels may be important for wetlands (Zhang et107
al., 2021)(Zhang et al., 2021). Some of these predictor variables are measured at flux stations (e.g.,108

meteorological factors such as precipitation and temperature), while others are extracted from reanalyzed109

meteorological datasets and satellite remote sensing image data (e.g., vegetation indices). The spatial and110

temporal resolution of predictors can lead to differences in their relevance to NEE observations. Most111
measured in situ meteorological factors have a good spatio-temporal match to the observed NEE (site scale,112

half-hourly scale). However, the proportion of NEE explained by remotely sensed biophysical covariates113

may depend on their spatial and temporal scales. For example, the MODIS-based 8-daily NDVI data may114

better capture temporal variation in the relationship between NEE and vegetation growth than the Landsat-115
based 16-daily NDVI data. In contrast, the interpretation of NEE by variables such as soil texture and soil116

organic content (SOC), which do not have temporal dynamic information, may be limited to the117

interpretation of spatial variability, although they are considered to be important drivers of NEE. Therefore,118

the importance of variables obtained from NEE simulations based on a data-driven approach may differ119
from that in process-based models as well as in the actual driving mechanisms. This may be related to the120

spatial and temporal resolution of the predictors used and the quality of the data. It is necessary to consider121

the spatio-temporal resolution of the data for the actual biophysical variables used in the different studies in122

the systematic evaluation of data-driven NEE simulations.123
The volume of data sets, spatio-temporal heterogeneity, and validation method: The volume and spatio-temporal124

heterogeneity of the dataset may affect model accuracy. Typically, training data with larger regions,125

multiple sites, multiple PFTs, and longer spans of years may have a higher degree of imbalance (Kaur et al.,126

2019; Van Hulse et al., 2007; Virkkala et al., 2021; Zeng et al., 2020). Modeling with unbalanced data127
(where the difference between the distribution of the training and validation sets is significant even if128

selected at random) may result in lower model accuracy. To date, the most commonly used methods for129

validating such models include spatial (Virkkala et al., 2021), temporal (Reed et al., 2021), and random130

(Cui et al., 2021) cross-validation. The imbalance of data between the training and validation sets may131
affect the accuracy of the models when using these validation methods. Spatial validation is used to assess132

the ability of the model to adapt to different regions or flux sites of different PFTs, and a common method133
is 'leave one site out' cross-validation (Virkkala et al., 2021; Zeng et al., 2020). If the data from the site left134

out is not covered (or partially covered) by the distribution of the training dataset, the model's prediction135

performance at that site may be poor due to the absence of a similar type in the training set. Temporal136
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validation typically uses some years of data as training and the remaining years as validation to assess the137

model's fitness for interannual variability. For a year that is left out (e.g. a special extreme drought year138

which does not occur in the training set), the accuracy of the model may be limited if there are no similar139
years (extreme drought years) in the training dataset. K-fold cross-validation is commonly used in random140

cross-validation to assess the fitness of the model to the spatio-temporal variability. In this case, different141

values of K may also have a significant impact on the model accuracy. For example, for an unbalanced142

dataset, the average model accuracy obtained from a 10-fold (K = 10) validation approach is likely to be143
higher than that of a 3-fold (K = 3) validation approach.144

Machine learning algorithms used: Simulating NEE using different machine learning algorithms may influence145

the model accuracy, which may be induced by the characteristics of these algorithms themselves and the146

specific data distribution of the NEE training set. For example, Neural Networks can be used effectively to147
deal with nonlinearities, while as an ensemble learning method, Random Forests can avoid overfitting due148

to the introduction of randomness. Therefore, a comprehensive evaluation of this is necessary.149

150

b) The spatio-temporal heterogeneity of data sets, and validation method: The spatio-temporal heterogeneity151

of the dataset may affect model accuracy. Typically, training data with larger regions, multiple sites,152

multiple PFTs, and longer spans of years may have a higher degree of imbalance (Kaur et al., 2019; Van153
Hulse et al., 2007; Virkkala et al., 2021; Zeng et al., 2020). Modeling with unbalanced data (where the154

difference between the distribution of the training and validation sets is significant even if selected at155
random) may result in lower model accuracy. To date, the most commonly used methods for validating156

such models include spatial (Virkkala et al., 2021), temporal (Reed et al., 2021), and random (Cui et al.,157

2021) cross-validation. The imbalance of data between the training and validation sets may affect the158

accuracy of the models when using these validation methods. Spatial validation is used to assess the ability159
of the model to adapt to different regions or flux sites of different PFTs, and a common method is 'leave160

one site out' cross-validation (Virkkala et al., 2021; Zeng et al., 2020). If the data from the site left out is161

not covered (or partially covered) by the distribution of the training dataset, the model's prediction162

performance at that site may be poor due to the absence of a similar type in the training set. Temporal163
validation typically uses some years of data as training and the remaining years as validation to assess the164

model's fitness for interannual variability. For a year that is left out (e.g. a special extreme drought year165

which does not occur in the training set), the accuracy of the model may be limited if there are no similar166

years (extreme drought years) in the training dataset. K-fold cross-validation is commonly used in random167
cross-validation to assess the fitness of the model to the spatio-temporal variability. In this case, different168

