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Abstract. Net ecosystem exchange (NEE) is an important indicator of carbon cycling in terrestrial ecosystems. 18 

Many previous studies have combined flux observations, meteorological, biophysical, and ancillary predictors 19 

using machine learning to simulate the site-scale NEE. However, systematic evaluation of the performance of 20 

such models is limited. Therefore, we performed a meta-analysis of these NEE simulations. A total of 40 such 21 

studies and 178 model records were included. The impacts of various features throughout the modeling process 22 

on the accuracy of the model were evaluated. Random Forests and Support Vector Machines performed better 23 

than other algorithms. Models with larger time scales have lower average R-squared, especially when the time 24 

scale exceeds the monthly scale. Half-hourly models (average R-squared = 0.73) were significantly more 25 

accurate than daily models (average R-squared = 0.5). There are significant differences in the predictors used 26 

and their impacts on model accuracy for different plant functional types (PFTs). Studies at continental and 27 

global scales (average R-squared = 0.37) with multiple PFTs, more sites, and a large span of years correspond to 28 

lower R-squared than studies at local (average R-squared = 0.69) and regional scales (average R-squared = 0.7). 29 

Also, the site-scale NEE predictions need more focus on the internal heterogeneity of the NEE dataset and the 30 

matching of the training set and validation set. 31 

1 Introduction 32 

Net ecosystem exchange (NEE) of CO2 is an important indicator of carbon cycling in terrestrial ecosystems (Fu 33 

et al., 2019), and accurate estimation of NEE is important for the development of global carbon neutral policies. 34 

Although process-based models have been used for NEE simulations (Mitchell et al., 2009), their accuracy and 35 

spatial resolutions of the model outputs are limited probably due to the lack of understanding and quantification 36 

of complex processes. Many researchers have tried to use a data-driven approach as an alternative (Fu et al., 37 

2014; Tian et al., 2017; Tramontana et al., 2016; Jung et al., 2011). On the one hand, it was made possible by 38 

the increase in the growth of global carbon flux observations and the large amount of flux observation data 39 

being accumulated. Since the 1990s, the use of the eddy covariance technique to monitor NEE has been rapidly 40 

promoted (Baldocchi, 2003). Several regional and global flux measurement networks have been established for 41 

the big data management of the flux sites, including CarboEuro-flux (Europe), AmeriFlux (North America), 42 

OzFlux (Australia), ChinaFlux (China), FLUXNET (global), etc. On the other hand, machine learning 43 

approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial 44 

data (Reichstein et al., 2019). The rapid development of various algorithms and high public availability of model 45 

tools in the field of machine learning have made these techniques easily available to more researchers in the 46 

field of geography and ecology (Reichstein et al., 2019). Since the above two major advances (i.e., increasing 47 

availability of flux data and machine learning techniques) in the last two decades, various machine learning 48 

algorithms have been used to simulate NEE at the flux station scale with various predictor variables (e.g., 49 

meteorological variables, biophysical variables) incorporated for spatial and temporal mapping of NEE or 50 

understanding the driving mechanisms of NEE. 51 

 52 

To date, studies on using machine learning to predict NEE have a high diversity in terms of modeling 53 

approaches. To obtain a comprehensive understanding of machine learning-based NEE prediction, a synthesis 54 

evaluation of these machine learning models is necessary. Since the beginning of this century, when machine 55 
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learning approaches were still rarely used in geography and ecology research, neural networks were already 56 

used to perform simulations and mapping of NEE in European forests (Papale and Valentini, 2003). 57 

Subsequently, considerable efforts have been made by researchers to improve such predictive models. Many 58 

studies have demonstrated the effectiveness of their proposed improvements (i.e., using predictors with a higher 59 

spatial resolution (Reitz et al., 2021) and using data from the local flux site network (Cho et al., 2021)) by 60 

comparing with previous studies. However, the improvements achieved in these studies may be limited to 61 

smaller areas and specific conditions and may not be generalizable (Cleverly et al., 2020; Reed et al., 2021; Cho 62 

et al., 2021). We are more interested in guidelines with universal applicability that improve the model accuracy, 63 

such as the selection of appropriate predictors and algorithms under different conditions. Therefore, we should 64 

synthesize the results of models applied to different conditions and regions to obtain general insights. 65 

 66 

Many factors may affect the performance of these NEE prediction models, such as the predictor variables, the 67 

spatial and temporal span of the observed flux data, the plant functional type (PFT) of the flux sites, the model 68 

validation method, the machine learning algorithm used, as described below:  69 

a) Predictors: Various biophysical variables (Zeng et al., 2020; Cui et al., 2021; Huemmrich et al., 2019) and 70 

other meteorological and environmental factors have been used in the simulation of NEE. The most 71 

commonly used predictor variables include precipitation (Prec), air temperature (Ta), wind speed (Ws), 72 

net/sun radiation (Rn/Rs), soil temperature (Ts), soil texture, soil moisture (SM) (Zhou et al., 2020), vapor-73 

pressure deficit (VPD) (Moffat et al., 2010; Park et al., 2018), the fraction of absorbed photosynthetically 74 

active radiation (FAPAR) (Park et al., 2018; Tian et al., 2017), vegetation index (e.g., NDVI, EVI), LAI, 75 

and evapotranspiration (ET) (Berryman et al., 2018). The predictor variables used vary with the natural 76 

conditions and vegetation functional types of the study area. In contrast, in models that include multiple 77 

PFTs, some variables that play a significant role in the prediction of each of the multiple PFTs may have 78 

higher importance. For example, growing degree days (GDD) may be a more effective variable for NEE of 79 

tundra in the northern hemisphere high latitudes (Virkkala et al., 2021), while measured groundwater levels 80 

may be important for wetlands (Zhang et al., 2021). Some of these predictor variables are measured at flux 81 

stations (e.g., meteorological factors such as precipitation and temperature), while others are extracted 82 

from reanalyzed meteorological datasets and satellite remote sensing image data (e.g., vegetation indices). 83 

The spatial and temporal resolution of predictors can lead to differences in their relevance to NEE 84 

observations. Most measured in situ meteorological factors have a good spatio-temporal match to the 85 

observed NEE (site scale, half-hourly scale). However, the proportion of NEE explained by remotely 86 

sensed biophysical covariates may depend on their spatial and temporal scales. For example, the MODIS-87 

based 8-daily NDVI data may better capture temporal variation in the relationship between NEE and 88 

vegetation growth than the Landsat-based 16-daily NDVI data. In contrast, the interpretation of NEE by 89 

variables such as soil texture and soil organic content (SOC), which do not have temporal dynamic 90 

information, may be limited to the interpretation of spatial variability, although they are considered to be 91 

important drivers of NEE. Therefore, the importance of variables obtained from NEE simulations based on 92 

a data-driven approach may differ from that in process-based models as well as in the actual driving 93 

mechanisms. This may be related to the spatial and temporal resolution of the predictors used and the 94 

quality of the data. It is necessary to consider the spatio-temporal resolution of the data for the actual 95 
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biophysical variables used in the different studies in the systematic evaluation of data-driven NEE 96 

simulations.  97 

b) The spatio-temporal heterogeneity of data sets, and validation method: The spatio-temporal heterogeneity 98 

of the dataset may affect model accuracy. Typically, training data with larger regions, multiple sites, 99 

multiple PFTs, and longer spans of years may have a higher degree of imbalance (Kaur et al., 2019; Van 100 