values of K may also have a significant impact on the model accuracy. For example, for an unbalanced169

dataset, the average model accuracy obtained from a 10-fold (K = 10) validation approach is likely to be170

higher than that of a 3-fold (K = 3) validation approach (Marcot and Hanea, 2021).171
c) Machine learning algorithms used: Simulating NEE using different machine learning algorithms may172

influence the model accuracy, which may be induced by the characteristics of these algorithms themselves173

and the specific data distribution of the NEE training set. For example, Neural Networks can be used174

effectively to deal with nonlinearities, while as an ensemble learning method, Random Forests can avoid175
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overfitting due to the introduction of randomness. Therefore, a comprehensive evaluation of this is176

necessary.177

178

In this study, to evaluate the impactimpacts of predictors use, algorithms, spatial/temporal scale, and other179

featuresvalidation methods on model accuracy, we performed a meta-analysis of papers with prediction models180
that combine NEE observations from flux towers, various predictors, and machine learning for the data-driven181

NEE simulations. In addition, we also analyzed the causality of multiple features in NEE simulations and the182

joint effects of multiple features on model accuracy using the Bayesian Network (BN) (a multivariate statistical183

analysis approach (Pearl, 1985)).(Pearl, 1985)). The findings of this study can provide some general guidance184
for future NEE simulations.185

2 Methodology186

2.1 Criteria for including articles187

In the Scopus database, a literature query was applied to titles, abstracts, and keywords (Table 1) according to188

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009)(Moher et189
al., 2009) (Fig. 1):190

a) Articles were filtered for those that modeled NEE. Articles that modeled other carbon fluxes such as191

methane flux were not included.192

b) Articles that used only univariate regression rather than multiple regression were screened out.193
c) Articles reported the determination coefficient (R-squared) of the validation step (Shi et al., 2021;194

Tramontana et al., 2016; Zeng et al., 2020) as the measure of model performance. Although RMSE is also195
often used for model accuracy assessment, its dependence on the magnitude of water flux values makes it196

difficult to use for fair comparisons between studies.197

d) Articles were published in journals with language limited to English.198

e) Articles were filtered for those that were published in the specific journals (Table S1) for research quality199
control because the data, model implements, and peer review in these journals are often more reliable.200

201

Table 1. Article search query design: ‘[A1 OR A2 OR A3...] AND [B1 OR B2...] AND [C1 OR C2...]’202

ID A B C

1 Carbon flux “Eddy covariance” “machine learning”

2 CO2 flux “Flux tower” regress*

3 “net ecosystem exchange” “Support Vector”

4 net ecosystem produc “Neural Network”

5 gross primary produc “Random Forest”

6 Carbon exchange

203
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204
Figure 1. PRISMA-based paper filtering flowchart.205

2.2 Features of prediction models206

From the included papers, various features (Table 2) involved in the NEE modeling framework (Fig. 2) can be207

extracted including algorithms, modeling/validation, remote sensing data, meteorological data, biophysical data,208

ancillary data, and PFTs for the study area or sites. The information of R-squared (at the validation phase) and209

the associated model features reported in the article are considered as one data record for the formal meta-210
analysis. (i.e., each R-squared record corresponding to a prediction model). From the included papers, R-211

squared records and various features (Table 2) involved in the NEE modeling framework (Fig. 2) were extracted212

(including the used algorithms, modeling/validation methods, remote sensing data, meteorological data,213

biophysical data, and ancillary data). In some studies, multiple algorithms were applied to the same dataset, or214
models with different features were developed. In these cases, multiple data records will be documented.215

216

In the practical information extracting step, we categorized such features in a comparable manner. First, we217

categorized the various algorithms used in these papers, although the same algorithm may also have a variant218
form or an optimized parameter scheme. They are categorized into the following families of algorithms:219

Random Forests (RF), Multiple Linear Regressions (MLR), Artificial Neural Networks (ANN), Support Vector220

Machines (SVM), Partial Least Squares Regression (PLSR), Generalized additive model (GAM), Boosted221

Regression Tree (BRT), Bayesian Additive Regression Trees (BART), Cubist, model tree ensembles (MTE).222
Second, we classified the spatial scales of these studies. Models with study areas (spatial extent covered by flux223

stations) smaller than 100x100 km were classified as ‘local’ scale models, those with study area sizes exceeding224
continental scale were classified as ‘global’ scale, and those with study area sizes in between were classified as225

‘regional’ scale. Third, for various predictors, we only recorded whether the predictors were used or not without226
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distinguishing the detailed data sources and categories (e.g., grid meteorological data from various reanalysis227

datasets and in-situ meteorological observations from flux stations), measurement methods (e.g., soil moisture228

measured/estimated by remote sensing or in situ sensors), etc. Fourth, we documented PFTs for the prediction229
models from the description of study areas or sites in these papers. They are classified into the following types:230

forest, grassland, cropland, wetland, savannah, tundra, and multi-PFTs (models containing a mixture of multiple231

PFTs). Models not belonging to the above PFTs were not given a PFT field and were not included in the232

subsequent analysis of the PFT differences. Other features (Table 2) are extracted directly from the233
corresponding descriptions in the papers in an explicit manner.234

235

236
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237
Figure 2. Features of the machine learning-based NEE prediction process. The flux tower photo is from238

https://www.licor.com/env/support/Eddy-Covariance/videos/ec-method-02.html (last accessed: 23rd March239
2022). The map in the lower part is from Harris et al., 2021. The map in the lower part is from Harris et al.,240

2021. Prec, Ta, Rn, Ws, RH, and VPD represent precipitation, air temperature, net surface radiation, wind speed,241

relative humidity, and vapour-pressure deficit respectively. FAPAR is the fraction of absorbed242

photosynthetically active radiation. LST is the land surface temperature. LAI is the leaf area index.243
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244

Table 2. Description of information extracted from the included papers.245
Field/Feature Definition Categories adopted

Id paper Identification number of the paper

(internal)

Paper Paper metadata

Author/s Name/s of author/s

Title Title of the paper

Year Year of publication

Publication title Name of the journal where the paper was

published

Plant functional type

(PFT)

PFTs for the flux sites used 1-forest, 2-grassland, 3-cropland, 4-wetland, 5-

savannah, 6-tundra and multi-PFTs

Location More precise location (with the latitude

and longitude of the center of the studied

sites). Global (mainly based on FluxNet

(Tramontana et al., 2016)(Tramontana et

al., 2016)) and continental-scale studies

are not shown on the map due to the

difficulty of identifying specific locations.

latitude, longitude

Algorithms Algorithm families used in the multivariate

regression

Random Forests (RF), Multiple Linear Regressions

(MLR), Artificial Neural Networks (ANN), Support

Vector Machines (SVM), Partial Least Squares

Regression (PLSR), Generalized additive model

(GAM), Boosted Regression Tree (BRT), Bayesian

Additive Regression Trees (BART), Cubist, model

tree ensembles (MTE).

Sites number Number of the flux sites used

Study area/Spatial scale Area representatively covered by the flux

sites
local (less than 100 x 100km×100 km), regional,

global (continent-scale and global scale)

Temporal scale The temporal scale of the model half-hourly, hourly, daily, weekly, 8-daily, monthly,

seasonally, yearly

Study period The period of the data used in the model year, growing season, daytime, spring, summer,

autumn, winter

Year span The span of years of the flux data used

Site year Describe the volume of total flux data with

the number of sites and years aggregated.

Cross-validation Describe the chosen method of cross-

validation.

Spatial (e.g., ‘leave one site out’), temporal (e.g.,

‘leave one year out’), random (e.g., ‘k-fold’)
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Training/validation Describe the ratio of the data in training

and validation sets.

Satellite images Describe the source of satellite images

used to derive NDVI, EVI, LAI, LST, etc.

Landsat, MODIS, Hyperion (EO-1), AVHRR,

IKONOS

Biophysical predictors LAI, NDVI/EVI, evapotranspiration (ET)

(i.e., the latent heat observed by the flux

station), enhanced vegetation index (EVI),

the fraction of absorbed photosynthetically

active radiation/photosynthetically active

radiation (FAPAR/PAR), leaf area index

(LAI), etc.

Used (recorded as ‘1’) or not used (recorded as ‘0’)

Meteorological variables precipitation (Prec), net radiation/solar

radiation (Rn/Rs), air temperature (Ta),

vapour-pressure deficit (VPD), relative

humidity (RH) , etc.

Used (recorded as ‘1’) or not used (recorded as ‘0’)

Ancillary data Describe the source of ancillary variables

including terrain variables derived from

DEM, soil texture, or hydrology-related

data: soil organic content (SOC), soil

texture, terrain, soil moisture/land surface

water index (SM_LSWI), etc.

Used (recorded as ‘1’) or not used (recorded as ‘0’)

Top three variables in

the ranking of

importance of predictors

Describe the interpretation of the

importance of variables in machine

learning models.

Accuracy measure Accuracy measure used to assess the

performance of the estimation/prediction

R-squared (in the validation phase)

246

2.3 Bayesian Network for analyzing joint effects247

Based on the Bayesian network (BN), the joint impacts of multiple model features on the R-squared are248

analyzed. A BN can be represented by nodes (X1,., Xn) and the joint distribution (Pearl, 1985)A BN can be249

represented by nodes (X1,., Xn) and the joint distribution (Pearl, 1985):250

P X = P X1, X2, …, Xn = i=1
n P Xi pa Xi� # 1251

where pa(Xi) is the probability of the parent node Xi. Expectation-maximization (EM) approach (Moon,252
1996)(Moon, 1996) is used to incorporate the collected model records and compile the BN.253

254
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Sensitivity analysis is used for the evaluation of node influence based on mutual information (MI) which is255

calculated as the entropy reduction of the child node resulting from changes at the parent node (Shi et al.,256

2020)(Shi et al., 2020):257

MI = H Q -H Q F = q fP q, f log2
P q,f

P q P f
�� # 2258

where H represents the entropy, Q represents the target node, F represents the set of other nodes and q and f259

represent the status of Q and F.260

3 Results261

3.1 Articles included in the meta-analysis262

We included 40 articles (Table S2) and extracted 178 model records for the formal meta-analysis (Fig. 1). Most263
studies were implemented in Europe, North America, Oceania, and China (Fig. 3). The number of such papers is264

increasing recently (Fig. 4) and it shows the machine learning approach for NEE prediction has been of interest265

to more researchers. The main journals in which these articles have been published (Fig. 4) include Remote266