Hulse et al., 2007; Virkkala et al., 2021; Zeng et al., 2020). Modeling with unbalanced data (where the 101 

difference between the distribution of the training and validation sets is significant even if selected at 102 

random) may result in lower model accuracy. To date, the most commonly used methods for validating 103 

such models include spatial (Virkkala et al., 2021), temporal (Reed et al., 2021), and random (Cui et al., 104 

2021) cross-validation. The imbalance of data between the training and validation sets may affect the 105 

accuracy of the models when using these validation methods. Spatial validation is used to assess the ability 106 

of the model to adapt to different regions or flux sites of different PFTs, and a common method is 'leave 107 

one site out' cross-validation (Virkkala et al., 2021; Zeng et al., 2020). If the data from the site left out is 108 

not covered (or partially covered) by the distribution of the training dataset, the model's prediction 109 

performance at that site may be poor due to the absence of a similar type in the training set. Temporal 110 

validation typically uses some years of data as training and the remaining years as validation to assess the 111 

model's fitness for interannual variability. For a year that is left out (e.g. a special extreme drought year 112 

which does not occur in the training set), the accuracy of the model may be limited if there are no similar 113 

years (extreme drought years) in the training dataset. K-fold cross-validation is commonly used in random 114 

cross-validation to assess the fitness of the model to the spatio-temporal variability. In this case, different 115 

values of K may also have a significant impact on the model accuracy. For example, for an unbalanced 116 

dataset, the average model accuracy obtained from a 10-fold (K = 10) validation approach is likely to be 117 

higher than that of a 3-fold  (K = 3) validation approach (Marcot and Hanea, 2021).  118 

c) Machine learning algorithms used: Simulating NEE using different machine learning algorithms may 119 

influence the model accuracy, which may be induced by the characteristics of these algorithms themselves 120 

and the specific data distribution of the NEE training set. For example, Neural Networks can be used 121 

effectively to deal with nonlinearities, while as an ensemble learning method, Random Forests can avoid 122 

overfitting due to the introduction of randomness. Therefore, a comprehensive evaluation of this is 123 

necessary.  124 

 125 

In this study, to evaluate the impacts of predictors use, algorithms, spatial/temporal scale, and validation 126 

methods on model accuracy, we performed a meta-analysis of papers with prediction models that combine NEE 127 

observations from flux towers, various predictors, and machine learning for the data-driven NEE simulations. In 128 

addition, we also analyzed the causality of multiple features in NEE simulations and the joint effects of multiple 129 

features on model accuracy using the Bayesian Network (BN) (a multivariate statistical analysis approach 130 

(Pearl, 1985)). The findings of this study can provide some general guidance for future NEE simulations. 131 
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2 Methodology 132 

2.1 Criteria for including articles 133 

In the Scopus database, a literature query was applied to titles, abstracts, and keywords (Table 1) according to 134 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009) (Fig. 1): 135 

a) Articles were filtered for those that modeled NEE. Articles that modeled other carbon fluxes such as 136 

methane flux were not included. 137 

b) Articles that used only univariate regression rather than multiple regression were screened out.  138 

c) Articles reported the determination coefficient (R-squared) of the validation step (Shi et al., 2021; 139 

Tramontana et al., 2016; Zeng et al., 2020) as the measure of model performance. Although RMSE is also 140 

often used for model accuracy assessment, its dependence on the magnitude of water flux values makes it 141 

difficult to use for fair comparisons between studies. 142 

d) Articles were published in journals with language limited to English. 143 

e) Articles were filtered for those that were published in the specific journals (Table S1) for research quality 144 

control because the data, model implements, and peer review in these journals are often more reliable. 145 

 146 

Table 1. Article search query design: ‘[A1 OR A2 OR A3...] AND [B1 OR B2...] AND [C1 OR C2...]’ 147 

ID A B C 

1 Carbon flux “Eddy covariance” “machine learning” 

2 CO2 flux “Flux tower” regress* 

3 “net ecosystem exchange”  “Support Vector” 

4 net ecosystem produc  “Neural Network” 

5 gross primary produc  “Random Forest” 

6 Carbon exchange   

 148 
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 149 

Figure 1. PRISMA-based paper filtering flowchart. 150 

2.2 Features of prediction models 151 

The information of R-squared (at the validation phase) and the associated model features reported in the article 152 

are considered as one data record for the formal meta-analysis (i.e., each R-squared record corresponding to a 153 

prediction model). From the included papers, R-squared records and various features (Table 2) involved in the 154 

NEE modeling framework (Fig. 2) were extracted (including the used algorithms, modeling/validation methods, 155 

remote sensing data, meteorological data, biophysical data, and ancillary data). In some studies, multiple 156 

algorithms were applied to the same dataset, or models with different features were developed. In these cases, 157 

multiple data records will be documented. 158 

 159 

In the practical information extracting step, we categorized such features in a comparable manner. First, we 160 

categorized the various algorithms used in these papers, although the same algorithm may also have a variant 161 

form or an optimized parameter scheme. They are categorized into the following families of algorithms: 162 

Random Forests (RF), Multiple Linear Regressions (MLR), Artificial Neural Networks (ANN), Support Vector 163 

Machines (SVM), Partial Least Squares Regression (PLSR), Generalized additive model (GAM), Boosted 164 

Regression Tree (BRT), Bayesian Additive Regression Trees (BART), Cubist, model tree ensembles (MTE). 165 

Second, we classified the spatial scales of these studies. Models with study areas (spatial extent covered by flux 166 

stations) smaller than 100x100 km were classified as ‘local’ scale models, those with study area sizes exceeding 167 

continental scale were classified as ‘global’ scale, and those with study area sizes in between were classified as 168 

‘regional’ scale. Third, for various predictors, we only recorded whether the predictors were used or not without 169 

distinguishing the detailed data sources and categories (e.g., grid meteorological data from various reanalysis 170 

datasets and in-situ meteorological observations from flux stations), measurement methods (e.g., soil moisture 171 
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measured/estimated by remote sensing or in situ sensors), etc. Fourth, we documented PFTs for the prediction 172 

models from the description of study areas or sites in these papers. They are classified into the following types: 173 

forest, grassland, cropland, wetland, savannah, tundra, and multi-PFTs (models containing a mixture of multiple 174 

PFTs). Models not belonging to the above PFTs were not given a PFT field and were not included in the 175 

subsequent analysis of the PFT differences. Other features (Table 2) are extracted directly from the 176 

corresponding descriptions in the papers in an explicit manner. 177 

 178 

 179 
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 180 

Figure 2. Features of the machine learning-based NEE prediction process. The flux tower photo is from 181 

https://www.licor.com/env/support/Eddy-Covariance/videos/ec-method-02.html (last accessed: 23rd March 182 

2022). The map in the lower part is from Harris et al., 2021. Prec, Ta, Rn, Ws, RH, and VPD represent 183 

precipitation, air temperature, net surface radiation, wind speed, relative humidity, and vapour-pressure deficit 184 

respectively. FAPAR is the fraction of absorbed photosynthetically active radiation. LST is the land surface 185 

temperature. LAI is the leaf area index. 186 

https://www.licor.com/env/support/Eddy-Covariance/videos/ec-method-02.html
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 187 

Table 2. Description of information extracted from the included papers. 188 

Field/Feature Definition Categories adopted 

Id paper Identification number of the paper 

(internal) 

 

Paper Paper metadata   

Author/s Name/s of author/s  

Title Title of the paper  

Year Year of publication  

Publication title Name of the journal where the paper was 

published 

 

Plant functional type 

(PFT) 

PFTs for the flux sites used 1-forest, 2-grassland, 3-cropland, 4-wetland, 5-

savannah, 6-tundra and multi-PFTs 

Location More precise location (with the latitude 

and longitude of the center of the studied 

sites). Global (mainly based on FluxNet 

(Tramontana et al., 2016)) and continental-

scale studies are not shown on the map due 

to the difficulty of identifying specific 

locations.  

latitude, longitude 

Algorithms Algorithm families used in the multivariate 

regression 

Random Forests (RF), Multiple Linear Regressions 

(MLR), Artificial Neural Networks (ANN), Support 

Vector Machines (SVM), Partial Least Squares 

Regression (PLSR), Generalized additive model 

(GAM), Boosted Regression Tree (BRT), Bayesian 

Additive Regression Trees (BART), Cubist, model 

tree ensembles (MTE).  