Sensing of Environment, Global Change Biology, Agricultural and Forest Meteorology, Biogeosciences, and267
Journal of Geophysical Research: Biogeosciences, etc.268

269

270
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271

Figure 3. Location of studies (a) included with the number of flux sites included and (b) their PFTs in the meta-272

analysis (total of 40 studies and 178 model records). Global (mainly based on FluxNet (Tramontana et al.,273

2016)(Tramontana et al., 2016)) and continental-scale studies are not shown on the map due to the difficulty of274
identifying specific locations.275

276
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277

278

Figure 4. The number of studies published across journals and the total number of publications per year.279

3.2 The formal Meta-analysis280

We assessed the impact of the features (e.g., algorithms, study area, PFTs, amount of data, validation methods,281
predictor variables, etc.) used in the different models based on differences ofin R-squared.282

3.2.1 Algorithms283
Among the more frequently used algorithms, ANN and SVM performed better (Fig. 55a) on average across284

studies (lightly better than RF). Unexpectedly,On the other hand, since cross-study average285
performancecomparisons of the conventional MLR was not worse than algorithm accuracy include differences286

in data used in model construction, we performed a pairwise comparison (Fig. 5b) of these three machine287

learningfour algorithms (i.e., ANN, SVM, RF). This may be because some of the , and MLR). In these studies288

that used MLR did not divide the training and validation sets, and the R-squared of the validation set of a model289
may be typically lower than that of the training set. On the other hand, an internal comparison of studies that290
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developed , multiple models are developed for consistent training data with the sameinterference of training set291

and model features (Fig. 5)data differences removed. It shows that RF and SVM perform best when the292

interference of other features is reduced.in the inter-study comparison (Fig. 5b). Whereas ANN performed293
slightly worse than RF and SVM, all three of them were significantly stronger than MLR. Overall, the294

performance of RF and SVM may be good and similar in the NEE simulations.295

296

297

Figure 5. Differences in model accuracy (R-squared) using different algorithms across studies (a) and internal298
comparisons of the model accuracy (R-squared) of selected pairs of algorithms within individual studies (b).299

Regression algorithms: Random Forests (RF), Multiple Linear Regressions (MLR), Artificial Neural Networks300

(ANN), Support Vector Machines (SVM), Partial Least Squares Regression (PLSR), Generalized additive301

model (GAM), Boosted Regression Tree (BRT), Bayesian Additive Regression Trees (BART), Cubist, model302
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tree ensembles (MTE). In panel (a), the horizontal line in the box indicates the medians. The top and bottom303

border lines of the box indicate the 75% and 25% percentiles, respectively.304

3.2.2TemporalTime scales305

The impact of time scale on R-squared is significantconsiderable (Fig. 6), with models with larger time scales306

having lower average R-squared, especially when the time scale exceeds the monthly scale. The most frequently307
used scales were the daily, 8-day, and monthly scales. In studies where multiple time scales were used with308

other characteristics being the same, we found that models with half-hourly scales were significantly more309

accurate than models with daily scales (Fig. 6). However, the difference in accuracy between the day-scale and310

week-scale models is small. The accuracy of models with a monthly scale is the lowest.311

312

313
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Figure 6. Differences in model accuracy (R-squared) at different time scales across studies (a)with the314

linear regression between R-squared and time scales (a), and comparison of the model accuracy (R-315

squared) of selected pairs of time scales within individual studies (b). All model records were316

included in panel (a), while studies that used multiple time scales (with other model characteristics317

unchanged) were included in panel (b). Time scales: 0.02 days (half-hourly), 0.04 days (hourly), 30318

days (monthly), and 90 days (quarterly).319

3.2.3 Various predictors320

Among the commonly used predictors for NEE, there are significant differences in the predictors used and their321

impacts on model accuracy for different PFTs (Fig. 7). Ancillary data (e.g. soil texture, soil organic content,322
topography) that do not have temporal variability are used less frequently because they can only explain spatial323

heterogeneity. In contrast, the biophysical variables LAI, FAPAR, and ET were used significantly less324

frequently than NDVI/EVI, especially in the cropland and wetland types. The meteorological variables Ta,325

Rn/Rs, and VPD were used most frequently. For forest sites, Rn/Rs and Ws appear to be the variables that326
significantly improve model accuracy. For grassland sites, we found that NDVI/EVI appearappears to be the327

most effective, despite the small sample size. For sites in croplands and wetlands, we did not find predictor328

variables that had a significant impact on model accuracy.329

330
For different PFTs, the top three variables in the ranking of model importance differed (Fig. S1). SM, Rn/Rs, Ta,331

Ts, and VPD all showed high importance across PFTs. This suggests that the variability of measured site-scale332
moisture and temperature conditions is important for the simulation of NEE for all PFTs. In contrast, in the333

importance ranking, other variables such as precipitation and NDVI/EVI may not lead because of the lag in their334

effect on NEE. (Hao et al., 2010; Cranko Page et al., 2022). And some other variables may improve model335

accuracy for specific PFTs such as groundwater table depth (GWT) for wetland sites and growing degree days336
(GDD) for tundra sites.337

338
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340

Figure 7. The impact of the various predictors incorporated in models of different PFTs (1-forest, 2-grassland, 3-341

cropland, 4-wetland, 6-tundra) on R-squared. Dark blue boxes indicate that the predictor was used in the model,342

while dark red boxes indicate that the predictor was not used. Predictors: soil organic content (Soil_OC),343
precipitation (Prec), soil moisture/land surface water index (SM_LSWI), net radiation/solar radiation (Rn_Rs),344

enhanced vegetation index (EVI), air temperature (Ta), vapor-pressure deficit (VPD), the fraction of absorbed345

photosynthetically active radiation/photosynthetically active radiation (FAPAR_PAR), relative humidity (RH),346

evapotranspiration (ET), leaf area index (LAI).347

3.2.4 Other features348
In addition, we evaluated other features of the model construction that may contribute to differences in model349

accuracy (Fig. 8). Studies at continental and global scales with a large number of sites and a large span of years350

correspond to lower R-squared than studies at local and regional scales, suggesting that studies with a large351

number of sites across large regions are likely to have high variability in the relationship between NEE and352
covariates and that studies at small scales are more likely to have higher model accuracy. Spatial validation353
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(usually 'leave one site out') corresponds to lower model accuracy compared to random and temporal validation.354

This again confirms the dominant role of heterogeneity in the relationship between NEE and covariates across355

sites in explaining model accuracy. This seems to be indirectly supported by the fact that a high ratio of training356
to validation sets corresponds to a low R-squared, as this high ratio tends to be accompanied by the use of the357

'leave one site out' validation approach. The accuracy of the models with a growing season period was slightly358

higher than that of the models with an annual period. For the satellite remote sensing data used, the models359

based on MODIS data with biophysical variables extracted were slightly less accurate than those based on360
Landsat data. For the daily scale models, Landsat data performed a little better than MODIS (Fig. S2), probably361

because the monitored area (approximately 100 x 100 m with a high proportion of flux footprints) of the eddy-362

covariance flux tower was more suitable for the use of Landsat data. MODIS data at the 500 m or 1 km scale363

used in the model may result in the sub-pixel heterogeneity issue and the lower representativeness than Landsat364
data that does not match the monitored footprint area of the flux, especially on non-homogeneous underlying365

surfaces (Chu et al., 2021).S2). This suggests that the higher temporal resolution of MODIS compared to366

Landsat may not play a dominant role in improving model accuracy. This may also be partially attributed to367

studies using MODIS-based explanatory data that tend to include too large surrounding areas around the site368
(e.g., 2x2 km), which can lead to a scale mismatch between the flux footprint and the explanatory variables.369

370
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372

Figure 8. The impacts of other features (i.e. spatial scale, study period, number of sites, year span, site year,373
cross-validation method, training/validation, and satellite imagery) on the model performance.374

3.3. The joint causal impacts of multi-features based on the BN375

We selected the features that had a more significant impact on model accuracy in the above assessment and376

further incorporated them into the BN-based multivariate assessment to understand the joint impact of multiple377
features on R-squared. The features incorporated included the spatial scale, the number of sites, the temporal378

scale, the span of years, the cross-validation method, and whether some specific predictors were used. We379

discretized the distribution of individual nodes and compiled the BN (Fig. 9.a) using records from different380

PFTs as input. Sensitivity analysis of the R-squared node (Fig. 10) showed that R-squared was most sensitive to381
'year span', cross-validation method, Rn/Rs, and time scale under multi-feature control. In the forest and382

cropland types, R-squared is more sensitive to Rn/Rs, while in the wetland type it is more sensitive to SM/LSWI383

and Ta. The sensitivity of R-squared to 'year span' was much higher in the cropland type compared to the other384
PFTs, which may suggest that the interannual variability in the NEE simulations of the cropland type is higher385

due to potential interannual variability of the planting structure and irrigation practices. For the cropland type,386
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differences in the phenology, harvesting, and irrigation (water volume and frequency) in different years can lead387

to significant inter-annual differences in NEE simulations. Subsequently, using the constructed BN (with the388

empirical information in previous studies incorporated), for new studies we can instructively infer the389
probability distribution of the possible R-squared (Fig. 9.b) with some model features predetermined. In390

previous studies, spatio-temporal mapping of NEE based on statistical models has often lacked accuracy391

assessment since there are no grid-scale NEE observations, and this BN may have the potential to be used to392

validate the accuracy (R-squared) of the NEE time series output of the grid-scale (i.e. inferring possible R-393
squared from model features, where the output of the grid-scale is considered to be of the form 'leave one site394

out').395

396
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397

Figure 9. The joint effects of multiple features on the R-squared based on the BN with all records input (a) and398

the inference on the probability distribution of R-squared based on the BN with the status of some nodes399
determined (b). The values before and after the “±” indicate the mean and standard deviation of the distribution,400

respectively. The gray boxes indicate that the status of the nodes has been determined. In panel (b), specific401

values of parent nodes such as ‘spatial scale’ are determined (shown in the red box), leading to an increase in the402
expected R-squared compared to the average scenario of the panel (a) (as inferred from the posterior conditional403

probabilities with the status of the node ‘spatial scale’ are determined as ‘local’).404