Sites number  Number of the flux sites used  

Study area/Spatial scale Area representatively covered by the flux 

sites 

local (less than 100×100 km), regional, global 

(continent-scale and global scale) 

Temporal scale  The temporal scale of the model half-hourly, hourly, daily, weekly, 8-daily, monthly, 

seasonally, yearly 

Study period  The period of the data used in the model year, growing season, daytime, spring, summer, 

autumn, winter 

Year span The span of years of the flux data used  

Site year Describe the volume of total flux data with 

the number of sites and years aggregated. 

 

Cross-validation Describe the chosen method of cross-

validation. 

Spatial (e.g., ‘leave one site out’), temporal (e.g., 

‘leave one year out’), random (e.g., ‘k-fold’) 
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Training/validation Describe the ratio of the data in training 

and validation sets.  

 

Satellite images Describe the source of satellite images 

used to derive NDVI, EVI, LAI, LST, etc.  

Landsat, MODIS, Hyperion (EO-1), AVHRR, 

IKONOS 

Biophysical predictors  LAI, NDVI/EVI, evapotranspiration (ET) 

(i.e., the latent heat observed by the flux 

station), enhanced vegetation index (EVI), 

the fraction of absorbed photosynthetically 

active radiation/photosynthetically active 

radiation (FAPAR/PAR), leaf area index 

(LAI), etc.  

Used (recorded as ‘1’) or not used (recorded as ‘0’) 

Meteorological variables precipitation (Prec), net radiation/solar 

radiation (Rn/Rs), air temperature (Ta), 

vapour-pressure deficit (VPD), relative 

humidity (RH) , etc.  

Used (recorded as ‘1’) or not used (recorded as ‘0’) 

Ancillary data Describe the source of ancillary variables 

including terrain variables derived from 

DEM, soil texture, or hydrology-related 

data: soil organic content (SOC), soil 

texture, terrain, soil moisture/land surface 

water index (SM_LSWI), etc.  

Used (recorded as ‘1’) or not used (recorded as ‘0’) 

Top three variables in 

the ranking of 

importance of predictors 

Describe the interpretation of the 

importance of variables in machine 

learning models. 

 

Accuracy measure Accuracy measure used to assess the 

performance of the estimation/prediction 

R-squared (in the validation phase) 

 189 

2.3 Bayesian Network for analyzing joint effects 190 

Based on the Bayesian network (BN), the joint impacts of multiple model features on the R-squared are 191 

analyzed. A BN can be represented by nodes (X1,., Xn) and the joint distribution (Pearl, 1985): 192 

P(X) = P(X1, X2, … , Xn) = ∏ P(Xi|pa(Xi))n
i=1 (1)  193 

where pa(Xi) is the probability of the parent node Xi. Expectation-maximization (EM) approach (Moon, 1996) is 194 

used to incorporate the collected model records and compile the BN.  195 

 196 

Sensitivity analysis is used for the evaluation of node influence based on mutual information (MI) which is 197 

calculated as the entropy reduction of the child node resulting from changes at the parent node (Shi et al., 2020): 198 
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MI = H(Q)-H(Q|F)= ∑ ∑ P(q, f) log
2

(
P(q,f)

P(q)P(f)
) fq (2)  199 

where H represents the entropy, Q represents the target node, F represents the set of other nodes and q and f 200 

represent the status of Q and F.  201 

3 Results 202 

3.1 Articles included in the meta-analysis 203 

We included 40 articles (Table S2) and extracted 178 model records for the formal meta-analysis (Fig. 1). Most 204 

studies were implemented in Europe, North America, Oceania, and China (Fig. 3). The number of such papers is 205 

increasing recently (Fig. 4) and it shows the machine learning approach for NEE prediction has been of interest 206 

to more researchers. The main journals in which these articles have been published (Fig. 4) include Remote 207 

Sensing of Environment, Global Change Biology, Agricultural and Forest Meteorology, Biogeosciences, and 208 

Journal of Geophysical Research: Biogeosciences, etc.  209 

 210 

 211 

Figure 3. Location of studies (a) included with the number of flux sites included and (b) their PFTs in the meta-212 

analysis (total of 40 studies and 178 model records). Global (mainly based on FluxNet (Tramontana et al., 213 
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2016)) and continental-scale studies are not shown on the map due to the difficulty of identifying specific 214 

locations.  215 

 216 

 217 

Figure 4. The number of studies published across journals and the total number of publications per year.  218 

3.2 The formal Meta-analysis 219 

We assessed the impact of the features (e.g., algorithms, study area, PFTs, amount of data, validation methods, 220 

predictor variables, etc.) used in the different models based on differences in R-squared. 221 

3.2.1 Algorithms 222 

Among the more frequently used algorithms, ANN and SVM performed better (Fig. 5a) on average across 223 

studies (lightly better than RF). On the other hand, since cross-study comparisons of algorithm accuracy include 224 

differences in data used in model construction, we performed a pairwise comparison (Fig. 5b) of these four 225 

algorithms (i.e., ANN, SVM, RF, and MLR). In these studies, multiple models are developed for consistent 226 

training data with the interference of training data differences removed. It shows that RF and SVM perform best 227 

in the inter-study comparison (Fig. 5b). Whereas ANN performed slightly worse than RF and SVM, all three of 228 

them were stronger than MLR. Overall, the performance of RF and SVM may be good and similar in the NEE 229 

simulations. 230 
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 231 

Figure 5. Differences in model accuracy (R-squared) using different algorithms across studies (a) and internal 232 

comparisons of the model accuracy (R-squared) of selected pairs of algorithms within individual studies (b). 233 

Regression algorithms: Random Forests (RF), Multiple Linear Regressions (MLR), Artificial Neural Networks 234 

(ANN), Support Vector Machines (SVM), Partial Least Squares Regression (PLSR), Generalized additive 235 

model (GAM), Boosted Regression Tree (BRT), Bayesian Additive Regression Trees (BART), Cubist, model 236 

tree ensembles (MTE). In panel (a), the horizontal line in the box indicates the medians. The top and bottom 237 

border lines of the box indicate the 75% and 25% percentiles, respectively. 238 

3.2.2 Time scales 239 

The impact of time scale on R-squared is considerable (Fig. 6), with models with larger time scales having 240 

lower average R-squared, especially when the time scale exceeds the monthly scale. The most frequently used 241 

scales were the daily, 8-day, and monthly scales. In studies where multiple time scales were used with other 242 

characteristics being the same, we found that models with half-hourly scales were significantly more accurate 243 

than models with daily scales (Fig. 6). However, the difference in accuracy between the day-scale and week-244 

scale models is small. The accuracy of models with a monthly scale is the lowest. 245 
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 246 