405
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406
Figure 10. The sensitivity analysis of the R-squared node to other nodes based on the mutual information (MI)407

across PFTs. ‘Cross-validation’ is the cross-validation method including spatial, temporal, and random cross-408

validation.409

4 Discussions410

Many studies have evaluated the incorporation of various predictors and model features using machine learning411
for improving the site-scale NEE predictions (Jung et al., 2011; Tramontana et al., 2016; Zeng et al.,412

2020).(Tramontana et al., 2016; Zeng et al., 2020; Jung et al., 2011). A comprehensive evaluation of these413

studies to provide definitive guidance on the selection of features in NEE prediction modeling is limited. This414

study fills the research gap with a meta-analysis of the literature through statistics on the accuracy and415
performance of models. Machine learning-based NEE simulations and predictions still suffer from high416

uncertainty. By better understanding the expected improvements that can be achieved through the inclusion of417

different features, we can identify priorities for the consideration of different features in modeling efforts and418

avoid operations decreasing model accuracy.419
420

Compared to previous comparisons of machine learning-based NEE prediction models, this study is more421

comprehensive. Previous studies (Abbasian et al., 2022) have also found advantages of RF over other422

algorithms in NEE prediction. This study consolidated this finding using a larger amount of evidence. Previous423
studies (Tramontana et al., 2016) have also compared the impact of different practices in NEE prediction models424

based on the R-squared, such as comparing the difference in accuracy between the two predictor combinations425
(i.e., using only remotely sensed data and using remotely sensed data and meteorological data together). In426

contrast, since this study incorporated more detailed factors influencing model accuracy, the understanding of427

such issues was deepened. However, there are still many uncertainties and challenges in NEE prediction not428

clarified in this study.429
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4.1 Challenges in the site-scale NEE simulation and implications for other carbon flux simulations430

In the above analysis, we found that the effect of the time scale of the model is significant. This suggests that we431

should be careful in determining the time scale of the model to consider whether the predictor variables used432
will work at this time scale. Larger time scales correspond to lower model accuracy, possibly related to the fact433

that some small-time-scale relations between NEE and covariates (especially meteorological variables) are434

smoothed. In addition, the impacts of lagged effects of covariates are not considered in most models, which may435

underestimate the degree of explanation of NEE for some predictor variables (e.g. precipitation). Most of the436
machine learning-based models use only the average Ta and do not take into account the maximum temperature,437

minimum temperature, daily difference in temperature, etc., as in the process-based ecological models. This438

suggests that the inclusion of different temporal characteristics of individual variables in machine learning-based439

NEE prediction models may be inadequate.440
441

The impact of differences in the various satellite images on model accuracy and performance is limited.442

Performance of studies using Landsat data is slightly better than MODIS probably because of the higher spatial443

resolution although the 8-daily (or a smaller daily scale) timescale of MODIS may have a positive effect on the444
accuracy improvement compared to the 16-daily timescale of Landsat. For studies using MODIS data, an445

excessively large extraction area of remote sensing data (e.g., 2 km x 2 km) may be inappropriate. In the non-446

homogeneous underlying conditions, the agreement of the area of flux footprints with the scale of the predictors447

should be considered in the extraction of the predictor variables in various PFTs (Chu et al., 2021). Since few of448
the studies included in this meta-analysis considered the effect of variation in flux footprint, this feature was449

difficult to consider in this study, but its influence should still be further investigated in future studies with flux450

footprints calculated (Kljun et al., 2015) and the factors around the flux site (Walther et al., 2021) that affect the451

flux footprint are incorporated. In particular, for models with time scales smaller than one day (e.g. half-hourly452
models), the 8-daily and 16-daily biophysical variable data obtained from satellite remote sensing are difficult to453

explain the temporal variation in the sub-daily NEE. Therefore, for models at small time scales (i.e. half-hourly,454

hourly, daily scale models), in situ meteorological variables may be more important. The inclusion of some455

ancillary variables (e.g. soil texture, topographic variables) with no temporal dynamic information may be456
ineffective unless many sites are included in the model and the spatial variability of the ancillary variables for457

these sites is sufficiently large (Virkkala et al., 2021).458

459

4.1.1 Variations in time scales460
In the above analysis, we found that the effect of the time scale of the model is considerable. This suggests that461

we should be careful in determining the time scale of the model to consider whether the predictor variables used462

will work at this time scale. Previous studies have reported the dependence of the NEE variability and463

mechanism on the time scales. On the one hand, the importance of variables affecting NEE varies at different464
time scales. For example, in tropical and subtropical forests in southern China (Yan et al., 2013), seasonal NEE465

variability is predominantly controlled by soil temperature and moisture, while interannual NEE variability is466

controlled by the annual precipitation variation. A study (Jung et al., 2017) showed that for annual-scale NEE467

variability, water availability and temperature were the dominant drivers at the local and global scales,468