Figure 6. Differences in model accuracy (R-squared) at different time scales across studies with the 247 

linear regression between R-squared and time scales (a), and comparison of the model accuracy (R-248 

squared) of selected pairs of time scales within individual studies (b). All model records were 249 

included in panel (a), while studies that used multiple time scales (with other model characteristics 250 

unchanged) were included in panel (b). Time scales: 0.02 days (half-hourly), 0.04 days (hourly), 30 251 

days (monthly), and 90 days (quarterly). 252 

3.2.3 Various predictors 253 

Among the commonly used predictors for NEE, there are significant differences in the predictors used and their 254 

impacts on model accuracy for different PFTs (Fig. 7). Ancillary data (e.g. soil texture, soil organic content, 255 

topography) that do not have temporal variability are used less frequently because they can only explain spatial 256 

heterogeneity. In contrast, the biophysical variables LAI, FAPAR, and ET were used significantly less 257 

frequently than NDVI/EVI, especially in the cropland and wetland types. The meteorological variables Ta, 258 

Rn/Rs, and VPD were used most frequently. For forest sites, Rn/Rs and Ws appear to be the variables that 259 

improve model accuracy. For grassland sites, we found that NDVI/EVI appears to be the most effective, despite 260 

the small sample size. For sites in croplands and wetlands, we did not find predictor variables that had a 261 

significant impact on model accuracy. 262 

 263 

For different PFTs, the top three variables in the ranking of model importance differed (Fig. S1). SM, Rn/Rs, 264 

Ta, Ts, and VPD all showed high importance across PFTs. This suggests that the variability of measured site-265 

scale moisture and temperature conditions is important for the simulation of NEE for all PFTs. In contrast, in the 266 

importance ranking, other variables such as precipitation and NDVI/EVI may not lead because of the lag in their 267 

effect on NEE (Hao et al., 2010; Cranko Page et al., 2022). And some other variables may improve model 268 

accuracy for specific PFTs such as groundwater table depth (GWT) for wetland sites and growing degree days 269 

(GDD) for tundra sites.  270 
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 271 

 272 

Figure 7. The impact of the various predictors incorporated in models of different PFTs (1-forest, 2-grassland, 3-273 

cropland, 4-wetland, 6-tundra) on R-squared. Dark blue boxes indicate that the predictor was used in the model, 274 

while dark red boxes indicate that the predictor was not used. Predictors: soil organic content (Soil_OC), 275 

precipitation (Prec), soil moisture/land surface water index (SM_LSWI), net radiation/solar radiation (Rn_Rs), 276 

enhanced vegetation index (EVI), air temperature (Ta), vapor-pressure deficit (VPD), the fraction of absorbed 277 

photosynthetically active radiation/photosynthetically active radiation (FAPAR_PAR), relative humidity (RH), 278 

evapotranspiration (ET), leaf area index (LAI).  279 

3.2.4 Other features 280 

In addition, we evaluated other features of the model construction that may contribute to differences in model 281 

accuracy (Fig. 8). Studies at continental and global scales with a large number of sites and a large span of years 282 

correspond to lower R-squared than studies at local and regional scales, suggesting that studies with a large 283 

number of sites across large regions are likely to have high variability in the relationship between NEE and 284 
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covariates and that studies at small scales are more likely to have higher model accuracy. Spatial validation 285 

(usually 'leave one site out') corresponds to lower model accuracy compared to random and temporal validation. 286 

This again confirms the dominant role of heterogeneity in the relationship between NEE and covariates across 287 

sites in explaining model accuracy. This seems to be indirectly supported by the fact that a high ratio of training 288 

to validation sets corresponds to a low R-squared, as this high ratio tends to be accompanied by the use of the 289 

'leave one site out' validation approach. The accuracy of the models with a growing season period was slightly 290 

higher than that of the models with an annual period. For the satellite remote sensing data used, the models 291 

based on MODIS data with biophysical variables extracted were slightly less accurate than those based on 292 

Landsat data. For the daily scale models, Landsat data performed a little better than MODIS (Fig. S2). This 293 

suggests that the higher temporal resolution of MODIS compared to Landsat may not play a dominant role in 294 

improving model accuracy. This may also be partially attributed to studies using MODIS-based explanatory data 295 

that tend to include too large surrounding areas around the site (e.g., 2x2 km), which can lead to a scale 296 

mismatch between the flux footprint and the explanatory variables.  297 

 298 

Figure 8. The impacts of other features (i.e. spatial scale, study period, number of sites, year span, site year, 299 

cross-validation method, training/validation, and satellite imagery) on the model performance. 300 
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3.3. The joint causal impacts of multi-features based on the BN  301 

We selected the features that had a more significant impact on model accuracy in the above assessment and 302 

further incorporated them into the BN-based multivariate assessment to understand the joint impact of multiple 303 

features on R-squared. The features incorporated included the spatial scale, the number of sites, the temporal 304 

scale, the span of years, the cross-validation method, and whether some specific predictors were used. We 305 

discretized the distribution of individual nodes and compiled the BN (Fig. 9.a) using records from different 306 

PFTs as input. Sensitivity analysis of the R-squared node (Fig. 10) showed that R-squared was most sensitive to 307 

'year span', cross-validation method, Rn/Rs, and time scale under multi-feature control. In the forest and 308 

cropland types, R-squared is more sensitive to Rn/Rs, while in the wetland type it is more sensitive to SM/LSWI 309 

and Ta. The sensitivity of R-squared to 'year span' was much higher in the cropland type compared to the other 310 

PFTs, which may suggest that the interannual variability in the NEE simulations of the cropland type is higher 311 

due to potential interannual variability of the planting structure and irrigation practices. For the cropland type, 312 

differences in the phenology, harvesting, and irrigation (water volume and frequency) in different years can lead 313 

to significant inter-annual differences in NEE simulations. Subsequently, using the constructed BN (with the 314 

empirical information in previous studies incorporated), for new studies we can instructively infer the 315 

probability distribution of the possible R-squared (Fig. 9.b) with some model features predetermined. In 316 

previous studies, spatio-temporal mapping of NEE based on statistical models has often lacked accuracy 317 

assessment since there are no grid-scale NEE observations, and this BN may have the potential to be used to 318 

validate the accuracy (R-squared) of the NEE time series output of the grid-scale (i.e. inferring possible R-319 

squared from model features, where the output of the grid-scale is considered to be of the form 'leave one site 320 

out').  321 
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 322 

Figure 9. The joint effects of multiple features on the R-squared based on the BN with all records input (a) and 323 

the inference on the probability distribution of R-squared based on the BN with the status of some nodes 324 

determined (b). The values before and after the “±” indicate the mean and standard deviation of the distribution, 325 

respectively. The gray boxes indicate that the status of the nodes has been determined. In panel (b), specific 326 

values of parent nodes such as ‘spatial scale’ are determined (shown in the red box), leading to an increase in the 327 

expected R-squared compared to the average scenario of the panel (a) (as inferred from the posterior conditional 328 

probabilities with the status of the node ‘spatial scale’ are determined as ‘local’).  329 