27

respectively. This indicates the need to recognize the temporal and spatial driving mechanisms of NEE in469

advance in the development of NEE prediction models. On the other hand, dependence may exist between NEE470

anomalies at various time scales. For example, previous studies (Luyssaert et al., 2007) showed that short-term471
temperature anomalies may interpret both the daily and seasonal NEE anomalies. This implies that the models at472

different time scales may not be independent. In the previous studies, the relationship between prediction473

models at different scales has not been well investigated, and it may be valuable to compare the relations474

between data and models at different scales in depth. Larger time scales correspond to lower model accuracy,475
possibly related to the fact that some small-time-scale relations between NEE and covariates (especially476

meteorological variables) are smoothed. In particular, for models with time scales smaller than one day (e.g.477

half-hourly models), the 8-daily and 16-daily biophysical variable data obtained from satellite remote sensing478

are difficult to explain the temporal variation in the sub-daily NEE. Therefore, for models at small time scales479
(i.e. half-hourly, hourly, daily scale models), in situ meteorological variables may be more important. The480

inclusion of some ancillary variables (e.g. soil texture, topographic variables) with no temporal dynamic481

information may be ineffective unless many sites are included in the model and the spatial variability of the482

ancillary variables for these sites is sufficiently large (Virkkala et al., 2021).483

484

In terms of completeness and purity of training data, hourly and daily models can be better compared to monthly485

and yearly models. Hourly and daily models can usually preclude those low-quality data and gaps in the flux486

observations. However, for monthly and yearly scale models, gap-filling (Ruppert et al., 2006; Moffat et al.,487

2007; Zhu et al., 2022) is necessary because there are few complete and continuous fluxes observations without488
data gaps on the monthly to yearly scales. Since various gap-filling techniques rely on environmental factors489

(Moffat et al., 2007) such as meteorological observations, this may introduce uncertainty in the predictive490

models (i.e., a small fraction of the observed information of NEE is estimated from a combination of491

independent variables). How it would affect the accuracy of prediction models at various time scales remains492
uncertain, although various gap-filling techniques have been widely used in the pre-processing of training data.493

494

In addition, the impacts of lagged effects (Hao et al., 2010; Cranko Page et al., 2022) of covariates are not495

considered in most models, which may underestimate the degree of explanation of NEE for some predictor496
variables (e.g. precipitation). Most of the machine learning-based models use only the average Ta and do not497

take into account the maximum temperature, minimum temperature, daily difference in temperature, etc., as in498

the process-based ecological models (Mitchell et al., 2009). This suggests that the inclusion of different499

temporal characteristics of individual variables in machine learning-based NEE prediction models may be500
insufficient.501

4.1.2 Scale mismatch of explanatory predictors and flux footprints502

An excessively large extraction area of remote sensing data (e.g., 2x2 km) may be inappropriate. In the non-503

homogeneous underlying conditions, the agreement of the area of flux footprints with the scale of the predictors504
should be considered in the extraction of the predictor variables in various PFTs (Chu et al., 2021).505

506
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The effects of this mismatch between explanatory variables and flux footprints may be diverse for different507

PFTs. For example, for cropland types, the NEE is monitored at a range of several hundred meters around the508

flux towers, but remote sensing variables such as FAPAR, NDVI, LAI, etc. can be extracted at coarse scales509
(e.g., 2x2 km), some effects outside the extent of the flux footprint (Chu et al., 2021; Walther et al., 2021) are510

incorporated (e.g., planting structures with high spatial heterogeneity, agricultural practices such as irrigation).511

And for more homogeneous types such as grasslands, coarse-scale meteorological data may still cause spatial512

mismatches, even though the differences in land cover types within the 2x2 km and 200x200 m extent around513
the flux stations in grasslands may not be considerable. For example, precipitation with high spatial514

heterogeneity can dominate the spatial variability of soil moisture and thus affect the spatial variability of515

grassland NEE (Wu et al., 2011; Jongen et al., 2011). However, using 0.25°x0.25° reanalysis precipitation data516

(Zeng et al., 2020) may make it difficult for predictive models to capture this spatial heterogeneity around the517
flux station.518

519

Since few of the studies included in this meta-analysis considered the effect of variation in flux footprint, this520

feature was difficult to consider in this study. However, its influence should still be further investigated in future521
studies. With flux footprints calculated (Kljun et al., 2015) and the factors around the flux site (Walther et al.,522

2021) that affect the flux footprint incorporated, .it is promising to clarify this issue.523

4.1.3 Possible unbalance of training and validation sets524
In addition to the time scale of the models, the most significant differences in model accuracy and performance525

were found in the heterogeneity within the NEE dataset and the match of the training set and validation set.526

Often NEE simulations can achieve high accuracy in local studies, where the main factor negatively affecting527

model accuracy may be the interannual variability in the relationship between NEE and covariates. However,528
the complexity may increase when the dataset contains a large study area, many sites, PFTs, and year spans.529