 330 
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 331 

Figure 10. The sensitivity analysis of the R-squared node to other nodes based on the mutual information (MI) 332 

across PFTs. ‘Cross-validation’ is the cross-validation method including spatial, temporal, and random cross-333 

validation. 334 

4 Discussions 335 

Many studies have evaluated the incorporation of various predictors and model features using machine learning 336 

for improving the site-scale NEE predictions (Tramontana et al., 2016; Zeng et al., 2020; Jung et al., 2011). A 337 

comprehensive evaluation of these studies to provide definitive guidance on the selection of features in NEE 338 

prediction modeling is limited. This study fills the research gap with a meta-analysis of the literature through 339 

statistics on the accuracy and performance of models. Machine learning-based NEE simulations and predictions 340 

still suffer from high uncertainty. By better understanding the expected improvements that can be achieved 341 

through the inclusion of different features, we can identify priorities for the consideration of different features in 342 

modeling efforts and avoid operations decreasing model accuracy. 343 

 344 

Compared to previous comparisons of machine learning-based NEE prediction models, this study is more 345 

comprehensive. Previous studies (Abbasian et al., 2022) have also found advantages of RF over other 346 

algorithms in NEE prediction. This study consolidated this finding using a larger amount of evidence. Previous 347 

studies (Tramontana et al., 2016) have also compared the impact of different practices in NEE prediction models 348 

based on the R-squared, such as comparing the difference in accuracy between the two predictor combinations 349 

(i.e., using only remotely sensed data and using remotely sensed data and meteorological data together). In 350 

contrast, since this study incorporated more detailed factors influencing model accuracy, the understanding of 351 

such issues was deepened. However, there are still many uncertainties and challenges in NEE prediction not 352 

clarified in this study. 353 
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4.1 Challenges in the site-scale NEE simulation and implications for other carbon flux simulations 354 

4.1.1 Variations in time scales 355 

In the above analysis, we found that the effect of the time scale of the model is considerable. This suggests that 356 

we should be careful in determining the time scale of the model to consider whether the predictor variables used 357 

will work at this time scale. Previous studies have reported the dependence of the NEE variability and 358 

mechanism on the time scales. On the one hand, the importance of variables affecting NEE varies at different 359 

time scales. For example, in tropical and subtropical forests in southern China (Yan et al., 2013), seasonal NEE 360 

variability is predominantly controlled by soil temperature and moisture, while interannual NEE variability is 361 

controlled by the annual precipitation variation. A study (Jung et al., 2017) showed that for annual-scale NEE 362 

variability, water availability and temperature were the dominant drivers at the local and global scales, 363 

respectively. This indicates the need to recognize the temporal and spatial driving mechanisms of NEE in 364 

advance in the development of NEE prediction models. On the other hand, dependence may exist between NEE 365 

anomalies at various time scales. For example, previous studies (Luyssaert et al., 2007) showed that short-term 366 

temperature anomalies may interpret both the daily and seasonal NEE anomalies. This implies that the models at 367 

different time scales may not be independent. In the previous studies, the relationship between prediction 368 

models at different scales has not been well investigated, and it may be valuable to compare the relations 369 

between data and models at different scales in depth. Larger time scales correspond to lower model accuracy, 370 

possibly related to the fact that some small-time-scale relations between NEE and covariates (especially 371 

meteorological variables) are smoothed. In particular, for models with time scales smaller than one day (e.g. 372 

half-hourly models), the 8-daily and 16-daily biophysical variable data obtained from satellite remote sensing 373 

are difficult to explain the temporal variation in the sub-daily NEE. Therefore, for models at small time scales 374 

(i.e. half-hourly, hourly, daily scale models), in situ meteorological variables may be more important. The 375 

inclusion of some ancillary variables (e.g. soil texture, topographic variables) with no temporal dynamic 376 

information may be ineffective unless many sites are included in the model and the spatial variability of the 377 

ancillary variables for these sites is sufficiently large (Virkkala et al., 2021). 378 

 379 

In terms of completeness and purity of training data, hourly and daily models can be better compared to monthly 380 

and yearly models. Hourly and daily models can usually preclude those low-quality data and gaps in the flux 381 

observations. However, for monthly and yearly scale models, gap-filling (Ruppert et al., 2006; Moffat et al., 382 

2007; Zhu et al., 2022) is necessary because there are few complete and continuous fluxes observations without 383 

data gaps on the monthly to yearly scales. Since various gap-filling techniques rely on environmental factors 384 

(Moffat et al., 2007) such as meteorological observations, this may introduce uncertainty in the predictive 385 

models (i.e., a small fraction of the observed information of NEE is estimated from a combination of 386 

independent variables). How it would affect the accuracy of prediction models at various time scales remains 387 

uncertain, although various gap-filling techniques have been widely used in the pre-processing of training data. 388 

 389 

In addition, the impacts of lagged effects (Hao et al., 2010; Cranko Page et al., 2022) of covariates are not 390 

considered in most models, which may underestimate the degree of explanation of NEE for some predictor 391 

variables (e.g. precipitation). Most of the machine learning-based models use only the average Ta and do not 392 

take into account the maximum temperature, minimum temperature, daily difference in temperature, etc., as in 393 
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the process-based ecological models (Mitchell et al., 2009). This suggests that the inclusion of different 394 

temporal characteristics of individual variables in machine learning-based NEE prediction models may be 395 

insufficient. 396 

4.1.2 Scale mismatch of explanatory predictors and flux footprints 397 

An excessively large extraction area of remote sensing data (e.g., 2x2 km) may be inappropriate. In the non-398 

homogeneous underlying conditions, the agreement of the area of flux footprints with the scale of the predictors 399 

should be considered in the extraction of the predictor variables in various PFTs (Chu et al., 2021). 400 

 401 

The effects of this mismatch between explanatory variables and flux footprints may be diverse for different 402 

PFTs. For example, for cropland types, the NEE is monitored at a range of several hundred meters around the 403 

flux towers, but remote sensing variables such as FAPAR, NDVI, LAI, etc. can be extracted at coarse scales 404 

(e.g., 2x2 km), some effects outside the extent of the flux footprint (Chu et al., 2021; Walther et al., 2021) are 405 

incorporated (e.g., planting structures with high spatial heterogeneity, agricultural practices such as irrigation). 406 

And for more homogeneous types such as grasslands, coarse-scale meteorological data may still cause spatial 407 

mismatches, even though the differences in land cover types within the 2x2 km and 200x200 m extent around 408 

the flux stations in grasslands may not be considerable. For example, precipitation with high spatial 409 

heterogeneity can dominate the spatial variability of soil moisture and thus affect the spatial variability of 410 

grassland NEE (Wu et al., 2011; Jongen et al., 2011). However, using 0.25°x0.25° reanalysis precipitation data 411 

(Zeng et al., 2020) may make it difficult for predictive models to capture this spatial heterogeneity around the 412 

flux station. 413 

 414 

Since few of the studies included in this meta-analysis considered the effect of variation in flux footprint, this 415 

feature was difficult to consider in this study. However, its influence should still be further investigated in future 416 

studies. With flux footprints calculated (Kljun et al., 2015) and the factors around the flux site (Walther et al., 417 

2021) that affect the flux footprint incorporated, .it is promising to clarify this issue. 418 

4.1.3 Possible unbalance of training and validation sets 419 

In addition to the time scale of the models, the most significant differences in model accuracy and performance 420 

were found in the heterogeneity within the NEE dataset and the match of the training set and validation set. 421 

Often NEE simulations can achieve high accuracy in local studies, where the main factor negatively affecting 422 

model accuracy may be the interannual variability in the relationship between NEE and covariates. However, 423 

the complexity may increase when the dataset contains a large study area, many sites, PFTs, and year spans. 424 