Under this condition, the accuracy of the model in the 'leave one site out' validation may be more dependent on530

the correlation and match between the training and validation sets. (Jung et al., 2020). When the model is531

applied to an outlier site (of which the NEE, covariates, and their relationship are very different compared with532
the remaining sites), it appears to be difficult to achieve a high prediction accuracy. (Jung et al., 2020). If we533

further upscale the prediction model to large spatial and temporal scales, the uncertainties involved may be534

difficult to assess (Zeng et al., 2020)(Zeng et al., 2020). We can only infer the possible model accuracy based on535

the similarity of the distribution of predictors in the predicted grid to that of the existing sites in the model. In536
the upscaling process, reanalysis data with the coarse- spatial resolution reanalysis meteorological data are often537

used as an alternative for site-scale meteorological predictors. However, most studies did not assess in detail the538

possible errors associated with spatial mismatches in this operation.539

540
In summary, the site-scale NEE predictions may require more focus on the internal heterogeneity of the NEE541

dataset and the matching of the training set and validation set, and also require a better understanding of the542

influence of different scales of the same variable (e.g. site-scale precipitation and grid-scale precipitation in the543

reanalysis meteorological data) across modeling and upscaling steps. For the prediction of other carbon fluxes544
such as methane fluxes (in the same framework as the NEE predictions), the results of this study may also be545
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partially applicable, although there may be significant differences in the use of specific predictors (Peltola et al.,546

2019)(Peltola et al., 2019). With fewer possible PFTs (methane flux stations are mostly located in wetlands),547

methane flux predictions are likely to be less complex than current NEE predictions with multiple PFTs548
included. However, studies using machine learning for methane flux modeling are currently scarce and may not549

be sufficient for meta-analysis.550

4.2 Uncertainties551

The uncertainties in this analysis may include:552
Publication bias and weighting: Publication bias is not refined due to the limitations of the number of articles553

that can be included. Meta-analyses often measure the quality of journals and the data availability554

(Borenstein et al., 2011; Field and Gillett, 2010) to determine the weighting among the literature in a555

comprehensive assessment. However, a high proportion of the articles in this study did not make flux556
observations publicly available or share the NEE prediction models developed. Furthermore, meta-analysis557

studies in other fields typically measure the impact of papers by evidence/data volume, and the variance of558

the evaluated effects (Adams et al., 1997; Don et al., 2011; Liu et al., 2018). However, in this study,559

because no convincing method is found to quantify the weights of results from included articles, some560
features (e.g. the number of flux sites, the span of years) were directly assessed rather than used to561

determine the weights of the articles.562

a) Publication bias and weighting: Publication bias is not refined due to the limitations of the number of563

articles that can be included. Meta-analyses often measure the quality of journals and the data availability564
(Borenstein et al., 2011; Field and Gillett, 2010) to determine the weighting of the literature in a565

comprehensive assessment. However, a high proportion of the articles in this study did not make flux566

observations publicly available or share the NEE prediction models developed. Furthermore, meta-analysis567

studies in other fields typically measure the impact of papers by evidence/data volume, and the variance of568
the evaluated effects (Adams et al., 1997; Don et al., 2011; Liu et al., 2018). However, in this study,569

because no convincing method is found to quantify the weights of results from included articles, some570

features (e.g. the number of flux sites, the span of years) were directly assessed rather than used to571

determine the weights of the articles.572
b) Limitations of the criteria for inclusion in the literature: in the model accuracy-based evaluation, we573

selected only literature that developed multiple regression models. Potentially valuable information from574

univariate regression models was not included. In addition, only papers in high-quality English journals575

were included in this study to control for possible errors due to publication bias. However, many studies576
that fit this theme may have been published in other languages or other journals.577

c) Independence between features: There is the covariancedependence between some of the features being578

evaluated features (e.g. the non-independencedependency between some predictors), which maythe spatial579

extent and the number of sites). It may negatively affect the assessment of the impact of individual features580
on the accuracy of the model., although the BN-based analysis of joint effects can reduce the impact of this581

dependence between variables by specifying causal relationships between features. The interference of582

unknown dependencies between features may still not be eliminated when we focus on the effects of an583

individual feature on the model performance. The sample size collected in this study (178 records in total)584
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is not very large. The uncertainty in the findings may lead to a potentially biased understanding of such585

studies due to the many factors that affect the accuracy of the model. This also suggests that more future586

efforts should be devoted to the comprehensive evaluation and summarization of NEE simulations.587
588

Additionally, there are still other potential factors not considered by this study such as the uncertainty of climate589

data (site vs reanalysis), footprint matching between site and satellite images, etc. Overall, although the590

quantitative results of this study should be used with caution, they still have positive implications for guiding591
future such studies.592

5 Conclusion593

We performed a meta-analysis of the site-scale NEE simulations combining in situ flux observations,594

meteorological, biophysical, and ancillary predictors, and machine learning. The impacts of various features595
throughout the modeling process on the accuracy of the model were evaluated. The main findings of this study596

include:597

1. RF and SVM performed better than other evaluated algorithms.598

2. The impact of time scale on model performance is significant. Models with larger time scales have lower599
average R-squared, especially when the time scale exceeds the monthly scale. Models with half-hourly600

scales (average R-squared = 0.73) were significantly more accurate than models with daily scales (average601

R-squared = 0.5).602

3. Among the commonly used predictors for NEE, there are significant differences in the predictors used and603
their impacts on model accuracy for different PFTs.604

4. It is necessary to focus on the potential imbalance between the training and validation sets in NEE605

simulations. Studies at continental and global scales (average R-squared = 0.37) with multiple PFTs, more606

sites, and a large span of years correspond to lower R-squared than studies at local (average R-squared =607
0.69) and regional scales (average R-squared = 0.7).608

609
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