Under this condition, the accuracy of the model in the 'leave one site out' validation may be more dependent on 425 

the correlation and match between the training and validation sets (Jung et al., 2020). When the model is applied 426 

to an outlier site (of which the NEE, covariates, and their relationship are very different compared with the 427 

remaining sites), it appears to be difficult to achieve a high prediction accuracy (Jung et al., 2020). If we further 428 

upscale the prediction model to large spatial and temporal scales, the uncertainties involved may be difficult to 429 

assess (Zeng et al., 2020). We can only infer the possible model accuracy based on the similarity of the 430 

distribution of predictors in the predicted grid to that of the existing sites in the model. In the upscaling process, 431 
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reanalysis data with the coarse spatial resolution are often used as an alternative for site-scale meteorological 432 

predictors. However, most studies did not assess in detail the possible errors associated with spatial mismatches 433 

in this operation. 434 

 435 

In summary, the site-scale NEE predictions may require more focus on the internal heterogeneity of the NEE 436 

dataset and the matching of the training set and validation set, and also require a better understanding of the 437 

influence of different scales of the same variable (e.g. site-scale precipitation and grid-scale precipitation in the 438 

reanalysis meteorological data) across modeling and upscaling steps. For the prediction of other carbon fluxes 439 

such as methane fluxes (in the same framework as the NEE predictions), the results of this study may also be 440 

partially applicable, although there may be significant differences in the use of specific predictors (Peltola et al., 441 

2019). 442 

4.2 Uncertainties 443 

The uncertainties in this analysis may include: 444 

a) Publication bias and weighting: Publication bias is not refined due to the limitations of the number of 445 

articles that can be included. Meta-analyses often measure the quality of journals and the data availability 446 

(Borenstein et al., 2011; Field and Gillett, 2010) to determine the weighting of the literature in a 447 

comprehensive assessment. However, a high proportion of the articles in this study did not make flux 448 

observations publicly available or share the NEE prediction models developed. Furthermore, meta-analysis 449 

studies in other fields typically measure the impact of papers by evidence/data volume, and the variance of 450 

the evaluated effects (Adams et al., 1997; Don et al., 2011; Liu et al., 2018). However, in this study, 451 

because no convincing method is found to quantify the weights of results from included articles, some 452 

features (e.g. the number of flux sites, the span of years) were directly assessed rather than used to 453 

determine the weights of the articles. 454 

b) Limitations of the criteria for inclusion in the literature: in the model accuracy-based evaluation, we 455 

selected only literature that developed multiple regression models. Potentially valuable information from 456 

univariate regression models was not included. In addition, only papers in high-quality English journals 457 

were included in this study to control for possible errors due to publication bias. However, many studies 458 

that fit this theme may have been published in other languages or other journals. 459 

c) Independence between features: There is dependence between the evaluated features (e.g. the dependency 460 

between the spatial extent and the number of sites). It may negatively affect the assessment of the impact 461 

of individual features on the accuracy of the model, although the BN-based analysis of joint effects can 462 

reduce the impact of this dependence between variables by specifying causal relationships between 463 

features. The interference of unknown dependencies between features may still not be eliminated when we 464 

focus on the effects of an individual feature on the model performance. The sample size collected in this 465 

study (178 records in total) is not very large. This also suggests that more future efforts should be devoted 466 

to the comprehensive evaluation and summarization of NEE simulations. 467 

 468 

Additionally, there are still other potential factors not considered by this study such as the uncertainty of climate 469 

data (site vs reanalysis), footprint matching between site and satellite images, etc. Overall, although the 470 
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quantitative results of this study should be used with caution, they still have positive implications for guiding 471 

future such studies. 472 

5 Conclusion 473 

We performed a meta-analysis of the site-scale NEE simulations combining in situ flux observations, 474 

meteorological, biophysical, and ancillary predictors, and machine learning. The impacts of various features 475 

throughout the modeling process on the accuracy of the model were evaluated. The main findings of this study 476 

include: 477 

1. RF and SVM performed better than other evaluated algorithms.  478 

2. The impact of time scale on model performance is significant. Models with larger time scales have lower 479 

average R-squared, especially when the time scale exceeds the monthly scale. Models with half-hourly 480 

scales (average R-squared = 0.73) were significantly more accurate than models with daily scales (average 481 

R-squared = 0.5).  482 

3. Among the commonly used predictors for NEE, there are significant differences in the predictors used and 483 

their impacts on model accuracy for different PFTs.  484 

4. It is necessary to focus on the potential imbalance between the training and validation sets in NEE 485 

simulations. Studies at continental and global scales (average R-squared = 0.37) with multiple PFTs, more 486 

sites, and a large span of years correspond to lower R-squared than studies at local (average R-squared = 487 

0.69) and regional scales (average R-squared = 0.7).  488 

  489 



24 

 

Acknowledgments 490 

This research was supported by the National Natural Science Foundation of China (Grant No. U1803243), the 491 

Key projects of the Natural Science Foundation of Xinjiang Autonomous Region (Grant No. 2022D01D01), the 492 

Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20060302), and 493 

High-End Foreign Experts Project. 494 

Contributions 495 

H.S and G.L initiated this research and were responsible for the integrity of the work as a whole. H.S performed 496 

formal analysis, and calculations and drafted the manuscript. H.S, G.L, X.M, X.Y, Y.W, W.Z, M.X, C.Z, and 497 

Y.Z were responsible for the data collection and analysis. G.L, P.D.M, T.V.D.V, O.H, and A.K contributed 498 

resources and financial support. 499 

Competing interests 500 

The authors declare that they have no conflict of interest. 501 

Data availability 502 

The data used in this study can be accessed by contacting the first author (shihaiyang16@mails.ucas.ac.cn) 503 

based on a reasonable request. 504 

Code availability 505 

The code used in this study can be accessed by contacting the first author (shihaiyang16@mails.ucas.ac.cn) 506 

based on a reasonable request. 507 

 508 

  509 

mailto:shihaiyang16@mails.ucas.ac.cn
mailto:shihaiyang16@mails.ucas.ac.cn


25 

 

References 510 

Abbasian, H., Solgi, E., Mohsen Hosseini, S., and Hossein Kia, S.: Modeling terrestrial net ecosystem 511 

exchange using machine learning techniques based on flux tower measurements, Ecological 512 

Modelling, 466, 109901, https://doi.org/10.1016/j.ecolmodel.2022.109901, 2022. 513 

Adams, D. C., Gurevitch, J., and Rosenberg, M. S.: Resampling tests for meta‐analysis of ecological 514 

data, Ecology, 78, 1277–1283, 1997. 515 

Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange 516 

rates of ecosystems: past, present and future, 9, 479–492, https://doi.org/10.1046/j.1365-517 

2486.2003.00629.x, 2003. 518 

Berryman, E. M., Vanderhoof, M. K., Bradford, J. B., Hawbaker, T. J., Henne, P. D., Burns, S. P., 519 

Frank, J. M., Birdsey, R. A., and Ryan, M. G.: Estimating soil respiration in a subalpine landscape 520 

using point, terrain, climate, and greenness data, Journal of Geophysical Research: Biogeosciences, 521 

123, 3231–3249, 2018. 522 

Borenstein, M., Hedges, L. V., Higgins, J. P., and Rothstein, H. R.: Introduction to meta-analysis, 523 

John Wiley & Sons, 2011. 524 

Cho, S., Kang, M., Ichii, K., Kim, J., Lim, J.-H., Chun, J.-H., Park, C.-W., Kim, H. S., Choi, S.-W., 525 

and Lee, S.-H.: Evaluation of forest carbon uptake in South Korea using the national flux tower 526 

network, remote sensing, and data-driven technology, Agricultural and Forest Meteorology, 311, 527 

108653, 2021. 528 

Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., 529 

Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., 530 

Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., 531 

Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., 532 

Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., 533 

Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, 534 

K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., 535 

Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., 536 

Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. 537 

D., and Zona, D.: Representativeness of Eddy-Covariance flux footprints for areas surrounding 538 

AmeriFlux sites, Agricultural and Forest Meteorology, 301–302, 108350, 539 

https://doi.org/10.1016/j.agrformet.2021.108350, 2021. 540 

Cleverly, J., Vote, C., Isaac, P., Ewenz, C., Harahap, M., Beringer, J., Campbell, D. I., Daly, E., 541 

Eamus, D., He, L., Hunt, J., Grace, P., Hutley, L. B., Laubach, J., McCaskill, M., Rowlings, D., 542 

Rutledge Jonker, S., Schipper, L. A., Schroder, I., Teodosio, B., Yu, Q., Ward, P. R., Walker, J. P., 543 

Webb, J. A., and Grover, S. P. P.: Carbon, water and energy fluxes in agricultural systems of 544 

Australia and New Zealand, 287, https://doi.org/10.1016/j.agrformet.2020.107934, 2020. 545 

Cranko Page, J., De Kauwe, M. G., Abramowitz, G., Cleverly, J., Hinko-Najera, N., Hovenden, M. J., 546 

Liu, Y., Pitman, A. J., and Ogle, K.: Examining the role of environmental memory in the 547 

predictability of carbon and water fluxes across Australian ecosystems, Biogeosciences, 19, 1913–548 

1932, 2022. 549 

Cui, X., Goff, T., Cui, S., Menefee, D., Wu, Q., Rajan, N., Nair, S., Phillips, N., and Walker, F.: 550 

Predicting carbon and water vapor fluxes using machine learning and novel feature ranking 551 

algorithms, Science of The Total Environment, 775, 145130, 2021. 552 



26 

 

Don, A., Schumacher, J., and Freibauer, A.: Impact of tropical land-use change on soil organic carbon 553 

stocks – a meta-analysis, 17, 1658–1670, https://doi.org/10.1111/j.1365-2486.2010.02336.x, 2011. 554 

Field, A. P. and Gillett, R.: How to do a meta‐analysis, British Journal of Mathematical and 555 

Statistical Psychology, 63, 665–694, 2010. 556 

Fu, D., Chen, B., Zhang, H., Wang, J., Black, T. A., Amiro, B. D., Bohrer, G., Bolstad, P., Coulter, 557 

R., and Rahman, A. F.: Estimating landscape net ecosystem exchange at high spatial–temporal 558 

resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux 559 

measurements, Remote Sensing of Environment, 141, 90–104, 2014. 560 

Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., Wakbulcho, G., and Niu, S.: Maximum carbon 561 

uptake rate dominates the interannual variability of global net ecosystem exchange, Global Change 562 

Biology, 25, 3381–3394, 2019. 563 

Hao, Y., Wang, Y., Mei, X., and Cui, X.: The response of ecosystem CO2 exchange to small 564 

precipitation pulses over a temperate steppe, Plant Ecol, 209, 335–347, 565 

https://doi.org/10.1007/s11258-010-9766-1, 2010. 566 

Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., 567 

Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., 568 

Saatchi, S. S., Slay, C. M., Turubanova, S. A., and Tyukavina, A.: Global maps of twenty-first 569 

century forest carbon fluxes, Nat. Clim. Chang., 11, 234–240, https://doi.org/10.1038/s41558-020-570 

00976-6, 2021. 571 

Huemmrich, K. F., Campbell, P., Landis, D., and Middleton, E.: Developing a common globally 572 

applicable method for optical remote sensing of ecosystem light use efficiency, Remote Sensing of 573 

Environment, 230, 111190, 2019. 574 

Jongen, M., Pereira, J. S., Aires, L. M. I., and Pio, C. A.: The effects of drought and timing of 575 

precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean 576 

grassland, Agricultural and Forest Meteorology, 151, 595–606, 577 

https://doi.org/10.1016/j.agrformet.2011.01.008, 2011. 578 

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., 579 

Bernhofer, C., Bonal, D., and Chen, J.: Global patterns of land‐atmosphere fluxes of carbon dioxide, 580 

latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, 581 

Journal of Geophysical Research: Biogeosciences, 116, 2011. 582 

Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., 583 

Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., 584 

Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P., Weber, U., Zaehle, 585 

S., and Zeng, N.: Compensatory water effects link yearly global land CO2 sink changes to 586 

temperature, 541, 516–520, https://doi.org/10.1038/nature20780, 2017. 587 

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., 588 

Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., S Goll, D., Haverd, V., Köhler, 589 

P., Ichii, K., K Jain, A., Liu, J., Lombardozzi, D., E M S Nabel, J., A Nelson, J., O’Sullivan, M., 590 

Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, 591 

A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: 592 

Synthesis and evaluation of the FLUXCOM approach, 17, 1343–1365, https://doi.org/10.5194/bg-17-593 

1343-2020, 2020. 594 



27 

 

Kaur, H., Pannu, H. S., and Malhi, A. K.: A Systematic Review on Imbalanced Data Challenges in 595 

Machine Learning: Applications and Solutions, ACM Comput. Surv., 52, 79:1-79:36, 596 

https://doi.org/10.1145/3343440, 2019. 597 

Kljun, N., Calanca, P., Rotach, M., and Schmid, H. P.: A simple two-dimensional parameterisation for 598 

Flux Footprint Prediction (FFP), Geoscientific Model Development, 8, 3695–3713, 2015. 599 

Liu, Q., Zhang, Y., Liu, B., Amonette, J. E., Lin, Z., Liu, G., Ambus, P., and Xie, Z.: How does 600 

biochar influence soil N cycle? A meta-analysis, Plant and soil, 426, 211–225, 2018. 601 

Luyssaert, S., Janssens, I. A., Sulkava, M., Papale, D., Dolman, A. J., Reichstein, M., Hollmén, J., 602 

Martin, J. G., Suni, T., Vesala, T., Loustau, D., Law, B. E., and Moors, E. J.: Photosynthesis drives 603 

anomalies in net carbon-exchange of pine forests at different latitudes, 13, 2110–2127, 604 

https://doi.org/10.1111/j.1365-2486.2007.01432.x, 2007. 605 

Marcot, B. G. and Hanea, A. M.: What is an optimal value of k in k-fold cross-validation in discrete 606 

Bayesian network analysis?, Comput Stat, 36, 2009–2031, https://doi.org/10.1007/s00180-020-00999-607 

9, 2021. 608 

Mitchell, S., Beven, K., and Freer, J.: Multiple sources of predictive uncertainty in modeled estimates 609 

of net ecosystem CO2 exchange, Ecological Modelling, 220, 3259–3270, 610 

https://doi.org/10.1016/j.ecolmodel.2009.08.021, 2009. 611 

Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., 612 

Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, 613 

D., Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling 614 

techniques for eddy covariance net carbon fluxes, 147, 209–232, 615 

https://doi.org/10.1016/j.agrformet.2007.08.011, 2007. 616 

Moffat, A. M., Beckstein, C., Churkina, G., Mund, M., and Heimann, M.: Characterization of 617 

ecosystem responses to climatic controls using artificial neural networks, 16, 2737–2749, 618 

https://doi.org/10.1111/j.1365-2486.2010.02171.x, 2010. 619 

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Prisma Group: Preferred reporting items for 620 

systematic reviews and meta-analyses: the PRISMA statement, PLoS medicine, 6, e1000097, 2009. 621 

Moon, T. K.: The expectation-maximization algorithm, 13, 47–60, 1996. 622 

Papale, D. and Valentini, R.: A new assessment of European forests carbon exchanges by eddy fluxes 623 

and artificial neural network spatialization, 9, 525–535, https://doi.org/10.1046/j.1365-624 

2486.2003.00609.x, 2003. 625 

Park, S.-B., Knohl, A., Lucas-Moffat, A. M., Migliavacca, M., Gerbig, C., Vesala, T., Peltola, O., 626 

Mammarella, I., Kolle, O., Lavrič, J. V., Prokushkin, A., and Heimann, M.: Strong radiative effect 627 

induced by clouds and smoke on forest net ecosystem productivity in central Siberia, Agricultural and 628 

Forest Meteorology, 250–251, 376–387, https://doi.org/10.1016/j.agrformet.2017.09.009, 2018. 629 

Pearl, J.: Bayesian netwcrks: A model cf self-activated memory for evidential reasoning, in: 630 

Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, 631 

CA, USA, 15–17, 1985. 632 

Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., 633 

Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. 634 

B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., Kowalska, N., Kutzbach, L., Lienert, S., Lohila, A., 635 

Mammarella, I., Nadeau, D. F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quinton, W., 636 



28 

 

Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Sonnentag, O., Wille, C., Zona, D., and Aalto, T.: 637 

Monthly gridded data product of northern wetland methane emissions based on upscaling eddy 638 

covariance observations, Earth System Science Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-639 

1263-2019, 2019. 640 

Reed, D. E., Poe, J., Abraha, M., Dahlin, K. M., and Chen, J.: Modeled Surface-Atmosphere Fluxes 641 

From Paired Sites in the Upper Great Lakes Region Using Neural Networks, Journal of Geophysical 642 

Research: Biogeosciences, 126, https://doi.org/10.1029/2021JG006363, 2021. 643 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: 644 

Deep learning and process understanding for data-driven Earth system science, 566, 195–204, 645 

https://doi.org/10.1038/s41586-019-0912-1, 2019. 646 

Reitz, O., Graf, A., Schmidt, M., Ketzler, G., and Leuchner, M.: Upscaling Net Ecosystem Exchange 647 

Over Heterogeneous Landscapes With Machine Learning, 126, e2020JG005814, 648 

https://doi.org/10.1029/2020JG005814, 2021. 649 

Ruppert, J., Mauder, M., Thomas, C., and Lüers, J.: Innovative gap-filling strategy for annual sums of 650 

CO2 net ecosystem exchange, 138, 5–18, https://doi.org/10.1016/j.agrformet.2006.03.003, 2006. 651 

Shi, H., Luo, G., Zheng, H., Chen, C., Bai, J., Liu, T., Ochege, F. U., and De Maeyer, P.: Coupling the 652 

water-energy-food-ecology nexus into a Bayesian network for water resources analysis and 653 

management in the Syr Darya River basin, Journal of Hydrology, 581, 124387, 654 

https://doi.org/10.1016/j.jhydrol.2019.124387, 2020. 655 

Shi, H., Hellwich, O., Luo, G., Chen, C., He, H., Ochege, F. U., Van de Voorde, T., Kurban, A., and 656 

de Maeyer, P.: A global meta-analysis of soil salinity prediction integrating satellite remote sensing, 657 

soil sampling, and machine learning, 1–15, https://doi.org/10.1109/TGRS.2021.3109819, 2021. 658 

Tian, X., Yan, M., van der Tol, C., Li, Z., Su, Z., Chen, E., Li, X., Li, L., Wang, X., Pan, X., Gao, L., 659 

and Han, Z.: Modeling forest above-ground biomass dynamics using multi-source data and 660 

incorporated models: A case study over the qilian mountains, Agricultural and Forest Meteorology, 661 

246, 1–14, https://doi.org/10.1016/j.agrformet.2017.05.026, 2017. 662 

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., 663 

Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, 664 

D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression 665 

algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016. 666 

Van Hulse, J., Khoshgoftaar, T. M., and Napolitano, A.: Experimental perspectives on learning from 667 

imbalanced data, in: Proceedings of the 24th international conference on Machine learning, New 668 

York, NY, USA, 935–942, https://doi.org/10.1145/1273496.1273614, 2007. 669 

Virkkala, A.-M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C., Natali, S. M., Watts, J. D., 670 

Potter, S., Lehtonen, A., Mauritz, M., Schuur, E. A. G., Kochendorfer, J., Zona, D., Oechel, W., 671 

Kobayashi, H., Humphreys, E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst, 672 

S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C., Sonnentag, O., Parmentier, 673 

F.-J. W., Ueyama, M., Celis, G., St.Louis, V. L., Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., 674 

Nilsson, M. B., Oberbauer, S. F., Torn, M. S., Park, S.-J., Dolman, H., Mammarella, I., Chae, N., 675 

Poyatos, R., López-Blanco, E., Christensen, T. R., Kwon, M. J., Sachs, T., Holl, D., and Luoto, M.: 676 

Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: 677 

Regional patterns and uncertainties, Global Change Biology, 27, 4040–4059, 678 

https://doi.org/10.1111/gcb.15659, 2021. 679 



29 

 

Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migliavacca, M., Weber, U., Ermida, S. L., 680 

Brümmer, C., Schrader, F., Prokushkin, A. S., Panov, A. V., and Jung, M.: Technical note: A view 681 

from space on global flux towers by MODIS and Landsat: The FluxnetEO dataset, Biogeosciences 682 

Discussions, 1–40, https://doi.org/10.5194/bg-2021-314, 2021. 683 

Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A.: Responses of terrestrial 684 

ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation, 685 

17, 927–942, https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011. 686 

Yan, J., Zhang, Y., Yu, G., Zhou, G., Zhang, L., Li, K., Tan, Z., and Sha, L.: Seasonal and inter-687 

annual variations in net ecosystem exchange of two old-growth forests in southern China, Agricultural 688 

and Forest Meteorology, 182–183, 257–265, https://doi.org/10.1016/j.agrformet.2013.03.002, 2013. 689 

Zeng, J., Matsunaga, T., Tan, Z.-H., Saigusa, N., Shirai, T., Tang, Y., Peng, S., and Fukuda, Y.: 690 

Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a 691 

random forest, 7, https://doi.org/10.1038/s41597-020-00653-5, 2020. 692 

Zhang, C., Brodylo, D., Sirianni, M. J., Li, T., Comas, X., Douglas, T. A., and Starr, G.: Mapping 693 

CO2 fluxes of cypress swamp and marshes in the Greater Everglades using eddy covariance 694 

measurements and Landsat data, Remote Sensing of Environment, 262, 695 

https://doi.org/10.1016/j.rse.2021.112523, 2021. 696 

Zhou, Y., Li, X., Gao, Y., He, M., Wang, M., Wang, Y., Zhao, L., and Li, Y.: Carbon fluxes response 697 

of an artificial sand-binding vegetation system to rainfall variation during the growing season in the 698 

Tengger Desert, Journal of Environmental Management, 266, 699 

https://doi.org/10.1016/j.jenvman.2020.110556, 2020. 700 

Zhu, S., Clement, R., McCalmont, J., Davies, C. A., and Hill, T.: Stable gap-filling for longer eddy 701 

covariance data gaps: A globally validated machine-learning approach for carbon dioxide, water, and 702 

energy fluxes, Agricultural and Forest Meteorology, 314, 108777, 703 

https://doi.org/10.1016/j.agrformet.2021.108777, 2022. 704 

 705 


